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Abstract

Pervasive computing promotes the integration of connected elec-
tronic devices in our living spaces in order to assist us through ap-
propriate services. Two major developments have gained signifi-
cant momentum recently: a better use of fog resources and the use
of AI techniques.  Specifically,  interest  in machine learning ap-
proaches for engineering applications has increased rapidly. This
paradigm seems to fit the pervasive environment well. However,
federated learning has been applied so far to specific services and
remains largely conceptual. It needs to be tested extensively on
pervasive services partially located in the fog. In this paper, we
present experiments performed in the domain of Human Activity
Recognition on smartphones in order to evaluate existing algo-
rithms.
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1 Introduction

Pervasive  computing  promotes  the  integration  of  connected
electronic devices in our living spaces in order to assist us in our
daily activities. We are already surrounded by such smart devices
providing a number of services. These services are today still lim-
ited but they are nonetheless raising huge economical and societal
expectations in many domains including industry and healthcare.
In particular, advances in pervasive computing have the potential
to provide non-intrusive services enhancing health monitoring of
elderly and patients. Recently, there has been a strong movement

to better use resources close to devices in order to store data and
run services [1]. This evolution is known as fog or edge comput-
ing. Today, most pervasive applications are based on cloud infra-
structures.  In  practice,  cloud computing  limits  the  number  and
type of services that can be implemented because of unpredictable
delays,  lack of security,  privacy issues,  and sometimes insuffi-
cient  bandwidth or  excessive costs.  The use of  edge resources
makes it possible to envisage a greater variety and quality of ser-
vice [2].

Another major change is the urge for AI-based services. Inter-
est in machine learning (ML) approaches for engineering applica-
tions has increased rapidly. The goal of an ML system is to train
an algorithm to automatically make a decision (prediction, classi-
fication) by identifying patterns that may be hidden within mas-
sive data sets whose exact nature is unknown and therefore cannot
be  programmed explicitly.  The  growing  attention  towards  ma-
chine learning stems from different sources: efficient algorithms,
availability of massive amounts of data, advances in high-perfor-
mance computing, broad accessibility of these technologies, and
impressive successes reported by industry, academia, and research
communities, in fields such as in vision, natural language process-
ing or decision making. It is then not surprising that there is today
an increasing demand to apply AI techniques in  pervasive do-
mains where traditional solutions cannot be used for lack of mod-
eling tools and excessive algorithmic complexity.

Dealing with this evolution is very challenging.  On the one
hand, engineers in most pervasive fields are used to build models
of dynamic phenomena and are not proficient in data-intensive
approaches. On the other hand, most AI based solutions heavily
rely on cloud infrastructures and cannot be easily implemented in
fog devices for lack of resources. However, Google recently pro-
posed federated learning (FL) [3,4,5] for distributed model train-
ing in the edge with an application of personalized type-writing
assistance. Federated learning, in design, is supposed to save com-
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munication costs and forward security and privacy by preventing
data collected at the terminal level to be sent through the network.
It has immediately attracted attention as a new machine learning
paradigm promoting the use of fog-level resources. This new par-
adigm seems to fit the pervasive environment well. Nevertheless,
federated learning is still largely conceptual and needs to be clari-
fied and tested extensively.

In order to assess the interest of FL, we conducted a set of ex-
periments with promising algorithms recently proposed in the lit-
erature. These experiments were conducted in the field of Human
Activity Recognition (HAR) with smartphones. HAR is a perva-
sive application particularly suited to FL since activities tend to
have generic patterns (e.g., walking involves the same movement
sequence for anybody) while being highly idiosyncratic (i.e., data
depends on the person, the device and the environment). Further-
more, the collected data is private and should not be sent to the
network. This paper is organized as it follows. First, some back-
ground about federated learning and HAR is provided, then the
task and experimental settings are presented. Experimental results
are finally discussed. 

2 Background

2.1 Federated Learning

Federated Learning proposes  a  distributed  machine  learning
strategy that  enables  training on decentralized data  residing on
terminal devices such as mobile smartphones. Federated learning
is well in line with the objectives of fog computing in the sense
that  data  and  computing  are  distributed  on  local  devices.  This
clearly can address problems related to performance, privacy and
data  ownership.  As  illustrated  hereafter  by  figure  1,  federated
learning relies on a distributed architecture made of a server lo-
cated  in  a  cloud-like  facility  and  a  number  of  devices,  called
clients.  The number of clients is variable and can be dynamic;
clients can appear and disappear without notice. 

