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In a viscous lock-exchange gravity current, which describes the reciprocal exchange of

two fluids of different densities in a horizontal channel, the front between two Newtonian

fluids spreads as the square root of time. The resulting diffusion coefficient reflects the

competition between the buoyancy driving effect and the viscous damping, and depends

on the geometry of the channel. This lock-exchange diffusion coefficient has already

been computed for a porous medium, a 2D Stokes flow between two parallel horizontal

boundaries separated by a vertical height, H , and, recently, for a cylindrical tube. In the

present paper, we calculate it, analytically, for a rectangular channel (horizontal thickness

b, vertical height H) of any aspect ratio (H/b) and compare our results with experiments

in horizontal rectangular channels for a wide range of aspect ratios (1/10− 10). We also

discuss the 2D Stokes-Darcy model for flows in Hele-Shaw cells and show that it leads

to a rather good approximation, when an appropriate Brinkman correction is used.

1. Introduction

The lock-exchange configuration refers to the release, under gravity, of the interface

between two fluids of different densities, confined in the section of a horizontal channel.

This physical process has prompted renewed interest, as a part of the carbon dioxide

sequestration issues (Neufeld & Huppert (2009)). The top of Fig. 1 shows the initial

lock-exchange situation of a so-called full-depth release. The two fluids, initially sepa-

rated by a vertical barrier (the lock gate), fill the whole section of the tank. When the

gate is withdrawn (bottom of Fig. 1), buoyancy drives the denser fluid along the bottom

wall, while the lighter one flows in the opposite direction at the top of the channel. The
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so-called lock-exchange results in the elongation of the interface between the two fluids

along the horizontal direction. Different regimes have been reported for the velocity and

shape of the elongating interface. The slumping phase refers to the initial regime where

inertia dominates over viscous forces, which typically applies for the case of salted and

fresh water in a tank. In this regime, Benjamin (1968), and more recently Shin et al.

(2004) showed that in the presence of a small density contrast (i.e. in the Boussinesq

approximation ∆ρ << ρ), the two opposite currents traveled at the same constant ve-

locity. When the Boussinesq approximation does not apply, Lowe et al. (2005), Birman

et al. (2005), Cantero et al. (2007) and Bonometti et al. (2008) showed that the two op-

posite fronts did travel at constant, but with different velocities. However this interface

elongation, proportional to the time, is slowed down at later stages, in the viscous phase,

where dissipation prevails over inertia. In the latter regime, the interface elongates as tα,

where the exponent α, smaller than unity, may take different values depending on the ge-

ometry and the confinement of the flow (Didden & Maxworthy (1982); Huppert (1982);

Gratton & Minotti (1990); Cantero et al. (2007); Takagi & Huppert (2007); Hallez &

Magnaudet (2009)). In porous media, Bear (1988) and Huppert & Woods (1995) pre-

dicted an interface spreading proportionally to the square root of time that Séon et al.

(2007) observed in a horizontal cylindrical tube. Such a spreading can be quantified with

a diffusion coefficient, which reflects the balance between the buoyancy driving and the

viscous damping. This coefficient, which depends on the nature and the geometry of the

flow, has been computed for a porous medium by Huppert & Woods (1995), for a 2D

Stokes flow between two parallel horizontal boundaries separated by a vertical height,

H , by Hinch (2007) and Taghavi et al. (2009), and for a cylindrical tube by Séon et al.

(2007). However, to our knowledge, such a diffusion coefficient has not been derived for

a rectangular channel (horizontal thickness b, vertical height H , Fig. 1), for which one

expects to recover the porous medium regime for b ≪ H , and, possibly, the Stokes flow

regime for b≫ H . In order to gather the limiting cases in the same paper, we first recall

the results for porous media and 2D Stokes flows, together with the tube case, for the

sake of comparison. Then we compute, for a rectangular channel of aspect ratio, H/b,

the dependence of the interface h(x, t) and the corresponding viscous lock-exchange dif-

fusion coefficient. We also test the so-called Stokes-Darcy 2D model to this lock-exchange

configuration. Finally, we test and validate our theoretical results with experiments in

horizontal rectangular channels for a wide range of aspect ratios (1/10 − 10).
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Figure 1. Sketch of the rectangular cell of height H in the gravity direction and width b. Top:

Initial configuration where the heavy fluid of density, ρ, is separated from the light fluid of

density, ρ − ∆ρ, by a vertical gate (plane y − z). Bottom: After removing the gate, buoyancy

differences cause the denser fluid to flow in one direction along the bottom of vessel, while the

lighter one flows in the opposite direction at the top of the vessel. The goal is to determine the

space and time dependencies of the pseudo-interface, h(x, t).

