
HAL Id: hal-02941693
https://hal.science/hal-02941693

Submitted on 17 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

State-Machine Replication for Planet-Scale Systems
Vitor Enes, Carlos Baquero, Tuanir França Rezende, Alexey Gotsman,

Matthieu Perrin, Pierre Sutra

To cite this version:
Vitor Enes, Carlos Baquero, Tuanir França Rezende, Alexey Gotsman, Matthieu Perrin, et al..
State-Machine Replication for Planet-Scale Systems. EuroSys 2020, Apr 2020, Heraklion, Greece.
�10.1145/3342195.3387543�. �hal-02941693�

https://hal.science/hal-02941693
https://hal.archives-ouvertes.fr

State-Machine Replication for Planet-Scale Systems

Vitor Enes
INESC TEC and University of Minho

Carlos Baquero
INESC TEC and University of Minho

Tuanir França Rezende
Télécom SudParis

Alexey Gotsman
IMDEA Software Institute

Matthieu Perrin
University of Nantes

Pierre Sutra
Télécom SudParis

Abstract

Online applications now routinely replicate their data at mul-
tiple sites around the world. In this paper we present Atlas,
the first state-machine replication protocol tailored for such
planet-scale systems. Atlas does not rely on a distinguished
leader, so clients enjoy the same quality of service indepen-
dently of their geographical locations. Furthermore, client-
perceived latency improves as we add sites closer to clients.
To achieve this, Atlas minimizes the size of its quorums
using an observation that concurrent data center failures
are rare. It also processes a high percentage of accesses in
a single round trip, even when these conflict. We experi-
mentally demonstrate that Atlas consistently outperforms
state-of-the-art protocols in planet-scale scenarios. In partic-
ular, Atlas is up to two times faster than Flexible Paxos with
identical failure assumptions, and more than doubles the
performance of Egalitarian Paxos in the YCSB benchmark.

CCSConcepts: •Theory of computation→Distributed

algorithms.

Keywords: Fault tolerance, Consensus, Geo-replication.

ACM Reference Format:

Vitor Enes, Carlos Baquero, Tuanir França Rezende, Alexey Gots-
man, Matthieu Perrin, and Pierre Sutra. 2020. State-Machine Repli-
cation for Planet-Scale Systems. In Fifteenth European Conference
on Computer Systems (EuroSys ’20), April 27–30, 2020, Heraklion,
Greece. ACM, New York, NY, USA, 24 pages. https://doi.org/10.1145/
3342195.3387543

1 Introduction

Modern online applications run at multiple sites scattered
across the globe: they are now planet-scale. Deploying appli-
cations in this way enables high availability and low latency,
by allowing clients to access the closest responsive site. A

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
EuroSys ’20, April 27–30, 2020, Heraklion, Greece
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6882-7/20/04. . . $15.00
https://doi.org/10.1145/3342195.3387543

major challenge in developing planet-scale applications is
that many of their underlying components, such as coordina-
tion kernels [5, 12] and critical databases [7], require strong
guarantees about the consistency of replicated data.
The classical way of maintaining strong consistency in a

distributed service is state-machine replication (SMR) [29]. In
SMR, a service is defined by a deterministic state machine,
and each site maintains its own local replica of the machine.
An SMR protocol coordinates the execution of commands
at the sites, ensuring that they stay in sync. The resulting
system is linearizable [10], providing an illusion that each
command executes instantaneously throughout the system.
Unfortunately, existing SMR protocols are poorly suited

to planet-scale systems. Common SMR protocols, such as
Paxos [14] and Raft [26], are rooted in cluster computing
where a leader site determines the ordering of commands.
This is unfair to clients far away from the leader. It impairs
scalability, since the leader cannot be easily parallelized and
thus becomes a bottleneck when the load increases. It also
harms availability as, if the leader fails, the system cannot
serve requests until a new one is elected. Moreover, adding
more sites to the system does not help, but on the contrary,
hinders performance, requiring the leader to replicate com-
mands to more sites on the critical path. This is a pity, as
geo-replication has a lot of potential for improving perfor-
mance, since adding sites brings the service closer to clients.
To fully exploit the potential of geo-replication, we pro-

