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Abstract 

 
 

The articles hal-01970150 and hal-02444592 propose a modeling of various relativistic 

phenomena from quantified variations of the Platonic absolute time in the presence of a 

gravitational field. 

This article aims to re-establish the uniformity of the flow of this time by attributing these 

apparent variations to deformations of the Platonic space in a fifth spatial dimension. 

As we will explain, these deformations will thus lead, in a purely geometric way, to a quantified 

modeling of the relativistic acceleration of gravity. 

 

 

 

 

GÉNÉRATION DE L’ACCÉLÉRATION RELATIVISTE DE LA PESANTEUR  

À PARTIR DE DÉFORMATIONS QUANTIFIÉES D’UN ESPACE QUADRIDIMENSIONNEL 

PLATONICIEN IMMERGÉ DANS UN ESPACE À CINQ DIMENSIONS 

 

Résumé 

 
 

Les articles hal-01949616 et hal-02397067 proposent une modélisation de divers phénomènes 

relativistes à partir de variations quantifiées du temps absolu platonicien en présence d’un 

champ gravitationnel.  

Le présent article vise à rétablir l’uniformité de l’écoulement de ce temps en attribuant ces 

variations apparentes à des déformations de l’espace platonicien dans une cinquième dimension 

spatiale. 

Comme nous allons l’expliquer, ces déformations vont ainsi conduire, de façon purement 

géométrique, à une modélisation quantifiée de l’accélération relativiste de la pesanteur. 
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Introductory 

Articles hal-01970150 and hal-02444592 (cf. the articles cited in reference to the following 

paragraph) propose, by means of quantified variations of "absolute time" (cf. article hal-

01378215) a modeling of several relativistic phenomena , namely the variations in the 

measurement of time in a satellite orbiting the Earth, the gravitational redshift (Pound-Rebka 

experiment), the advance of the perihelion of the planets and the deflection of light in a 

gravitational field. 

However, these quantified variations of absolute time go against one of the fundamental 

principles of the Platonic model (cf. article hal-01165196) whose framework is a four-

dimensional Euclidean space, in which objects move uniformly (that is to say that between two 

observations, whatever their trajectory, they all travel the same distance (*)), but where the 

events are seen in projection according to a privileged direction. 

To restore this principle, we will introduce here a fifth spatial dimension in which Platonic 

space will deform, in a quantified way, under the effect of the mass waves generated by the 

massive bodies in interaction. 

We will thus see that the apparent variations of “absolute time” are generated geometrically by 

these deformations which impose a complementary path to the objects which are subjected to 

them. 

 

In application, we will show in this article that these deformations shed new light on a 

modeling of the relativistic acceleration of gravity. 

 

 

(*) We recall here the concept of absolute time introduced in the article hal-01340134 : 
 

given the regular motion of the objects observed in the Platonic universe  

(« between two events, the distances traveled by all the observed objects are equal, regardless of 

their trajectory »), and with reference to the Newtonian concepts  

(“Absolute, true and mathematical time, of itself, and from its own nature flows equably without 

regard to anything external”), we can introduce a notion of absolute time (measured in meters) in 

the following terms : 

« Absolute time T  between two events is the distance traveled by (all) the mobiles  

between these two events .» 
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1. The geometrical framework 

This modeling is based on the Platonic space outlined in the following articles: 

« UN MODÈLE PLATONICIEN (EUCLIDIEN-PROJECTIF) POUR LA THÉORIE DE LA 

RELATIVITÉ RESTREINTE » (pré-publication hal-01081576, version 1). 

« A PLATONIC (EUCLIDEAN-PROJECTIVE) MODEL FOR THE SPECIAL THEORY OF 

RELATIVITY » (pre-publication hal-01165196, version 1). 

In the previous articles, the four-dimensional Euclidean space was referred to an 

orthonormal coordinate system ( ), , , ,O i j k h   whose axes were denoted ( )OX , ( )OY , ( )OZ , 

( )OW ; the direction of the projection was that of the vector h  . 