Figure  1.  Federated  learning  architecture

The theoretical architectural behavior is the following. First, a
randomized global model, a convolutional neural network for in-
stance, is generated at the server site and sent to the clients. Then,
selected clients collect data and on-device training is performed.
After some pre-defined time, local models built by the clients are
sent back to the server. The server aggregates these models into a

new global model which is, again, sent to the clients and the cycle
is repeated. It can be also noted that in theory new clients are al-
lowed to join at any time which may prolong training indefinitely.

A key point in this new paradigm model is the models’ aggre-
gation. In the first publications related to federated learning, ag-
gregation was implemented as an average function. We call this
method FedAvg [3]. This means that the weights of the different
local models are averaged to provide new weights and,  thus,  a
new model. New aggregation algorithms have been very recently
proposed including FedPer [9], a federated learning algorithm in-
corporating a base and personalized layer with transfer learning
methodologies, and FedMA [10], a federated layer-wise learning
scheme which incorporates the match and merging of nodes with
similar weights.

Federated learning has been tested and validated on simulated
data and on a few domains only, which leaves a number of open
questions. Specifically, we believe that data distribution and het-
erogeneity is a major  aspect  that  needs more investigation and
testing. In the pervasive domain, data can be very different de-
pending on subjects, environments and conditions. It is not clear
that on-device training made by different subjects leads to a ro-
bust, accurate model at the server level. 

Studies on FL with  regards to the state-of-the-art in majority
focus on solving computer vision problems [3,9,10] and using the
results  as  an open benchmark to  compare different  algorithms.
Among  the  state-of-the-art  FL  aggregation  algorithms,  the
FedMA algorithm, layer-wise training and matching scheme para-
digm, has shown the most prominent capability.

Only a few studies have applied FL on the HAR domain [12,
13], with yet missing analysis regarding the performance of the
global  and  local  models  on  generalization  and  personalization
with different FL approaches.

2.2 Human Activity Recognition

Human Activity Recognition (HAR) based on wearable sen-
sors, often provided by smartphones, has prompted numerous re-
search  works,  be  they  academic  or  industrial  [6].  Many  ap-
proaches have been investigated to identify and classify physical
human activities such as running or walking, and also interactive
and social activities like chatting, talking, or playing. HAR is use-
ful for health monitoring, senior care and personal fitness training.
It also provides high level contextual information that can be used
by a large set of personal services. Physical human activities are
generally classified from recorded sensor data (e.g. accelerome-
ters, GPS, audio, etc.) which are embedded into wearable devices
like smartphones or smart watches.

We focus on research works leveraging machine learning tech-
niques. Regarding classification models, an important number of
techniques has indeed been investigated to deal with HAR based
on wearable sensors. The most common approach is to process
windows of data streams in order to extract a vector of features
which, in turn, is used to feed a classifier. Many instance-based
classifiers have thus been used to do so. Let us cite Bayesian Net-
work, Decision Trees, Random Forest, Neural Network, and Sup-
port Vector Machines [7]. Since human activities can be seen as a
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sequence  of  smaller  sub-activities,  sequential  models  such  as
Conditional Random Fields,  Hidden Markov Model  or Markov
Logic Network have also been applied. Today, however, it turns
out that the most popular and effective technology is undoubtedly
deep neural networks (as investigated in this paper [14]). 

As previously introduced, machine learning is however highly
dependent on datasets. It is even more the case with deep learn-
ing.  The  survey  conducted  by  [6]  presents  a  large  number  of
datasets acquired from smartphones,  worn in different  ways.  It
clearly highlights the lack of uniformity in tasks, sensors, proto-
cols, time windows, etc. It is worth noticing that some datasets are
very imbalanced because activity distributions among classes are
very different. For instance, in the REALWORLD dataset [8], the

“stairs” activity represents 22% of the data while the  “jumping”
one is limited to 2%. In this case, the learning approach should
consider the class imbalance problem. 

