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ABSTRACT
In modern operating systems and programming languages adapted

to multicore computer architectures, parallelism is abstracted by

the notion of execution threads. Multi-threaded systems have two

major specificities: 1) new threads can be created dynamically at

runtime, so there is no bound on the number of threads participating

in a long-running execution. 2) threads have access to a memory

allocation mechanism that cannot allocate infinite arrays. This

makes it challenging to adapt some algorithms to multi-threaded

systems, especially those that assign one shared register per process.

This paper explores the synchronization power of shared objects

in multi-threaded systems by extending the famous wait-free hi-

erarchy to take these constraints into consideration. It proposes

to subdivide the set of objects with an infinite consensus number

into five new degrees, depending on their ability to synchronize a

bounded, finite or infinite number of processes, with or without

the need to allocate an infinite array. It then exhibits one object

illustrating each proposed degree.

CCS CONCEPTS
• Theory of computation → Distributed computing models;
• Software and its engineering→ Process synchronization; •
Computer systems organization→Multicore architectures;
Dependable and fault-tolerant systems and networks.
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1 INTRODUCTION
Wait-free universality. In sequential computing, the notion of

universality is represented by a Turing machine that can compute

all that is computable. Read/write registers, the basic objects of a

Turing machine, are thus universal objects in sequential computing.

In the context of distributed systems, we know, since 1985 and
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the famous FLP impossibility result, that the consensus problem

has no deterministic solution in a distributed system where even

one process might fail by crashing [Fischer et al. 1985]. This im-

possibility is not due to the computing power of the individual

processes, but rather to the difficulty of coordination between the

different processes that compose the distributed system. Coordina-

tion and agreement problems are thus at the heart of computability

in distributed systems [Herlihy et al. 2013].

A distributed system can be abstracted as a set of processes ac-

cessing concurrently a set of concurrent objects. The implementa-

tions of these objects are based on read/write registers and hardware

instructions. Searching for correct and efficient implementations

of usual objects (e.g. queues, stacks) is far from being trivial when

the system is failure prone [Herlihy and Shavit 2008; Raynal 2012;

Taubenfeld 2018]. Intuitively, a “good” implementation of a concur-

rent object has to satisfy two properties: a consistency condition and

a progress condition that specify respectively the meaningfulness

of the returned results, and the guarantees on the liveness.

Linearizability [Herlihy and Wing 1990] is a consistency condi-

tion. It ensures that all the operations of a distributed history appear

as if they were executed sequentially: each operation appears at a

single point in time, between its start and end events. This gives

the illusion to the processes to access a physical concurrent object.

The use of locks in an implementation may cause blocking in a

systemwhere processes can crash. Prohibiting the use of locks leads

to several progress conditions, among which wait-freedom [Her-

lihy 1991] and lock-freedom [Herlihy and Wing 1990]. While wait-

freedom guarantees that every operation terminates after a finite

time, lock-freedom guarantees that, if a computation runs for long

enough, at least one process makes progress (this may lead some

other processes to starve). Wait-freedom is thus stronger than lock-

freedom: while lock-freedom is a system-wide progress condition,

wait-freedom is a per-process progress condition.

A major difficulty of distributed computing is that wait-free

linearizable implementations are often costly, when not impossi-

ble. In the classical asynchronous distributed systems composed

of n processes among which all but one may crash, the consensus

problem has no deterministic solution using only basic read/write

registers [Loui and Abu-Amara 1987]. The system has to be en-

riched with some more sophisticated objects or hardware special

instructions. The coordination power of objects is thus important

for computability in distributed systems. In [Herlihy 1991], con-

sensus is proved universal. Namely, any object having a sequential

specification has a wait-free implementation using only read/write

registers and some number of consensus objects. Hence the idea to

assign to each object a consensus number representing its ability to

solve consensus. More precisely, an object has consensus number

x if it is universal in an asynchronous system composed of x pro-

cesses, but not in a system composed of x + 1 processes. If no upper
bound exists on x , the object has an infinite consensus number.

https://doi.org/10.1145/3382734.3405723
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Figure 1: Extendedwait-free hierarchy: in amulti-treaded system, it is impossible to implement an objectO1 using any number
of instances of O2 and read/write registers, if O2 is more on the left, or bottom, than O1. Green circles display the consensus
number of each degree.

Problem statement. This last decade, first with peer-to-peer sys-

tems, and then with multi-threaded programs on multicore ma-

chines, the assumption of a closed system with a fixed number

n of processes and where every process knows the identifiers of

all processes became too restrictive. In multi-threaded systems,

new processes can be created and started at run-time, so although

the number of processes at each time instant is finite, there is no

bound on the total number of processes that can participate in

long-running executions.

Another specificity of multi-threaded systems must be taken into

account. Threads share a common memory space in which they

can allocate a (virtually) unbounded but finite number of memory

locations to instantiate record data structures or finite arrays. In

particular, when no bound is known on the number of threads in

an execution, assigning one register to each of them is not trivial.

This fact is often regarded as secondary when designing concurrent

algorithms. For example, [Aguilera 2004] identifies as “trivial” the

change of finite arrays indexed by processes to infinite arrays or

linked lists. A consequence of this paper is that maintaining exten-

sible data structures such as linked lists requires a synchronization

power that is not necessarily provided by all objects that have an

infinite consensus number.

The two aspects noted above have an important impact on which

algorithms can be implemented in multi-threaded systems and

which algorithms cannot, and therefore on the coordination power

of shared objects: in [Afek et al. 2011], Afek,Morrison andWertheim

exhibited an object called the iterator stack (noted IStack) that has
an infinite consensus number, but cannot be used to implement

consensus when infinitely many processes may join over time an

execution. The present paper answers the following question: how

to compare the synchronization power of shared objects in multi-

threaded systems?

Approach. Following the same approach as in [Herlihy 1991], we

propose to compare the synchronization power of shared objects

based on the maximal number of processes they are able to syn-

chronize, including in situations where the set of participating

processes is initially unknown or may change during an execution.

More precisely, we differentiate computing models according to the

restrictions on process arrival, as introduced in [Gafni et al. 2001].

In these models, any number of processes can crash (or leave, in a

same way as in the classical model), but fresh processes can also

join the network during an execution. When a process joins such

a system, it is not known to the already running processes. Four

arrival models are distinguished in [Aguilera 2004]:
1

• The classical model,Mn
1
where the number n of processes is

fixed and may appear in the process code.

• The bounded arrival model,M1, in which at mostn processes

may participate, where n is only known, to the processes,

at the beginning of each execution, but may vary from one

execution to another.

• The finite arrival model, M2, in which a finite number of

processes participate in each execution.

