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Abstract

Finite element models combined with animal experimental models of spinal cord injury pro-

vides the opportunity for investigating the effects of the injury mechanism on the neural tis-

sue deformation and the resulting tissue damage. Thus, we developed a finite element

model of the mouse cervical spinal cord in order to investigate the effect of morphological,

experimental and mechanical factors on the spinal cord mechanical behavior subjected to

transverse contusion. The overall mechanical behavior of the model was validated with

experimental data of unilateral cervical contusion in mice. The effects of the spinal cord

material properties, diameter and curvature, and of the impactor position and inclination on

the strain distribution were investigated in 8 spinal cord anatomical regions of interest for 98

configurations of the model. Pareto analysis revealed that the material properties had a sig-

nificant effect (p<0.01) for all regions of interest of the spinal cord and was the most influen-

tial factor for 7 out of 8 regions. This highlighted the need for comprehensive mechanical

characterization of the gray and white matter in order to develop effective models capable of

predicting tissue deformation during spinal cord injuries.

Introduction

Spinal cord injuries (SCI) affect between 250 000 and 500 000 persons every year [1]. Presently

there is no efficient and safe treatment against the neurological consequences of such injuries

while tetraplegia and paraplegia represent 33% of spinal cord injuries in United-States [2].

There is social and economic needs to develop efficient treatment or better prevention strate-

gies. To this end, it is necessary to further understand the injury mechanisms of the spinal

cord (SC) and consequently investigate injury biomechanics of such tissues and structures.

Indeed, traumatic SCI are initiated by mechanical loading of the cord tissue. The ensuing

tissue deformation may locally lead to functional or structural failure of the tissue components
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such as cells, blood vessels and axons. This initial and immediate mechanical damage is the

primary injury of the SCI. Secondary injury is the result of vascular and biochemical processes

taking place during the minutes and weeks following the trauma [3]. Clinical investigation of

SCI injury mechanisms has mainly focused on the secondary injury mechanisms because of

the difficulties associated with the access to the initial mechanical loading conditions and the

immediate tissue damage [4]. However, investigation of the relationships between the initial

mechanical loading conditions and the tissue mechanical response up to local damage is

becoming a requirement to ensure an exhaustive understanding of injury mechanisms in SCI

[5]. Animal models of SCI offer the possibility to investigate such relationships through imag-

ing and histology techniques. It has been shown in animals models that the biomechanical

parameters of experimental contusion models, such as the compression rate and the amount

of deformation energy applied to the spinal cord, strongly correlate with the extent of immedi-

ate tissue damage such as loss of grey matter, axonal disruption or hemorrhage volume [6–10].

In addition, finite element (FE) models of SCI have been developed to replicate experimen-

tal models and investigate the mechanical stress and strain distribution within the spinal cord

during the injury. These numerical models enable investigating the relationship between the

mechanical loading and the mechanical response of the spinal cord. The combination of

experimental and numerical analyses could, therefore, have the potential to predict acute tissue

damage and to establish operational and structural thresholds for spinal cord tissues [5,11]. In

particular, combining FE and experimental models have highlighted the correlation between

spinal cord tissue damage and maximal principal strain patterns in the rat [11,12] and the

non-human primate [13]. Moreover, correlations have been shown between minimum princi-

pal strains and the density of surviving neurons in the gray matter in the rat [14].

To date, there is no biomechanical model representing the mouse spinal cord, whereas the

mouse is the second most widely used species in SCI animal models [15]. Yet, the mouse spinal

cord and its surrounding structures have distinctive morphological and structural features,

including its size and its proportion of white matter (WM) and gray matter (GM) [16] or the

absence of subarachnoid space [17]. These morphological features have been shown to

strongly affect the biomechanics of SCI in numerical models [18]. Thus, accurate representa-

tion of the mouse spinal cord structure is required to properly correlate numerical results

(local mechanical stresses and strains) with experimental results (local tissue damage).