For all these reasons, we believe that HAR is an excellent do-
main to test and better understand federated learning. Specifically,
we  appreciate  the  availability  of  diverse  datasets,  diverse  ap-
proaches with good performances (accuracy, time, etc.) that can
be used for comparison, the imbalanced nature of data, and the

availability of “natural” clients: smartphones. 

3 Experiments

3.1 Settings

We evaluated  the  performance  of  the  FedAvg,  FedPer  and
FedMa algorithms against a centralized training approach using
the REALWORLD dataset [8], a very heterogeneous dataset that
closely  represents  in-the-wild  data  amongst  other  known HAR
datasets. The REALWORLD dataset contains accelerometer and
gyroscope time-series data obtained with Samsung Galaxy S4 and
LG G Watch R with a sampling rate of 50 Hz. Data was collected
from 15 subjects from 7 different devices/body positions and con-
sisted of 8 activities as shown in table 1. We use a window-frame
size of 128 samples with a 50% overlap of 6 channels. To respect
the deep learning approach (features should be learned and not
hand-crafted), no preprocessing was applied except channel-wise
z-normalization. Final size of the dataset was 6.98GB. Our experi-
ments were done using a Convolution Neural Network (CNN) to
compare the federated learning results against traditional central-
ized training in deep learning. Our CNN model has 192 convolu-
tional filters of size 1x16 followed by a max-pooling layer of 1x4
where the outputs are then flattened and fed to a fully-connected
layer of size 1024. We emphasize the use of shallow neural net-
work models for the context of usage on edge devices with lim-
ited processing power and the reduction of communication cost in
federated  learning.  The  models  are  trained  using  a  mini-batch
SGD of size 32 and to counter over-fitting, a dropout rate of 0.50
is used.  The models were developed using TensorFlow for our
implementations.

Table 1. Activity distribution of all subjects of the REAL-
WORLD dataset (global dataset)

Activities Instances

Climbing Down 32047

Climbing Up 37520

Jumping 6183

Lying 40843

Running 45581

Sitting 40747

Standing 40672

Walking 41555

For the federated learning experimentation, each subject of the
REALWORLD dataset is treated as a client with its own respec-
tive data, leading to 15 different clients. Each client's dataset is in
turn partitioned into an 80% – 20% ratio to obtain local train and
test datasets, used to evaluate performance of the client’s model.
We also combine all the local train and test sets to respectively
generate unified global train and test sets, used to evaluate the be-
havior of the client’s model on unseen data. We used 200 commu-
nication rounds for a majority of our experiments and each client
trained for a total of 5 local epochs with 0.01 as the learning rate.
For the trainings without federated learning,  we employed 200
epochs for each model with the same learning rate.

Respecting the same metric as used in the original study of the
REALWORLD dataset, the findings on the centralized approach
are reported using the F-measure. While the findings for our fed-
erated/local learning approaches are presented using their accura-
cies.

Our studies for the FedAvg and FedMa algorithms scenario
consist of 3 different evaluations.  The first evaluation uses the
aggregated model on the server to test against the global dataset.
As the model on the server has, indirectly, seen all train datasets,
thus the results of the test can be best used to assess the perfor-
mance difference between federated learning and the centralized
learning approach. In the second evaluation, we test each client's
model on its own local dataset, to understand the client's ability to
personalize.  The third evaluation uses again the client's model,
but  tests  it  against  the  combined  global  dataset  from  all  the
clients. We deduce that this evaluation provides crucial insight on
how the client model can perform on data not seen, which under-
lines one of Federated learning's main benefits. 

For the FedPer algorithm, the server lacks a global model and
only has the base layer's  weights. Naturally, only the two local
evaluations are performed (with the client models tested against
their own and the combined datasets).

To  further  the  comparison  with  the  traditional  learning  ap-
proaches, we also trained 15 independent models on the individ-
ual local datasets, separately without utilizing any federated learn-
ing  techniques.  We refer  to  this  training  scenario  as  the  local
learning. All the results for our tests with the local models are
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shown as the mean and standard deviation of the measured metric
for all clients.

3.2 Centralized training approach

The original study on the REALWORLD dataset [8] proposed
a Random Forest Classifier (RFC) based solution for an activity-
independent method, and reached an F-measure of 81%. Recently,
the majority of current state-of-the-art HAR solutions incorporate
approaches based on some form of CNNs [6].

