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Viscous lock-exchange in rectangular channels

In a viscous lock-exchange gravity current, which describes the reciprocal exchange of two fluids of different densities in a horizontal channel, the front between two Newtonian fluids spreads as the square root of time. The resulting diffusion coefficient reflects the competition between the buoyancy driving effect and the viscous damping, and depends on the geometry of the channel. This lock-exchange diffusion coefficient has already been computed for a porous medium, a 2D Stokes flow between two parallel horizontal boundaries separated by a vertical height, H, and, recently, for a cylindrical tube. In the present paper, we calculate it, analytically, for a rectangular channel (horizontal thickness b, vertical height H) of any aspect ratio (H/b) and compare our results with experiments in horizontal rectangular channels for a wide range of aspect ratios (1/10 -10). We also discuss the 2D Stokes-Darcy model for flows in Hele-Shaw cells and show that it leads to a rather good approximation, when an appropriate Brinkman correction is used.

Introduction

The lock-exchange configuration refers to the release, under gravity, of the interface between two fluids of different densities, confined in the section of a horizontal channel.

This physical process has prompted renewed interest, as a part of the carbon dioxide sequestration issues [START_REF] Neufeld | Modelling carbon dioxide sequestration in layered strata[END_REF]). The top of Fig. 1 shows the initial lock-exchange situation of a so-called full-depth release. The two fluids, initially separated by a vertical barrier (the lock gate), fill the whole section of the tank. When the gate is withdrawn (bottom of Fig. 1), buoyancy drives the denser fluid along the bottom wall, while the lighter one flows in the opposite direction at the top of the channel. The so-called lock-exchange results in the elongation of the interface between the two fluids along the horizontal direction. Different regimes have been reported for the velocity and shape of the elongating interface. The slumping phase refers to the initial regime where inertia dominates over viscous forces, which typically applies for the case of salted and fresh water in a tank. In this regime, [START_REF] Benjamin | Gravity currents and related phenomena[END_REF], and more recently [START_REF] Shin | Gravity currents produced by lock exchange[END_REF] showed that in the presence of a small density contrast (i.e. in the Boussinesq approximation ∆ρ << ρ), the two opposite currents traveled at the same constant velocity. When the Boussinesq approximation does not apply, [START_REF] Lowe | The non-Boussinesq lock-exchange problem. part 1. theory and experiments[END_REF], [START_REF] Birman | The non-Boussinesq lock-exchange problem. Part 2. High-resolution simulations[END_REF], [START_REF] Cantero | On the front velocity of gravity currents[END_REF] and [START_REF] Bonometti | Wall effects in non-Boussinesq density currents[END_REF] showed that the two opposite fronts did travel at constant, but with different velocities. However this interface elongation, proportional to the time, is slowed down at later stages, in the viscous phase, where dissipation prevails over inertia. In the latter regime, the interface elongates as t α , where the exponent α, smaller than unity, may take different values depending on the geometry and the confinement of the flow [START_REF] Didden | The viscous spreading of plane and axisymmetric gravity currents[END_REF]; [START_REF] Huppert | The propagation of two-dimensional and axisymmetric viscous gravity currents over a rigid horizontal surface[END_REF]; [START_REF] Gratton | Self-similar viscous gravity currents: phase-plane formalism[END_REF]; [START_REF] Cantero | On the front velocity of gravity currents[END_REF]; [START_REF] Takagi | The effect of confining boundaries on viscous gravity currents[END_REF]; [START_REF] Hallez | A numerical investigation of horizontal viscous gravity currents[END_REF]). In porous media, [START_REF] Bear | Dynamics of Fluids in Porous Media[END_REF] and [START_REF] Huppert | Gravity-driven flows in porous layers[END_REF] predicted an interface spreading proportionally to the square root of time that [START_REF] Séon | Transient buoyancy-driven front dynamics in nearly horizontal tubes[END_REF] observed in a horizontal cylindrical tube. Such a spreading can be quantified with a diffusion coefficient, which reflects the balance between the buoyancy driving and the viscous damping. This coefficient, which depends on the nature and the geometry of the flow, has been computed for a porous medium by [START_REF] Huppert | Gravity-driven flows in porous layers[END_REF], for a 2D Stokes flow between two parallel horizontal boundaries separated by a vertical height, H, by [START_REF] Hinch | Private communication[END_REF] and [START_REF] Taghavi | Buoyancy-dominated displacement flows in near-horizontal channels: the viscous limit[END_REF], and for a cylindrical tube by [START_REF] Séon | Transient buoyancy-driven front dynamics in nearly horizontal tubes[END_REF]. However, to our knowledge, such a diffusion coefficient has not been derived for a rectangular channel (horizontal thickness b, vertical height H, Fig. 1), for which one expects to recover the porous medium regime for b ≪ H, and, possibly, the Stokes flow regime for b ≫ H. In order to gather the limiting cases in the same paper, we first recall the results for porous media and 2D Stokes flows, together with the tube case, for the sake of comparison. Then we compute, for a rectangular channel of aspect ratio, H/b, the dependence of the interface h(x, t) and the corresponding viscous lock-exchange diffusion coefficient. We also test the so-called Stokes-Darcy 2D model to this lock-exchange configuration. Finally, we test and validate our theoretical results with experiments in horizontal rectangular channels for a wide range of aspect ratios (1/10 -10). 