2. Lock-exchange in different geometries

Let us first recall the basic hypotheses on the viscous gravity currents, common to the

different geometries, used for instance by Huppert & Woods (1995) or Hinch (2007)).

As sketched in Fig. 1, the interface between the two fluids is assumed independent on

the y direction. Its distance from the bottom boundary of the vessel is denoted h(x, t).

This interface can be a pseudo-interface between two miscible fluids for which molecular

diffusion can be neglected or between two immiscible fluids, provided that the interfacial

tension can be neglected. The flow is assumed to be quasi-parallel to the horizontal x

axis. This is a key hypothesis. Neglecting accordingly the vertical component of the fluid

velocity implies that the vertical pressure gradient follows the hydrostatic variations:

∂p/∂z = −ρg. This hypothesis is violated at short times, immediately after the opening
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of the gate, but should become valid at later stages, as soon as the interface has slumped

over a distance larger than H , thus ensuring a small enough local slope ∂h/∂x. Then,

the pressures, P+ and P−, in the lower layer, 0 < z < h(x, t), and in the upper one,

h(x, t) < z < H , respectively, write

P+ = p(x, t) − ρ+gz ; P− = P+ + ∆ρg(z − h(x, t)) (2.1)

where p(x, t) denotes the pressure at the lower wall, z = 0. The difference between the

horizontal pressure gradients in the two fluids is therefore linked to the interface slope

by:

∂P+

∂x
− ∂P−

∂x
= ∆ρg

∂h

∂x
(2.2)

The time evolution of the interface, h(x, t), is governed by the mass conservation of each

fluid (see Fig. 1 for notations). For instance, for the heavier bottom layer we have:

∂h

∂t
+
∂q

∂x
= 0 (2.3)

where q(x, t) = q+(x, t) is the horizontal flux (m2/s) of the denser fluid at the location

x:

q(x, t) = q+(x, t) =

∫ h

0

1

b

∫

ux(x, y, z, t)dydz (2.4)

with ux(x, y, z, t) the x−velocity component and b the spanwise length (the y integration

is along this spanwise length). Moreover, in our configuration of uniform section along

the horizontal axis x, ux(x, y, z, t) must also satisfy the no net flux condition:

q+(x, t) + q−(x, t) =

∫ H

0

1

b

∫

ux(x, y, z, t)dydz = 0 (2.5)

We will see in the following that, in the viscous regime of interest, the horizontal velocity

component ux, solution of either a Darcy or a Stokes equation, is proportional to the

pressure gradient in each fluid layer. Such solutions, combined with eq. (2.2), eq. (2.4)

and eq. (2.5) allow then to eliminate the pressure gradients and to derive an expression

of the flux q, of the form:

q = −Df(
h

H
)
∂h

∂x
(2.6)

where D writes

D = τ
∆ρg

η
(2.7)

and where the constant τ (scaling with a volume) and the function f depend on the

geometry and the flow equation and η is the dynamic viscosity. Using the expression (2.6)

for the flux, eq. (2.3) admits a self-similar solution h(ζ) = H ψ(ζ) with the similarity
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variable ζ = x/
√
Dt, which obeys:

−ζ dψ
dζ

= 2
d

dζ
(f(ψ)

dψ

dζ
) (2.8)

This equation may alternatively be rewritten, in terms of ζ(ψ):

ζ(
dζ

dψ
)2 − 2 f

d2ζ

dψ2
+ 2

df

dψ
(
dζ

dψ
) = 0 (2.9)

The solution of the above equations can be found analytically or numerically, depending

on the complexity of the normalized flux function f(ψ). In the following, we will first

recall the case of porous media, treated by Huppert & Woods (1995) and the 2D Stokes

flow, addressed by Hinch (2007) (unpublished) and Taghavi et al. (2009). We note that

the latter paper included the effects of the rheological properties of the fluids. However,

in order to focus on the geometrical aspects, we will assume in the following that both

fluids are Newtonian and have the same viscosity.

2.1. Lock-exchange in porous media

For a homogeneous layer of porous medium of permeability κ (see for instance Huppert

& Woods (1995)), the flow in each fluid is given by Darcy’s law which relates the velocity

in each phase to the local pressure gradient :

ux± = −κ
η

∂P±

∂x
(2.10)

At a given location x, the velocity is then uniform in each layer, and the no net flux

condition (eq. (2.5)) simply writes: hux++(H−h)ux− = 0. The latter equation, combined

with eq. (2.10) and eq. (2.2), leads to eq. (2.6), and thus (combined with eq. (2.3)) to eq.

