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GENERATION OF THE RELATIVIST ACCELERATION OF GRAVITY FROM QUANTIFIED DEFORMATIONS OF A QUADRIDIMENSIONAL PLATONIAN SPACE IMMERSED IN A FIVE-DIMENSIONAL SPACE

The articles hal-01970150 and hal-02444592 propose a modeling of various relativistic phenomena from quantified variations of the Platonic absolute time in the presence of a gravitational field.

This article aims to re-establish the uniformity of the flow of this time by attributing these apparent variations to deformations of the Platonic space in a fifth spatial dimension.

As we will explain, these deformations will thus lead, in a purely geometric way, to a quantified modeling of the relativistic acceleration of gravity.

Introductory

Articles hal-01970150 and hal-02444592 (cf. the articles cited in reference to the following paragraph) propose, by means of quantified variations of "absolute time" (cf. article hal-01378215) a modeling of several relativistic phenomena , namely the variations in the measurement of time in a satellite orbiting the Earth, the gravitational redshift (Pound-Rebka experiment), the advance of the perihelion of the planets and the deflection of light in a gravitational field.

However, these quantified variations of absolute time go against one of the fundamental principles of the Platonic model (cf. article hal-01165196) whose framework is a fourdimensional Euclidean space, in which objects move uniformly (that is to say that between two observations, whatever their trajectory, they all travel the same distance (*) ), but where the events are seen in projection according to a privileged direction.

To restore this principle, we will introduce here a fifth spatial dimension in which Platonic space will deform, in a quantified way, under the effect of the mass waves generated by the massive bodies in interaction. We will thus see that the apparent variations of "absolute time" are generated geometrically by these deformations which impose a complementary path to the objects which are subjected to them.

In application, we will show in this article that these deformations shed new light on a modeling of the relativistic acceleration of gravity.

(*) We recall here the concept of absolute time introduced in the article hal-01340134 :

given the regular motion of the objects observed in the Platonic universe (« between two events, the distances traveled by all the observed objects are equal, regardless of their trajectory »), and with reference to the Newtonian concepts ("Absolute, true and mathematical time, of itself, and from its own nature flows equably without regard to anything external"), we can introduce a notion of absolute time (measured in meters) in the following terms :

« Absolute time T  between two events is the distance traveled by (all) the mobiles between these two events .»

Ox .

Following the hal-01207447 and hal-01213447 articles, the notion of relativistic mass of a particle is described as a result of its interaction with a stratification of the quadridimensional Platonic space by a sequence of hyperplanes () , where e m denotes the rest mass of the electron).

These concepts are detailed in the Hal articles below:

hal-01165196, v1 : A Platonic (Euclidean-projective) model for the special theory of relativity.

hal-01207447, v1 : Towards a modeling of De Broglie waves in a Platonic quadridimensional space.

hal-01213447, v1 : An idea of the mass of a particle in a Platonic quadridimensional space.

hal-01247385, v1 : A modeling of Michelson-Morley interferometer in a Platonic quadridimensional space.

hal-01340134, v1 : One-dimensional elastic collisions in a Platonic quadridimensional space.

hal-01378215, v1 : About time measurement in a Platonic quadridimensional space.

hal-01584918, v1 : A quantified approach to the laws of gravitation in a Platonic quadridimensional space.

hal-01756323, v1 : De Broglie waves and quantification of Keplerian orbits in a Platonic quadridimensional space.

hal-01970150, v1 : An introduction to quantified variations of absolute time in the presence of a gravitational field in a Platonic quadridimensional space.

hal-02444592, v1 : Gravitational deflection of light in a Platonic quadridimensional space.

Measurement of the deformation of the Platonic space

Taking into account the principles exposed in the introduction, we will evaluate the measure of the deformation of the Platonic space generated in the fifth dimension by an occurrence of the mass wave.

In order to maintain overall consistency with the previous articles, the starting point adopted to determine this measurement will be the first postulate of quantified declination proposed in article hal-01584918; that is to say : ( ) *) We will see in the following paragraph how the choice of this measure makes it possible to find the first postulate of quantified declination). x T  =  thus leads to:

« the angular variation

5 3 , sin ji ij Gh xC cd  = . ( ( 
0 3 , sin sin i i i ij Gh w cd  = i.e. , 3 0 ij i Gh d cw =  .
Moreover, in the reference frame i R  , the mass at rest of the body i C is We thus obtain (the details of the calculations are proposed in Appendix 1 on page 12):

0 0 i i h m cw =  . So we have ,0 2 i j i G dm c = , i.e.