Lock-exchange in different geometries

Let us first recall the basic hypotheses on the viscous gravity currents, common to the different geometries, used for instance by [START_REF] Huppert | Gravity-driven flows in porous layers[END_REF] or [START_REF] Hinch | Private communication[END_REF]).

As sketched in Fig. 1, the interface between the two fluids is assumed independent on the y direction. Its distance from the bottom boundary of the vessel is denoted h(x, t).

This interface can be a pseudo-interface between two miscible fluids for which molecular diffusion can be neglected or between two immiscible fluids, provided that the interfacial tension can be neglected. The flow is assumed to be quasi-parallel to the horizontal x axis. This is a key hypothesis. Neglecting accordingly the vertical component of the fluid velocity implies that the vertical pressure gradient follows the hydrostatic variations:

∂p/∂z = -ρg. This hypothesis is violated at short times, immediately after the opening of the gate, but should become valid at later stages, as soon as the interface has slumped over a distance larger than H, thus ensuring a small enough local slope ∂h/∂x. Then, the pressures, P + and P -, in the lower layer, 0 < z < h(x, t), and in the upper one, h(x, t) < z < H, respectively, write

P + = p(x, t) -ρ + gz ; P -= P + + ∆ρg(z -h(x, t)) (2.1)
where p(x, t) denotes the pressure at the lower wall, z = 0. The difference between the horizontal pressure gradients in the two fluids is therefore linked to the interface slope by:

∂P + ∂x - ∂P - ∂x = ∆ρg ∂h ∂x (2.2)
The time evolution of the interface, h(x, t), is governed by the mass conservation of each fluid (see Fig. 1 for notations). For instance, for the heavier bottom layer we have:

∂h ∂t + ∂q ∂x = 0 (2.3)
where q(x, t) = q + (x, t) is the horizontal flux (m 2 /s) of the denser fluid at the location

x: q(x, t) = q + (x, t) = h 0 1 b u x (x, y, z, t)dydz (2.4)
with u x (x, y, z, t) the x-velocity component and b the spanwise length (the y integration is along this spanwise length). Moreover, in our configuration of uniform section along the horizontal axis x, u x (x, y, z, t) must also satisfy the no net flux condition:

q + (x, t) + q -(x, t) = H 0 1 b u x (x, y, z, t)dydz = 0 (2.5)
We will see in the following that, in the viscous regime of interest, the horizontal velocity component u x , solution of either a Darcy or a Stokes equation, is proportional to the pressure gradient in each fluid layer. Such solutions, combined with eq. (2.2), eq. (2.4) and eq. (2.5) allow then to eliminate the pressure gradients and to derive an expression of the flux q, of the form:

q = -Df ( h H ) ∂h ∂x (2.6)
where D writes

D = τ ∆ρg η (2.7)
and where the constant τ (scaling with a volume) and the function f depend on the geometry and the flow equation and η is the dynamic viscosity. Using the expression (2.6) for the flux, eq. ( 2.3) admits a self-similar solution h(ζ) = H ψ(ζ) with the similarity variable ζ = x/ √ Dt, which obeys:

-ζ dψ dζ = 2 d dζ (f (ψ) dψ dζ ) (2.8)
This equation may alternatively be rewritten, in terms of ζ(ψ):