• The infinite arrival model, M3, where new processes may

keep arriving during the whole execution. Let us note that, at

any time, the number of processes that have already joined

the system is finite, but can be infinitely growing.

Moreover, the impossibility to allocate infinite arrays is an im-

portant limiting factor that restricts the computing power of some

objects in multi-threaded systems. We also study the synchroniza-

tion power of shared objects according to the possibility, or not, to

1
A fifth model, M4 , called infinite concurrency, was introduced in [Aguilera 2004],

where infinitely many processes may be present in the system and an infinite number

of operations can take place in any finite interval of time. We choose to ignore this

model because it poses a problem to define linearizability. Suppose that, for each i ≥ 1,

process pi writes the value i in a variable x during the interval

[
1 − 1

2i ; 1 −
1

2i+1

]
;

then p0 starts reading x at time 1. There is no "last written value" before the read, so

the return value is not well defined. Restricting infinite concurrency to a subset of

non-conflicting operations (e.g. reads or operations on different objects) would render

infinite concurrency and infinite arrival computationally equivalent as one can easily

use contention on conflicting operations to control the arrival of processes.
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allocate infinite arrays. Hence, we propose the two-dimensional

hierarchy presented on Figure 1. In this hierarchy, shared objects

are sorted horizontally depending on their universality in models

Mn
1
,M1,M2 andM3 when infinite memory allocation is not avail-

able, and vertically on their ability to do so when it is possible to

allocate infinite arrays. We then challenge the significance of this

hierarchy by exploring whether or not there exists an object filling

each possible degree.

Contributions of the paper: In a first step, we show how the

proposed hierarchy encompasses the existing one and then for each

new degree, either a representative object is proposed or it is proved

empty.

Extend the wait-free hierarchy. We show that, on the one hand,

the proposed hierarchy coincides with Herlihy’s hierarchy on ob-

jects with a finite consensus number. Indeed, Theorem 2 proves

that infinite arrays are not necessary for universal constructions

in modelsMn
1
andM1, which justifies that we keep the same term

“consensus number” to categorize shared objects in our hierarchy.

On the other hand, the proposed hierarchy refines the one proposed

by Herlihy for objects with infinite consensus number. We say that

an object O has consensus number ∞
y
x , for x ,y ∈ {1, 2, 3} if O

is universal in Mx but not Mx+1 (if x , 3) when infinite memory

allocation is not available, andO is universal inMy but notMy+1 (if

y , 3) when infinite memory allocation is available. As having ac-

cess to infinite arrays is never detrimental, no object has consensus

number∞
y
x for y < x .

Identify all filled degrees. Following our approach, we prove that
no object has consensus number ∞1

1
(Theorem 3), and we iden-

tify objects filling all remaining degrees of the hierarchy, as de-

picted by Figure 1. We prove that multi-valued consensus (denoted

cons⟨N⟩) is still universal in all the models considered in this paper,

i.e. it has consensus number ∞3

3
. Rephrasing the theorems con-

cerning the iterator stack [Afek et al. 2011], we naturally deduce

that iterator stacks have consensus number∞2

2
. Interestingly, we

prove that binary consensus (denoted cons⟨B⟩) is not universal in
multi-threaded systems, resulting in a consensus number of ∞3

1

(Theorem 4). The proof that the composition of binary consensus

and iterator stacks has consensus number∞3

2
(Theorem 6) is the

most technical part of the paper. We show that a window register

(denoted WReg), in which a read operation returns the k last writ-

ten values (k chosen at initialization), has consensus number ∞2

1

(Theorem 5).

Organization of the paper. The remainder of this paper is or-

ganized as follows. We first present the infinite arrival models in

Section 2. Then, Section 3 shows that consensus is still universal

in the infinite arrival model. Sections 4 and 5 identify the empty

degrees of the hierarchy by proving theorems 2 and 3. Sections 6, 7

and 8 show that the remaining degrees are not empty by providng

the consensus number of binary consensus, window registers and

a composition of binary consensus and iterator stacks. Finally, Sec-

tion 9 concludes the paper.

2 COMPUTING MODELS
This paper considers distributed computations where processes

(or threads) have access to local memory for local computations

and have also access to shared objects (shared memory) to com-

municate and synchronize. We define, below, the assumptions on

the set of processes and the kind of memory they can access. Each

combination of a process model and a memory model instantiate a

different computing model. Moreover, as some objects cannot be

implemented using only read/write registers, a system can be en-

riched with synchronization objects like consensus objects, iterator

stacks, etc.

2.1 Arrival models
We consider computation models composed of a set Π of sequential

processes p0,p1, . . . Each process pi has a unique identifier i that
may appear in its code. The set Π is the set of potential processes

that may join, get started and crash or leave during a given execu-

tion. At any time, the number of processes that have joined is finite.

The cardinality of Π defines four computing models:

Classical modelMn
1
: |Π | = n, and n is a parameter of the

system model.

Bounded arrival modelM1: |Π | is finite and known by the

processes at runtime.

Finite arrival modelM2: |Π | is finite but unknown to the pro-
cesses.

Infinite arrival modelM3: |Π | is countable.

2.2 Communication between processes
Processes communicate by reading and writing a memory com-

posed of an infinite number of unbounded registers
2
. Processes

have access to an allocation mechanism that can only return an

unbounded, but finite, number of memory locations at once and

that never allocates twice the same memory location.

Processes are not limited in the number of registers they can

access during an execution. However, they can only access memory

locations allocated either at the system set up, or returned by the

allocation mechanism, or by following references stored (as integer

values) in some accessible memory location.

As advocated in the Introduction, when strong enough synchro-

nization objects are not available, it may be necessary to enable the

allocation mechanism to allocate and initialize an infinite number

of memory locations at once. When a system allows such alloca-

tion, it is said to provide infinite allocation. This defines four more

arrival system modelsMAn
1
,MA1,MA2 andMA3 that represent the

four above-mentioned models enriched with an infinite memory

allocation mechanism.

2.3 Synchronization objects.
In order to improve their computability, the different computing

models can be enriched by giving access to more evolved shared

atomic objects, that are denoted between square brackets in the

model name and referred to as enriching shared objects. For exam-

ple,M3[cons⟨N⟩] denotes the infinite arrival model where as many

consensus objects as necessary are made available. Each enriching

shared object is atomic in the sense that the different executions of

the calls to its operations are totally ordered.

2
Memory addresses of an infinite memory are unbounded, so this assumption is

necessary to store references.
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Window registers. A window register of size k [Perrin et al. 2016]

(denoted k-WReg) has two operations: a write operation write(v),
that takes an integer argument and returns no value, and a read

operation read() that returns the ordered list of the last k values

written. Some default values ⊥ may appear, if less than k writes

precede the read. Note that the k-WReg generalizes the classical

read/write register that corresponds to the special case k = 1. WReg
is the generalization in which window registers of any sizes are

accessible: the size k is passed as an argument of the constructor.