The introduction of a fifth dimension will lead us to review these notations. 

Thus, the four-dimensional Platonic space considered will be related to an orthonormal 

coordinate system ( )1 2 3 4, , , ,O e e e e  whose axes will be denoted ( )1Ox , ( )2Ox , ( )3Ox and ( )4Ox ; 

the direction of the projection becomes that of the vector 4e  ; this space is immersed in a five-

dimensional space related to an orthonormal frame ( )1 2 3 4 5, , , , ,O e e e e e  whose axes will be 

denoted ( )1Ox , ( )2Ox , ( )3Ox , ( )4Ox   and ( )5Ox . 

 

Following the hal-01207447 and hal-01213447 articles, the notion of relativistic mass of a 

particle is described as a result of its interaction with a stratification of the quadridimensional 

Platonic space by a sequence of hyperplanes ( )nH  which are orthogonal to the direction of the 

projection 4e , regularly spaced by a distance 
0 0w  . 

This distance 
0w  is equal to the Compton wavelength of the particle in question (for 

example, for an electron, 122, 426.10e

e

h
w m

m c

− =   , where 
em   denotes the rest mass of the 

electron). 

 

These concepts are detailed in the Hal articles below: 

 

hal-01165196, v1 : A Platonic (Euclidean-projective) model for the special theory of relativity. 

hal-01207447, v1 :  Towards a modeling of De Broglie waves in a Platonic quadridimensional 

space. 

hal-01213447, v1 :  An idea of the mass of a particle in a Platonic quadridimensional space. 

hal-01247385, v1 : A modeling of Michelson-Morley interferometer in a Platonic quadri-

dimensional space. 

hal-01340134, v1 :  One-dimensional elastic collisions in a Platonic quadridimensional space. 
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hal-01378215, v1 : About time measurement in a Platonic quadridimensional space. 

hal-01584918, v1 : A quantified approach to the laws of gravitation in a Platonic quadri- 

  dimensional space. 

hal-01756323, v1 : De Broglie waves and quantification of Keplerian orbits in a Platonic 

  quadridimensional space. 

hal-01970150, v1 : An introduction to quantified variations of absolute time in the presence of a 

gravitational field in a Platonic quadridimensional space. 

hal-02444592, v1 : Gravitational deflection of light in a Platonic quadridimensional space. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 
 

2. Measurement of the deformation of the Platonic space 
 

Taking into account the principles exposed in the introduction, we will evaluate the 

measure of the deformation of the Platonic space generated in the fifth dimension by an 

occurrence of the mass wave. 

In order to maintain overall consistency with the previous articles, the starting point 

adopted to determine this measurement will be the first postulate of quantified 

declination proposed in article hal-01584918; that is to say : 

« the angular variation ,i j  corresponding to the modification of trajectory 

undergone by the body jC  in the Platonic space during the perception of an 

occurrence of the mass wave emitted by the body 
iC  is independent  

of the reference frame R  and has for value:  
( )

, 2
3

,

sin cosi j j

i j

Gh

c d
   =   .» 

It emerges (*) from this starting point that the displacement 5x in the fifth dimension 

undergone by a body jC  during the perception of an occurrence of the mass wave 

emitted by the body 
iC  is given by: 

 

( )5 3

,

sinj i

i j

Gh
x C

c d
 =   . 

 

((*) We will see in the following paragraph how the choice of this measure makes it 

possible to find the first postulate of quantified declination). 

 

• Notes 

  By denoting v  the speed of jC  observed in the reference frame iR  linked to the 

body 
iC , we set ( )',i jC C v = ; and the distance ,i jd  considered in this article (and in 

those cited in the references) corresponds to the distance measured in the reference 

frame 
i

R between the two interacting bodies. It is defined by the following : 

denote by iv the velocity of the body 
iC in the Platonic space (see appendix 2 page 15 for a 

detailed reminder of the concept of Platonic velocity); 

by iH  the hyperplane linked to the body iC , that is, the hyperplane orthogonal to iv and 

passing through iC ; 

by 'jC  the projection (according to the direction of the vector 4e ) of the body jC  on iH . 