Link with the first postulate of quantified declination

 2 2 2 sin ' sin cos cos sin j i i i dl dl      =   +
, where  designates the angle ( )

, absi absj v v
formed by the absolute speeds of the bodies i C and j C (see appendix 1).

 Then, with 0 dl  and ' ' ' '

i i C B C A A B = +
, we obtain :

( ) ( ) ,,
'cos According to paragraph 2 on page 5, the displacements in the fifth dimension of the ends A and B are:

i j i j d B d A dl  =+ , where ( ) ( ) ', ' ' ', i i j C A A B C C v  = = (by denoting v the speed of j C observed in the reference frame i R  ) ; hence : ( ) ( ) 2 2 2 ,, sin sin cos cos cos sin j i j i j i i i d B d A dl       = +   +  .  Figure 
• for A : ( ) ( ) 5 3 , sin i ij Gh xA c d A  = ; • for B : ( ) ( ) 5 3 , sin i ij Gh xB c d B  = .
During a period T  , it appears that the distances traveled by A and B in the Platonic space are:

• for A :

( ) 

5 dA T x A =  - ; • for B : ( ) 5 dB T x B =  - ; hence : ( ) ( ) 55 dB dA x A x B -=  - , i.e. ( ) 
j ii i i j i i j i j Gh c d A d A dl          +   =  + ;
and finally, with '0 dl  and noting ( )

,, i j i j d A d =
, we have :

( ) 2 2 2 , 2 3 , sin sin cos cos cos i j j i i ij Gh cd        =   +  . [1]
This relation corresponds, in a generalized way, to the first postulate of quantified declination proposed in article hal-01584918 where the study carried out pre-assumed  = and, in this particular case, we find:

( )

, 2 3 , sin cos i j j ij Gh cd     =  
.

NB. : in article hal-01584918, we notice that ( ) and, in this case, the speeds absj v and v are collinear.

' ', i j absj C C v  = because 2 i   =

A modeling of the relativistic acceleration of gravity

Keeping the notations of the previous paragraphs, the usual notion of speed (measured in m.s -1 ) in the reference frame i R  leads, for the body j C , to:

( )

2 22
1 cos cos cos sin sin 1 cos cos cos

i j i j ij v c         -- = -
(see calculation details in appendix 2 page 15).

To simplify the calculations, we will limit this paragraph to the particular case where the movement of the body We then obtain:

( )

2 22
1 cos cos sin sin cos cos 1 cos cos 1 cos cos

i j i j ij i j i j v c          -  == 
. Furthermore, we will assume that the mass of the body 

            =  = =  i.e. ( with 
cos 1  = ) :
( )

2 2 2 sin sin sin 1 cos cos 1 cos cos j i j i ij ij d a c dT       - =    
that is to say :

( ) 3 3 2 sin sin 1 cos cos j i j ij d a c dT     - =  [2]
The factor According to Annex 3 page 18, we have :

, 0 1 cos cos cos sin ij ij ii f w     - =  . [3]
Which leads to, with [1], [3] and cos 1

 = :

( )

2 3 0 ,
1 cos cos sin cos sin

j i j j ii ij d Gh dT w cd       =     . The relation [2] thus becomes : ( ) ( ) 3 23 2 3 0 ,
1 cos cos sin sin sin cos sin 1 cos cos 

i j i j j ii i j i j a Gh cw cd         = -       i.e. ( ) 
 = if ( ) ', 0 i j C C v  = = or cos 1  =-if ( ) ', i j C C v   = = ).
Finally, we have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 1 1 2 2 2 3 3 3 4 4 4 0 i i i i a x x C a x x C a x x C a x x C - + - + - + - = [R1]
and ( )

1 2 3 4 , , , j M x x x x H  if and only if : ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 1 1 2 2 2 3 3 3 4 4 4 0 j j j j b x x C b x x C b x x C b x x C - + - + - + - = .
 The plane ( ) j P passing through 

( ) ( ) ( ) ( ) 1 1 1 2 2 2 3 3 3 4 4 4 j j j j x x C b x x C b x x C b x x C b      =+   =+   =+   = + +   , with ( ) 2 ,   . Hence ( ) 1 2 3 4 , , , jj M x x x x H P  if and only if 2 2 2 2 1 2 3 4 4 0 b b b b b      + + + + = .
With 