Our own work displays similar performance results when us-
ing a 2-layered DNN, as well as our proposed CNN model (see ta-
ble 2). The experiment shows that our DNN/CNN models are well
tuned  and  in-line  (superior)  with  the  state-of-the-art  for  this
dataset.  The  shallow CNN model  can  perform better  than  the
DNN. So for the rest of this paper, As our studies focus on how
the different aggregation method of federated learning algorithms
affects neural networks in their own way,  we will exclusively fo-
cus on presenting the results with the CNN.

Table 2. State-of-the-art performances of classical central-
ized approaches on the REALWORLD dataset.

Literature Models F-Measure (%)

[8] RFC 81.00

Our study DNN 84.76

Our study CNN 91.84

The proposed CNN model, with the  centralized learning  ap-
proach, achieved an F-measure of 91.84% on the global test-set.
When we used the same model to evaluate individually on each
local test-set, we obtained a mean accuracy score of 91.99%. The
model rapidly converges (as can be seen in Figure 2 and 3.) at
around 10 epochs, with little gains afterwards.

Figure 2. Model accuracy (centralized approach).

In another training instance, where we treat each client’s data
separately, we trained 15 independent CNN client models on their
own  local  dataset,  without  using  any  federated  learning  tech-
niques.  The mean accuracy of the client models with the  local

learning approach is 95.41%, when measured on their own local
test-set. If the local models  are tested on  the global test-set (the
combined test-sets of all the clients) the obtained mean accuracy
is 52.05% (results are summarized here after in Table 3).

Figure 3. Model loss (centralized approach)

3.3 Federated Averaging (FedAvg)

In  the  FedAvg approach,  the  weights  of  the  different  local
models are averaged by the server to provide new weights and,
thus, a new aggregated model. Applying the FedAvg algorithm to
our CNN model we obtained a model at the server level that gen-
eralizes well on the global test-set with 82.74% accuracy (which
is far off to the centralized learning approach of 91.84%).

On the other hand, at the end of each communication round,
clients receive the federated server model and independently train
it with their own data. We observed that the obtained federated
client models get a significant benefit on their ability to perform
on data it has not yet seen: the mean accuracy of the client model
when measured on the combined global test-set is 71.22% (com-
pared with 52.05% for the local learning model without incorpo-
rating federated learning).

Figure 4. Model accuracy (FedAvg approach)

This benefit  comes with no apparent penalty on the client's
ability to personalize: the client models trained with FedAvg ob-
tained an accuracy of 95.55% on their own local test-set (that is
slightly  better  than  the  typical  local  learning accuracy  of
95.41%).
As shown in Figures 4 and 5, the models are steadily and slowly
improving with even more room to develop, even after 200 com-
munication rounds.  It  can even be forecasted  that  with  further
training, the server model may well perform at the very least on
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par  with  the  centralized  learning approach.  Although,  as  each
communication round goes through 5 iterations over the training
set, the FedAvg approach ultimately requires a far larger number
of epochs when compared with the centralized approach.

Figure 5. Model loss (FedAvg approach)

3.4 Federated Personalization (FedPer)

The principle of the FedPer approach [9] is that the model is
split in base and personalized layers. Personalized layers are not
communicated to the server, only the base layers are aggregated
by the  federated  server,  using  transfer  learning  methodologies.
For the two-layered CNN used in this study, the last dense layer is
the personalized layer; this means that it is not communicated to
the  server,  only  the  lower  layers  are  trained  using  the  FL ap-
proach.

Figure 6. Model accuracy (FedPer approach)

We found that the clients are able to retain their ability to per-
sonalize and perform well, with 95.05% accuracy on their local
test-sets (only lacking by a little the  local learning accuracy of
95.41%). Nonetheless, the exhibited client's accuracy of 52.51%
on the global test-set suggests that FedPer provides little advan-
tage regarding the client's model ability to generalize.

Figure 7. Model loss (FedPer approach)

The FedPer algorithm performed moderately well, with results
very close to traditional training without noticeable gains. The al-
gorithm reaches a plateau shortly after the first  few couples of
communication  rounds  with  only  little  gains  in  model  perfor-
mance afterward, as shown in Figures 6 and 7.