Iterator stacks. The iterator stack IStack, introduced in [Afek

et al. 2011], provides a write operation isWrite() and a read opera-

tion isRead(). Intuitively, isWrite(v) prepends the value v at the

beginning of a stack and returns a reference i to a fresh iterator,

and isRead(i) increments iterator i and returns the value it points

to. More precisely, isWrite(v) takes a written value v ∈ N as argu-

ment and returns the next integer value in a sequence 0, 1, . . . For

a given i ∈ N, the kth invocation of isRead(i) returns the kth value

ever written if isWrite was invoked at least max(i + 1,k) times,

and ⊥ otherwise.

Consensus objects. A consensus object, denoted cons⟨T ⟩, pro-
vides one operation propose(v) that takes an argument v ∈ T and

returns the oldest proposed value, i.e. the first process that invokes

the operation gets its own value and all invocations returns this

same value, called decision value. We distinguish between binary

consensus cons⟨B⟩ in which only values true and false can be

proposed, and the multi-valued consensus, for example cons⟨N⟩
in which proposed values are integer values. Finally, consn ⟨T ⟩
designates n-processes consensus, in which the previously-stated

properties are only verified by the first n invocations of propose,
and the next returned values are left unspecified.

2.4 Distributed executions
An execution α is a (finite or infinite) sequence of steps, each taken

by a process of Π. A step of a process corresponds to the execution

of a hardware instruction or an operation of one of the atomic

enriching objects defined above. Processes are asynchronous, in the

sense that there is no constraint on which process takes each step:

a process may take an unbounded number of consecutive steps,

or wait an unbounded but finite number of other processes’ steps

between two of its own steps. Moreover, it is possible that a process

stops taking steps at some point in the execution, in which case

we say this process has crashed, or even that a process takes no

step during a whole execution (|Π | is only an upper bound on the

number of participating processes). We say that a process pi arrives
in an execution at the time of its first step during this execution.

Remark that, although the number of processes in an execution

may be infinite inM3, the number of processes that have arrived

into the system at any step is finite.

A configuration C is composed of the local state of each process

inΠ and the internal state of each enriching shared object, including

read/write registers. For a finite execution α , we denote by C(α)
the configuration obtained at the end of α . An empty execution is

noted ε . An execution β is an extension of α if α is a prefix of β .

Implementation of shared objects. An implementation of a shared

object is an algorithm divided into a set of sub-algorithms, one for

the initialization (a.k.a. the constructor of the object), and one for

each operation of the object, that produces wait-free and lineariz-

able executions. Linearizability and atomicity are equivalent thanks

to observational refinement, i.e. if an objectO has a linearizable im-

plementation in a modelM , thenM andM[O] are computationally

equivalent (M[O] represents the model M enriched with atomic

objects O) [Filipović et al. 2010].

Definition 1 (Linearizability). An execution α is linearizable
if all operations return the same value as if they occurred instantly
at some point of the timeline, called the linearization point, between
their invocation and their response, possibly after removing some
non-terminated operations.

Definition 2 (Wait-freedom). An execution α is wait-free if no
operation takes an infinite number of steps in α .

A modelM is said to be wait-free universal (or simply universal)

if any object with a sequential specification can be implemented in

M . By extension, an objectO is said to be universal inM ifM[O] is
universal.

Let O be an object. We say that O has consensus number n ∈ N
ifMn

1
[O] is universal but notMn+1

1
[O], and that O has consensus

number ∞
y
x , for x ,y ∈ {1, 2, 3} if it verifies both following con-

ditions: 1) Mx [O] is universal and, if x ≤ 2, then Mx+1[O] is not
universal, and 2)MAy [O] is universal and, ify ≤ 2, thenMAy+1[O]
is not universal.

Remark that the proposed hierarchy is not strict: it is impossible

to use any number of objects with consensus number ∞3

1
to im-

plement an object with consensus number∞2

2
in a multi-threaded

system, because this would require allocating infinite arrays. Con-

versely, it is impossible to implement an object with consensus

number∞3

1
using only objects with consensus number∞2

2
because

some participating processes could starve while new processes

constantly arrive in the system.

3 UNIVERSALITY OF CONSENSUS INM3

In order to prove the universality of consensus in the bounded

arrival model, Herlihy introduced the notion of universal construc-

tion
3
. It is a generic algorithm that, given a sequential specification

of any object whose operations are total
4
, provides a concurrent

implementation of this object. Wait-free implementations rely on

what is called a helping mechanism recently formalized in [Censor-

Hillel et al. 2015]. This mechanism requires that, before terminating

its operation, a process helps completing pending ones of other pro-

cesses. Helping is not obvious in the infinite arrival model. Indeed,

a process should be able to announce itself to processes willing to

help it. However, due to the infinite number of potential participat-

ing processes over time, it is not reasonable to assume that each

process can write in a dedicated register that can be read by all.

Algorithm 1 presents a universal construction close to the one

presented in [Herlihy and Shavit 2008], except that the array of

single-writer/multiple-reader registers used by processes to an-

nounce their operations is replaced by a weak log data structure.

This data structure has been briefly described in [Bonin et al. 2019].

3
A small guided tour on universal constructions can be found in [Raynal 2017].

4
This means that any operation on the object can be called and the call returns

regardless of the state of the object.
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It allows processes to append a value and get back the sequence

of all the values previously appended. The weak log is wait-free

but not linearizable, in the sense that there might be no inclusion

between the successive returned sequences. However, any value

appended by a correct process will eventually appear in all returned

sequences (Lemma 3) and the order of the values of a returned se-

quence is never contradicted by subsequent sequences (Lemma 2).

A universal construction emulates any shared object. Which

object is represented by an initial state initialState and a set of oper-
ations that change the state and return a value. Processes executing

Algorithm 1 share three objects: operations, first and last.

• operations is a consensus object that gives access to a linked
list of operations, called strong log, whose order defines the
linearization order of the operations. This list is composed

of nodes of the form ⟨v, cons⟩, where v is the invocation of

a process and cons a consensus object that, when won by

some process, will reference the next node of the list.

• first is a consensus object that references the head of a list

of lists of appended values, called weak log. It accepts val-
ues of the form list = ⟨list.head, list.tail⟩ to be proposed,

where list.tail is a consensus object that stores values of

the same type as first, representing the next node in the

list of lists. list.head is a node of the side list of the form

node = ⟨node.head, node.tail⟩, where node.head is a value

appended by some process and node.tail is a consensus ob-
ject containing values of the same type as node.
• last is a read/write register referencing a consensus object of
the same type as first, and initialized to the address of first. In
absence of concurrency, last references the consensus object
at the tail of the last list of the weak log.