2 2 2 2 2 1 2 3 4 1 j b b b b v + + + = = , we obtain 4 b   =-et ( ) 1 
( ) ( ) ( ) ( ) 1 1 1 2 2 2 3 3 3 4 4 4 4 1 j j j j x x C b x x C b x x C b x x C b b      =+   =+   =+    = + -     , with   .
 The ratio '/ dl dl doesn't depend on the length AB , so we can choose for these points two arbitrary values of the parameter  , for example 0  = for A and 1  = for B ; which leads to

( ) ( ) ( ) ( ) (
)

1 2 3 4 , , , j j j j A x C x C x C x C = and ( ) ( ) ( ) ( ) 1 1 2 2 3 3 4 4 4 1 , , , j j j j B x C b x C b x C b x C b b  = + + + + -   .
 By denoting A' the projection of A in the hyperplane i H , we have :

( ) ( ) ( ) ( ) (
)

1 2 3 4 ' , , , ' j j j A x C x C x C x A =
, whose coordinates satisfy [R1], which leads to :

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 4 1 1 1 2 2 2 3 3 3 4 4 4 1 ' i j i j i j i x A a x C x C a x C x C a x C x C a x C a  = - + - + - + 
Likewise, denoting by B' the projection of B in the hyperplane i H , we have :

( ) ( ) ( ) ( ) ( ) 1 1 2 2 3 3 4 ' , , , ' j j j B x C b x C b x C b x B = + + +
, whose coordinates satisfy [R1], which leads to :

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 4 1 1 1 2 2 2 3 3 3 4 4 1 1 2 2 3 3 4 1 ' i j i j i j i x B a x C x C a x C x C a x C x C a x C a b a b a b a  = - + - + - + - - -  .  We thus obtain, with 2 2 2 2 1 2 3 4 1 b b b b + + + = : 2 2 2 2 2 2 2 4 1 2 3 4 2 44 1 1 b dl AB b b b b bb  - = = + + + - =   and ( ) 2 2 1 1 2 2 3 3 2 2 2 2 2 2 1 1 2 2 3 3 1 2 3 4 2 44 ' ' ' 1 a b a b a b a b a b a b dl A B b b b b aa ++  ++ = = + + = -+   . Hence: ( ) ( ) 22 22 2 1 1 2 2 3 3 1 1 2 2 3 3 22 44 44 2 2 2 2 2 4 4 4 4 ' 1 11 a b a b a b a b a a b bb dl ba dl a b a b     + + + + = -+  =  +     --        
.

Finally, we have

1 1 2 2 3 3 . cos cos cos absi absj i j a b a b a b v v    + + = =
, where  denotes the angle ( ) As in Appendix 1, to simplify the calculation lines which follow, we will denote 

)

1 1 1 2 2 2 3 3 3 4 4 4 0 i i i i a x x C a x x C a x x C a x x C - + - + - + - = [R1] 1 ... i i i x B a x C a T a x M b T x C a T a x M b T x C a T a  = +  - +  - - -- +  - - 
 According to the Platonic model (cf. articles hal-01165196 and hal-01378215), the duration t  measured (in seconds) in the reference frame i R  between these two events is given by : ( ) ( )

4 2 4 1 c t x B x A  = - 1 c t a T a b T a T a b T a T a b T a T a   =  -  +  -  +  -  +   . Furthermore 4 2 1 1 i i a = =  , that leads to :   1 1 2 2 3 3 4 1 c t T a b T a b T a b T a  =  -  -  -  ;
and finally, we have 1 cos cos cos sin

i j i T ct         = -   .
 The distance   measured (in meters) in the reference frame i R  between these two events is given by : ( )

2 2 2
1 cos cos cos sin sin 1 cos cos cos

i j i j i j v c c t          - -  = =  - . [R3]
Remarks :

 two special cases are to be noted: We take up and generalize here the concepts exposed in article hal-01207447: "Towards a modeling of De Broglie waves in a four-dimensional Platonic space".