(2.8) with a diffusion coefficient and a flux function:

DPM = κH
∆ρg

η
(2.11)

fPM (ψ) = ψ(1 − ψ) (2.12)

The solution of eq. (2.8), in the similarity variable ζ = x/
√
DPM t, is then a linear profile

(Huppert & Woods (1995)):

ψ = h(x, t)/H = (1 + ζ)/2 (2.13)

The so-obtained front profile in homogeneous porous media is displayed in Fig. 2 (straight

line) together with the ones for rectangular cells (referred to in subsection 2.3). The

leading (ψ = 0, ζ = −1) and trailing (ψ = 1, ζ = 1) edges spread as
√
DPM t. Therefore,
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Figure 2. Lock-exchange interface ψ(ζ) between the two fluids for rectangular cells of different

aspect ratios Γ = H/b. The straight line of slope 0.5 corresponds to the Darcy porous media

limit (eq. (2.13)). The other curves correspond to the case of a rectangular cross-section channel

(subsection 2.3). From the bottom left to right, Γ = 10, 4, 2, 1, 0.5 and 0.2.

the lock-exchange diffusion coefficient for porous media is DPM . It should be noticed

that Bear (1988) reported a numerical integration of eq. (2.8) indicating that the gravity

current spreads as the square root of time. Note that the corresponding result for a Hele-

Shaw cell, that is two parallel plates of height, H , separated by a tiny gap b (b≪ H), is

obtained using the permeability κ = b2/12:

DHS =
b2H∆ρg

12η
(2.14)

2.2. Lock-exchange for a 2D Stokes flow between two horizontal boundaries

For a 2D Stokes flow between two horizontal parallel boundaries, separated by a height

H in the plane (z−x) (assuming invariance along the y−direction), the flow in each fluid

is given by the Stokes equation:

η ∇2ux±(x, z) =
∂P±

∂x
(2.15)
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At a given location x, the velocity profile consists of two parabola profiles matching

the no slip boundary conditions at the bottom and the top boundaries (ux+(x, 0) =

ux−(x,H) = 0) and the continuity of the velocity (ux−(x, h) = ux+(x, h)) and of the

shear stress (η ∂ux−(x, h)/∂z = η ∂ux+(x, h)/∂z) at the interface, z = h.

Using the no net flux condition (eq. (2.5)) and eq. (2.2), we obtain eq. (2.6), which enables

to rewrite eq. (2.3), in the form of eq. (2.8) or eq. (2.9), with:

D =
H3∆ρg

3η
(2.16)

f(ψ) = ψ3(1 − ψ)3 (2.17)

Note that the polynomial development of the solution of eq. (2.9) around ψ = 0 gives:

ζ = −ζ0 + 2ψ3/(3 ζ0). Thus, the location, ζ(ψ = 0) = −ζ0, of the leading edge of

the interface is indeed constant in the similarity variable. Moreover, the development

shows that the slope of the interface is vertical at the bottom wall (ψ = 0). This is

also the case at the upper wall (ψ = 1), as the problem is symmetric with respect

to the centre of the cell. We note that in the presence of such a vertical slope, our

(horizontal) quasi-parallel flow assumption falls locally, but it is still valid upstream and

downstream, where the slope of the interface remains small. The solution of eq. (2.9)

can be found numerically using a shooting method similar to the one used by Hinch

(2007) and Taghavi et al. (2009). It was computed starting the integration of eq. (2.9)

from (ψ = 0.5, ζ = 0) and matching the asymptotic development in the vicinity of ψ = 0.

From the so-obtained solution, one can deduce the spreading diffusion coefficient between

the leading edge (h = 0, −ζ0 = −0.1607) and the trailing edge (h = H , ζ0) of the front,

from [0.5 (x(h = 0) − x(h = H))]2 = D t, which gives D2D = D ζ2
0 , so that:

D2D = 0.0086H3 ∆ρg

η
(2.18)

This result is in agreement with the one found by Hinch (2007). Taghavi et al. (2009)

provide five ψ(ζ) plots in their Fig. 9, corresponding to different viscosity ratios and

including our case. From that figure we may obtain a value of their similarity variable,

η0 ∼ 0.09, which is consistent with our finding ζ0 = 0.1607, when taking into account

their definition of the similarity variable, ζ = η
√

3.