When a process pi invokes append(invoc), it first inserts its in-
vocation invoc to the weak log (lines 1 to 3), then it reads the weak

log to obtain the list of all previous and concurrent invocations that

require helping (lines 4 to 8), and finally inserts the invocations it

needs to help, including invoc, to the strong log (lines 9 to 14).

The main difficulty in the implementation of a weak log lies in

the allocation of one memory location per process, where it can

safely announce its invoked operation. Algorithm 1 solves this issue

by using a novel feature, that we call passive helping: when a process
wins a consensus (Line 1), it creates a side list to host invocations

of processes concurrently competing on the same consensus object.

As only a finite number of processes have arrived in the system

when the consensus is won, a finite number of processes will try to

insert their value in the side list, which ensures termination (Line 3).

Note that the consensus and the write on lines 1 and 2 are not done

atomically. This means that a very old value can be written in last,
in which case its value could move backward. The central property

of the algorithm, proved by Lemma 1, is that last eventually moves

forward, allowing very slow processes to get a place in a side list.

Definition 3 formalizes the order in which values are ordered in

the weak log. Intuitively, this order is the concatenation of all the

side lists. In lines 4 to 8, pi traverses the weak log in this precedence

order to build the sequence toHelpi (⊕ represents concatenation),

which ensures consistency between the helping sequences of all

processes (Lemma 2).

operation apply(invoc) is
1 listi ← last.read().propose(⟨⟨invoc,⊥⟩,⊥⟩) ;
2 last.write(listi .tail); nodei ← listi .head;
3 while nodei .head , invoc do

nodei ← nodei .tail.propose(⟨invoc,⊥⟩);
4 listi ← first; nodei ← listi .head;

toHelpi ← [nodei .head];
5 while nodei .head , invoc do
6 if nodei .tail , ⊥ then nodei ← nodei .tail ;
7 else listi ← listi .tail; nodei ← listi .head ;

8 toHelpi ← toHelpi ⊕ [nodei .head];

9 consi ← operations; statei ← initialState;
10 while toHelpi , ε do
11 ⟨winneri , consi ⟩ ← consi .propose(⟨toHelpi [0],⊥⟩);
12 toHelpi ← toHelpi \ winneri ;
13 if winneri = invoc then

resulti ← statei .invoke(winneri );
14 else statei .invoke(winneri );

15 return resulti ;

Algorithm 1: Universal construction in ModelM3[cons⟨N⟩]

Definition 3 (Weak log precedence). A list list precedes a list
list′ in the weak log if there exists a sequence of lists list1, . . . , listn
such that list = list1, list′ = listn , and for all 1 ≤ k < n, listk .tail =
listk+1. A node node precedes a node node′ in the weak log if there
exists a sequence of nodes node1, . . . , noden such that node = node1,
node′ = listn , and for all 1 ≤ k < n, nodek .tail = nodek+1, or if
there exists a list list that precedes a list list′, such that list.head
precedes node and list′.head precedes node′. A value v precedes a
value v in the weak log if if there exists a node node that precedes a
node node′, such that node.head = v and node′.head = v ′.

Finally, pi tries to insert all invocations of toHelpi at the end of

the list operations, in the order it read them. While traversing the

list, it maintains a state statei of the implemented object, initialized

to initialState and on which all invocations are applied in their

order of appearance in the list.

We now prove that Algorithm 1 is linearizable and wait-free.

Linearizability is achieved by Algorithm 1 in the same way as in

[Herlihy and Shavit 2008], so the proof of Proposition 1 is similar.

The proof of wait-freedom (Proposition 2) is more challenging

because the proof of [Herlihy and Shavit 2008] heavily relies on

the fact that the number of processes is finite.

Proposition 1 (Linearizability). All executions admissible by
Algorithm 1 are linearizable.

Lemma 1 (Progress on last). If an infinite number of processes
execute Line 2, then the number of processes that read the same last
value at Line 1 is finite.

Lemma 2 (Total order of the weak log). If two processes pi
and pj terminate their invocations, then all pairs of values that both
wi andw j contain appear in the same order.
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Lemma 3 (Eventual visibility in the weak log). If some pro-
cess pi terminates its invocation, then the number of returned se-
quences that do not contain vi is finite.

Proposition 2 (Wait-freedom). All executions admissible by
Algorithm 1 are wait-free.

Theorem 1. Multi-valued consensus has consensus number∞3

3
.

Remark 1. The usual algorithm to solve consensus using the
compare-and-swap special instruction on atomic registers does not
need any adaptation to work in modelM3. Therefore, compare-and-
swap has consensus number∞3

3
as well.

4 INFINITE MEMORY ALLOCATION IS NOT
NECESSARY INM1

The original paper on the wait-free hierarchy [Herlihy 1991] men-

tions no limitation that could arise in computing models where

infinite allocation is not available. In this section, we prove that, in

the context of bounded arrival models, infinite memory allocation

is not a decisive factor to determine if universality can be achieved

or not. This implies that our hierarchy coincides with Herlihy’s

one for objects with a finite consensus number, which justifies our

choice to keep the same name.

This results builds on the observation that, in MAn
1
, any wait-

free algorithm of binary consensus has a bound on the number of

memory locations used by any execution, as long as there is a bound

on process identifiers (Lemma 4). Such a bound can be obtained

by using renaming algorithms. For example, [Attiya et al. 1990]

do not require infinite memory allocation either. In this section,

we suppose, without loss of generality, that there is a bound N on

process identifiers.

Lemma 4. For any object O , if cons⟨B⟩ can be implemented in
MAn

1
[O], then cons⟨B⟩ can be implemented inMn

1
[O].

Proof. Suppose there exists an algorithm A that implements

binary consensus in MAn
1
[O]. An input of A is composed of a set

Π of (at most n) processes taken from {p0, . . . ,pN }, and a map

that associates a boolean input to each process in Π. We prove the

following claim:

Claim 1. For each possible input ⟨Π ⊂ {p0, . . . ,pN },Π → B⟩, a
finite number of configurations may be accessed by some execution.

Proof. Let us suppose this is not the case. We build, recursively,

an infinite execution in which an infinite number of configurations

are accessible at each step. Initially, let α0 = ε , the execution con-

taining no step. Suppose we have built an execution αk containing

k steps, such that an infinite number of configurations are reach-

able from C(αk ). From C(αk ), a step corresponds to the next step

of one of the processes that has not decided yet, so there are at

most n different possible steps. At least one of them, βk , leads to a

configuration from which an infinite number of configurations are

reachable. Let us pose αk+1 = αk βk .
As (αk )k ∈N is built such thatαk is a prefix ofαk+1, it converges to

an infinite execution α = β0β1β2 . . . Some process takes an infinite

number of steps in α , so A is not wait-free. This is a contradiction.