We define , 'i j i jd C C= . 

 

 In order for the displacement 5x undergone by the body jC  to have the value 

3

,

sin i

i j

Gh

c d
  , the deformation of the Platonic space in the fifth dimension could be equal 

to half of this value and be perceived cyclically as follows: 
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 To give an order of the magnitude of this deformation, an electron located at a 

distance , 1i jd m=  leads, for 
2

i


 = , to: 

12

0 2,428 10i

e

h
T w m

m c

− =  =         and     69

5 1,64 10x m−   . 

 

 With , ,i j i j Pd n l=  , where *

,i jn   and 
35

3
1,62 10

2
P

Gh
l m

c

−=     denotes the 

Planck length, we have:  5 3

, ,

1 1
sin sin

2 2

P
i i

i j i j

lGh
x

c d n


  = =    ; and consequently this 

quantity is less than the Planck length as soon as , 3i jn  . 

 

 In appendix 3 on page 18, the mass wave corresponding to the apparent stopping 

of the body jC  in the Platonic space is calculated as a special case the absolute period 

0T . 

Solving the equation 5 0x T =   thus leads to: 

03

,

sin sini i i

i j

Gh
w

c d
 =         i.e.      , 3

0

i j

i

Gh
d

c w
=


. 

Moreover, in the reference frame 
i

R , the mass at rest of the body iC is 0

0

i

i

h
m

c w
=


. 

So we have , 02i j i

G
d m

c
= , i.e. ,

1

2
i j sd R= , where sR represents the Schwarzschild 

radius of the body iC . 

In other words, the apparent stopping of the body jC in the Platonic space for 

,

1

2
i j sd R=  can be interpreted as a cyclic displacement of this body in the fifth 

dimension: after each displacement equal to 5x , the body jC  perceives a new 

occurrence of the mass wave generated by iC  (since 0 5T x =  ) and is forced to move 

again a distance 5x in the fifth dimension, etc. 
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3. Link with the first postulate of quantified declination 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 

Fig. 1 
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 Figure 1 shows the bodies iC and jC , as well as their directions of displacement in 

the Platonic space. 

The body jC  is assumed to be a non-point object: the segment  AB , whose length is

dl , represents a diameter of jC in the plane directed by the vectors jv and 4e . 

'jC , 'A and 'B represent the projections of these points in the hyperplane iH  linked 

to the body iC and we denote ' ' 'A B dl= . 

We thus obtain (the details of the calculations are proposed in Appendix 1 on page 12): 

 

 
2 2 2

sin
' sin cos cos

sin

j

i i

i

dl dl


  


=   +  , where  designates the angle 

( ),absi absjv v  formed by the absolute speeds of the bodies iC  and jC  (see appendix 1). 

 

 Then, with 0dl   and  ' ' ' 'i iC B C A A B= + , we obtain : 

( ) ( ), , 'cosi j i jd B d A dl = +  , where ( ) ( )', ' ' ',i i jC A A B C C v = =  

(by denoting  v  the speed of jC  observed in the reference frame iR ) ; 

hence :      ( ) ( ) 2 2 2

, ,

sin
sin cos cos cos

sin

j

i j i j i i

i

d B d A dl


   


= +   +  . 

 

 

 Figure 2 represents the change in direction ,i j  of the body jC  caused in the Platonic 

space by the perception of an occurrence of the mass wave generated by the body iC . 

According to paragraph 2 on page 5, the displacements in the fifth dimension of the ends 

A and B are: 
 

• for A : ( )
( )

5 3

,

sin i

i j

Gh
x A

c d A
 =  ; 

• for B : ( )
( )

5 3

,

sin i

i j

Gh
x B

c d B
 = . 

