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Abstract

Background: Independent Component Analysis (ICA) is a widespread tool

for exploration and denoising of electroencephalography (EEG) or magnetoen-

cephalography (MEG) signals. In its most common formulation, ICA assumes

that the signal matrix is a noiseless linear mixture of independent sources that

are assumed non-Gaussian. A limitation is that it enforces to estimate as many

sources as sensors or to rely on a detrimental PCA step.

Methods: We present the Spectral Matching ICA (SMICA) model. Signals

are modelled as a linear mixing of independent sources corrupted by additive

noise, where sources and the noise are stationary Gaussian time series. Thanks

to the Gaussian assumption, the negative log-likelihood has a simple expression

as a sum of ‘divergences’ between the empirical spectral covariance matrices of

the signals and those predicted by the model. The model parameters can then

be estimated by the expectation-maximization (EM) algorithm.

Results: On phantom MEG datasets with low amplitude dipole sources

(20 nAm), SMICA makes a median dipole localization error of 1.5 mm while

competing methods make an error ≥7 mm. Experiments on EEG datasets show

that SMICA identifies a source subspace which contains sources that have less

pairwise mutual information, and are better explained by the projection of a

single dipole on the scalp. With 10 sources, the number of strongly dipolar
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sources (dipolarity > 90 %) is more than 80 % for SMICA while competing

methods do not exceed 65 %.

Comparison with existing methods: With the noisy model of SMICA, the

number of sources to be recovered is controlled by choosing the size of the mixing

matrix to be fitted rather than by a preprocessing step of dimension reduction

which is required in traditional noise-free ICA methods.

Conclusions: SMICA is a promising alternative to other noiseless ICA models

based on non-Gaussian assumptions.

Keywords: ICA, EEG, MEG, source separation

Note: changes from the previous version are written in blue

1. Introduction

Magnetoencephalography and Electroencephalography (M/EEG) are popular

non-invasive techniques to record brain activity [27, 41]. They capture respec-

tively the magnetic and electric signals produced by active neurons from the

scalp surface or close to it. Each M/EEG sensor captures a combination of the

different brain activities. The physics of the mixing is well understood: it is a

linear process and can be considered instantaneous.

Independent Component Analysis (ICA) [32] is extensively used in neuro-

science for processing M/EEG signals [38]. In its simplest form, it models the

observed signals as a linear combination of statistically independent signals

called sources. Remarkably, ICA can identify these sources ‘blindly’, that is,

without prior knowledge of the underlying physics of the system (except linearity).

Applied on EEG signals, it separates meaningful brain signals from artifacts

(eye blinks, heartbeats, line noise, muscle, . . . ) [35], making it an algorithm of

choice for artifact rejection [53]. ICA is widely used for the same purpose in

MEG studies [40, 54, 34, 17].

Beyond artifact removal, ICA is also used to reveal and study brain activity.

In [39], ICA is successfully applied to recover evoked and induced event-related
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dynamics in EEG signals. In [24], ICA is used to extract brain sources, on

which causal relations are exhibited, uncovering directional coupling. In [51],

independent EEG sources are used in a machine learning pipeline, predicting

epileptic seizures. ICA is used on MEG signals to identify links between function

and structure in the brain in [50]. It can also be used on MEG data, coupled

with Hilbert filtering, to uncover resting state networks [10].

Finally, ICA components can be mapped to certain brain areas via source

localization. Indeed, the individual contribution of each source to each sensor can

be represented as a topography on the scalp for EEG or on the helmet for MEG.

An equivalent current dipole (ECD) can then be fitted to the topography [49],

yielding at the same time an estimate of the source location, and its dipolarity

(how close it can be explained by a focal activity in the brain modeled with a

single dipole).

The hypothesis of independence of the sources is at the heart of ICA. However,

independence is a statistical property which is difficult to quantify on real data. In

neuroscience, the most widely used algorithms are Infomax [7] and FastICA [31].

These algorithms perform non-Gaussian ICA: they quantify independence on

the marginal (instantaneous) distribution of the data. They ignore any time

correlation and focus entirely on the non-Gaussianity of the data. In this case,

the sources can be recovered when at most one source has a Gaussian density [15].

Brain sources and artifacts are usually heavy-tail signals which depart form

Gaussianity, justifying the use of non-Gaussian algorithms for M/EEG processing.

Another route to ICA is to leverage the time correlation of the sources. In this

case, the sources can be recovered when the sources are spectrally diverse, that is,

when their power spectrum are non-proportional [47]. Among these algorithms,

Second Order Blind Identification (SOBI) [8] is one of the most widely used. It

jointly diagonalizes a set of time correlation matrices. Another approach closely

related to our work consists in the joint diagonalization of spectral covariance

matrices [47]. ICA methods based on joint-diagonalization of second order

statistics might be less popular than non-Gaussian ICA methods, but have

encountered some success in M/EEG processing. Congedo et al. [16] argues that
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Pham’s approach [47] should be prefered to SOBI for M/EEG preprocessing,

one reason being that Pham’s approach does not enforce orthogonal constraints.

Finally, in order to leverage both non-Gaussianity and spectral diversity, several

methods based on short-time Fourier transform (STFT) have been proposed. For

instance, Fourier-ICA [33] leverages both non-Gaussianity and spectral diversity

with a hybrid method, consisting of the non-Gaussian ICA of concatenated

short-time Fourier transforms. Other approaches consist in joint diagonalization

of cospectral matrices (covariance matrices of STFT frames) [16] or work in the

wavelet domain [46].

While all these algorithms rely on various independence measures, they make

the strong assumption that there is no sensor noise: they assume that the signal

of each sensor is a linear and noiseless combination of sources. A consequence

of the noiseless model is that it enforces that there are as many sources as

sensors, while the number of sensors is generally fixed by hardware constraints

and not by the actual number of brain or artifactual sources present in the data.

Unfortunately these noiseless models lead to a degenerate likelihood when there

are fewer sources than sensors. This is why, when fewer sources than sensors are

expected to be present in the data, a dimension reduction technique like Principal

Component Analysis (PCA) is often applied before ICA. However, this two-stage

approach, consisting of first applying PCA and then ICA, is heuristic as based

on the assumption that independent sources have high variance, which is not

necessary. As it is argued in [5] applying PCA before ICA can degrade the quality

of the recovered sources. To avoid relying on PCA from dimensionality reduction,

it is also sometimes suggested to simply discard some channels. Throwing away

data without a clear motivation is arguably questionable.