□

The number of possible inputs is bounded by 2
N × 2n . For each

of them, the number of accessible configurations is finite by Claim 1.

Therefore, a finite number Xn of configurations are accessible by

any execution of A. In each configuration, each process may be

about to invoke an operation on a different shared object, so at

most a finite number n ×Xn of objects can be used by A. Therefore,
A can be simulated by an algorithm in Mn

1
[O] that only allocates

n × Xn memory locations at set up. □

Theorem 2. For any objectO , ifMAn
1
[O] is universal, thenMn

1
[O]

is also universal.

Proof. Suppose that MAn
1
[O] is universal; by definition,

cons⟨B⟩ can be implemented in MAn
1
[O]. By Lemma 4, cons⟨B⟩

can be implemented inMn
1
[O]. It is possible to implement cons⟨N⟩

using a bounded number of cons⟨B⟩ objects in the bounded arrival

model using an algorithm like the one given in [Zhang and Chen

2009] and that can be easily adapted to shared memory [Raynal

2012]. Finally, by Theorem 1, O is universal inMn
1
[O]. □

Corollary 1. For any object O , if MA1[O] is universal, then
M1[O] is also universal.

5 NO OBJECT HAS CONSENSUS NUMBER∞1

1

In this section, we prove that no object has consensus number∞1

1
.

We prove this by showing that, when infinite memory allocation

is available, any universal object O in the bounded arrival model

is also universal in the finite arrival model. Indeed, if MA1[O] is
universal, it is possible to use objectsO to solve consensus among n
processes, for all n. Algorithm 2 then uses these consn ⟨N⟩ objects
to solve Consensus inMA2 (Lemmas 5, 6 and 7).

Processes share three infinite arrays greaterId, cons and adopt:
for each index r ∈ N, greaterId[r ] is a boolean register, initially

false, that can be written by pi only if i ≥ r ; cons[r ] is a consn ⟨N⟩
object that accepts participation of processes p0, . . . ,pr−1; and
adopt[r ] is a register, initially ⊥, that will store the decided value of
cons[r ] so that processes pr ,pr+1, . . . can know the decided value

without participating.

Algorithm 2 is round-based. At round r , processeswith identifiers
smaller than r agree on some value using the consn ⟨N⟩ object
cons[r ], while the other processes simply announce their presence

by marking greaterId[r ]. If the former decide first, they return the

value they decided. Otherwise, if the latter arrive before consensus

took place, more rounds are necessary. If the two groups write

concurrently, it is possible that some processes decide a value at

round r while others start round r + 1. In that case, the protocol

ensures that they adopt the decided value for the next rounds,

ensuring agreement.

Claim 2. For any round r , at most r processes invoke propose on
cons[r ] Line 4.

Lemma 5 (Wait-freedom). All executions of Algorithm 2 termi-
nate inMA2.

Lemma 6 (Agreement). If processes pi and pj decide respectively
vi and vj , then vi = vj .

Lemma 7 (Validity). If pi decides v , then a process proposed v .

Theorem 3. No object has consensus number∞1

1
.
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operation propose(vali ) is
1 vi ← vali ;
2 for ri = 0, 1, 2, . . . do
3 if i ≥ ri then greaterId[ri ] ← true ;
4 else adopt[ri ] ← cons[ri ].propose(vi ) ;
5 if ¬greaterId[ri ] then return adopt[ri ] ;
6 if adopt[ri ] , ⊥ then vi ← adopt[ri ] ;

Algorithm 2: Consensus in ModelMA2[cons
n ⟨N⟩] (code for pi )

6 BOOLEAN CONSENSUS HAS CONSENSUS
NUMBER∞3

1

An object has consensus number∞3

1
, if an infinite memory alloca-

tion is necessary to make it universal in the finite arrival model,

and sufficient in the infinite arrival model. One reason why this

could happen is because the number of instances necessary for

synchronization grows boundlessly with the number of processes.

Recently, [Ellen et al. 2016] introduced a complexity-based hierar-

chy ranking shared objects according to the number of instances

necessary to solve obstruction-free consensus. For example, at least

⌈n−1k ⌉ k-window registers are necessary to solve multi-valued con-

sensus. Similarly, to our knowledge, no known algorithm uses less

than log
2
(n) binary consensus objects to solve consensus [Zhang

and Chen 2009] in the worst case. In order to be universal in M2,

any object has only two ways to circumvent the limitation that

only a fixed and finite number of objects can be created at initializa-

tion of any algorithm: either it has a constant complexity in Ellen

et al’s hierarchy, or it provides enough synchronization power to

maintain an extensible data structure (e.g. a linked list), where new

instances of itself can be created at runtime and accessed by newly

arrived processes. In this section, we prove that cons⟨B⟩ is univer-
sal inMA3 (Proposition 3) but not inM2 (Proposition 4), i.e. binary

consensus has consensus number∞3

1
(Theorem 4).

The sticky bit object, a resettable version of binary consensus, has

been shown to be universal inMA1 in [Plotkin 1989]. Reductions

of multi-valued consensus to binary consensus have later been

proposed for message-passing systems [Mostefaoui et al. 2000], and

extended toM1 [Raynal 2012]. Algorithm 3 extends this result to

the modelMA3. Processes share three infinite arrays propose, isSet
and cons: for each index j ∈ N, propose[j] is intended to store the

value proposed by pj , isSet[j] is a boolean set to true only after

propose[j] has been set, and cons[j] is a binary consensus object in
which true is decided if, and only if, the value ofpj is decided.When

a process pi proposes a value vali , it first writes it to proposed[i]
and sets isSet[i] to true to announce its value. Then, it browses the
array proposed in the increasing order of the identifiers, until it

agrees with other participants on a value proposed[j] that can be

decided.

Proposition 3. MA3[cons⟨B⟩] is universal.

Proposition 4 below shows that neither binary consensus nor

window registers are universal in the finite arrival model when infi-

nite memory allocation is impossible. The proof has the same flavor

as the proofs in [Ellen et al. 2016], but simplified as we are only in-

terested in decidability whereas their bounds need to be tight. More

precisely, the proof of Proposition 4 builds a scheduler that keeps

operation propose(vali ) is
1 proposed[i] ← vali ; isSet[i] ← true;
2 for j = 0, 1, 2, . . . do
3 if cons[j].propose(isSet[j]) then return

proposed[j];

Algorithm 3: Consensus inMA3[cons⟨B⟩] (code for pi )

track of a subset Π′ of processes that have never communicated

with each other because they always propose the same values in

binary consensus objects, and the values they write in window reg-

isters are overwritten. The property maintained by the executions

produced by this scheduler, called Π′-partitioning, is specified in

Definition 4. The scheduler builds an execution in which a large

number of processes participate, and more and more shared objects

are covered by many processes (i.e. these processes try to write

in the objects, see. Definition 5) that do not know the existence of

each other, until all objects are covered and two processes decide

different values.