 

During a period T , it appears that the distances traveled by A and B in the Platonic 

space are: 

 

• for A : ( )5dA T x A=  −   ; 

• for B : ( )5dB T x B=  −   ;    hence :  ( ) ( )5 5dB dA x A x B− =  −  , 

i.e.     
( ) ( ) ( ) ( )

23 3

, , , ,

1 1 'cos
sin sin

'cos
i i

i j i j i j i j

Gh Gh dl
dB dA

c d B d A c d A d A dl


 



 
− = − =    + 

 ; 
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then, with  
,i j

dB dA

dl


−
 = , we obtain : 

( ) ( )

2 2 2

, 23

, ,

sin
sin cos cos cos

sin
sin

'cos

j

i i

i
i j i

i j i j

Gh

c d A d A dl


   


 



 + 

 = 
+

 ; 

and finally, with ' 0dl   and noting ( ), ,i j i jd A d= , we have : 

( )
2 2 2

, 2
3

,

sin sin cos cos cosi j j i i

i j

Gh

c d
      =   +   .  [1] 

 

This relation corresponds, in a generalized way, to the first postulate of quantified 

declination proposed in article hal-01584918 where the study carried out  

pre-assumed  =  and, in this particular case, we find: 

( )
, 2

3

,

sin cosi j j

i j

Gh

c d
   =   . 

 

NB. : in article hal-01584918, we notice that ( )' ',i j absjC C v =  because 
2

i


 = and, in 

this case, the speeds absjv  and v  are collinear. 
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4. A modeling of the relativistic acceleration of gravity 

Keeping the notations of the previous paragraphs, the usual notion of speed (measured 

in m.s-1) in the reference frame 
i

R  leads, for the body jC , to: 

( )
2

2 21 cos cos cos sin sin

1 cos cos cos

i j i j

i j

v

c

    

  

− −
=

−
 

(see calculation details in appendix 2 page 15). 

To simplify the calculations, we will limit this paragraph to the particular case where 

the movement of the body jC  takes place in the plane passing through iC  and having as 

direction vectors iv  and 4e , in other words for  0 = , that is to say cos 1 =  .  

We then obtain: 

( )
2

2 21 cos cos sin sin cos cos

1 cos cos 1 cos cos

i j i j i j

i j i j

v

c

     

   

 − 
= =

 
. 

Furthermore, we will assume that the mass of the body iC  linked to the observation 

reference frame 
i

R is very large compared to that of jC  and that, consequently, the 

angle 
i remains constant as a function of absolute time T. 

With the relation  
sin

1 cos cos cos

i

i j

dT

cdt



  
=

−
  (see appendix 2), where  t  measures 

the usual time (expressed in seconds) into the reference frame 
i

R , we thus obtain, for 

the usual acceleration a  (measured in m.s-2) of the body jC  : 

2

v v
d d

dv a dTc c
a

dt c cdt dT cdt

   
   
   

=  = =   

i.e. (with cos 1 =  ) :   
( )

2

22

sin sin sin

1 cos cos1 cos cos

j i j i

i ji j

da

c dT

   

  

−
=  


 

that is to say :                      
( )

3

32

sin sin

1 cos cos

j i j

i j

da

c dT

  

 

−
= 


  [2] 

 

The factor  
jd

dT


 is obtained from the relation  , ,

j

i j i j

d
f

dT


=   , where ,i jf  represents 

the absolute frequency of the mass wave perceived by the body jC . 
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According to Annex 3 page 18, we have :   ,

0

1 cos cos cos

sin

i j

i j

i i

f
w

  



−
=


. [3] 

Which leads to, with [1], [3] and cos 1 =   :  

( )
2

3
0 ,

1 cos cos
sin cos

sin

j i j

j

i i i j

d Gh

dT w c d

  
 




=   


. 

The relation [2] thus becomes : 

( ) ( )

3

2 32 3
0 ,

1 cos cos sin sin
sin cos

sin 1 cos cos

i j i j

j

i i i j i j

a Gh

c w c d

   
 

  


= −    

 
 

i.e.    

( ) ( )

2 2

2 2

0 ,

sin sin
cos

1 cos cos

i j

i i j i j

Gh
a

c w d

 


 
= −  

 
. 