For completeness,D2D may be compared to the result for a cylindrical tube of diameter
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d (Séon et al. (2007)):

DT = 0.0054 d3 ∆ρg

η
(2.19)

The above expression is indeed very close to the 2D result, with d playing the role of H .

2.3. Lock-exchange in a rectangular cross-section channel

This article aims to extend the computation of the lock-exchange diffusion coefficient to

rectangular cells of arbitrary cross-sections H× b (see Fig. 1). In the following, the cross-

section aspect ratio will be denoted Γ = H/b. As in the previous section, a quasi-parallel

flow approximation is assumed (i.e. small interface slope) which leads to eq. (2.2) for the

pressure gradient. We will also assume the invariance of the interface location along the

gap direction y. This requires that the deformation of the interface, induced by the flow

profile along the direction y, relaxes much more quickly than the gradient along x. The

flow in each fluid obeys a 3D Stokes equation:

η ∇2ux±(x, y, z) =
∂P±

∂x
(2.20)

In order to solve this equation, we follow the series decomposition in Fourier modes of the

velocity field used by Gondret et al. (1997). This paper addressed the issue of the parallel

flow of two fluids of different viscosities in a rectangular cell. This issue is very closed to

ours, as it requires to solve the Poisson equation (eq. (2.20)), but with different viscosities

and the same pressure gradient for both fluids in Gondret et al. (1997). The method

used was to split the velocity into two terms, ux±(x, y, z) = u∗x±(x, y) + u∗∗x±(x, y, z).

Here, the first term, u∗x±(x, y) = b2

8η
∂P±

∂x [1 − (2y
b )2] is the Poiseuille-like unperturbed

velocity far away from the interface. The second term satisfies the Laplace equation,

∇2u∗∗x±(x, y, z) = 0 and vanishes far away from the interface. Its expression in terms of a

sum of Fourier modes leads to a velocity profile of the form:

ux±(x, y, z) =
b2

8η

∂P±

∂x

{

1 − (
2y

b
)2

+
∞
∑

n=1

32(−1)n (a±n e
(2n−1) π(z−H/2)

b + b±n e
−(2n−1) π(z−H/2)

b )

(2n− 1)3 π3
cos[(2n− 1)

πy

b
]

}

(2.21)

in which the no slip boundary conditions at the two vertical walls (ux±(x, y = ±b/2, z) =

0) have been taken into account. Each Fourier mode, ((2n−1)π/b), involves two constants

for each fluid, a±n and b±n. These four constants are determined by using the no slip
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Figure 3. Log-log plot of the normalized lock-exchange diffusion coefficient, DR/DHS, versus

the aspect ratio Γ = H/b, for rectangular cells. DR is normalized by the diffusion coefficient

DHS = b2H∆ρg/(12 η) (eq. (2.14), obtained for the Hele-Shaw cell limit, also corresponding

to a 2D porous medium. Accordingly, the latter regime corresponds to the dashed straight line

(DR/DHS = 1) in this representation. The solid straight line corresponds to the 2D Stokes limit

(eq. (2.18)), leading to a slope 2 in this representation.

boundary conditions at the bottom and top of the cell (ux+(x, y, z = 0) = ux−(x, y, z =

H) = 0) and the continuity of the velocity (ux+(x, y, z = h) = ux−(x, y, z = h)) and

of the shear stress (η ∂ux+(x, y, z = h)/∂z = η ∂ux−(x, y, z = h)/∂z) at the interface.

Combining the so-obtained expressions for the velocity with eq. (2.2) and the no net flux

condition (eq. (2.5)), one obtains the horizontal flux of the heavy fluid (eq. (2.6)):

q = −DHSfΓ(h/H)
∂ h

∂ x
(2.22)

with

DHS =
b2H∆ρg

12η
(2.23)

fΓ(ψ) =
ψ + αΓ(ψ)

1 − γΓ
(1 − ψ − αΓ(ψ) − γΓ) − δΓ(ψ) (2.24)
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where

αΓ(ψ) =
1

Γ

∞
∑

n=1

96
(

1 + eΓ(1−ψ) (2n−1)π
) (

1 − eΓ ψ (2n−1)π
)

(

1 + eΓ (2n−1)π
)

(2n− 1)
5
π5

(2.25)

δΓ(ψ) =
1

Γ

∞
∑

n=1

48
(

1 − eΓ(1−ψ) (2n−1)π
)2 (

1 − eΓ ψ (2n−1)π
)2

(

−1 + e2Γ (2n−1)π
)

(2n− 1)
5
π5

(2.26)