Definition 4 (Partitioned execution). Let Π′ ⊂ Π be a set of
processes, let ∼ be an equivalence relation on Π, and let p ∈ Π′ be a
process. We say that a finite execution α is (Π′,∼,p)-partitioned (or
simply Π′-partitioned if ∼ and p are immaterial) if: 1) for all processes
q,q′ ∈ Π′ q ≁ q′, 2) for all processes q ∈ Π′, the restriction αq of α to
steps taken by processes q′ ∼ q is a valid execution of the algorithm,
and 3) all shared registers and consensus objects have the same value
in C(α) and C(αp ).

Definition 5 (Covered configuration). Let Π′ ⊂ Π be a set of
processes, let n ∈ N, and let Y be a set of shared objects. We say that
a configuration C is (Π′,n,Y )-covered if, in C , for every object x ∈ Y ,
1) x is a window register and the next step of at least n processes from
Π′ is a write on x , or 2) x is a binary consensus object and there exists
a common valuev ∈ B such that next step of at least n processes from
Π′ is to propose v on x .

Let p be a process and x be an object, we say that p covers x in a
configuration C if C is ({p}, 1, {x})-covered, i.e. if p is about to write
to x or to propose some value to x .

Proposition 4. M2[cons⟨B⟩, WReg] is not universal.

Proof. Let us suppose there exists an algorithm A that solves

consensus in M2[cons⟨B⟩, WReg]. To simplify the proof, we also

suppose that processes start the algorithm by writing their value to

some register first, and finish it by writing their decided value in

another register last. Remark that such registers and steps can be

added in any consensus algorithm without loss of generality. At the

initialization of A, a finite set X ofm = |X | objects are created. We

identify read/write registers and 1-WReg objects in this proof. Let l
be a positive integer greater than the size of all window registers in

X , and let ui = (m − i + 1)! × (2l)
(m−i+1)

, for all i ∈ {0, ...,m}. We

consider executions of processes in the finite set Π = {p1, . . . ,pu1 }.
We build, inductively, a sequence (Πi )1≤i≤m of process sets,

a sequence (xi )1≤i≤m of shared objects of X (we note Xi =
{x1, . . . ,xi }) and a growing sequence (αi )1≤i≤m of Πi -separable

executions leading to a (Πi ,ui ,Xi )-covered configuration.

In execution α1, each process pi ∈ Π proposes its own identifier

i and stops executing when it is about to write in x1 = first. We
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define Π1 = Π and ∼1 as the equality of processes. Execution α1 is
Π1-separable because no process accessed any shared object, and

C(α1) is (Π1,u1,X1)-covered by construction.

Suppose we have built a process set Πi , a sequence of objects

x1, . . . ,xi , and a Πi -separable execution αi leading to a (Πi ,ui ,Xi )-
covered configuration, for some i ∈ {0, . . . ,m − 1}. Let v = 2 ×

(m − i) × ui+1. We build, inductively, a sequence of executions

α0i , . . . ,α
v
i and a sequence of process sets Π0

i , . . . ,Π
v
i , such that

for all j ∈ {0, . . . ,v}, α
j
i is (Π

j
i ,∼

j
i ,p)-separable (for some ∼

j
i and

p), C(α
j
i ) is (Π

j
i , (ui − j),Xi )-covered, and j processes of Π

j
i cover

objects that are not in Xi . Initially, let us pose α
0

i = αi and Π
0

i = Πi .

Suppose we have built α
j
i and Π

j
i for some j < v . We build α

j+1
i =

α
j
i β

j
i γ

j
i as follows.

Let us pick, arbitrarily, a setΦ of l×i processes from Π
j
i , such that

C(α
j
i ) is (Φ, l ,Xi )-covered.Φ exists becauseC(α

j
i ) is (Π

j
i , (ui−j),Xi )-

covered, and ui − j > l . The extension β
j
i is composed of one step

of each process q ∈ Φ. Let us pick arbitrarily a process p ∈ Φ,

and let Π′ = (Π
j
i \ Φ) ∪ {p}, and ∼

′
be the equivalence relation

built by merging the classes of equivalence of processes in Φ in

∼
j
i . As l is greater than the size of all window registers, those were

overwritten in β
j
i by values written by processes in Φ, so α

j
i β

j
i is

(Π′,∼′,p)-partitioned.

Let us build γ
j
i by executing p until it covers an object that is

not in {x1, . . . xi }. Such a situation must happen because, 1) as A
is wait-free, p cannot run in isolation forever, and 2) if p decides

some value v proposed by some process pv ∼i+1 p, then l × i other
processes p′ ≁i pv may overwrite objects x1, . . . xi and decide a

different value violating the agreement property.

Let αi+1 = αvi , be the execution obtained after repeating v =
2 × (m − i) × ui+1 times the previous scheduling, and Πi+1 = Πvi .
By the pigeon holes theorem, there exists one of them − i objects
in X \ Xi , that defines xi+1, that is covered by at least 2 × ui+1
processes ofΠi+1. If xi+1 is a binary consensus object, by the pigeon
holes theorem again, the most proposed value is proposed at least

ui+1 times. Moreover, C(αi+1) is (Πi+1, (ui −v),Xi )-covered, with
ui −v = 2×l×ui+1 ≥ ui+1. Therefore,C(αi+1) is (Πi+1,ui+1,Xi+1)-
covered.

Finally, αm is (Πm ,∼,p)-separable, for some ∼ and p. InC(αi+1),
at least 2 ≤ um processes pi , pj ∈ Πm are about to write

respectively v and w , to the last register, such that v was pro-

posed by Process pv and w was proposed by Process pw , with
pv ∼ pi ≁ pj ∼ pw . Then, pi and pj decide a different value, which
violates agreement. □

Theorem 4. Binary consensus has consensus number∞3

1
.

7 WINDOW REGISTERS HAVE CONSENSUS
NUMBER∞2

1

By Theorem 3, objects that have consensus number ∞2

1
are the

weakest objects that can be used to solve consensus between n
processes, for all n. A natural object to fill this degree of the hier-

archy is the window registers, that can be seen as a composition

of n-window registers for all n, each having consensus number n.
This section proves that, indeed, window registers have consensus

number∞2

1
(Theorem 5). We first need the preliminary result that

WReg is not universal inMA3 (Proposition 5).