pose Atlas, a new SMR protocol tailored to planet-scale
systems with many sites spread across the world. In par-
ticular, Atlas improves client-perceived latency as we add
sites closer to clients. The key to the Atlas design is an
observation that common SMR protocols provide a level of
fault-tolerance that is unnecessarily high in a geo-distributed
setting. These protocols allow any minority of sites to fail
simultaneously: e.g., running a typical protocol over 13 data
centers would tolerate 6 of them failing. However, natural
disasters leading to the loss of a data center are rare, and
planned downtime can be handled by reconfiguring the un-
available site out of the system [14, 30]. Furthermore, tem-
porary data center outages (e.g., due to connectivity issues)
typically have a short duration [19], and, as we confirm exper-
imentally in §5, rarely happen concurrently. For this reason,
industry practitioners assume that the number of concurrent
site failures in a geo-distributed system is low, e.g. 1 or 2 [7].
Motivated by this, our SMR protocol allows choosing the

ar
X

iv
:2

00
3.

11
78

9v
2

 [
cs

.D
C

]
 1

8
M

ay
 2

02
0

https://doi.org/10.1145/3342195.3387543
https://doi.org/10.1145/3342195.3387543
https://doi.org/10.1145/3342195.3387543

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Vitor Enes, Carlos Baquero, Tuanir França Rezende, Alexey Gotsman, Matthieu Perrin, and Pierre Sutra

maximum number of sites that can fail (f) independently of
the overall number of sites (n), and is optimized for small
values of the former. Our protocol thus trades off higher fault
tolerance for higher scalability1.
In more detail, like previously proposed protocols such

as Egalitarian Paxos (EPaxos) [23] and Mencius [20], our
protocol is leaderless, i.e., it orders commands in a decen-
tralized way, without relying on a distinguished leader site.
This improves availability and allows serving clients with
the same quality of service independently of their geograph-
ical locations. As is common, our protocol also exploits the
fact that commands in SMR applications frequently com-
mute [5, 7], and for the replicated machine to be linearizable,
it is enough that replicas only agree on the order of non-
commuting commands [15, 27]. This permits processing a
command in one round trip from the closest replica using a
fast path, e.g., when the command commutes with all com-
mands concurrently submitted for execution. In the presence
of concurrent non-commuting commands, the protocol may
sometimes have to take a slow path, which requires two
round trips.
Making our protocol offer better latency for larger-scale

deployments required two key innovations in the baseline
scheme of a leaderless SMR protocol. First, the lower latency
of the fast path in existing protocols comes with a downside:
the fast path must involve a fast quorum of replicas bigger
than a majority, which increases latency due to accesses to
far-away replicas. For example, in Generalized Paxos [15] the
fast quorum consists of at least 2n

3 replicas, and in EPaxos of
at least 3n

4 replicas. To solve this problem, in Atlas the size
of the fast quorum is a function of the number of allowed
failures f – namely,

⌊ n
2
⌋
+ f . Smaller values of f result in

smaller fast quorums, thereby decreasing latency. Further-
more, violating the assumption the protocol makes about
the number of failures may only compromise liveness, but
never safety. In particular, if more than f transient outages
occur, due to, e.g., connectivity problems, Atlas will just
block until enough sites are reachable.