γΓ =
1

Γ

∞
∑

n=1

192 tanh (Γ (2n−1)π
2 )

(2n− 1)
5
π5

(2.27)

Eq. (2.22) admits a self-similar solution, h(ζ) = H ψ(ζ), with the similarity variable

ζ = x/
√
DHS t, which obeys eq. (2.8) or eq. (2.9). As previously, it is easier to compute

the solution ζ(ψ) of eq. (2.9) subject to the corresponding asymptotics, ζ = −ζ0 +

8 Γ2 ψ3/(3 ζ0) in the vicinity of the boundary, ψ = 0. We solve this equation using the

shooting method previously described and using Mathematica Software. The solutions

h(ζ) are plotted in Fig. 2 for different values of the cell aspect ratio Γ. We notice that, in

contrast with Darcy predictions (straight line in Fig. 2), but similarly to the case of the

2D Stokes flow, the profiles, h(ζ), exhibit vertical slopes at the edges of the cell. We note

also that such vertical slopes were observed in the experiments by Séon et al. (2007) and

Huppert & Woods (1995). When comparing their experiments in a Hele-Shaw cell with

Darcy predictions, the latter authors reported that ”Some discrepancies develop near the

leading edge of the current as a result of the increasing importance of the bottom friction

at the nose” (Fig. 2 of Huppert & Woods (1995)). This mismatch will be addressed in the

next section. According to the so-obtained profiles, stationary in the similarity variable

ζ, the leading and trailing edges of the front spread as the square root of time, and a

lock-exchange diffusion coefficient, dependent on the cell aspect ratio, can be defined:

DR =
b2H∆ρg

12η
F (
H

b
) = DHS F (

H

b
) (2.28)

Fig. 3 displays a log-log plot of the normalized rectangular cell lock-exchange diffusion

coefficient, DR/DHS = F (H/b), versus the aspect ratio Γ = H/b. At small aspect ratios,

Γ < 1, the diffusion coefficient falls on top of the full line of slope 2, which corresponds to

the 2D Stokes flow between boundaries distant of H (b→ ∞, eq. (2.18)). At large aspect

ratios, Γ → 100, the diffusion coefficient approaches the dashed line, DR/DHS = 1,

obtained for the 2D homogeneous porous medium case (eq. (2.14)). We note that the

latter case, which corresponds to a Hele-Shaw cell of infinite aspect ratio, overestimates
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the lock-exchange diffusion coefficient, by a relative amount of about 30%, for aspect

ratios as large as Γ = 10 − 20.

3. 2D Stokes-Darcy model for lock-exchange in a rectangular

cross-section channel

The above-mentioned failures of the 2D Darcy model at finite aspect ratios may come

from the velocity slip condition at the bottom and top edges of the cell (z = 0 and

z = H , respectively). This non physical condition is indeed required by the use of Darcy

equation for the flow, which neglects the momentum diffusion in the presence of velocity

gradients, in the plane of the cell (z−x plane). The momentum diffusion may however be

taken into account in 2D, through the so-called Stokes-Darcy equation (see Bizon et al.

(1997); Ruyer-Quil (2001); Martin et al. (2002a); Zeng et al. (2003)), which is similar

to the Darcy-Brinkman equation used in porous media (see Brinkman (1947)). This 2D

model enables to handle discontinuities such as cell edges, gap heterogeneities and fluid

interfaces (Ruyer-Quil (2001); Martin et al. (2002a); Zeng et al. (2003); Talon et al.

(2003)) and was successfully applied in the study of Rayleigh-Taylor instability (Martin

et al. (2002a); Fernandez et al. (2002); Graf et al. (2002)), of dispersion in heterogeneous

fractures (Talon et al. (2003)) and of chemical reaction fronts (Martin et al. (2002b)).

Although our present case of interest can be handled with 3D Stokes calculations, it is

of interest to test the applicability of the 2D Stokes-Darcy model to the case of deep and

narrow cells. Indeed, such a 2D model, once validated, could be a useful tool to address

the issue of more complicated cases, such as gravity currents in the presence of viscosity

contrasts, or in fractures with aperture heterogeneities.