It was already noted in [Afek et al. 2011] that having access to

consn ⟨T ⟩ objects for all n was not sufficient to solve consensus

in MA3. This section adapts the arguments to window registers.

The proof relies on an extension of the classical valency notions

to executions that only contain steps by processes with identifiers

smaller than n (Definition 6).

Definition 6 (n-critical configuration). Let α be an execu-
tion of a consensus algorithm. We say that C(α) is v-n-valent if v
can be decided in some extension αβ of α in which only processes
p0,p1, . . .pn−1 take steps. We say that C(α) is n-bivalent if it is is
both v-n-valent and w-n-valent for some v , w , and that it is v-n-
univalent if it is v-n-valent and not n-bivalent. Finally, we say that
C(α) is n-critical if it is n-bivalent and that the next step taken by
any process in p0,p1, . . .pn−1 leads to a v-n-univalent configuration,
for some v .

Lemma 8. Any finite execution α such that C(α) is n-bivalent has
an extension αβ such that C(αβ) is n-critical.

Lemma 9. In any n-critical configurations, p0, . . . ,pn−1 are about
to write to the same k-WReg object, with k ≥ n.

Proposition 5. MA3[WReg] is not universal.

Proof. Suppose there exists an algorithm A that solves consen-

sus inMA3[WReg]. We build a sequence of executions α0 = β0,α1 =
β0β1,α2 = β0β1β2, . . . and a sequence of integers n0 ≤ n1 ≤ n2 ≤
. . . such that, for all i , process p0 takes a step in βi and C(αi ) is
ni -critical.

For i = 0, let n0 = 2, and γ be the execution in which p0 and
p1 propose 0 and 1 respectively. In a p0-solo extension of γ , p0
decides 0, and in a p1-solo extension of γ , p1 decides 1, so C(γ ) is
n0-bivalent. By Lemma 8, there is an extension α0 of γ such that

C(α0) is n0-critical.
Suppose we have built an execution αi and an integer ni re-

specting the induction invariant for some i . By Lemma 9, in C(αi ),
p0, . . . ,pni−1 are about to write to the same k-WReg object, with

k ≥ ni . Let us pose ni+1 = k + 1. As C(αi ) is ni -critical, C(αi ) is
also ni -bivalent, so C(αi ) is ni+1-bivalent. By Lemma 8, there is an

extension αi+1 = αiβi+1 of αi such that C(αi+1) is ni+1-critical. By
Lemma 9, in C(αi+1), p0 is about to write to a k ′-WReg object, with

k ′ > k . In particular, p0 took its write step in βi+1.
To conclude, p0 took an infinite number of steps in α = β1β2 . . . ,

i.e. α is not wait-free. This is a contradiction. □

Theorem 5. Window registers have consensus number∞2

1
.

8 OBJECTS WITH CONSENSUS NUMBER∞3

2

As an object with consensus number∞3

1
is universal inMA3 and

an object with consensus number∞2

2
is universal inM2, their com-

position can only have consensus number∞3

2
or∞3

3
. In this section,

we prove that the composition of binary consensus and iterator

stacks, our respective examples for consensus numbers∞3

1
and∞2

2
,

is not universal inM3 (Proposition 6), so it has consensus number

∞3

2
(Theorem 6).
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Similarly to Proposition 4, the proof of Proposition 6 builds a

scheduler that builds a Π′-partitioned execution, keeping track of

a subset Π′ of processes that have never communicated with each

other, and in which more and more shared objects are covered

(Definition 7 adapts the notion of coverage to take iterator stacks

into account). The major difficulty is that iterator stacks cannot be

overwritten by a finite number of processes, and the valency-based

proof introduced in [Afek et al. 2011] cannot be adapted to a setting

where binary consensus objects can be used in a critical configura-

tion. Lemma 10 allows the scheduler to introduce a flow of newly

arrived processes that, by covering, reading or writing all iterator

stacks, prevents any chosen process trying to access an iterator

stacks from learning any valuable information about the existence

of other processes. This intuition is specified in Definition 8, by the

concept of blind extensions.

Definition 7 (Covered configuration). An object x is write-
covered by a process p in a configuration C if: 1) x is a register and
the next step of p inC is a write on x , 2) x is a binary consensus object
and the next step of p in C is to propose a value to x , or 3) x is an
iterator stack and the next step of p in C is a write on x .

An object x is covered by a process p in a configuration C if x is
write-covered, or x is an iterator stack and the next step of p in C is a
read on x .

Let Π′ ⊂ Π be a set of processes, let n ∈ N, and let Y be a set of
shared objects. We say that a configuration C is (Π′,n,Y )-covered if,
inC , all objects in Y are covered at least n times by processes from Π′,
and, in the case of a binary consensus object x , at least n processes are
about to propose the same value.

Definition 8 (Blind extension). Let α be a (Π′,∼,p)-
partitioned execution. We say that αβ is a blind extension of α if:
1) no process took steps in both α and β , and 2) for each process q
taking steps in β , there is an extension αpβ ′ of αp such that the local
state of q is the same in C(αβ) and in C(αpβ ′). In other words, only
fresh processes took steps in β , but they could not learn about the
existence of processes other than those that are equivalent to p.

Lemma 10. Let α be a (Π′,∼,p)-partitioned execution of a consen-
sus algorithm A, let X be the set of objects instantiated at the set-up
of A, and letm = |X |.

For all k ∈ {0, . . . ,m}, there exists a blind extension αβ of α such
that at least k different objects are write-covered inC(αβ) by processes
r1, · · · , rk that did not take steps in α .

Proof. We prove the claim by induction on k . For k = 0, we

pose β = ε , the empty execution. Let us suppose, as the induction

hypothesis H (k), that the claim holds for some k ∈ {0, . . . ,m − 1}.
We start the proof of H (k + 1) by proving a claim.

Claim 3. There exists a blind extension αβ of α such that at least
k different objects are write-covered in C(αβ) by processes r1, ..., rk
that did not take steps in α , and one more different object is covered
in C(αβ) by a process rk+1 that did not take steps in α .

Proof. Suppose this claim is false. We build an infinite execu-

tion αβ0β1β2 . . . in which some process takes an infinite number

of steps, such that each extension αβ0 . . . βn is blind. Letw be the

number of writes on iterator stacks in α , let αβ0 = αγ1 . . .γw+2 be

the blind execution obtained after invoking the induction hypothe-

sis H (k),w + 2 times, and let Yl be the set containing the k objects

write-covered in γl , for each l . As we supposed Claim 3 was false,

Y =
⋃w+2
l=1 Yl has size k and each object y ∈ Y is write-covered at

least w + 2 times in C(αβ0). Let p be a process that did not take

steps in αβ0. Suppose we have built δn = αβ0 . . . βn . We build βn+1
as follows.