ζ( dζ dψ ) 2 -2 f d 2 ζ dψ 2 + 2 df dψ ( dζ dψ ) = 0 (2.9)
The solution of the above equations can be found analytically or numerically, depending on the complexity of the normalized flux function f (ψ). In the following, we will first recall the case of porous media, treated by [START_REF] Huppert | Gravity-driven flows in porous layers[END_REF] and the 2D Stokes flow, addressed by Hinch (2007) (unpublished) and [START_REF] Taghavi | Buoyancy-dominated displacement flows in near-horizontal channels: the viscous limit[END_REF]. We note that the latter paper included the effects of the rheological properties of the fluids. However, in order to focus on the geometrical aspects, we will assume in the following that both fluids are Newtonian and have the same viscosity.

Lock-exchange in porous media

For a homogeneous layer of porous medium of permeability κ (see for instance [START_REF] Huppert | Gravity-driven flows in porous layers[END_REF]), the flow in each fluid is given by Darcy's law which relates the velocity in each phase to the local pressure gradient :

u x± = - κ η ∂P ± ∂x (2.10)
At a given location x, the velocity is then uniform in each layer, and the no net flux condition (eq. (2.5)) simply writes: hu x+ +(H -h)u x-= 0. The latter equation, combined with eq. (2.10) and eq. (2.2), leads to eq. (2.6), and thus (combined with eq. (2.3)) to eq.

(2.8) with a diffusion coefficient and a flux function:

D P M = κ H ∆ρg η (2.11) f P M (ψ) = ψ(1 -ψ) (2.12)
The solution of eq. (2.8), in the similarity variable ζ = x/ √ D P M t, is then a linear profile [START_REF] Huppert | Gravity-driven flows in porous layers[END_REF]):

ψ = h(x, t)/H = (1 + ζ)/2 (2.13)
The so-obtained front profile in homogeneous porous media is displayed in Using the no net flux condition (eq. (2.5)) and eq. ( 2.2), we obtain eq. (2.6), which enables to rewrite eq. ( 2.3), in the form of eq. (2.8) or eq. (2.9), with:

D = H 3 ∆ρg 3η (2.16) f (ψ) = ψ 3 (1 -ψ) 3 (2.17)
Note that the polynomial development of the solution of eq. ( 2.9) around ψ = 0 gives:

ζ = -ζ 0 + 2ψ 3 /(3 ζ 0 ). Thus, the location, ζ(ψ = 0) = -ζ 0 , of the leading edge of
the interface is indeed constant in the similarity variable. Moreover, the development shows that the slope of the interface is vertical at the bottom wall (ψ = 0). This is also the case at the upper wall (ψ = 1), as the problem is symmetric with respect to the centre of the cell. We note that in the presence of such a vertical slope, our (horizontal) quasi-parallel flow assumption falls locally, but it is still valid upstream and downstream, where the slope of the interface remains small. The solution of eq. (2.9) can be found numerically using a shooting method similar to the one used by [START_REF] Hinch | Private communication[END_REF] and [START_REF] Taghavi | Buoyancy-dominated displacement flows in near-horizontal channels: the viscous limit[END_REF]. It was computed starting the integration of eq. (2.9) from (ψ = 0.5, ζ = 0) and matching the asymptotic development in the vicinity of ψ = 0.

From the so-obtained solution, one can deduce the spreading diffusion coefficient between the leading edge (h = 0, -ζ 0 = -0.1607) and the trailing edge

(h = H, ζ 0 ) of the front, from [0.5 (x(h = 0) -x(h = H))] 2 = D t, which gives D 2D = D ζ 2 0 , so that: D 2D = 0.0086 H 3 ∆ρg η (2.18)
This result is in agreement with the one found by [START_REF] Hinch | Private communication[END_REF]. [START_REF] Taghavi | Buoyancy-dominated displacement flows in near-horizontal channels: the viscous limit[END_REF] provide five ψ(ζ) plots in their Fig. 9, corresponding to different viscosity ratios and including our case. From that figure we may obtain a value of their similarity variable, η 0 ∼ 0.09, which is consistent with our finding ζ 0 = 0.1607, when taking into account their definition of the similarity variable, ζ = η √ 3.