In this model, the flow in the rectangular cell (Fig. 1) is assumed to be parallel to the

plates (~u(x, y, z) = (ux(x, y, z), 0, uz(x, y, z)) with a Poiseuille parabolic profile across

the gap (the key assumption). Using the Stokes equation with this y dependency, the

gap-averaged fluid velocity ~U(x, z) = 1
b

∫ b/2

−b/2 ~u(x, y, z)dy, follows a Stokes-Darcy (SD)

equation which reads here for the horizontal component of the velocity:

−12η

b2
Ux±(x, z) + β η∇2Ux±(x, z) =

∂P±

∂x
(3.1)

The first term on the left hand side of eq. (3.1) and the pressure gradient correspond

to the Darcy’s law (eq. (2.10)) with a permeability κ = b2

12 for the Hele-Shaw cell as

mentioned above (eq. (2.14)). The second term on the left hand side of eq. (3.1) is the
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Figure 4. Log-log plot of the normalized lock-exchange diffusion coefficient, versus the aspect

ratio Γ = H/b, for rectangular cells. The data points, obtained using the 2D Stokes-Darcy model

(eq. (4)) with Brinkman viscosity factors β = 1 (open squares) and β = 12/π2 (open triangles)

are compared to the full 3D results already shown in Fig. 3 and depicted here as a solid line.

The inset gives the relative difference between the 2D Stokes-Darcy model (β = 1, open squares

and β = 12/π2, open triangles) and the 3D calculations. Note that these data were obtained by

the difference between values of accuracy of the order of a few 10−3, which results in the small

dispersion observed in the figure.

Brinkman correction to the Darcy equation (see Brinkman (1947)), which involves an

effective viscosity, βη. This effective viscosity may be taken equal to the one of the fluid

(β = 1) for the sake of simplicity (or to enable the matching with a 2D Stokes regime

at Γ → 0). However, Zeng et al. (2003) showed that in the Hele-Shaw cell regime (at

large Γ), the effective viscosity was slightly higher, with β = 12/π2 ≃ 1.215. At a given

location x, integrating eq. (3.1) leads to the two velocity profiles matching the no slip

boundary conditions at the bottom and the top boundaries (ux+(x, 0) = ux−(x,H) =

0) and the continuity of the velocity (ux−(x, h) = ux+(x, h)) and of the shear stress

(β η ∂ux−(x, h)/∂z = β η ∂ux+(x, h)/∂z) at the interface. Using the no net flux condition,
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∫ h

0
ux+dz +

∫H

h
ux−dz = 0, and eq. (2.2), we obtain the horizontal flux (eq. (2.4)):

q(x) = −DHS fSD(h/H)
∂ h

∂ x
(3.2)

where DHS was already given in eq. (2.14) and the reduced flux function is equal to:

fSD(ψ) =
1

4d(d− tanh d)

{

2 + 4 d2 (1 − ψ)ψ − d
3 cosh(2 d) + cosh(2 d (1 − 2ψ))

sinh(2 d)

+4 d
(1 − ψ) cosh(2 d (1 − ψ)) + ψ cosh(2 dψ)

sinh(2 d)
− 2

cosh(d (1 − 2ψ))

cosh(d)

}

(3.3)

where

d =

√

H2

4κβ
=

√

3

β
Γ (3.4)

and κ = b2/12. A comparison of the full 3D calculations for a rectangular channel of

aspect ratio Γ = H/b with this 2D approximation can be performed on the flux functions,

fΓ(ψ) (eq. (2.24)) and fSD(ψ) (eq. (3.3)). These two flux functions are close to each other,

within a few per cents. In order to address the comparison in the range of interest for

the Hele-Shaw assumption, i.e. Γ ≫ 1, let us analyze the limit Γ → ∞ (d → ∞), which

gives

fSD,Γ→∞ ≃ ψ(1 − ψ) − (
3

4
− ψ(1 − ψ))

√

β

3

b

H
+O

(

(
b

H
)2

)

(3.5)

for the Stokes-Darcy flux and

fΓ,Γ→∞ ≃ ψ(1 − ψ) − (
3

4
− ψ(1 − ψ))

186Zeta(5)

π5

b

H
+O

(

(
b

H
)2

)

(3.6)

for the full 3D rectangular cell flux (with Zeta(5) =
∑∞

1 n−5 = 1.03693, the value of the

Riemann-Zeta function). We note that the leading term of both series corresponds to the

expected porous media Darcy limit (eq. (2.12)) with a permeability κ = b2/12. However,

the next order term (O(b/H)) is not the same, unless one chooses for the factor β,

β = 3 (
186Zeta(5)