(Note that in the particular case studied in this paragraph, we have A = B cos 1 =   if  

( )', 0i jC C v = =   or  cos 1 = −   if  ( )',i jC C v = = ). 

 

Finally, we have 0

0

i

i

h
m

c w
=


 (mass at rest of body iC  in the reference frame 

i
R  - 

see article hal-01213447 -) and, according to the remark made in appendix 2 page 15:  

( )

2 2 2

2 2

sin sin
1

1 cos cos

i j

i j

v

c

 

 
= −


. 

We thus find the relativistic formula:   
( )

2

0

2 2

,

1i

i j

Gm v
a

cd

 
= − 

 
   . 
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5. Appendix 1 : calculation of the ratio dl’/dl 
 

• Let us first briefly recall the concept of speed of a mobile M  in the Platonic space (see 

in particular articles hal-01584918 and hal-01756323): 
 

given the definition of the absolute time T (in m), the norm of the speed vector of all 

the mobiles is equal to 1 and the velocity vector 
dM

v
dT

=  of any mobile M  is given by: 

cos cos cos

cos cos sin

cos sin

sin

v

  

  

 



 
 
 =
 
 
 

,   

with any  , 

;
2 2

 


 
 − 

 
  and  ;

2 2

 


 
 − 

 
. 

 

Its absolute speed is given by : 

cos cos cos

cos cos sin

cos sin

0

absv

  

  

 

 
 
 =
 
 
 

,   

whose norm is equal to cos  . 

 

 

 

 

 

• To simplify the calculation lines which follow, we will note 

1

2

3

4

i

a

a
v

a

a

 
 
 =
 
  
 

 the velocity 

vector of the body iC  and 

1

2

3

4

j

b

b
v

b

b

 
 
 =
 
  
 

  the velocity vector of the body jC . 

 

We will designate by iH  the hyperplane linked to iC , that is to say the hyperplane 

orthogonal to iv  passing through iC  and by jH  the hyperplane linked to jC , i.e. the 

hyperplane orthogonal to jv  passing through jC . 
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 So we have the following equivalences:  

 

 a point ( )1 2 3 4, , , iM x x x x H
  
if and only if : 

                 ( )( ) ( )( ) ( )( ) ( )( )1 1 1 2 2 2 3 3 3 4 4 4 0i i i ia x x C a x x C a x x C a x x C− + − + − + − =   [R1] 

and ( )1 2 3 4, , , jM x x x x H
  
if and only if : 

     ( )( ) ( )( ) ( )( ) ( )( )1 1 1 2 2 2 3 3 3 4 4 4 0j j j jb x x C b x x C b x x C b x x C− + − + − + − = . 

 

 The plane ( )jP  passing through jC  and directed by jv   and  
4

0

0

0

1

e

 
 
 =
 
 
 

   is parame-

trically represented by :   

( )

( )

( )

( )

1 1 1

2 2 2

3 3 3

4 4 4

j

j

j

j

x x C b

x x C b

x x C b

x x C b







 

 = +

 = +


= +


= + +

  , with ( ) 2,   . 

 

Hence  ( )1 2 3 4, , , j jM x x x x H P 
   

if and only if   2 2 2 2

1 2 3 4 4 0b b b b b    + + + + = . 

With  
2

2 2 2 2

1 2 3 4 1jb b b b v+ + + = = , we obtain 
4b


 = −  et ( )1 2 3 4, , , j jM x x x x H P 

   
if 

and only if :   

( )

( )

( )

( )

1 1 1

2 2 2

3 3 3

4 4 4

4

1

j

j

j

j

x x C b

x x C b

x x C b

x x C b
b









 = +

 = +

 = +

  

= + −  
 

  , with   . 

 

 

 The ratio '/dl dl  doesn’t depend on the length AB , so we can choose for these points 

two arbitrary values of the parameter  , for example 0 =  for A and 1 =  for B ; which 

leads to ( ) ( ) ( ) ( )( )1 2 3 4, , ,j j j jA x C x C x C x C=  

 and ( ) ( ) ( ) ( )1 1 2 2 3 3 4 4

4

1
, , ,j j j jB x C b x C b x C b x C b

b

 
= + + + + − 

 
. 