In addition to morphological considerations, mechanical stress and strain distribution

throughout the spinal cord depend on the material properties of the tissue. It has been estab-

lished that the spinal cord tissues exhibit hyper-elastic (non-linear) and visco-elastic (load rate

dependent) behavior [19]. However, the regional mechanical characteristics, in particular with

regard to the differences between WM and GM are controversial. Recent studies on the mate-

rial properties of brain tissues have shown that in the brain, the WM is about twice stiffer than

the GM [20–23]. As for the spinal cord, few studies proposed similar protocols to test WM and

GM separately. Three studies showed that the GM was stiffer than the WM by tensile testing

[24,25] and by indentation [26]. Ozawa et al. found no significant differences between WM

and GM mechanical characteristics using pipette aspiration method [27]. Thus, in biomechan-

ical models of the spinal cord, material properties of WM and GM can largely differ depending

on the original source of data, leading to potential bias in the simulated local strain and stress

throughout the spinal cord.

The aims of this study were twofold. The first objective was to develop a biomechanical

model of spinal cord injury in mouse and to validate it against experimental data. The second

one was to investigate the influence of morphological and experimental factors as well as

regional material properties on the local mechanical responses of the spinal cord in order to

improve FE model for the investigation of SCI biomechanics.
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Materials & methods

A detailed FE model of the mouse cervical spinal cord was developed to reproduce an experi-

mental model of dynamic lateral cervical contusion [28]. The model was developed using the

HyperWorks suite (Altair Engineering, USA) and solved with the non-linear explicit Radioss

solver, release 12.0 (Altair Engineering, USA)

Model generation

The model geometry was built from the Allen Spinal Cord Atlas [29] and MRI images of

mouse cervical spinal cord [30]. Such atlas images were used to delineate transverse cross-sec-

tions of the spinal cord from C1 to C8 and to distinguish white matter (WM) from gray matter

(GM) (Fig 1A). WM and GM were each delineated in four sub-regions of interest (ROIs). On

each cross-section 8 ROIs were delineated: dorsal WM, ventral WM, ipsi-lateral (left side)

WM, contra-lateral (right side) WM, dorsal ipsi-lateral GM, ventral ipsi-lateral GM, dorsal

contra-lateral GM and ventral contra-lateral GM (Fig 1B). The cross sections were uniformly

scaled so that C4 anteroposterior diameter was 1.45 mm as observed in the replicated experi-

mental model [28]. Sagittal MR acquisitions [30] were used to orient and place the cross-sec-

tion. However, these images were acquired with a vertical imager (Brucker, Ettlingen,

Germany), resulting in an extended posture of the mice cervical spine (Fig 1C). Two additional

postural configurations of the model were also generated: one straight and one reversing the

MRI-based curvature (Fig 1D). Pia and dura maters were modeled as thin shells bonded to the

spinal cord with a 0.01 mm thickness as observed in histological studies of mouse meninges

[17]. The vertebral foramen was defined by its inner surface that was built as a scaling of the

meninges (Fig 1E). The impactor tip was modelled as a cylindrical surface of 0.6mm diameter

with rounded edges and was positioned at the level of the dorsal left horn of the gray matter at

C4 vertebral level (Fig 1E).

GM and WM were meshed with linear tetrahedral elements having one integration point

(141k elements, with an element size of 0.1 mm). Meninges and vertebral foramen were

meshed with fully-integrated 3-nodes shell elements (19k elements, with an element size of

0.08 mm). The impactor was meshed with fully-integrated 4-nodes shell elements (2k elements

with an element size of 0.03 mm).

The meninges properties were extracted from an experimental study on the material prop-

erties of the rat dura mater [31]. WM and GM hyper-elastic mechanical behaviors were mod-

eled using 1st order Ogden laws and their viscoelastic behavior was modeled by Prony series.

Hence, the strain energy density (W) was computed with the following equation:

W ¼
m

a
�la

1
þ �la

2
þ �la

3
� 3

� �
þ
K
2

J � 1Þ
2

�

Where μ and α are material constants and with �li ¼ J1=3li, λi being the ith principal stretch

and J = λ1×λ2×λ3 being the relative volume, with K = μ×α (1+ν)/3 (1−2ν) being the bulk modu-

lus and ν being the Poisson’s ratio.