• Suppose p is about to read an iterator stack y ∈ Y in con-

figuration C(δn ). Let w
′
be the number of writes on some

iterator stack in δn . We build δn+1 = δnζ1 . . . ζw ′η as fol-

lows: each ζl is the result of one invocation of the induction

hypothesis H (k). As we supposed Claim 3 was false, the

set of write-covered objects in each ζl is Y . In particular,

in C(δnζ1 . . . ζw ′), y is write-coveredw ′ times by processes

that did not take steps in δn . In η, we letw
′
processes write

in y, then p reads in y and gets one of the values written by

one of these processes, which ensures the extension is blind.

• If p is about to write into an iterator stack y ∈ Y in config-

uration C(δn ), βn+1 is solely composed of the next step of

p. The write returns an iterator i = iα + i
′
, where iα is the

number of writes on y in α and i ′ is the number of writes

on y in β0 . . . βn . As iα ≤ w , p cannot distinguish the return

value with a return value it would have had if its write in y
was preceded by iα writes from processes that arrived in β0,
so the extension is blind.

• Otherwise, in configuration C(δn ), p is about to execute a

local step, read from a register x ∈ X , write into a register

y ∈ Y , propose a value to a consensus object y ∈ Y , or
access an object instantiated during β0 . . . βn or in α by some

process p′ ∼ p. In all these cases, βn+1 is solely composed of

the next step of p, which is a blind extension of δn .

Supposing Claim 3 is false, we built an execution in which process

p takes an infinite number of steps, which contradicts wait-freedom

and concludes the proof. □

Let us continue the proof of Lemma 10 by supposing that H (k +
1) is false. We build an infinite execution αβ0β1β2 . . . in which

some process takes an infinite number of steps, and such that each

extension αβ0 . . . βn is blind.

Letw be the number of write operation on iterator stacks in α ,
andw ′ = (m−k)(w2 + 1). Remark thatw ′ is an upper bound on the

number of read operations that can return a non-⊥ value in (m−k)
iterator stacks, starting from C(α). We build αβ0 = αγ1 . . .γw ′+1
such that each γl is the blind extension given by Claim 3. As we

supposedH (k+1)was false, 1) a setY of k objects are write-covered

(w ′+1) times inC(αβ0) by processes that arrived in β0, 2) no process
wrote in an iterator stack y < Y in β0, and 3) (w

′+ 1) processes that

did not take steps in α are about to read iterator stacks that are not

to Y . Let Φ be the set of these (w ′ + 1) processes.
Let us suppose we have built a blind extension δn = αβ0 . . . βn

of α such that some process in Φ took at least one step in βl , for
each l ≤ n. To build βn+1, we pick some process p ∈ Φ that did not

read a value v , ⊥ in an iterator stack y < Y in δn . Such a process

exists because 1) the hypothesis that H (k + 1) is false implies that

no process wrote in an iterator stack y < Y in β0 . . . βn , and 2) it is

impossible to read a non-⊥ value in an iterator stack y < Y more

thanw ′ < |Φ| times.
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• Suppose p is about to read from an iterator stack y ∈ Y
in configuration C(δn ). Letw

′′
be the number of writes on

iterator stacks in δn , and let us build δn+1 = δnζ1 . . . ζ2w ′′η
as follows. Let λ1 = δn and λi = δnζ1 . . . ζi−1 for i > 1. For

each i ∈ {1, . . . , 2w ′′}, λiζi is the shortest blind extension of

λi such that a process that did not take steps in λi , is about
to write in y, or to read from y in the same iterator as p.
Such an extension exists by Claim 3 and the supposition that

H (k + 1) is false. By the pigeon holes theorem, two cases are

possible inC(δnζ1 . . . ζ2w ′′). If at leastw
′′
new processes are

about to read y, then η contains their read, and then the read

by p returning ⊥. Otherwise, at leastw ′′ new processes are

about to write in y, and η contains their write and the read

by p, that returns a value written in η. In both cases, δn+1 is
blind.

• If p is about to write in an iterator stack y ∈ Y in configu-

ration C(δn ), the only step of βn+1 is the write operation of

p. As described in Claim 3, the fact that y is write-covered

at least (w ′′ + 1) times by processes arrived in β0, which is

more than the number of writes on y in α , implies that the

extension is blind.

• In the other cases, in configurationC(δn ), process p is about

to execute a local step, to read from a register x ∈ X , to write

into a registery ∈ Y , to propose a value to a consensus object
y ∈ Y , or to access an object instantiated during β0 . . . βn or

in α by some process p′ ∼ p. In all these cases, βn+1 is solely
composed of the next step of p, which is a blind extension

of δn .

SupposingH (k +1)were false, We have built an execution in which

some process takes an infinite number of steps, which contradicts

wait-freedom and concludes the proof. □

Proposition 6. M3[cons⟨B⟩, IStack] is not universal.

Theorem 6. The composition of iterator stacks and binary con-
sensus has consensus number∞3

2
.

9 CONCLUSION
This paper explored the universality of shared objects in the infinite

arrival model where it is not possible to allocate and initialize, at

once, an infinite number of memory locations. We extended the

existing wait-free hierarchy by separating objects with an infinite

consensus number into 5 categories, depending on their universality

in the bounded, finite or infinite arrival models, and the need of an

infinite memory allocation mechanism, or not. This paper raises

several new open issues, that we detail thereafter.

In this paper, we supposed that processes shared an infinite

memory. Although this assumption is central to the definition of

the Turing Machine at the base of computer sciences, it naturally

implies that pointers to memory locations have infinite size, which

is less practical. Without this assumption, multi-valued consensus

could be solved using a number of binary consensus objects equal

to the size of a pointer [Zhang and Chen 2009]. An interesting

open problem is the existence of a shared object with consensus

number∞3

1
that does not have a polylogarithmic implementation

of consensus inMA2.

The objects we study in this paper, especially window registers

and iterator stacks, are complex in the sense that they would typi-

cally require several memory locations to be implemented. Another

open problem is the existence of special instructions that operate

on a single (or fixed and small number of) memory locations, that

fill each degree of the new hierarchy.

Finally, the example of an object of consensus number ∞3

2
we

exhibited in this paper is a composition of an object with consensus

number∞2

2
and an object with consensus number∞3

1
. It would be

interesting to investigate if this is always the case, which can be

split into two questions 1) Does there exist an object of consensus

number ∞3

2
that cannot be expressed as such a composition? 2)

Conversely, does there exist two objects of consensus number∞2

2

and∞3

1
whose composition has consensus number∞3

3
?
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