In order to alleviate this problem, some ICA algorithms incorporate a noise

model. As explained in [30], when the noise statistics are known, maximizing the

likelihood of such a model is an optimization problem sharing many similarities

with dictionary learning [43]. Such procedure is typically much more costly

than regular ICA, and it is seldom used in M/EEG processing (See [6, 37] for

instance). In [45], noise is modelled in a non-stationary framework: the sources
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-and noise- are assumed non-stationary (their instantaneous variance varies over

time). The model is estimated by fitting it to the data, via the minimization of

a simple quadratic criterion, which deviates from the probabilistic model.

In this article, we study Spectral Matching ICA (SMICA) for M/EEG pro-

cessing. This ICA model has been first investigated in astronomy for separation

of the cosmic microwave background [13, 19]. SMICA models the observations

as a sum of a linear mixture of independent sources and noise. It assumes that

the sources and noise are Gaussian, and that the sources have non-proportional

spectra. This assumption makes it well suited for brain rhythms and artifacts

extraction as they are known to have prototypical spectra. Brain sources tend

to exhibit so-called “1/f” power spectral densities, while the spectra of artifacts

are often localized in certain frequency bands (e.g. muscle artifacts or line

noise). Importantly, the statistics of the noise are parameters of the model, and

are estimated along the other parameters of the model. Thanks to its noise

model, SMICA can estimate fewer sources than sensors without preprocessing for

dimension reduction. The sources can be estimated by Wiener filtering, which

takes the noise estimation into account and denoises the sources.

The article is organized as follows. In section 2, the SMICA statistical

model is introduced and the estimation strategy based on an Expectation-

Maximisation (EM) algorithm is described. In section 3, the usefulness of

SMICA is demonstrated on various MEG and EEG datasets.

Notation The trace of a matrix M ∈ Rp×p is Tr(M), and its determinant

is |M |. A matrix is invertible when |M | 6= 0, and we write M ∈ GLp. Given a

vector u ∈ Rp, the matrix diag(u) ∈ Rp×p is the matrix containing the elements

of u on its diagonal, and 0 elsewhere. If M is a p × p matrix, then diag(M)

is the diagonal matrix with the same diagonal as M . Given A ∈ Rp×q, the

vectorization of A is a vector vec(A) ∈ Rpq of entries vec(A)i+p(j−1) = Aij . The

Moore-Penrose Pseudo-Inverse of a tall matrix A ∈ Rp×q is A† = (A>A)−1A>.
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2. A maximum likelihood approach to noisy ICA

This section introduces our approach to blind source separation for noisy

observations (Sec. 2.1). Its application is then discussed in detail (Sec. 2.3).

2.1. The SMICA method in theory

In a noisy ICA model, the outputs of p sensors, e.g. M/EEG recordings,

collected in a vector X(t) ∈ Rp, are modelled as noisy instantaneous mixtures of

q independent sources represented by a vector S(t) of size q with an additive

noise term N(t) of size p, this is

X(t) = AS(t) +N(t), (1)

where A is the p× q mixing matrix. The noise is assumed independent from the

sources and uncorrelated across sensors.

This model readily translates into the spectral domain. Recall that for a

zero-mean p-dimensional stationary time series, {X(t)}, the p×p autocovariance

matrix E[X(t)X(t+ τ)>] does not depend on t and that its Fourier transform1:

C(f) =
∑
τ E[X(t)X(t+ τ)>] e−2iπfτ (2)

defines p×p spectral covariance matrices C(f). The diagonal entry Caa(f) is the

power spectrum of {Xa(t)} while Cab(f) contains the cross-spectrum between

{Xa(t)} and {Xb(t)}.

The linear relation between data and sources of Eq. (1) translates into the

spectral model

C(f) = AP (f)A> + Σ(f) (3)

where P (f) and Σ(f) are the spectral covariance matrices of sources and of

the noise. In this work, we assume that the sources and the noise terms are

independent, which means that P (f) and Σ(f) are diagonal matrices. That

property is the key feature enabling the blind estimation of the model since it

1For simplicity we have set the sampling period to one time unit.
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is how statistical independence between sources is expressed. Incidentally, it

also entails that the spectral covariance matrices C(f) are real-valued. Indeed,

matrices P (f) and Σ(f) are real-valued since they are diagonal matrices and

their diagonals are made of power spectra and the mixing matrix A also is

real-valued. It follows from Eq. (3) that, unlike generic spectral matrices, a

matrix C(f) only has real entries, as a consequence of our statistical model.

This particular structure of the spectral covariance matrices is preserved

when spectra are averaged over frequency bands. Define B frequency intervals

I1, . . . , IB by Ib = [f bmin, f
b
max] and consider frequency averages over those bands:

Cb =
1

f bmax − f bmin

∫ fb
max

fb
min

CX(f)df (4)

Then, upon averaging, Eq. (3) becomes

Cb = APbA
> + Σb (5)

where Pb and Σb denote the corresponding averages for P (f) and Σ(f). As a

consequence, the noisy ICA model in Eq. (1) is transformed in the simpler model

of Eq. (5), where the parameters are the mixing matrix A, the source powers in

each band Pb, and the noise powers in each band, Σb.

The noisy ICA model is inferred from by connecting the spectral matrices

Cb of model (5) to samples estimates. If T data samples X(0), . . . , X(T − 1) are

avialble, spectral matrices are classically estimated from the Fourier coefficients

x̃k =
1√
T

T−1∑
t=0

X(t) e−2iπkt/T (6)

by averaging over the relevant frequency bands. These estimates are:

Ĉb =
1

nb

∑
k: k

T ∈Ib

Re
(
x̃kx̃

H
k

)
(7)

where nb = #{k : k
T ∈ Ib} denotes the number of Fourier coefficients available

in band b.