Viscoelastic properties were introduced considering Prony series:

G tð Þ ¼
a� m

2
þ
Xn

k¼1

Gk exp
� t=tk

Where G is the shear modulus, μ and α the Ogden material constants, τk are the relaxation

times and Gk the shear moduli associated with them.
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Fig 1. Mouse spinal cord finite element model geometry. (a) Structural map of the spinal cord at the C1 vertebral level

(adapted from the Mouse Spinal Cord Atlas [29]); (b) Reconstruction of the slice with delimitation of 8 regions of

interest: dorsal, ventral, ipsilateral and contralateral white matter and ipsi-dorsal, ipsi-ventral, contra-dorsal and contra-

ventral gray matter; (c) MRI acquisition [30] of the spinal cord in the sagittal plane allowing position and orientation

assessment for each slice at each vertebral level; (d) Inverse MRI-based curvature model of the cervical spinal cord from

C1 to C8; (e) 3D model of the SC with meninges, vertebral foramen canal and impactor.

https://doi.org/10.1371/journal.pone.0232975.g001
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Three different data sets were used to model WM and GM properties as observed in the lit-

erature. First, 1st order Ogden laws were fitted to Ichihara et al. [22] experimental data. These

data were derived from tensile tests on bovine WM and GM distinctly and present a gray mat-

ter twice stiffer than white matter. Secondly, the laws developed by Maikos et al. [11] for

describing the rat spinal cord mechanical behavior were used. In this study, the spinal cord

was described as a uniform structure and white and gray matters had the same stiffness.

Thirdly, according to a recent work characterizing the white matter on non-human primates

[13], the white matter material properties were considered stiffer than the gray matter. The dif-

ferent sets of material properties are summarized in Table 1. Their corresponding bulk modu-

lus (ranging from 3.94E-1 MPa to 6.36E-1 MPa) is indicated as a representative measure of

how resistant to compression each material is.

The impactor and the vertebral foramen were defined as rigid bodies. The extremities of

the meninges and the spinal cord were constrained in rotation in the transverse plane and in

translation and in the cranio-caudal direction. A dorsoventral displacement was applied to the

impactor at a speed of 0.12 mm/ms and a peak displacement of 0.725 mm corresponding to a

compression ratio of 50%.

Validation of the model

The process of validation of the FEM was supported by previously published experimental

data [28]. Female 17–30 weeks old C57Bl/6 mice (n = 9) underwent a partial dorsolateral lami-

nectomy of the left C4 lamina. The spine was immobilized with two clamps positioned on C3

and C5 vertebra. Mice underwent a 30 kDyn (0.3N) lateral cervical contusion with the Infinite

Horizon Impactor (Precision System and Instrument LLC, US) equipped with a 0.6mm diam-

eter tip. The tip vs. time and the rectified applied compression vs. time [28] were recorded at 1

kHz to extract between 17 and 29 data points for each acquisition. The nine experiments

enabled a definition of an experimental corridor of force-displacement curves. The experimen-

tal data points and corridor are presented in Fig 2. The spinal cord force-displacement

response was compared between experimental data and FE simulations with the three sets of

material properties.

Table 1. Summary of the material properties used in the different models (WM = white matter and GM = gray matter). Ogden and Prony parameters are defined

here according to Radioss notation for compatibility with the solver, and may differ from the notation used in the referenced papers.

Poisson’s ratio Ogden parameters Bulk Modulus Prony Serie parameters Reference

μ (MPa) α (MPa) Gi (MPa) // τi (ms)

For all models Dura 0.45 1.48 E-01 16.2 1.16E+01 G1 = 1.069 τ1 = 9 [31]

G2 = 0.416 τ2 = 81

G3 = 0.335 τ3 = 564

Model WM > GM WM 0.45 3.3 E-02 3.99 6.36E-01 G1 = 0.209 τ1 = 1E+02 [13]

G2 = 0.113 τ2 = 1E+03

G3 = 0.061 τ3 = 1E+04

G4 = 0.033 τ4 = 1E+05

GM 0.45 1.46 E-03 7.52 5.31E-02 G1 = 1.069 τ1 = 6.4E+02

G2 = 0.416 τ2 = 6.4E+03

G3 = 0.335 τ3 = 6.4E+04

Model GM > WM WM 0.45 4.7 E-04 17.36 3.94E-02 // // [24]

GM 0.45 7.7 E-04 19.6 7.29E-02 // //

Model GM = WM WM & GM 0.45 1.4 E-02 4.7 3.18E-01 G1 = 0.099 τ1 = 8 [11]

G2 = 0.056 τ2 = 150

https://doi.org/10.1371/journal.pone.0232975.t001
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Analysis of the effects of morphological, experimental and mechanical

factors

The FE model was configured to test the effects of seven different factors. For each factor,

three levels were defined: one neutral and two to represent the possible variation of that factor.