π5
)2 ≃ 1.192 (3.7)

which is very close to the value 12/π2 ≃ 1.215 found by Zeng et al. (2003) and to

the value 6/5 proposed by Ruyer-Quil (2001). The lock-exchange diffusion coefficient

has been computed, with the same procedure as above, by integrating eq. (2.9), using

fSD(ψ), from ψ = 0.5, and matching the asymptotics, ζ = −ζ0 + 8 d2 ψ3/(9 ζ0) in the

vicinity of the boundary, ψ = 0. The so-obtained lock-exchange diffusion coefficients,

calculated for two different values of β (β = 1 and β = 12/π2) are compared to the 3D
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calculations in Fig. 4. The data for both values of β are indeed very close to the 3D

data over the whole range of aspect ratios, Γ = 1 − 100. The inset of Fig. 4 gives the

percentage of error for the two values of β. We note that these data were obtained by

the difference between values of accuracy of the order of a few 10−3, which results in the

small dispersion observed in the inset of Fig. 4. As expected, the results at large Γ (in the

Hele-Shaw regime) are closer to the 3D full problem for β = 12/π2 than for β = 1. We

point out that, whereas the Brinkman term does bring a significant correction, the exact

value of the Brinkman viscosity factor β is however not crucial: For instance, for Γ = 10,

we obtained a diffusion coefficient 3.5% smaller than the 3D value for β = 1 and 0.1%

larger for β = 12/π2, to be compared to the 30% of error if the cell was assumed to be

of infinite aspect ratio (Hele-shaw limit) as in Huppert & Woods (1995). In conclusion of

this comparison, we have shown that the 2D Stokes-Darcy model for lock-exchange in a

rectangular cell captures quite accurately the effect of the finiteness of the cross-section

aspect ratio. By using the correct β value, the error in the model is smaller than 5% for

aspect ratios larger than Γ > 1.

4. Experiments

In this section, we will present experimental measurements of the diffusion coefficient

in Hele-Shaw cells of different aspect ratios and we will compare them with our computed

values.

We used borosilicate rectangular cells of height H and thickness b and typical length

30 cm (Fig. 1). The rectangular cross-sections of the cells were (in mm2): 2 × 6, 2 × 12,

2 × 20, 3 × 3, 3 × 9, 3 × 30, 4 × 6, 4 × 10, 6 × 6. Each cell was used with one side or the

other held vertically, leading to two aspect ratios per cell. With such values, we covered a

wide range of aspect ratios, from Γ = H/b = 1/10 to 10. We used, as Newtonian miscible

fluids, aqueous solutions of natrosol and calcium chlorite. The fluids had equal viscosities,

which were fixed by the polymer concentration and measured with an accuracy of 1%.

The fluid densities were adjusted by addition of salt and measured with an accuracy of

0.01%. The overall accuracy in DHS was typically 5%, when taking into account the

above accuracies in viscosities and densities and the inherent temperature variations

during the experiments. The viscosities and the densities of the fluids were chosen to

satisfy two experimental requirements. The experiments must be fast enough in order to

prevent any significant molecular mixing of the fluids and one should be able to put the
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Figure 5. Side view (plane z − x) of the lock-exchange interface for rectangular cells of aspect

ratios Γ = H/b = 10, 6, 2.5, 1.5, 1, 2/3, 0.4, 1/3, from top to bottom, respectively. The horizontal

axis is scaled with
√
DHS t, which allows to observe the decrease of ζ0 as Γ decreases. The vertical

dashed line corresponds to ζ = 0.

two fluids in contact without mixing. The latter condition requires a rather large density

contrast and large viscosities. With our cell sizes, a good compromise was obtained with

a density contrast of about 1% and typical viscosities in the range, 10−50mPa.s, leading

to a lock-exchange diffusion coefficient ranging from 10−3cm2/s to 1cm2/s. The typical

Reynolds number, built with the gap of the cell of these experiments is smaller than 0.1.

For each experiment, the cell was first held with its axis Ox vertical. The fluids were

successively slowly injected, with the lighter fluid on top of the heavier. Then the cell

was closed and put in the desired position, with its axis Oz vertical in a few seconds.

The development of the lock-exchange pseudo-interface was then recorded thanks to a

video camera. Typical pictures (side view in the plane z − x) are given in Fig. 5 for

cells of different aspect ratios. The horizontal axis is scaled with
√
DHS t, so that one

can see the decrease of ζ0 as Γ decreases. With this representation using the self-similar

variable ζ = x/
√
DHS t, the profiles are stationary. One may notice that the trailing
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Figure 6. Plot of the square of the spreading distance of the leading edge of the front versus

time for five cells: (•) H = 3mm, b = 30mm;(�) H = 6mm, b = 2mm; (∗) H = 6mm,

b = 4mm; (◦) H = b = 6mm; (+) H = 30mm, b = 3mm. The solid line is a linear fit to the

data, the slope of which gives the diffusion coefficient plotted in Fig. 7 (top).