 

 By denoting A’  the projection of  A in the hyperplane iH , we have : 

( ) ( ) ( ) ( )( )1 2 3 4' , , , 'j j jA x C x C x C x A= ,  whose coordinates satisfy [R1], which leads to :



14 
 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )4 1 1 1 2 2 2 3 3 3 4 4

4

1
' i j i j i j ix A a x C x C a x C x C a x C x C a x C

a
 = − + − + − +
 

 

Likewise, denoting by B’  the projection of B in the hyperplane 
iH , we have : 

( ) ( ) ( ) ( )( )1 1 2 2 3 3 4' , , , 'j j jB x C b x C b x C b x B= + + + , whose coordinates satisfy [R1], which 

leads to  : 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )4 1 1 1 2 2 2 3 3 3 4 4 1 1 2 2 3 3

4

1
' i j i j i j ix B a x C x C a x C x C a x C x C a x C a b a b a b

a
 = − + − + − + − − −
 

. 

 

 

 We thus obtain, with 2 2 2 2

1 2 3 4 1b b b b+ + + =  : 

2
2

2 2 2 2 2 4
1 2 3 4 2

4 4

11 b
dl AB b b b b

b b

  −
= = + + + − = 

 
 

and   
( )

2 2

1 1 2 2 3 32 2 2 2 2 21 1 2 2 3 3
1 2 3 4 2

4 4

' ' ' 1
a b a b a ba b a b a b

dl A B b b b b
a a

+ + + +
= = + + + = − + 

 
. 

Hence: 
( ) ( )

2 22 22
1 1 2 2 3 3 1 1 2 2 3 32 24 4

4 42 2 2 2 2

4 4 4 4

'
1

1 1

a b a b a b a b a b a bb bdl
b a

dl a b a b

   + + + +
= − +  =  +   

− −      

. 

Finally, we have   1 1 2 2 3 3 . cos cos cosabsi absj i ja b a b a b v v   + + = = ,  where  denotes 

the angle ( ),absi absjv v  ;  
4 sin ia =   and   4 sin jb =  , hence the result : 

2 2 2
sin'

sin cos cos
sin

j

i i

i

dl

dl


  


=  + . 
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6. Appendix 2 : calculation of the speed v (in m.s-1) of a mobile M  in the 

observation frame of reference R i 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this paragraph, we will determine the speed (in m.s-1, in the classical sense of the 

term) of a mobile M  observed in the  reference frame 
i

R  linked to the body 
iC . 

In the Platonic space, 
iC  moves in the direction 

id  and M  in the direction jd   . 

As in Appendix 1, to simplify the calculation lines which follow, we will denote 

1

2

3

4

i

a

a
v

a

a

 
 
 =
 
  
 

 

the speed vector of the body iC  and 

1

2

3

4

j

b

b
v

b

b

 
 
 =
 
  
 

  the speed vector of the body M . 

 

We will designate by iH  the hyperplane linked to iC , that is to say the hyperplane 

orthogonal to iv  passing through iC  and, as before, a point ( )1 2 3 4, , , iM x x x x H
  
if and 

only if : 

                 ( )( ) ( )( ) ( )( ) ( )( )1 1 1 2 2 2 3 3 3 4 4 4 0i i i ia x x C a x x C a x x C a x x C− + − + − + − =   [R1] 
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 At an (absolute) time  T, the mobile M is at ( ) ( ) ( ) ( )( )1 1 1 2 1 3 1 4 1, , ,M x M x M x M x M=  

and is perceived in 
i

R  by the observer ( ) ( ) ( ) ( )( )1 1 1 2 1 3 1 4 1, , ,A x M x M x M x A= . 

As 1 iA H , we have, with [R1] : 

( ) ( ) ( ) ( )( ) ( ) ( )( )4 1 4 4 1 1 1 1 3 3 1 3

4

1
...i i ix A a x C a x M x C a x M x C

a
 = − − − − −  . 