Two morphological factors were tested: the curvature and the diameter of the spinal cord.

As previously described, three different curvatures were defined: an extended posture based

on MRI acquisition, a straight posture and a flexed posture (obtained by reversing the

extended posture) (Fig 1D). Three cord diameters were tested (1.45 ± 0.16 mm) to account for

intraspecies variability [28].

Four experimental factors were tested: the impactor cranio-caudal and lateral positions and

the impactor sagittal and transverse tilt. Accordingly, the impactor was translated laterally and

Fig 2. Model validation. Comparison of the experimental results [28] of force–displacement relationship for a lateral cervical contusion with a 50%

compression ratio and the corresponding numerical results of FE model using three data sets derived from available literature for white matter and

gray matter mechanical properties.

https://doi.org/10.1371/journal.pone.0232975.g002
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cranio-caudally of ±0.1mm from its initial position and rotated in the transverse plane (± 3˚)

and in the sagittal plane (± 3˚).

The different data sets for WM and GM material properties described in Model Generation
were tested as a three-level mechanical factor: one with WM stiffer than GM, one with GM stif-

fer than WM and one with homogeneous WM and GM.

To summarize, the effects of 7 three-level factors were investigated: material properties, SC

curvature, SC diameter, impactor transverse tilt, impactor sagittal tilt, impactor lateral posi-

tioning and impactor cranio-caudal positioning. Each factor was individually tested and 11

interactions of interest were also tested (listed in Table 2) This investigation resulted in a total

of 98 runs.

An analysis of variance was performed using Statistica 13 (StatSoft, Inc., USA) to study the

main effects of the factors mentioned above and some of their interactions for each of the fol-

lowing outcome measurements: mean maximal principal strain, shear strain and VM strain of

each ROI. Mean strains were obtained by averaging strains on a set of elements at the impacted

site. The set was defined by all the elements included in a 0.6 mm cross-sectional slice centered

at C4 vertebral level (ie. under the impactor) resulting in about 13k elements.

Due to the determinist aspect of FEM simulations, an alpha acceptance of less than 0.01 was

chosen for significance.

Results

The computed force-displacement curves of the three FE model configurations with the differ-

ent material data sets all laid within the range of experimental results and showed the distinc-

tive J-shaped curvature of experimental data. (Fig 2). This shows that the three material data

sets allowed for an accurate representation of the overall mechanical behavior of the mouse

spinal cord under dynamic compression up to a 50% compression ratio.

The strain distribution throughout the spinal cord was strongly affected by the relative

change in material properties between WM and GM in the model (Fig 3). The numerical

results presented in this paragraph compare the peak values of the maximal principal strain in

each ROI for models with neutral positioning of the impactor, mean cord diameter and

straight posture of the spine and variable sets of material properties. Peak values were deter-

mined as the 95th percentile of maximal principal strain of all elements within a ROI.

Representing the GM stiffer than WM led to a more diffused strain field throughout the spi-

nal cord (as shown in the sagittal sections of Fig 3) and to higher strain levels in the ventral

part of the WM (85% vs. 49% and 17%). The uniform properties between WM and GM led to

a strain field focused on the impact site, and low strain levels in the contra-lateral and ventral

part (49% vs. 85% and 65%). Representing stiffer WM than GM led to higher strain levels in

the contra-lateral GM (81% vs 41% and 43%) and ipsi-lateral GM (120% vs. 113% and 80%).

Table 2. Interactions studied between the different factors.

SC Diameter Sagittal Tilt Transverse Tilt Spine Curvature Cr-Cau Position Lateral Position Material Prop.

SC Diameter x x

Sagittal Tilt x x

Transverse Tilt x x

Spine Curvature x x x

Cr-Cau Position x x

Lateral Position x x x x x

Material Prop. x x x x x x

https://doi.org/10.1371/journal.pone.0232975.t002
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This set of material properties also led to lower levels of strain in the ipsilateral WM (56% vs.

96% and 90%).