For completeness, D 2D may be compared to the result for a cylindrical tube of diameter d [START_REF] Séon | Transient buoyancy-driven front dynamics in nearly horizontal tubes[END_REF]):

D T = 0.0054 d 3 ∆ρg η (2.19)
The above expression is indeed very close to the 2D result, with d playing the role of H.

Lock-exchange in a rectangular cross-section channel

This article aims to extend the computation of the lock-exchange diffusion coefficient to rectangular cells of arbitrary cross-sections H × b (see Fig. 1). In the following, the crosssection aspect ratio will be denoted Γ = H/b. As in the previous section, a quasi-parallel flow approximation is assumed (i.e. small interface slope) which leads to eq. ( 2.2) for the pressure gradient. We will also assume the invariance of the interface location along the gap direction y. This requires that the deformation of the interface, induced by the flow profile along the direction y, relaxes much more quickly than the gradient along x. The flow in each fluid obeys a 3D Stokes equation:

η ∇ 2 u x± (x, y, z) = ∂P ± ∂x (2.20)
In order to solve this equation, we follow the series decomposition in Fourier modes of the velocity field used by [START_REF] Gondret | Viscous parallel flows in finite aspect ratio Hele-Shaw cell: Analytical and numerical results[END_REF]. This paper addressed the issue of the parallel flow of two fluids of different viscosities in a rectangular cell. This issue is very closed to ours, as it requires to solve the Poisson equation (eq. (2.20)), but with different viscosities and the same pressure gradient for both fluids in [START_REF] Gondret | Viscous parallel flows in finite aspect ratio Hele-Shaw cell: Analytical and numerical results[END_REF]. The method used was to split the velocity into two terms,

u x± (x, y, z) = u * x± (x, y) + u * * x± (x, y, z). Here, the first term, u * x± (x, y) = b 2 8η ∂P± ∂x [1 -( 2y b ) 2
] is the Poiseuille-like unperturbed velocity far away from the interface. The second term satisfies the Laplace equation,

∇ 2 u * *
x± (x, y, z) = 0 and vanishes far away from the interface. Its expression in terms of a sum of Fourier modes leads to a velocity profile of the form: Combining the so-obtained expressions for the velocity with eq. (2.2) and the no net flux condition (eq. (2.5)), one obtains the horizontal flux of the heavy fluid (eq. (2.6)): 

u x± (x, y, z) = b 2 8η ∂P ± ∂x 1 -( 2y b ) 2 + ∞ n=1 32(-1) n (a ±n e (2n-1) π(z-H/2) b + b ±n e -(2n-1) π(z-H/2) b ) (2 n -1) 3 π 3 cos[(2n - 
q = -D HS f Γ (h/H) ∂ h ∂ x (2.22) with D HS = b 2 H∆ρg 12η (2.23) f Γ (ψ) = ψ + α Γ (ψ) 1 -γ Γ (1 -ψ -α Γ (ψ) -γ Γ ) -δ Γ (ψ) (2.24) α Γ (ψ) = 1 Γ ∞ n=1 96 1 + e Γ(1-ψ) (2 n-1) π 1 -e Γ ψ (2 n-1) π 1 + e Γ (2 n-1) π (2 n -1) 5 π 5 (2.25) δ Γ (ψ) = 1 Γ ∞ n=1 48 1 -e Γ(1-ψ) (2 n-1) π 2 1 -e Γ ψ (2 n-1) π 2 -1 + e 2 Γ (2 n-1) π (2 n -1) 5 π 5 (2.26) γ Γ = 1 Γ ∞ n=1 192 tanh ( Γ (2 n-1) π 2 ) (2 n -1) 5 π 5 (2.
= -ζ 0 + 8 Γ 2 ψ 3 /(3 ζ 0 )
in the vicinity of the boundary, ψ = 0. We solve this equation using the shooting method previously described and using Mathematica Software. The solutions h(ζ) are plotted in Fig. 2 for different values of the cell aspect ratio Γ. We notice that, in contrast with Darcy predictions (straight line in Fig. 2), but similarly to the case of the 2D Stokes flow, the profiles, h(ζ), exhibit vertical slopes at the edges of the cell. We note also that such vertical slopes were observed in the experiments by [START_REF] Séon | Transient buoyancy-driven front dynamics in nearly horizontal tubes[END_REF] and [START_REF] Huppert | Gravity-driven flows in porous layers[END_REF]. When comparing their experiments in a Hele-Shaw cell with Darcy predictions, the latter authors reported that "Some discrepancies develop near the leading edge of the current as a result of the increasing importance of the bottom friction at the nose" (Fig. 2 of [START_REF] Huppert | Gravity-driven flows in porous layers[END_REF]). This mismatch will be addressed in the next section. According to the so-obtained profiles, stationary in the similarity variable ζ, the leading and trailing edges of the front spread as the square root of time, and a lock-exchange diffusion coefficient, dependent on the cell aspect ratio, can be defined: obtained for the 2D homogeneous porous medium case (eq. (2.14)). We note that the latter case, which corresponds to a Hele-Shaw cell of infinite aspect ratio, overestimates lock-exchange diffusion coefficient, by a relative amount of about 30%, for aspect ratios as large as Γ = 10 -20. 