 

 At the (absolute) time  T T+  , the mobile M is at 
2M , with : 

( ) ( ) ( ) ( )( )2 1 1 1 2 1 2 3 1 3 4 1 4, , ,M x M b T x M b T x M b T x M b T= +  +  +  +   

and is perceived in  
i

R  by the observer ( ) ( ) ( ) ( )( )2 1 2 2 2 3 2 4 2, , ,B x M x M x M x B= . 

The observer A is then at ( ) ( ) ( )( )2 1 1 1 3 1 3 4 1 4,..., ,A x M a T x M a T x A a T= +  +  +   ; and 

the Cartesian equation of the hyperplane ( )iH T T+   linked to 
iC  is : 

( ) ( )1 2 3 4, , , iM x x x x H T T + 
  
if and only if : 

                       ( )( ) ( )( )1 1 1 1 4 4 4 4... 0i ia x x C a T a x x C a T− −  + + − −  = .  [R2] 

 

As ( )2 iB H T T +  , we have, with [R2] : 
 

( ) ( ) ( ) ( )( ) ( ) ( )( )2

4 2 4 4 4 1 1 1 1 1 1 3 3 1 3 3 3

4

1
...i i ix B a x C a T a x M b T x C a T a x M b T x C a T

a
 = +  − +  − −  − − +  − −  

 

 According to the Platonic model (cf. articles hal-01165196 and hal-01378215), the 

duration t  measured (in seconds) in the reference frame 
i

R  between these two 

events is given by : ( ) ( )4 2 4 1c t x B x A = − . So we have : 

2 2 2 2

4 1 1 1 2 2 2 3 3 3

4

1
c t a T a b T a T a b T a T a b T a T

a
  =  −  +  −  +  −  +   . 

Furthermore 
4

2

1

1i

i

a
=

= , that leads to :  1 1 2 2 3 3

4

1
c t T a b T a b T a b T

a
 =  −  −  −   ; 

and finally, we have   1 1 2 2 3 3 . cos cos cosabsi absj i ja b a b a b v v   + + = = ,  where 

denotes the angle ( ),absi absjv v  and 4 sin ia =   , hence the result :   

1 cos cos cos
sin

i j

i

T
c t   




  = −  . 

 

 The distance   measured (in meters) in the reference frame 
i

R  between these 

two events is given by : 2 2A B =  (cf. article hal-01165196).  
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So we have ( ) ( )( )
4

2

2 2

1

i i

i

x B x A
=

 = − , which leads, with the previous results, to: 

( )
2

2 21 cos cos cos sin sin
sin

i j i j

i

T
     




 = − − . 

 

 

 To conclude, we thus obtain the modulus (in the classical sense of the term, 

expressed in m.s-1) of the speed of the mobile M observed in the  reference frame 
i

R  

linked to the body 
iC : 

                        
( )

2
2 21 cos cos cos sin sin

1 cos cos cos

i j i j

i j

v

c c t

    

  

− −
= =

 −
 . [R3] 

 

 

 

Remarks : 

 two special cases are to be noted: 

•  if 0 = , we thus obtain :  
cos cos

1 cos cos

i j

i j

v

c

 

 

−
=

−
 ; 

• and if  = , we have :  
cos cos

1 cos cos

i j

i j

v

c

 

 

+
=

−
. 

 

 The relation [R3] leads to :          
( )

2 22

22

sin sin
1

1 cos cos cos

i j

i j

v

c

 

  
− =

−
. 
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7. Appendix 3 : calculation of the absolute frequency of the mass wave 

generated by the body Ci  and perceived by the body Cj 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We take up and generalize here the concepts exposed in article hal-01207447: "Towards a 

modeling of De Broglie waves in a four-dimensional Platonic space". 

Following this article and article hal-01213447, the relativistic notion of the mass of a particle 

is described as a consequence of its interaction with a stratification of the Platonic four-

dimensional space by a series of hyperplanes 
( )nH  orthogonal to the direction of projection 4e , 

regularly spaced by a distance 0 0iw  . 