• if 0  = ,
Following this article and article hal-01213447, the relativistic notion of the mass of a particle is described as a consequence of its interaction with a stratification of the Platonic fourdimensional space by a series of hyperplanes  By taking again the concepts and the abbreviated notations used in the two preceding appendices, this leads to the following relations:

• for the Platonic time T :

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) () 1 1 1 3 3 3 4 4 4 ... 0 n j i j i i a x C x C a x C x C a x H x C - + + - + - = ;
• and for the time TT + :

( ) ( ) ( ) ( ) ( ) ( ) 1 1 1 1 3 3 3 3 3 ... j i j i a x C b T x C a T a x C b T x C a T +  - - + + +  - - ( ) ( ) ( ) 
() 4 4 4 4 0 n ii a x H w x C a T + +  - - = .
This system results in: , we obtain :

0 sin 1 cos cos cos i i i j w T      = - .  The absolute frequency , ij f (measured in m -1
) of the mass wave generated by the body i C

and perceived by the body j C is therefore given by: , 0

1 cos cos cos 1 sin

i j ij i i f T w     - = =  
.

Note

The movements of the body j C in the fifth dimension generate an apparent decrease of its Platonic velocity j v .

In the particular case where its apparent speed j v becomes zero, we then have cos 0 

Conclusion

Since the beginning of the twentieth century, scientific research has often called on additional physical dimensions (Kaluza-Klein's works, String theory, Calabi-Yau spaces, etc.).

The results obtained in the articles cited with reference to page 3 lead here to the introduction of a fifth dimension in which the Platonic four-dimensional space would be immersed and would undergo cyclic deformations, in connection with the De Broglie mass waves generated by the bodies in gravitational interaction.

The Euclidean-projective Platonic model, thus completed, while rediscovering the uniformity of the flow of "absolute time" which is one of its founding principles, offers here from these very small variations a geometric modeling of the relativistic acceleration of gravity.

And this modeling applies equally well to several other relativistic phenomena: variations in the measurement of time in a satellite in orbit around the Earth, the gravitational redshift, the advance of the perihelion of the planets and the deflection of light in a gravitational field (cf. articles hal-01970150 and hal-02444592).

It should also be noted that these very small deformations are less than the Planck length (cf. note  on page 6).

This result, in fact, makes this modelization compatible with the theories which introduce additional dimensions whose size is equal to this length.

Given the fruitful results obtained thanks to these multidimensional models, this convergence thus seems to open up promising research in a new geometric framework.
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  is equal to the Compton wavelength of the particle in question (for example, for an electron,
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  , the deformation of the Platonic space in the fifth dimension could be equal to half of this value and be perceived cyclically as follows: To give an order of the magnitude of this deformation, an electron located at In appendix 3 on page 18, the mass wave corresponding to the apparent stopping of the body j C in the Platonic space is calculated as a special case the absolute period
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  caused in the Platonic space by the perception of an occurrence of the mass wave generated by the body i C .

  2), where t measures the usual time (expressed in seconds) into the reference frame i R  , we thus obtain, for the usual acceleration a (measured in m.s -2 ) of the body

  absolute frequency of the mass wave perceived by the body j C .

  in the particular case studied in this paragraph, we have A = B cos 1

•

  Let us first briefly recall the concept of speed of a mobile M in the Platonic space (see in particular articles hal-01584918 and hal-01756323):given the definition of the absolute time T (in m), the norm of the speed vector of all the mobiles is equal to 1 and the velocity vectordM v dT =of any mobile M is given by: equal to cos  .• To simplify the calculation lines which follow, we will note

  of the speed v (in m.s -1 ) of a mobile M in the observation frame of reference R i In this paragraph, we will determine the speed (in m.s -1 , in the classical sense of the term) of a mobile M observed in the reference frame i R  linked to the body



  To conclude, we thus obtain the modulus (in the classical sense of the term, expressed in m.s -1 ) of the speed of the mobile M observed in the reference frame

  of the absolute frequency of the mass wave generated by the body Ci and perceived by the body Cj

F

  to the Compton wavelength of the particle considered.  At an (absolute) time T, the body j C perceives the front () n F of the mass wave generated by the massive body i C ; then, after an absolute period T  (measured in meters), the body + corresponds to the intersection of hyperplanes ( ) i H T T + and ( 1) n H + , of which a Cartesian equation is:

  used on page 6, note . 20

  

 At an (absolute) time T, the mobile M is at ( ) ( ) ( ) ( ) ( )

)

the Cartesian equation of the hyperplane

[R2]

As ( )