The set θ = (A,P1, . . . , PB ,Σ1, . . . ,ΣB) of all unknown parameters can be

estimated by adjusting the model Cb = APbA
> + Σb to the data as summarized
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Figure 1: The SMICA method: empirical spectral covariance matrices Ĉ1, . . . , ĈB computed

from the M/EEG data are matched by the model Ĉb ' APbA
> + Σb, where the Pb and Σb

are diagonal positive matrices. Matching is performed in a statistically sound way, by using a

matching criterion derived from a simple likelihood.

by Ĉb. This spectral matching principle is illustrated by Figure 1. We advocate

using a specific spectral matching criterion:

L(θ) =

B∑
b=1

2nb KL
(
Ĉb, APbA

> + Σb

)
(8)

where KL is the Kullback-Leibler divergence between two p×p positive matrices:

KL(C1, C2) =
1

2

(
Tr(C1C

−1
2 )− log det(C1C

−1
2 )− p

)
. (9)

The KL-divergence KL(C1, C2) is non-negative and cancels if and only if C1 = C2.

The particular measure (8) of spectral adjustment between data and model

has been chosen because it is (up to an irrelevant constant) asymptotically (for

large T and narrow bands) equal to minus the log likelihood of a Gaussian

stationary model. Hence, the SMICA estimates inherits some good properties of

maximum likelihood estimates, in particular they enjoy a built-in scale invariance

and they can be easily computed using the EM algorithm. Those properties and

other considerations are discussed in the remaining of this section. The derivation

of the SMICA criterion from a likelihood function is explained in Appendix A.
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2.2. Statistical properties of SMICA

The novelty in SMICA comes from its noise model: ICA methods that work

in the spectral domain are common. In fact, one recovers a popular method by

removing the noise in Eq. (5), and by assuming a square mixing matrix p = q,

that is, finding as many sources as sensors. This was considered by Pham who

used the Whittle approximation in his seminal paper [47]. In that case (p = q,

N(f) = 0), the spectral mismatch can be shown to reduce to a joint-diagonality

criterion. Estimating A amounts to solving the joint-diagonalization of the

spectral covariances: A is such that the matrices A−1ĈbA
−> are as diagonal as

possible. The use of such approach for EEG processing is advocated in [16]. In

the experimental section 3, we compare SMICA to this approach of a plain joint

diagonalization of spectral matrices and we refer to it as JDIAG.

The noise model in SMICA makes the estimation of the model parameters

harder than joint-diagonalization, but it enables finer source estimation, through

Wiener filtering ([11], Chapter 4). In noiseless ICA models of the form X = AS,

the natural source estimates simply is Ŝ = A−1X. SMICA can employ the

same technique for recovering the source, albeit replacing A−1 by A†, the Moore-

Penrose pseudo-inverse of A. However, the availability of a noise term in SMICA

offers a more attractive possibility: one can compute the expected value of

the sources given the parameters: Ŝ = E[S|X, θ] which yields the lowest noise

contamination among all unbiased estimators. This is the well known Wiener

filtering which has a simple explicit expression in the SMICA model: in each

frequency band, it reads

Ŝb = (A>Σ−1b A+ P−1b )−1A>Σ−1b Xb , (10)

where Xb is the matrix of signals filtered in the frequency band [fb, fb+1]. This

operation is linear in X, and is adaptive to the level of noise: if in frequency

band b the estimated noise Σb for a sensor is large, then its contribution in the

source estimate shrinks towards 0. Note that the standard ICA source estimation

formula is recovered when the noise is equal on all channels and tends to 0 (i.e.

Σb = λbIp with λb → 0), yielding at the limit Ŝ = A†X.
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Next, we study the identifiability conditions for SMICA. The issue of identi-

fiability is to find the conditions allowing for a unique recovery of the sources.

Identifiability conditions of noiseless spectral ICA are well established [47]: the

sources should not have proportional spectra, that is, for any pair (i, j) of sources

the quantities [Pb]ii/[Pb]jj should not be constant with respect to b = 1, . . . , B.

The identifiability conditions for the SMICA model (1) are more complicated,

and the non-proportionality of the source spectra is only a necessary condition.

Hence, it is well suited to isolate all kinds of artifacts from brain activity: line

noise, muscular activity, heartbeats, eye blinks, since their spectra are usually

very different from those of brain activity. Among brain sources, some might

have similar power spectrum, such as occipital dominant alpha rhythms and

therefore cannot be accurately separated by SMICA.

Finally, we discuss the algorithm used to estimate the parameters, that is

the specific numerical procedure to minimize the spectral matching criterion (or

maximize the likelihood function) of Eq. (8). Since this is a likelihood function

with latent (or unobserved) variables —namely the source and noise signals—

it can be optimized by resorting to the celebrated Expectation-Maximization

(EM) algorithm [21]. The EM algorithm is appealing because it does not

require any hyperparameters like learning rates, and is guaranteed to decrease

the loss function at each iteration. Still, this approach is generally slow (it might

require many iterations to reach a satisfactory set of parameters), and other

optimization techniques could be investigated for the fast minimization of the

negative log-likelihood L. The EM algorithm for SMICA is described in the

appendix (section Appendix C).

Next, we discuss the practical application of SMICA for M/EEG processing.

2.3. SMICA for M/EEG processing

This section goes through various considerations regarding the application

of SMICA to M/EEG signals. A first advantage of SMICA over other ICA

algorithms for M/EEG processing is its embedded dimension reduction. It is

often the case that there are more sensors than sources which can be significantly
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recovered from the observations. When p > q matrix A cannot be inverted and

one usually performs some dimension reduction in order to apply ICA algorithms

which require a square matrix (p = q) to operate. In SMICA, thanks to the

presence of a noise term, spectral covariance matrices are not degenerate even

if q < p and a non-square matrix A can be fitted by SMICA in a statistically

sound way even when there are fewer sources than sensors, without resorting to

a pre-processing stage of dimension reduction. In some sense, one can say that

SMICA has a built-in dimension reduction of the signal part because it can fit a

tall (q < p) mixing matrix. It often argued that reduction dimension in EEG

processing deteriorates the quality of the subsequent ICA decomposition [5].

SMICA offers a simple way to circumvent this problem, by embedding dimension

reduction in the ICA in a statistically sound way.