The analysis of variance allowed identifying the factors with significant effects on the maxi-

mal principal strain, maximal shear strain and VM strain, for each ROI (Fig 4). However, only

the main effects on the maximal principal strain and their interactions are presented for each

ROI in Fig 4 since the same factors have a significant effect on the shear strain and the VM

strain (S1 and S2 Figs). It reveals that the material properties have a significant effect (p<0.01)

for all ROI and this is the most influential factor for 7 out of 8 eight ROIs. Lateral positioning

of the impactor has a significant effect on 7 ROIs and SC diameter on 5 ROIs. Transverse tilt

significantly affected 2 ROIs and the other principal factors show no significant effect for any

ROI.

Discussion

To our knowledge, this work presents the first murine FE model of spinal cord contusion. The

numerical model was validated against experimental data from a corresponding mouse spinal

cord injury experimental model. The developed model demonstrated its ability to simulate the

mechanical behavior of the mouse spinal cord under transverse contusion. The influence of

mechanical, experimental and morphological factors on the numerical model was assessed by

Fig 3. Comparison of strain distribution. Maximal principal strains throughout a cross-section (left) and a sagittal section (right) of the spinal

cord at mid impactor for the three different material data sets.

https://doi.org/10.1371/journal.pone.0232975.g003
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analyzing the computed tissue deformation throughout the cord. The identification of such

key factors allows for the definition of action priorities in the investigation of SCI biomechan-

ics. This work highlights that the material properties assigned to the white and gray matter can

strongly affect the simulated local strains throughout the spinal cord during a trauma. Thus,

the first priority in future works should be a comprehensive characterization of the material

properties of WM and GM in order to develop models predicting tissue deformation during

spinal cord injuries.

The FE model was validated against previous experimental data. For the three sets of mate-

rial properties, its overall mechanical behavior laid within our experimental range. This shows

that regardless of the assumptions made on the WM and GM material properties, it is possible

to simulate the global mechanical behavior of the spinal cord. The three sets were chosen in

view of the available data and have all been used in spinal cord FE model investigating injury

mechanisms [12,13,18,32–34]. This study demonstrated the strong impact of the choice of

material properties on the local mechanical behavior throughout the spinal cord. The use of a

FE model to predict strain patterns–and thus tissue damage patterns—should require stronger

validation than the overall mechanical behavior of the model. In the absence of a consensus on

the material properties of white and gray matter in the spinal cord, providing sensitivity analy-

sis on these properties should address this lack of knowledge.

The major impact of the WM and GM material properties on the strain distribution was

acknowledgeable both statistically and qualitatively. This result is consistent with previous

Fig 4. Pareto charts of the standardized effects on maximal principal strain for each region of interest. Coupled effects are noted “n × m”, with “n” and “m” the

factor denomination. The standardized effects of each factor are presented in descending order of influence on the maximal principal strain.

https://doi.org/10.1371/journal.pone.0232975.g004
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biomechanical studies which have highlighted the sensitivity of SCI FE models to their mate-

rial properties variations [11,35]. The method presented in this study stood out by a compre-

hensive definition of regions of interest, allowing for specific analysis on each sub-region of

the WM and GM. Notably, for a unilateral injury, such as the one introduced, an important

issue is to spare the contralateral part of the cord [36]. Changes in material properties affected

the level of strain in both the contralateral WM and GM. In particular, inhomogeneous WM

and GM properties led to higher levels of strain in the contralateral part of the cord. Experi-

mental models of unilateral contusion at the mid-cervical level in mice have demonstrated

minimal tissue damage in the contralateral part of the cord, but also motor function deficits in

the contralateral limbs [37,38]. These experimental observations together with an accurate

simulation for computation of the strain fields within the spinal cord could allow for the defi-

nition of mechanical thresholds for spinal cord tissues. This underlines the need for additional

experimental investigation of the WM and GM material properties.

Beyond the major effect of material properties, experimental factors have been shown to

significantly affect the strain levels within the spinal cord. Notably, lateral positioning of the

impactor had a significant effect on the strain levels in the ventral parts of the WM and the

GM. Considering that higher levels of strain within a SC region may cause greater acute tissue

damage, the exact lateral position of the impactor could lead to greater damage in the ventral

WM and the ventral GM. In the rodents, and at the cervical level, the locomotor-related motor

neurons and descending tracts are concentrated in these particular ROIs [39]. In experimental

models, lateral positioning of the impactor could lead to different levels of motor function

impairment. Therefore, specific attention should be given to this factor in experimental set-

ups in order to ensure their reproducibility.