D R = b 2 H∆ρg 12η F ( H b ) = D HS F ( H b ) (2.

2D

- 12η b 2 U x± (x, z) + β η∇ 2 U x± (x, z) = ∂P ± ∂x (3.1)
The first term on the left hand side of eq. (3.1) and the pressure gradient correspond to the Darcy's law (eq. (2.10)) with a permeability κ = b 2 12 for the Hele-Shaw cell as mentioned above (eq. (2.14)). The second term on the left hand side of eq. (3.1) is the Brinkman correction to the Darcy equation (see [START_REF] Brinkman | A calculation of the viscous forces exerted by a flowing fluid on a dense swarm of particles[END_REF]), which involves an effective viscosity, βη. This effective viscosity may be taken equal to the one of the fluid (β = 1) for the sake of simplicity (or to enable the matching with a 2D Stokes regime at Γ → 0). However, [START_REF] Zeng | On the Brinkman correction in unidirectional Hele-Shaw flows[END_REF] showed that in the Hele-Shaw cell regime (at large Γ), the effective viscosity was slightly higher, with β = 12/π 2 ≃ 1. 2.2), we obtain the horizontal flux (eq. (2.4)):

q(x) = -D HS f SD (h/H) ∂ h ∂ x (3.2)
where D HS was already given in eq. (2.14) and the reduced flux function is equal to:

f SD (ψ) = 1 4d(d -tanh d) 2 + 4 d 2 (1 -ψ) ψ -d 3 cosh(2 d) + cosh(2 d (1 -2 ψ)) sinh(2 d) +4 d (1 -ψ) cosh(2 d (1 -ψ)) + ψ cosh(2 d ψ) sinh(2 d) -2 cosh(d (1 -2 ψ)) cosh(d) (3.3) where d = H 2 4κβ = 3 β Γ (3.4)
and κ = b 2 /12. A comparison of the full 3D calculations for a rectangular channel of aspect ratio Γ = H/b with this 2D approximation can be performed on the flux functions, f Γ (ψ) (eq. (2.24)) and f SD (ψ) (eq. ( 3.3)). These two flux functions are close to each other, within a few per cents. In order to address the comparison in the range of interest for the Hele-Shaw assumption, i.e. Γ ≫ 1, let us analyze the limit Γ → ∞ (d → ∞), which gives

f SD,Γ→∞ ≃ ψ(1 -ψ) -( 3 4 -ψ(1 -ψ)) β 3 b H + O ( b H ) 2 (3.5)
for the Stokes-Darcy flux and

f Γ,Γ→∞ ≃ ψ(1 -ψ) -( 3 4 -ψ(1 -ψ)) 186 Zeta(5) π 5 b H + O ( b H ) 2 (3.6)
for the full 3D rectangular cell flux (with Zeta(5) = ∞ 1 n -5 = 1.03693, the value of the Riemann-Zeta function). We note that the leading term of both series corresponds to the expected porous media Darcy limit (eq. (2.12)) with a permeability κ = b 2 /12. However, the next order term (O(b/H)) is not the same, unless one chooses for the factor β,