Signal denoising using SMICA. Like any ICA algorithm, SMICA estimates

sources which can be marked as spurious / non-biological by specialists: in

addition to brain sources, it usually recovers physiological artifacts (heartbeats,

eye blinks) and external electromagnetic perturbations (room and line noise).

The remaining sources can then be projected back in the signal space, giving

clean M/EEG signals. Thanks to its noise modeling, SMICA makes these two

operations statistically sound: the sources Ŝ are estimated by Wiener filtering,

some sources can be manually or automatically marked as spurious. If the source

i is marked as spurious, we set Ŝi = 0. The cleaned M/EEG signals are computed

as Xcleaned = AŜ.

Combining SMICA with another ICA algorithm. In practice, it might happen

that some sources recovered by SMICA have similar spectra, which indicates

that these sources are not well separated. Another ICA procedure (typically,

based on non-Gaussianity) can then be applied on these sources in order to

better separate them.

Taking it a step further, SMICA can also be used as a source subspace

identifier. Applied on the M/EEG signals X ∈ Rp×T , SMICA produces a mixing

matrix A1 ∈ Rp×q and a source matrix S1 ∈ Rq×T estimated by Wiener filtering.
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The sources in S1 are maximally independent with respect to the separation

criterion of SMICA, but might not be maximally independent with respect

to another criterion. Applying another ICA algorithm on S1 yields a square

mixing matrix A2 ∈ Rq×q, and a new source matrix S2 = A−12 S1. The overall

mixing matrix linking the sources S2 and the original dataset X is the matrix

product ATotal = A1A2. For instance, using a non-Gaussian ICA algorithm like

Infomax or FastICA on the sources found by SMICA may disentangle sources

that share similar power spectrum. The practical benefits of such approach are

demonstrated in the experiments presented in section 3.

Complexity of SMICA. Estimation of the parameters of SMICA is a two step

process: first, the empirical spectral covariances Ĉ1, . . . , ĈB are computed, and

then the EM algorithm is used to infer the parameters, based solely on those

covariances. Only the first step scales with the length of the signal T : the second

only depends on the dimensions of the problem p, d and the number of bins

B. In practice, we find that in the setting of our experiments, computing the

covariances takes a negligible time compared to the time it takes to infer the

parameters with the EM algorithm. The complexity of the EM algorithm does

not depend on the number of samples T ; only the computation of the covariances

does. This differs from non-Gaussian ICA algorithms, for which the estimation

time is roughly proportional to the length of the recordings.

In practice, we found that fitting SMICA on a 102 sensors MEG dataset with

40 frequency bins and 100 sources takes about 15 minutes using one CPU of a

recent laptop.

Frequency selection. SMICA exploits spectral information, but not necesarily

over the whole frequency range. Typically, one may exclude the highest frequen-

cies if they are dominated by noise or cut off by a sampling filter. One may also

ignore the very lowest frequencies if they are dominated by slow drift artifacts.

In general, there is no counter indication to restricting the sum (8) to the high

SNR part of the frequency range.
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3. Experiments

We report some experiments comparing our approach to other (noiseless)

ICA algorithms: these algorithms all model the dataset X as X = AS, where

A ∈ Rp×p is the square mixing matrix, and S is the source matrix. However,

they estimate the independent components based on different independence

criterion.

We start by briefly describing the ICA algorithms which are compared to

SMICA.

Non-Gaussian ICA. Non-Gaussian ICA algorithms model the source time-series

as independent and identically distributed, with non-Gaussian probability density

functions. Some of the most popular ICA algorithms fall in this category:

FastICA [31], Infomax [7], its extended version [36], JADE [14] and more recently

AMICA [44].

Second order blind identification. The SOBI algorithm [8] aims at recover-

ing sources with spectral diversity, just like SMICA and JDIAG. It does so

in a heuristic way, by joint-diagonalization of a set of correlation matrices

1
T−τ

∑T−τ
t=1 X(t)X(t− τ)> for a set of time lags τ1, . . . , τB , rather than spectral

covariance matrices. Choosing an appropriate set of time lags is not an obvious

task; we use the set advised in [52]. Unlike JDIAG, the joint diagonalization

criterion is ad-hoc, and does not correspond to a principled statistical criterion.

For instance, since JDIAG follows the maximum-likelihood principle, it is asymp-

totically Fisher-efficient and reaches the Cramer-Rao lower bound, unlike SOBI.

This is why several articles argue for the use of JDIAG rather than SOBI [22, 16].

Estimating fewer sources than sensors using PCA. Contrarily to SMICA, algo-

rithms described above can only estimate as many sources as sensors. Therefore,

in order to estimate fewer sources, a dimension reduction step should be per-

formed beforehand. Principal Component Analysis is the algorithm of choice for

this task. The components are chosen to explain as much variance in the data as

possible. Since this method is blind to higher order interactions, it might discard
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some sources which are important but of low power. As a consequence, Artoni

et al. [5] argue that applying PCA before ICA leads to degraded decomposition.

Numerical setup. In our experiments, we take Infomax as the reference non-

Gaussian ICA algorithm with the fast and robust optimization algorithm Pi-

card [2, 1] and using tanh(·) as the non-linear activation function. The joint-

diagonalization algorithm for SOBI is a combination of [55] with a backtracking

line-search. The joint-diagonalization algorithm for JDIAG uses the fast im-

plementation described in [3]. In all experiments we set the frequency bins Fb

of SMICA and JDIAG as uniform in the range 1 − 70 Hz, with 40 bins. The

M/EEG analysis is conducted using the Python package MNE [26, 25]. Figures

are made using Matplotlib [29].

The python code for SMICA is available online at https://github.com/

pierreablin/smica.

3.1. Qualitative comparisons

3.1.1. Comparisons on a MEG dataset

We start by showing the decomposition found by SMICA, JDIAG, SOBI

and Infomax on a MEG dataset, where the subject was presented checkerboard

patterns into the left and right visual fields, as well as monaural auditory tones

to the left or right ears. Stimuli occurred every 750 ms (See Gramfort et al. [26]

for a description of the dataset). MEG is acquired with 102 magnetometers and

204 gradiometers.

For this experiment, we only consider the 102 magnetometer channels. Each

ICA algorithm returns 40 sources (after PCA for JDIAG, SOBI and Infomax).