This distance 0iw  is equal to the Compton wavelength of the particle considered. 

 

 At an (absolute) time T, the body jC  perceives the front 
( )nF  of the mass wave generated by 

the massive body iC ; then, after an absolute period T  (measured in meters), the body jC

perceives the occurrence 
( 1)nF +

. 

( )nF  corresponds to the intersection of hyperplanes ( )iH T and 
( )nH , of which a Cartesian 

equation is: ( )( )

4 4

nx x H=  ; and 
( 1)nF +

 corresponds to the intersection of hyperplanes 

( )iH T T+   and 
( 1)nH +

, of which a Cartesian equation is: ( )( )

4 4 0

n

ix x H w= +  . 
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 By taking again the concepts and the abbreviated notations used in the two preceding 

appendices, this leads to the following relations: 

• for the Platonic time T : 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )( )

1 1 1 3 3 3 4 4 4... 0n

j i j i ia x C x C a x C x C a x H x C− + + − + − =  ; 

• and for the time T T+   : 

( ) ( )( ) ( ) ( )( )1 1 1 1 1 3 3 3 3 3...j i j ia x C b T x C a T a x C b T x C a T+  − −  + + +  − −   

( ) ( )( )( )

4 4 0 4 4 0n

i ia x H w x C a T+ +  − −  = . 

This system results in:     4 0

1 1 2 2 3 31

ia w
T

a b a b a b


 =

− − −
 ; 

and finally, with   1 1 2 2 3 3 . cos cos cosabsi absj i ja b a b a b v v   + + = = ,  where  denotes 

the angle ( ),absi absjv v   and  4 sin ia =   , we obtain : 

0 sin

1 cos cos cos

i i

i j

w
T



  


 =

−
. 

 

 The absolute frequency 
,i jf   (measured in m-1) of the mass wave generated by the body 

iC

and perceived by the body jC  is therefore given by: 

,

0

1 cos cos cos1

sin

i j

i j

i i

f
T w

  



−
= =

 
. 

 

 

Note 
 

The movements of the body jC  in the fifth dimension generate an apparent decrease of its 

Platonic velocity jv . 

In the particular case where its apparent speed jv  becomes zero, we then have cos 0j =  

(because 1 2 3 40 0jv b b b b=  = = = = ) and the absolute period of the mass wave generated 

by the body iC  and perceived by jC  becomes: 0 0 sini iT w  =  . 

The absolute frequency ,i jf   of the mass wave generated by the body iC  and perceived by 

the body jC  is then given by: ,

0 0

1 1

sin
i j

i i

f
T w 

= =
 

. 

 

These results are used on page 6, note . 
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8. Conclusion 

Since the beginning of the twentieth century, scientific research has often called on additional 

physical dimensions (Kaluza-Klein’s works, String theory, Calabi-Yau spaces, etc.). 
 

The results obtained in the articles cited with reference to page 3 lead here to the 

introduction of a fifth dimension in which the Platonic four-dimensional space would be 

immersed and would undergo cyclic deformations, in connection with the De Broglie mass 

waves generated by the bodies in gravitational interaction. 
 

The Euclidean-projective Platonic model, thus completed, while rediscovering the uniformity 

of the flow of "absolute time" which is one of its founding principles, offers here from these very 

small variations a geometric modeling of the relativistic acceleration of gravity.  

And this modeling applies equally well to several other relativistic phenomena: variations in 

the measurement of time in a satellite in orbit around the Earth, the gravitational redshift, the 

advance of the perihelion of the planets and the deflection of light in a gravitational field (cf. 

articles hal-01970150 and hal-02444592). 
 

It should also be noted that these very small deformations are less than the Planck length (cf. 

note  on page 6). 

This result, in fact, makes this modelization compatible with the theories which introduce 

additional dimensions whose size is equal to this length. 
 

Given the fruitful results obtained thanks to these multidimensional models, this convergence 

thus seems to open up promising research in a new geometric framework. 
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