A second novel feature of Atlas is that it can take the fast
path even when non-commuting commands are submitted
concurrently, something that is not allowed by existing SMR
protocols [15, 23]. This permits processing most commands
via the fast path when the conflict rate is low-to-moderate,
as is typical for SMR applications [5, 7]. Moreover, when
f = 1 our protocol always takes the fast path and its fast
quorum is a plain majority.
The biggest challenge we faced in achieving the above

features – smaller fast quorums and a flexible fast-path con-
dition – was in designing a correct failure recovery mech-
anism for Atlas. Failure recovery is the most subtle part
1Apart from data centers being down, geo-distributed systems may also
exhibit network partitionings, which partition off several data centers from
the rest of the system. Our protocol may block for the duration of the
partitioning, which is unavoidable due to the CAP theorem [9].

of a SMR protocol with a fast path because the protocol
needs to recover the decisions reached by the failed replicas
while they were short-cutting some of the protocols steps in
the fast path. This is only made more difficult with smaller
fast quorums, as a failed process leaves information about
its computations at fewer replicas. Atlas achieves its per-
formant fast path while having a recovery protocol that is
significantly simpler than that of previous leaderless proto-
cols [2, 23] and has been rigorously proved correct.

As an additional optimization, Atlas also includes a novel
mechanism to accelerate the execution of linearizable reads
and reduce their impact on the protocol stack. This improves
performance in read-dominated workloads.

We experimentally evaluate Atlas on Google Cloud Plat-
form using 3 to 13 sites spread around the world. As new
replicas are added closer to clients, Atlas gets faster: going
from 3 to 13 sites, the client-perceived latency is almost cut
by half. We also experimentally compare Atlas with Flexi-
ble Paxos [11] (a variant of Paxos that also allows selecting
f independently of n), EPaxos and Mencius. Atlas consis-
tently outperforms these protocols in planet-scale scenarios.
In particular, our protocol is up to two times faster than
Flexible Paxos with identical failure assumptions (f = 1, 2),
and more than doubles the performance of EPaxos in mixed
YCSB workloads [6].

2 State-Machine Replication

We consider an asynchronous distributed system consisting
of n processes 𝒫 = {1, . . . ,n}. At most f processes may fail
by crashing (where 1 ≤ f ≤ ⌊ n−12 ⌋), but processes do not
behave maliciously. In a geo-distributed deployment, each
process represents a data center, so that a failure corresponds
to the outage of a whole data center. Failures of single ma-
chines are orthogonal to our concerns and can be masked
by replicating a process within a data center using standard
techniques [14, 26]. We call a majority of processes a (ma-
jority) quorum. We assume that the set of processes is static.
Classical approaches can be used to add reconfiguration to
our protocol [14, 23]. Reconfiguration can also be used in
practice to allow processes that crash and recover to rejoin
the system.

State-machine replication (SMR) is a common way of im-
plementing strongly consistent replicated services [29]. A
service is defined by a deterministic state machine with an
appropriate set of commands, denoted by 𝒞. Processes main-
tain their own local copy of the state machine, and proxy the
access to the replicated service by client applications (not
modeled). An SMR protocol coordinates the execution of com-
mands at the processes, ensuring that service replicas stay
in sync. The protocol provides a command submit(c), which
allows a process to submit a command c ∈ 𝒞 for execution
on behalf of a client. The protocol may also trigger an event

State-Machine Replication for Planet-Scale Systems EuroSys ’20, April 27–30, 2020, Heraklion, Greece
fa
st
qu

or
um

s

1

2

3

4

5

submit(a)

submit(b)

recover(a)
MCollect

MCollect

a→ b

a→ b

a→ b

b→ a

b→ a

consensus
on

dep[a]

fast path

slow path

dep[a] = �

dep[a] = {b}

dep[b] = {a}

dep[a] = �

dep[a] = �

dep[b] = {a}

MCommit

MCommit

execute(a) execute(b)

execute(a) ; execute(b)

Figure 1. Example of processing two conflicting commands a and b in Atlas with n = 5 processes and up to f = 2 failures.
We omit the messages implementing consensus and depict this step abstractly by the consensus box.

execute(c) at a process, asking it to apply c to the local ser-
vice replica; after execution, the process that submitted the
command may return the outcome of c to the client. Without
loss of generality, we assume that each submitted command
is unique.