The other experimental factors (tilt of the impactor and its position relative to the cranio-

caudal axis of the spinal cord) investigated in this study did not appear to significantly affect

the local mechanical behavior of the spinal cord. This maybe explained in part by the strain

values that were averaged in each ROI, which could have neglected strain concentrations and

lessen the effect of the impactor positioning. In experimental models, strain concentrations

could correspond to structural or physiological damage at localized areas of the cord. As a con-

sequence, the reproducibility of the impactor positioning should be ensured as far as practica-

ble in experimental studies. As for morphological variables, the effect of the spinal cord

curvature was negligible, which suggests there is no need to assess the curvature of the spinal

cord during experimental trauma. The significant effect on the spinal cord diameter on the

strain levels was an expected result as for different spinal cord sizes, a similar loading condition

will lead to different compression levels. The constant displacement imposed to the impactor

led to a compression ratio of 45% and 56% for the cord with the largest diameter and the small

diameter respectively.

This study design involved several assumptions. First, the sets of material properties

describing WM and GM mechanical behavior were selected to be representative of the actual

state of the art in SCI FE analysis. This set of material properties did not cover the entire range

of possible WM and GM mechanical behaviors and did not take into account the anisotropic

behavior of the white matter [40]. However, the important effect of the material properties

found in this study highlights the need for comprehensive and distinct characterization of the

material properties of WM and GM. Secondly, the effects of several factors were not investi-

gated such as the boundary conditions, the length of the modeled cord or contact formulation.

These choices were motivated by the fact that these factors have already been assessed in a FE

model of the rat spinal cord and were found not to cause significant differences in strain distri-

bution [11]. Further study could include the interactions between the spine curvature, the

cord diameter, and the impactor tilt which were not investigated in this analysis. Thirdly, the
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present FE model aimed to reproduce a specific experimental model: a unilateral contusion at

the C4 cervical level with an impactor tip of 0.6 mm diameter reaching a 50% compression

ratio of the spinal cord. It has been validated in this study for transverse compression loading

with compression ratios ranging between 0 and 50% and at high strain rates (up to 80 s-1).

Thus, the use of the model for other loading conditions in term of injury magnitude should be

accompanied by further validation. The model maybe used to simulate contusion at different

cervical levels, with special care to the effect of boundary conditions. The factors affecting the

different variables may differ with different loading conditions. However, the strong difference

between the effect of material properties and the other factors suggests a significant effect of

the material properties on the strain distribution regardless of different loading conditions.

Lastly, we chose to assess only strains rather than stress as the latter are related to the material

stiffness. As the different material properties used for modeling WM and GM displayed strong

differences in stiffness, analyzing the effects on stresses would have led to an exacerbation of

the effect of material properties.

In conclusion, the investigation of the SCI primary damage through FE model shows prom-

ising potential, but there is a tremendous need for additional characterization of the mechani-

cal behavior of white and gray matters. While such additional characterization should enable

the investigation of the relationships between biomechanical parameters, local mechanical

behavior and tissue damage in SCI, the results presented in this work enable to quantitatively

describe the influence of changes in material properties. The model and its associated model-

ing choices presented in this study allowed computing of the overall mechanical response of

the spinal cord under traumatic injury and thorough assessment of the effect of experimental

and morphological factors on the local mechanical behavior throughout the cord. Sensitive

experimental factors such as the positioning of the impactor were identified. Under the

assumption that slight changes in local mechanical strains may initiate tissue damage, the

uncertainty on these factors in experimental models could account for a lack of reproducibil-

ity. This highlights the fact that FE models could provide recommendations to help improve

the repeatability and reproducibility of experimental models.

Supporting information

S1 Fig. Von mises strain mean values for each level of each principal factor. Values were

obtained from WM ROIs(A) and GM ROIs(B). p-value was assessed through Wilcoxon test.
���: p<0.001, ��:p<0.01, �:p<0.5.

(TIF)

S2 Fig. Shear strain mean values for each level of each principal factor. Values were

obtained from WM ROIs (A) and GM ROIs (B). p-value was assessed through Wilcoxon test.
���: p<0.001, ��:p<0.01, �:p<0.5.

(TIF)
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