We hand pick 10 sources to display in Figure 2, which shows their time-course,

power spectrum and topography.

SMICA isolates heartbeats (source 1), eye blinks (source 7) and brain (sources

8-10) from line noise: only source 9 shows a very small peak at 60 Hz. Source 7

and 9 in JDIAG’s decomposition, source 1, 7, 9, 10 for SOBI and source 1, 8,

9 for Infomax do show a higher peak at 60 Hz suggesting that line noise leaks
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Figure 2: Different ICA decompositions on MEG data. Source 1 corresponds to heartbeats,

sources 2-6 to environmental noise, with strong peaks around 60 Hz. Source 7 corresponds to

eye blinks. Sources 8, 9 correspond to occipital alpha rhythm (excect for SOBI which did not

find such sources). Source 10 corresponds to a dipolar auditory source. Sources 7, 9 found

by JDIAG present artifactual 60 Hz components, like source 1, 9 for Infomax. SOBI does not

properly identify the eye-blink source.

into these others sources. SOBI fails to separate properly the eye-blinks, and

gives decompositions that differ substantially from other algorithms. This first

experiment demonstrates that SMICA does reveal expected artifactual sources,

both physiological and environmental, and that they potentially leak less into

the valuable neural ones. More quantitative evidence is provided below.

3.1.2. Comparisons on an EEG dataset

We run SMICA and JDIAG on a 69-channel EEG data coming from the

dataset described in [20]. Both algorithms return 20 sources, which are displayed

in Figure 3. Differences between SMICA and JDIAG are now more striking,
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probably due to the greater noise level compared to the MEG recording.

Although decompositions differ in many aspects, we want to focus on source

2 recovered by SMICA, which is not found by JDIAG. There is a sharp peak at

60 Hz, indicating that it likely corresponds to line noise. The second peak at 50

Hz may seem spurious but is most probably due to spectral aliasing. Indeed the

fifth harmonic of a line at 60 Hz when sampled at 250 Hz appears at frequency

5 ∗ 60− 250 = 50 Hz. To test whether it is a plausible line source, we resort to a

separate experiment: we determine the spatial filter w ∈ R59 such that the time

series wX is of power 1 with a maximal power at 60 Hz. This method is called

Spatio-Spectral Decomposition (SSD) [42]. To do so, we filter X in a narrow

band around 60 Hz, yielding signals Xf . Then, we find w by maximizing the

power of wXf under the constraint that the power wX is 1 which is done by

maximizing the Rayleigh quotient between the covariance of Xf and of X.

The power spectrum of the corresponding source wX is displayed in Figure 3,

along with the power spectrum of the source number 2 found by SMICA. The

50 Hz aliased harmonic is also recovered by SSD, suggesting that the source

recovered by SMICA isolates the line signal correctly.

3.2. Quantitative results on large datasets

3.2.1. Experiment on MEG Phantom data

In this section, we experiment with MEG Phantom data. The recording

comes from a fake plastic head with electric dipoles. Dipoles emit sinusoidal

pulses at a fixed frequency 20 Hz for 0.5 second (10 periods) and are then turned

off for 1 second. This is repeated for 150 seconds.

We have 24 datasets. Each dataset corresponds to one dipole location among

8 and one amplitude (either 1000, 200 or 20 nAm). The amplitude corresponds

to the peak-to-peak difference. We cut each dataset in half to obtain twice as

many datasets.

As the true locations of the sources in the phantom are known one can map

the origin of an ICA source by fitting an equivalent current dipole (ECD) to the

source topographies and evaluate the localization errors. On each dataset, we

16



1

Source Spectrum Topo

2

3

4

5

6

7

8

9

3 4 5 6 7
time (sec.)

10

0 204060
f (Hz)

11

Source Spectrum Topo

12

13

14

15

16

17

18

19

3 4 5 6 7
time (sec.)

20

0 204060
f (Hz)

(a) SMICA

1

Source Spectrum Topo

2

3

4

5

6

7

8

9

3 4 5 6 7
time (sec.)

10

0 204060
f (Hz)

11

Source Spectrum Topo

12

13

14

15

16

17

18

19

3 4 5 6 7
time (sec.)

20

0 204060
f (Hz)

(b) JDIAG

0 10 20 30 40 50 60 70
Frequency (Hz)

−88

−68

Po
we

r (
dB

)

SSD
SMICA, source 2

(c) Spectrum of source 2 of SMICA and

source obtained by Spatio-Spectral Decom-

position (SSD) at 60Hz.

Figure 3: Comparison of SMICA and JDIAG on an EEG dataset. Both algorithms return 20

sources. The ordering of the sources of SMICA is made by hand; the ordering of the sources

of JDIAG is made by maximizing the correlation with SMICA’s sources. Both algorithms

accurately recover the eye blinks (source 1). For SMICA, sources 4-20 correspond to brain

activity. SMICA finds two dipolar beta-rhythm sources (sources 7 and 10). Each algorithm

recovers a source corresponding to line noise, with a large peak at 60 Hz (source 2). For SMICA,

there is an additional peak at 50 Hz, which is not an artifact. Spatio-Spectral Decomposition

(SSD) tuned to the source of maximal power at 60 Hz yields a similar peak at 50 Hz (c).
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apply SMICA, Infomax and JDIAG to obtain 40 sources. For each source, we fit

an ECD, and only keep the source corresponding to the closest location to the

true dipole.

Besides ICA, Maxwell filtering can also be used for dipole localization. After

Maxwell filtering, we compute the evoked potential and fit a dipole at the peak.

Finally, we employ Spatio-Spectral Decomposition (SSD), as described in

section 3, to find a linear combination of sensors with maximal amplitude at

20 Hz. This method incorporates more knowledge of the problem than others,

because we provide it with the dipole frequency.

In Figure 4, we display the average distance to the true dipole and the

residual variance in the dipole fit, for each dipole amplitude (1000, 200 and

20 nAm). The localization errors increase as the sources amplitude diminishes

for each algorithm. Yet, for the smallest amplitude (20 nAm), which is the most

challenging, SMICA outperforms all other methods in terms of localization (note

the logarithmic scale).