edge is fuzzy. This can be attributed to the stick condition at the upper wall: The dark

dense fluid does stay at the walls for a long time, in particular in the corners of the cross-

section. The same phenomenon takes place at the bottom of the cell, but the presence

of transparent light fluid has little effect on the turbidity of the heavy dark fluid, and is

therefore not noticeable on the pictures. It is worth noting that the shape of the leading

edge evolves from an edge at large aspect ratios Γ to a more and more step-like shape

as Γ decreases. It should be noticed that for small aspect ratios, although it is rather

difficult to take pictures, a top view of the cell reveals a mild spanwise dependency of

the interface, but we do not observe the spanwise lobe-and-cleft instability reported by

Simpson (1972). For each experiment, the locations of the leading and trailing edges

of the front were measured in time. Fig. 6 gives the variations of the square of the

spreading distance versus time for five cells. It is worth noting that the dependency

is almost linear: Therefore a linear fit provided the lock-exchange diffusion coefficient,
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Figure 7. Top: Log-log plot of the normalized measured lock-exchange diffusion coefficient,

Dexp/DHS (open squares), versus the aspect ratio, Γ = H/b, of the cell. The solid line cor-

responds to the 3D results (same as in Fig. 4). Bottom : Superimposition of the measured

pseudo-interface between the two fluids (grey fuzzy line) and of the theoretical profile (full dark

line) corresponding to Fig. 2. The aspect ratio is Γ = 4.

with a typical accuracy of 20%. Fig. 7 (top) displays the so-obtained normalized lock-

exchange diffusion coefficient as a function of Γ. One can see that the agreement with the

3D calculations over the two decades of our measurements is rather good. We note that

for the large aspect ratio limit of the experiments (up to Γ = 10), the Hele-Shaw cell limit

is not reached, and would underestimate, by 30%, the lock-exchange diffusion coefficient.

This result thus confirms that for such aspect ratios, one should either compute the

full 3D Stokes equation or use the Stokes-Darcy model to obtain the correct behaviour.

We also note that our calculation still holds for aspect ratios as small as Γ = 0.1. This

result is quite unexpected since for such aspect ratios, some spanwise dependency of the

profile was observed, and the hypothesis of the interface surface, h(x, y, z), invariant in

the y direction is certainly broken. The bottom of Fig. 7 displays the superimposition

of the theoretical and the experimental interfaces between the fluids, for an aspect ratio
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Γ = 4. The agreement between the two is rather good, thus validating our model. Such

an agreement is rather surprising as our small slope assumption is violated at the edges

of the gravity current. This agreement, already emphasized by Huppert (1982) and Séon

et al. (2007), is likely to be common to viscosity dominated gravity current without

surface tension.

5. Conclusion

The viscous lock-exchange diffusion coefficient reflects the competition between the

buoyancy driving effect and the viscous damping, and depends on the geometry of the

channel. We give the backbone to calculate this coefficient in different configurations: We

recall its computation for a porous medium already found by Huppert & Woods (1995),

and compute it for a 2D Stokes flow between two parallel horizontal boundaries separated

by a vertical height, H . This result is in agreement with Hinch (2007) (unpublished) and

in reasonable agreement with recent computations by Taghavi et al. (2009). Using a

quasi-parallel flow assumption, we have calculated the pseudo-interface profile between

the two fluids and the diffusion coefficient of viscous lock-exchange gravity currents for a

rectangular channel (horizontal thickness b, vertical height H) of any aspect ratio (H/b).

This analysis provides a cross-over between the 2D Stokes flow between two parallel

horizontal boundaries separated by a vertical height, H , and the Hele-Shaw cell limit

(applying for H/b > 100). Moreover, the shape of our profiles allows to account for the

discrepancy observed at the nose of the gravity current in the experiments by Huppert &

Woods (1995). The agreement, obtained despite the failure of the lubrication assumption

at the edges of the current, should deserve however further theoretical investigation. Our

calculations of the diffusion coefficient and of the shape of the profile have also been

convincingly compared to new experiments carried out in cells of various aspect ratios

(1/10− 10). We have also calculated the lock-exchange diffusion coefficient for the same

rectangular cells, using the 2D Stokes-Darcy model. This model is shown to apply to

aspect ratios H/b > 1, provided that the appropriate Brinkman correction is used. Such

a 2D model may be useful to describe gravity currents with a finite volume of release,

with fluids of different viscosities, or in heterogeneous vertical fractures.
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