β = 3 ( 186 Zeta(5) π 5 ) 2 ≃ 1.192 (3.7)
which is very close to the value 12/π 2 ≃ 1.215 found by [START_REF] Zeng | On the Brinkman correction in unidirectional Hele-Shaw flows[END_REF] and to the value 6/5 proposed by [START_REF] Ruyer-Quil | Inertial corrections to the Darcy law in a Hele-Shaw cell[END_REF]. The lock-exchange diffusion coefficient has been computed, with the same procedure as above, by integrating eq. (2.9), using data over the whole range of aspect ratios, Γ = 1 -100. The inset of Fig. 4 gives the percentage of error for the two values of β. We note that these data were obtained by the difference between values of accuracy of the order of a few 10 -3 , which results in the small dispersion observed in the inset of Fig. 4. As expected, the results at large Γ (in the Hele-Shaw regime) are closer to the 3D full problem for β = 12/π 2 than for β = 1. We point out that, whereas the Brinkman term does bring a significant correction, the exact value of the Brinkman viscosity factor β is however not crucial: For instance, for Γ = 10, we obtained a diffusion coefficient 3.5% smaller than the 3D value for β = 1 and 0.1% larger for β = 12/π 2 , to be compared to the 30% of error if the cell was assumed to be of infinite aspect ratio (Hele-shaw limit) as in [START_REF] Huppert | Gravity-driven flows in porous layers[END_REF]. In conclusion of this comparison, we have shown that the 2D Stokes-Darcy model for lock-exchange in a rectangular cell captures quite accurately the effect of the finiteness of the cross-section aspect ratio. By using the correct β value, the error in the model is smaller than 5% for aspect ratios larger than Γ > 1.

Experiments

In this section, we will present experimental measurements of the diffusion coefficient in Hele-Shaw cells of different aspect ratios and we will compare them with our computed values.

We used borosilicate rectangular cells of height H and thickness b and typical length 30 cm (Fig. 1). The rectangular cross-sections of the cells were (in mm edge is fuzzy. This can be attributed to the stick condition at the upper wall: The dark dense fluid does stay at the walls for a long time, in particular in the corners of the crosssection. The same phenomenon takes place at the bottom of the cell, but the presence of transparent light fluid has little effect on the turbidity of the heavy dark fluid, and is therefore not noticeable on the pictures. It is worth noting that the shape of the leading edge evolves from an edge at large aspect ratios Γ to a more and more step-like shape as Γ decreases. It should be noticed that for small aspect ratios, although it is rather difficult to take pictures, a top view of the cell reveals a mild spanwise dependency of the interface, but we do not observe the spanwise lobe-and-cleft instability reported by [START_REF] Simpson | Effects of the lower boundary on the head of a gravity current[END_REF]. For each experiment, the locations of the leading and trailing edges of the front were measured in time. with a typical accuracy of 20%. Fig. 7 (top) displays the so-obtained normalized lockexchange diffusion coefficient as a function of Γ. One can see that the agreement with the 3D calculations over the two decades of our measurements is rather good. We note that for the large aspect ratio limit of the experiments (up to Γ = 10), the Hele-Shaw cell limit is not reached, and would underestimate, by 30%, the lock-exchange diffusion coefficient.

This result thus confirms that for such aspect ratios, one should either compute the full 3D Stokes equation or use the Stokes-Darcy model to obtain the correct behaviour.

We also note that our calculation still holds for aspect ratios as small as Γ = 0.1. This result is quite unexpected since for such aspect ratios, some spanwise dependency of the profile was observed, and the hypothesis of the interface surface, h(x, y, z), invariant in the y direction is certainly broken. The bottom of Fig. 7 displays the superimposition of the theoretical and the experimental interfaces between the fluids, for an aspect ratio Γ = 4. The agreement between the two is rather good, thus validating our model. Such an agreement is rather surprising as our small slope assumption is violated at the edges of the gravity current. This agreement, already emphasized by [START_REF] Huppert | The propagation of two-dimensional and axisymmetric viscous gravity currents over a rigid horizontal surface[END_REF] and [START_REF] Séon | Transient buoyancy-driven front dynamics in nearly horizontal tubes[END_REF], is likely to be common to viscosity dominated gravity current without surface tension.