3.3. SMICA finds highly dipolar and independent source subspaces

In this section, we illustrate the ability of SMICA to capture meaningful brain

sources. We use the same datasets as in [20]. It contains the EEG recording of

15 subjects, with 69 EEG channels. For a target number of independent sources,

different ICA procedures described in the article are applied to the datasets. The

Wiener and Pseudo-Inverse methods correspond to the combination of SMICA

with Infomax, as described in the paragraph ‘Combining SMICA with another

ICA algorithm’ of section 2.3. Wiener corresponds to computing SMICA’s sources

with Wiener filtering, Pseudo-Inverse corresponds to computing SMICA’s sources

with pseudo-inversion of the mixing matrix A, as described in the paragraph

‘Source estimation by Wiener filtering’ of Sec. 2.3. For each decomposition, we

compute the dipolarity of each source, as well as the pairwise mutual-information

between each pair of sources.

Results for the dipolarity are displayed in Figure 5, results for the pairwise

mutual information are displayed in Figure 6.
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Figure 4: Dipole localization on MEG Phantom dataset. Top: Distance between the true

dipole and the estimated dipole. Bottom: Residual variance in the dipole fit. Each column

corresponds to a different source amplitude (from left to right, 1000, 200 and 20 nAm). Dipole

fitting is applied on 24 datasets. Each black dot corresponds to a dataset. When the source

dipole amplitude is low (20 nAm), SMICA has better localization performance than the other

methods.
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Figure 5: Distribution of equivalent dipole map residual variance for each source returned by

each algorithm on the 15 datasets of 69 sensors, where each algorithm returns 10, 20, 30, 40,

50 or 69 sources. For Infomax, SOBI and JDIAG, PCA is first applied on the data matrix to

obtain the desired number of channels. Wiener and Pseudo-Inverse correspond to applying

Infomax on the sources recovered by SMICA, either by the Wiener or Pseudo-Inverse method.

The figure should be understood in the following way. Looking at the first plot, corresponding

to 10 sources, we see that about 80% of components found by the method ‘Wiener’ have an

equivalent dipole map residual variance lower than 10%. About 65% of components found

by ‘Infomax’ have an equivalent dipole map residual variance lower than 10%. Overall, the

method ‘Wiener’ finds more dipolar components, for every number of sources considered.
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Figure 6: Pairwise mutual information (PMI) for different ICA decompositions returned by

each algorithm on the 15 datasets of 69 sensors, where each algorithm returns 10, 20, 30, 40,

50 or 69 sources. For Infomax, SOBI and JDIAG, PCA is first applied on the data matrix to

obtain the desired number of channels. Wiener and Pseudo-Inverse correspond to applying

Infomax on the sources recovered by SMICA, either by the Wiener or Pseudo-Inverse method.

PMI is displayed in a Q-Q plot showing the quantiles of the distribution of PMI found by each

algorithm against the quantiles of distribution of PMI found by Infomax. Infomax therefore

corresponds to the line x = y. Algorithms above the line x = y have less PMI remaining than

Infomax, and hence obtain more independent sources than Infomax as quantified by PMI. Here

again the the Wiener approach is particularly competitive, especially when few sources are

estimated.
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The results of raw SMICA are not displayed here, as it recovered less dipolar

sources than Infomax. That is not unexpected if one follows the discussion

of [20], arguing that maximum-likelihood non-Gaussian methods, like Infomax,

are the ICA methods that recover the most dipolar sources.

For this experiment, using SMICA as a subspace identifier to perform dimen-

sion reduction yields the best results, regardless of the number of sources that

are recovered. The benefits of the Wiener filtering over pseudo-inversion are

also illustrated: even without dimension reduction, it denoises the signals, which

leads to improved ICA decompositions.

4. Discussion

We now discuss the advantages and shortcomings of SMICA for M/EEG

processing.

Noise model. Results in Sec. 3.1.1 (Figure 2) have shown that SMICA can better

isolate stationary artifacts (environmental line noise, muscule activity, eye blinks,

heartbeats,...) than non-Gaussian ICA methods. This can be explained by the

fact that artifacts and brain sources usually have very different spectra. Artifacts

tends to have peaks or bumps in the spectra in higher frequencies while neural

sources have spectra with power laws or exponential decays [12, 18, 48]. The

rate of decay of the different spectrum of neural sources also depends on the

underlying source. This spectral diversity can be exploited by SMICA to improve

source separation. Overall, this method is well suited to separate artifacts from

neural activity. We would also like to stress that these artifacts are captured as

sources by SMICA: they correspond to “S” in the equation X = AS +N , and

not to the modelling noise “N”. For instance, if an external signal, independent

from other sources, has a correlated spectral power over the sensors, then SMICA

will capture it as a source. By assumption, the modelled noise N only identifies

sensor noise: noise that is decorrelated across sensors. Because we estimate the

spectral power of noise, the model is flexible enough to capture any such signal.
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SMICA as a dimension reduction tool. Thanks to the noise model, we have a

principled way to perform dimension reduction and to recover the source time

courses. In [5], it is argued that PCA is suboptimal for EEG data, and that even

channel subsampling is to be preferred. By contrast, the subspace identified by

SMICA contains sources that are estimated by incorporating spectral information

of the original signals, and these sources have spectral diversity. This benefit is

observed in practice. In Sec. 3.3 (Figure 5 and 6) we show that SMICA identifies

a source subspace that contains more dipolar and independent components than

PCA. As such, SMICA can be a useful tool for dimension reduction.

Comparison with noiseless model. Importantly, as illustrated by Figure 2, SMICA

is similar to JDIAG for clean data, since the noise subspace in this case is

simple to find with a PCA. In most practical applications, like clinical recording

processing, signals are usually contaminated with strong sensor noise, with a

1/f spectral signature. In frequency bands where noise is strong, the spectral

covariances Ĉb have large diagonal coefficients, which artificially skews noiseless

joint-diagonalization methods towards diagonal mixing matrices. This problem

is discussed at length in Congedo et al. [16, Appendix B], in which it is proposed

to weight the covariances matrices in the joint-diagonalization criterion with a

quantity that measures a deviation to diagonality: using this trick, the covariances

Ĉb that have a strong diagonal are less taken into account in the criterion. SMICA

provides an alternative to this ad-hoc method, by having a statistically sound

noise model. The strong diagonality of covariance matrices is automatically

taken into account by SMICA, by estimating a high noise power Σb.