3.5 Federated Match Averaging (FedMA)

The principle  of  the  FedMA approach [10]  is  a  layer-wise
learning scheme, which incorporates the match and merging of
nodes with similar weights. Layers are independently trained and
communicated to the server.

Applying the  FedMA approach to our two-layered CNN in-
volves then two intermediate communications with the server (per
communication round) to transmit layers weights and perform the
matching. In our experimentation, five local epochs are used to
train client models (this is a hyper-parameter of federated learning
approaches), for FedMa this means in total 25 local epochs for
each communication round (five local epochs for each of the first
and second layer, and another 15 for the SoftMax layer). Given
the substantial number of iterations over the train sets (compared
to the other algorithms), we hence decided to limit our experiment
to 100 communication rounds for FedMa.

Figure 8. Model accuracy (FedMa approach)

With  the  FedMA  approach,  the  achieved  accuracy  for  the
server model is 77.91% (which is behind the centralized learning
method). The client's model retains its ability to personalize with
some  minor  drawback  (the  accuracy  on  the  local  test-set  is
93.80%) while being able to perform well on the global test-set
(reaching an accuracy of 60.77%). Based on figure 8, we observe
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that the FedMA demonstrates a steady growth rate as training pro-
ceeds.

We can remark in figure 9 that for the FedMa algorithm there
is  a  notably large  standard  deviation  for  the  loss  of  the client
model, when tested against the global dataset, and that this devia-
tion is not attenuated over time. This behavior can be attributed to
local clients generating filters or neurons specific to their individ-
ual task, which do not contribute to the global task, but instead
produce detrimental effects to a certain degree.

Figure 9. Model loss (FedMa approach)

Despite the higher  complexity,  training,  and communication
cost, the  FedMA approach paled in results when compared with
the  FedAvg  approach.  As  many  sub-processes  persist  with
FedMa, further fine-tuning and adaptation are required to achieve
results that perform more satisfyingly.

4 Conclusion

Federated Learning exhibits clear theoretical advantages over
classical  centralized  learning  from a  pervasive  computing  per-
spective. But little is known about how these advantages are actu-
ally achieved in practice, and the behavior of such learning ap-
proaches.  In this study we implemented 3 main FL algorithms,
and evaluated them on the HAR task. We had expected that this
learning scheme should lead to a high degree of adaptation to the
device (high client accuracy on its own data) while keeping a high
degree of generalization (e.g., prevent over-fitting, high client ac-
curacy on global data).

The results, summarized in Table  3, indicate that the FedAvg
approach indeed does exhibit such behavior. The results also evi-
dence the limits of other more sophisticated FL algorithms on the
HAR task. This calls for more research on FL algorithms consid-
ering the ecosystem in which such algorithms are  supposed to
evolve (tasks, communication, long-term learning).

We see  that  the  baseline  FedAvg algorithm obtained  better
performance against other complex algorithms. This can be said
that as FedMA and FedPer have additional designs to improve the
personalization of local models, they still incorporate the averag-
ing of clients' property. The averaging of more personalized mod-
els leads to a decremental effect to the server model which re-
flects the lower accuracy when used to evaluate on the global test-
set.

Table 3. Centralized and Federated learning accuracy re-
sults on the REALWORLD dataset.

Approaches
Server accu-

racy (%)
Client own ac-

curacy (%)
Client all accuracy

(%)

Centralized Learning 91.84 91.99 N/A

Local learning N/A 95.41 52.05

FedAvg 82.74 95.55 71.22

FedPer N/A 95.05 52.51

FedMA 77.91 93.80 60.77

Although these results add credence to the interest of federated
learning for pervasive computing, there still remain a lot of chal-
lenges ahead. Future work is needed to study robustness of FL: to
asynchronous learning (devices come and go), to sudden change
in client data, to communication issues, to heterogeneous popula-
tion of devices (e.g., traveling device) and to mismatches between
server data and clients (noisy acquisition). Furthermore, long term
studies are needed to optimize communication schedule and life-
long learning effects such as catastrophic forgetting [11]. We also
suggest the community to set up benchmarks for comparison and
replication of research in this area and we believe that the study
presented here is a stepping stone in this direction.
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