Conclusion

The viscous lock-exchange diffusion coefficient reflects the competition between the buoyancy driving effect and the viscous damping, and depends on the geometry of the channel. We give the backbone to calculate this coefficient in different configurations: We recall its computation for a porous medium already found by [START_REF] Huppert | Gravity-driven flows in porous layers[END_REF], This analysis provides a cross-over between the 2D Stokes flow between two parallel horizontal boundaries separated by a vertical height, H, and the Hele-Shaw cell limit (applying for H/b > 100). Moreover, the shape of our profiles allows to account for the discrepancy observed at the nose of the gravity current in the experiments by [START_REF] Huppert | Gravity-driven flows in porous layers[END_REF]. The agreement, obtained despite the failure of the lubrication assumption at the edges of the current, should deserve however further theoretical investigation. Our calculations of the diffusion coefficient and of the shape of the profile have also been convincingly compared to new experiments carried out in cells of various aspect ratios

(1/10 -10). We have also calculated the lock-exchange diffusion coefficient for the same rectangular cells, using the 2D Stokes-Darcy model. This model is shown to apply to aspect ratios H/b > 1, provided that the appropriate Brinkman correction is used. Such a 2D model may be useful to describe gravity currents with a finite volume of release, with fluids of different viscosities, or in heterogeneous vertical fractures.
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 1 Figure 1. Sketch of the rectangular cell of height H in the gravity direction and width b. Top: Initial configuration where the heavy fluid of density, ρ, is separated from the light fluid of density, ρ -∆ρ, by a vertical gate (plane yz). Bottom: After removing the gate, buoyancy differences cause the denser fluid to flow in one direction along the bottom of vessel, while the lighter one flows in the opposite direction at the top of the vessel. The goal is to determine the space and time dependencies of the pseudo-interface, h(x, t).

Figure 2 .

 2 Figure 2. Lock-exchange interface ψ(ζ) between the two fluids for rectangular cells of different aspect ratios Γ = H/b. The straight line of slope 0.5 corresponds to the Darcy porous media limit (eq. (2.13)). The other curves correspond to the case of a rectangular cross-section channel (subsection 2.3). From the bottom left to right, Γ = 10, 4, 2, 1, 0.5 and 0.2.

Figure 3 .

 3 Figure 3. Log-log plot of the normalized lock-exchange diffusion coefficient, DR/DHS, versus the aspect ratio Γ = H/b, for rectangular cells. DR is normalized by the diffusion coefficient DHS = b 2 H∆ρg/(12 η) (eq. (2.14), obtained for the Hele-Shaw cell limit, also corresponding to a 2D porous medium. Accordingly, the latter regime corresponds to the dashed straight line (DR/DHS = 1) in this representation. The solid straight line corresponds to the 2D Stokes limit (eq. (2.18)), leading to a slope 2 in this representation.

  Fig. 3 displays a log-log plot of the normalized rectangular cell lock-exchange diffusion coefficient, D R /D HS = F (H/b), versus the aspect ratio Γ = H/b. At small aspect ratios, Γ < 1, the diffusion coefficient falls on top of the full line of slope 2, which corresponds to the 2D Stokes flow between boundaries distant of H (b → ∞, eq. (2.18)). At large aspect ratios, Γ → 100, the diffusion coefficient approaches the dashed line, D R /D HS = 1,

  Stokes-Darcy model for lock-exchange in a rectangular cross-section channel The above-mentioned failures of the 2D Darcy model at finite aspect ratios may come from the velocity slip condition at the bottom and top edges of the cell (z = 0 and z = H, respectively). This non physical condition is indeed required by the use of Darcy equation for the flow, which neglects the momentum diffusion in the presence of velocity gradients, in the plane of the cell (zx plane). The momentum diffusion may however be taken into account in 2D, through the so-called Stokes-Darcy equation (see Bizon et al. (1997); Ruyer-Quil (2001); Martin et al. (2002a); Zeng et al. (2003)), which is similar to the Darcy-Brinkman equation used in porous media (see Brinkman (1947)). This 2D model enables to handle discontinuities such as cell edges, gap heterogeneities and fluid interfaces (Ruyer-Quil (2001); Martin et al. (2002a); Zeng et al. (2003); Talon et al. (2003)) and was successfully applied in the study of Rayleigh-Taylor instability (Martin et al. (2002a); Fernandez et al. (2002); Graf et al. (2002)), of dispersion in heterogeneous fractures (Talon et al. (2003)) and of chemical reaction fronts (Martin et al. (2002b)).Although our present case of interest can be handled with 3D Stokes calculations, it is of interest to test the applicability of the 2D Stokes-Darcy model to the case of deep and narrow cells. Indeed, such a 2D model, once validated, could be a useful tool to address the issue of more complicated cases, such as gravity currents in the presence of viscosity contrasts, or in fractures with aperture heterogeneities.In this model, the flow in the rectangular cell (Fig.1) is assumed to be parallel to the plates ( u(x, y, z) = (u x (x, y, z), 0, u z (x, y, z)) with a Poiseuille parabolic profile across the gap (the key assumption). Using the Stokes equation with this y dependency, the gap-averaged fluid velocity U (x, z) 2 u(x, y, z)dy, follows a Stokes-Darcy (SD) equation which reads here for the horizontal component of the velocity:

Figure 4 .

 4 Figure 4. Log-log plot of the normalized lock-exchange diffusion coefficient, versus the aspect ratio Γ = H/b, for rectangular cells. The data points, obtained using the 2D Stokes-Darcy model (eq. (4)) with Brinkman viscosity factors β = 1 (open squares) and β = 12/π 2 (open triangles) are compared to the full 3D results already shown in Fig. 3 and depicted here as a solid line. The inset gives the relative difference between the 2D Stokes-Darcy model (β = 1, open squares and β = 12/π 2 , open triangles) and the 3D calculations. Note that these data were obtained by the difference between values of accuracy of the order of a few 10 -3 , which results in the small dispersion observed in the figure.

  215. At a given location x, integrating eq. (3.1) leads to the two velocity profiles matching the no slip boundary conditions at the bottom and the top boundaries (u x+ (x, 0) = u x-(x, H) = 0) and the continuity of the velocity (u x-(x, h) = u x+ (x, h)) and of the shear stress (β η ∂u x-(x, h)/∂z = β η ∂u x+ (x, h)/∂z) at the interface. Using the no net flux condition, 0 u x+ dz + H h u x-dz = 0, and eq. (

f

  SD (ψ), from ψ = 0.5, and matching the asymptotics, ζ = -ζ 0 + 8 d 2 ψ 3 /(9 ζ 0 ) in the vicinity of the boundary, ψ = 0. The so-obtained lock-exchange diffusion coefficients, calculated for two different values of β (β = 1 and β = 12/π 2 ) are compared to the 3D calculations in Fig. 4. The data for both values of β are indeed very close to the 3D

Figure 6 .

 6 Figure 6. Plot of the square of the spreading distance of the leading edge of the front versus time for five cells: (•) H = 3 mm, b = 30 mm;( ) H = 6 mm, b = 2 mm; ( * ) H = 6 mm, b = 4 mm; (•) H = b = 6 mm; (+) H = 30 mm, b = 3 mm. The solid line is a linear fit to the data, the slope of which gives the diffusion coefficient plotted in Fig. 7 (top).

Figure 7 .

 7 Figure 7. Top: Log-log plot of the normalized measured lock-exchange diffusion coefficient, Dexp/DHS (open squares), versus the aspect ratio, Γ = H/b, of the cell. The solid line corresponds to the 3D results (same as in Fig. 4). Bottom : Superimposition of the measured pseudo-interface between the two fluids (grey fuzzy line) and of the theoretical profile (full dark line) corresponding to Fig. 2. The aspect ratio is Γ = 4.

  and compute it for a 2D Stokes flow between two parallel horizontal boundaries by a vertical height, H. This result is in agreement withHinch (2007) (unpublished) and in reasonable agreement with recent computations by[START_REF] Taghavi | Buoyancy-dominated displacement flows in near-horizontal channels: the viscous limit[END_REF]. Using a quasi-parallel flow assumption, we have calculated the pseudo-interface profile between the two fluids and the diffusion coefficient of viscous lock-exchange gravity currents for a rectangular channel (horizontal thickness b, vertical height H) of any aspect ratio (H/b).

  HS t, which obeys eq. (2.8) or eq. (2.9). As previously, it is easier to compute the solution ζ(ψ) of eq. (2.9) subject to the corresponding asymptotics, ζ

		27)
	Eq. (2.22) admits a self-similar solution, h(ζ) = H ψ(ζ), with the similarity variable
	ζ = x/	√ D
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