Other spectral approaches. This work is not the first one using spectral ICA and

highlighting its benefits for M/EEG recordings. Some works have focused on

convolutional mixtures (for which using the Fourier domain turns convolutions

into products). In [23], authors use convolutive ICA in time-domain, while [4] use

a complex Infomax to find travelling waves. In the end, these methods estimate

one mixing matrix for each frequency bin. However, independent models in each

band might fail to recover brain rhythms with several frequency peaks. For
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instance, mu-rhythm is characterized by concurrent activity near 10 Hz and

20 Hz [28, 41].

Automatic estimation of the number of sources?. Some improvements to the

current SMICA algorithm can be investigated. First, since it comes from a prin-

cipled statistical framework, it would be interesting to implement a data-driven

way of computing the most likely number of sources in the data: an algorithm

to automatically select the correct number of sources. However, preliminary

experiments show that usual statistical criteria like Akaike Information Criterion

or Bayesian Information Criterion are not satisfactory in this setting, likely

because the model is not complex enough to explain fully M/EEG signals. The

EM algorithm for fitting SMICA is also quite slow, some improvements could be

possible by further studying the geometry of the cost function and proposing

quasi-Newton algorithms, as done recently for Infomax [2].

Possible extensions of SMICA. SMICA could be extended in several interesting

ways. In MEG acquisition, the empty room is sometimes recorded before the

experiment. In this case, we could assume that the noise term in Eq. (1) shares

the same spectral signature as the empty room recording: the matrices Σb are

no longer estimated by the model, but are now taken as the spectral covariance

matrices of the empty room. Only the mixing matrix A and the source powers

Pb are left to estimate. The sources estimated by the algorithm should then

only correspond to biological sources; in particular they should automatically be

cleaned from line noise.

In order to obtain a pure subspace identification method, one could also

drop the hypothesis of independence between sources and minimize the spectral

matching criterion with respect to any positive spectral covariance matrices Pb,

instead of constraining them to be diagonal.2.

Finally, the proposed method could also be extended to non-stationary signals,

2In this setting, it is possible, but not mandatory, to constrain matrix A to have orthonormal

columns: (A>A = Iq).
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where the spectral covariance matrices are replaced by time-lagged covariance

matrices. The resulting algorithm would resemble the procedure proposed in [45],

but with a proper likelihood-based estimation rather than the ad-hoc criterion

proposed by the authors. More generally, the spectral model with noise and

EM algorithm can be employed to recover the parameters of a noisy ICA model

X = AS +N using any kind of second-order statistics.

5. Conclusion

In this work, we have introduced a novel ICA algorithm, SMICA, which adds

a noise model to the standard ICA model. By assuming a model of Gaussian

stationary sources, we obtained a tractable closed-form likelihood, which can then

be maximized with the expectation-maximisation algorithm. Blind identifiability

stems from spectral diversity: this likelihood permits the separation of sources

with different power spectra. The model can estimate fewer sources than sensors,

and the sources can then be recovered by Wiener filtering, which takes noise into

account. We then demonstrated the promises of our method for M/EEG signal

processing: compared to noise-free ICA algorithms, SMICA extracts sources

that are more dipolar and have less pairwise mutual information. Besides when

applied on controlled recordings using an MEG phantom, SMICA is able to

locate dipoles more precisely, especially for low amplitude sources. These results

indicate that SMICA is a promising alternative to other more standard ICA

algorithms for M/EEG signal denoising and exploration.
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Appendix A. Spectral mismatch and likelihood

We show the statistical origin of the measure (8) of spectral mismatch. The

starting point is that, for a zero-mean p-variate stationary times series with

spectral covariance matrix C(f), the Fourier coefficients x̃k defined at Eq.(6) have

zero mean and covariance E[x̃kx̃
H
k ] = C(k/T ). Next, asymptotically (for large T ),

these coefficients also are normally distributed and pairwise uncorrelated [9]. The

Whittle approximation to the likelihood consists in assuming that these properties

hold even in finite sample size. In that case, the probability density for the Fourier

coefficients (x̃1, . . . , x̃T/2) is the product over frequencies of Gaussian densities:

log p(x̃1, . . . , x̃T/2) =
∑T/2
k=1 log CN (x̃k;C(k/T )) where CN (x;C) denotes the

complex circular Gaussian density for a zero-mean vector x of covariance matrix

C = E[xxH ]. In Appendix B, we give a simple expression (Eq. (B.1)) for

26



CN (x;C) in the special case where C(f) is real-valued, yielding:

log p(x̃1, . . . , x̃T/2) = −
T/2∑
k=1

(
Tr
(
C(

k

T
)−1(x̃kx̃

H
k )
)

+ log det(πC(
k

T
))

)
(A.1)

It is worth noting that, in general, the covariance matrix of a circular complex

Gaussian vector is complex-valued. However, the noisy stationary ICA model

considered in this paper does enjoy real-valued spectral covariance matrices, as

seen from Eq. (3).

The final step is to approximate the spectra as constant over thin spectral

bands, that is, C(f) = Cb when f ∈ Ib. Then, the sum (A.1) over frequencies

can be expressed as a sum over spectral bands:

log p(x̃1, . . . , x̃T/2) = −
B∑
b=1

nb

(
Tr(ĈbC

−1
b ) + log det(πCb)

)
.

Hence, with the definition (9) of the KL divergence, we obtain

log p(x̃1, . . . , x̃T/2) = −
B∑
b=1

2nb KL
(
Ĉb, Cb(θ)

)
+ cst (A.2)

which shows that, up to a constant term, the spectral matching criterion is minus

the logarithm of the Whittle likelihood (A.2).

The presence of the factor 2 in (A.2) can be traced back to the fact that

a Fourier component at frequency k has 2 degrees of freedom: its real and its

imaginary parts, or equivalently, that in real space any Fourier component has a

sine and a cosine terms.

Appendix B. Likelihood and complex vectors

We give joint pdf for the real and imaginary parts of a zero-mean complex

random p× 1 vector x = a + ib with a real covariance matrix:

x = a + ib C = E[xxH ] ∈ Rp×p.

and whose distribution is invariant under any phase change, that is, x has the

same distribution as eiφx for any angle φ. We look at the consequence of this
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invariance on the structure of C and give the joint pdf of a and b when they are

jointly Gaussian. We start with:

C = E[xxH ] = E[(a + ib)(a + ib)H ] = E[(aa> + bb>) − i E[ab> − ba>],

and E[xx>] = E[(a + ib)(a + ib)>] = E[(aa> − bb>) + i E[ab> + ba>].

If x is changed into eiφx, then matrix E[xxH ] is unchanged but E[xx>] is

changed into e2iφE[xx>]. However, by the phase invariance, there should be no

change. That is only possible if E[xx>] = 0. Therefore E[aa> − bb>] = 0 and

E[ab> + ba>] = 0. Combining that with the assumption of a real covariance

matrix C = E[xxH ] which implies E[ab> − ba>] = 0 yields

E[aa>] = E[bb>] = C/2 E[ab>] = E[ba>] = 0

Therefore the joint (2p)× (2p) covariance matrix for the pair (a,b) is

Cov
(a

b

) =

E[aa>] E[ab>]

E[ba>] E[bb>]

 =

C/2 0

0 C/2


If a and b are jointly Gaussian, their probability density p(a,b) is given by

log p(a,b) =
1

2

a

b

>Σ−1

a

b

−1

2
log det(2πΣ), Σ = Cov

(a

b

) =

C/2 0

0 C/2

 .
The block structure of Σ yields log det(2πΣ) = 2 log det(πC) and alsoa

b

> C/2 0

0 C/2

−1 a

b

 = 2 Tr
(
C−1(aa> + bb>)

)
.

Since C is a real (by assumption) symmetric matrix, we have

Tr
(
C−1(aa> + bb>)

)
= Tr

(
C−1xxH

)
= Tr

(
C−1 Re(xxH)

)
Combining the previous two results yields the joint density:

log p(a,b) = −Tr
(
C−1 Re(xxH)

)
− log det(πC) (B.1)
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Appendix C. The EM algorithm for SMICA

The following computations closely follow those of [19, Appendix C]. The

parameters are θ = {A,Σ1, . . . ,ΣB , P1, . . . , PB}, and the latent variables are the

sources in each frequency bands S1, . . . , SB .

E-step. At the E-step, the sufficient statistics of the model are computed. Since

the model is Gaussian, they are simply the second-order statistics: E[SbS
>
b |θ],E[SbX

>
b |θ]

and E[XbX
>
b |θ]. In the following, let Γb = (A>Σ−1b A + P−1b )−1 and Wb =

ΓbA
>Σ−1b the Wiener filter. We have:

RXXb , E[XbX
>
b |θ] = Ĉb (C.1)

RSXb , E[SbX
>
b |θ] = WbĈb (C.2)

RSSb , E[SbS
>
b |θ] = WbĈbW

>
b + Γb (C.3)

M-step. At the M-step, the parameters of the model θ should be modified in order

to decrease the loss function, using the sufficient statistics obtained in the E-step.

To do so, we compute the EM functional, Φ(A, (Pb), (Σb), S) = − log(p(X,S|θ)).

To begin, we assume that there is only on frequency band (B = 1), which gives

a Gaussian “white” model: X = AS +N , with S ∼ N (0, P ) and N ∼ N (0,Σ).

We find on the one hand

− log(p(X|S, θ)) = − log(p(X −AS|S, θ)) (C.4)

= log |Σ|+ Tr
(
(RXX − 2ARSX +ARSSA>)Σ−1

)
(C.5)

and on the other hand

− log(p(S|θ)) = log |P |+ Tr
(
RSSP−1

)
(C.6)

which gives

− log(p(X,S|θ)) = Tr
(
(RXX − 2ARSX +ARSSA>)Σ−1

)
+Tr

(
RSSP−1

)
+log |P |+log |Σ|.
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Then, in the Whittle approximation, the EM functional for a spectral model is

simply the weighted sum of the previous EM functionals in each band, which

gives the EM functional for SMICA:

Φ =

B∑
b=1

nb
[
Tr((RXXb − 2ARSXb +ARSSb A>)Σ−1b ) + Tr(RSSb P−1b ) + log |Σb|+ log |Pb|

]
,

(C.7)

which should be minimized with respect to the parameters θ.

• Optimizing Pb: the source powers are decoupled from the other parameters

in (C.7). Minimization of Φ w.r.t. Pb is easily obtained by canceling the

gradient, yielding:

Pb = diag(RSSb ) .

• Optimizing Σb: the mixing matrix A and the noise covariance are entangled

in eq. (C.7), rendering the analytic minimization of Φ impossible. Therefore,

we first minimize Φ w.r.t Σb, keeping A constant. This yields:

Σb = diag(RXXb − 2ARSXb +ARSSb A>) .

• Optimizing A: keeping the noise levels fixed, minimizing Φ w.r.t. A yields,

by canceling the gradient:
∑B
i=1 nbΣ

−1
b (RXSb − ARSSb ) = 0. This can be

seen as a system of equations for the rows of A which, thanks to the

diagonality of Σb, is easily seen to decouple across the rows. For each row,

simple algebra yields the close form solution:

for r = 1 . . . p, Ar: = Qr:M
−1
r with Q =

B∑
b=1

nbΣ
−1
b RXSb Mr =

B∑
b=1

nbσ
−2
i,rR

SS
b .

Therefore, the EM update of A only requires solving p linear systems of

size q × q.

Implementation details. The EM algorithm iterates the E and M step until

a certain convergence criterion is reached. In practice, iterations are stopped

when the difference between two consecutive values of the log-likelihood is below

a threshold: Lt+1 > Lt − ε. In order to have a good initialization for the
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algorithm, we first fit the model with a fixed noise level for each bin: we estimate

Σ subject to Σb = Σ for all i. In this setting, the M-step is much simpler and

computationally quicker. Then, the core SMICA algorithm with free noise starts

with Σb all equal to the estimated noise level, and A and Pb start from the same

initial value.
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