The strongest property a replicated service implemented
using SMR may satisfy is linearizability [10]. Informally, this
means that commands appear as if executed sequentially on
a single copy of the state machine in an order consistent
with the real-time order, i.e., the order of non-overlapping
command invocations. As observed in [15, 27], for the repli-
cated service to be linearizable, the SMR protocol does not
need to ensure that commands are executed at processes in
the exact same order: it is enough to agree on the order of
non-commuting commands.
We now give the specification of the SMR protocol. We

say that commands c and d commute if in every state s of the
state machine: (i) executing c followed by d or d followed
by c in s leads to the same state; and (ii) c returns the same
response in s as in the state obtained by executing d in s , and
vice versa. If commands do not commute, we say that they
conflict2. We write c 7→i d when c and d conflict and process
i ∈ 𝒫 executes c before executing d . We also define the
following real-time order: c { d if c was executed at some
process before d was submitted. Let 7→ = { ∪ (⋃i ∈𝒫 7→i).
Then, the specification of the SMR protocol is given by the
following properties:

Validity. If a process executes a command c , then some
process submitted c before.

Integrity. A process executes each command at most once.
Ordering. The relation 7→ is acyclic.

Note that the Ordering property enforces that conflicting
commands are executed in a consistent manner across the
system. In particular, it prevents two conflicting commands
from being executed in contradictory orders by different

2 Detecting if two commands conflict must be possible without executing
them. In practice, this information can often be extracted from the API
provided by the replicated service. In cases when such inference is infeasible,
it is always safe to consider that a pair of commands conflict.

processes. If the SMR protocol satisfies the above proper-
ties, then the replicated service implemented using it is lin-
earizable (we prove this in §B). In the following sections we
present Atlas, which satisfies the above specification.

3 The Atlas Protocol

To aid understanding, we first illustrate by example the mes-
sage flow of the Atlas protocol (§3.1), which corresponds
to a common structure of leaderless SMR protocols [23]. We
then describe the protocol in detail (§3.2).

3.1 Overview

Figure 1 illustrates how Atlas processes two conflicting
commands, a and b, with n = 5 processes and at most
f = 2 failures. At a given process, a command usually goes
through several phases: the initial phase start, then collect,
commit and execute (an additional phase recover is used
when handling failures).

Command a starts its journey when submit(a) is invoked
at process 1. We call process 1 the initial coordinator of a.
This coordinator is initial because, if it fails or is slow, an-
other process may take over. Command a then enters the
collect phase at process 1, whose goal is to compute the set
of commands that are dependencies of a, denoted by dep[a].
These dependencies are later used to determine the order
of execution of conflicting commands. To compute depen-
dencies, process 1 sends an MCollect message containing
command a to a fast quorum of processes, which is at least a
majority but may be bigger. In our example the fast quorum
picked by 1 is {1, 2, 3, 4}.
Each process in the fast quorum returns the set of com-

mands conflicting with a that it received before a. In Figure 1,
→ indicates the order in which processes receive commands.
For instance, process 4 receives b first, whereas the other
fast-quorum processes do not receive any command before
a. Based on the replies, process 1 computes the value of
dep[a] (as described in the next section); in our example this
happens to be �.

If a coordinator of a command is suspected to have failed,
another process may try to take over. In Figure 1, process 2

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Vitor Enes, Carlos Baquero, Tuanir França Rezende, Alexey Gotsman, Matthieu Perrin, and Pierre Sutra

suspects 1 and becomes another coordinator of a, denoted
by recover(a). Process 2 contacts a majority quorum of
processes {2, 3, 4} and computes its own version of the de-
pendencies of a: dep[a] = {b}.
Dependencies are used to determine the order in which

conflicting commands are executed, and all processes have
to execute conflicting commands in the same order. To en-
sure this, the coordinators of command a need to reach a
consensus on the value of dep[a]. This is implemented using
an optimized variant of single-decree Paxos [14], with all n
processes acting as acceptors. In our example, this makes
the processes agree on dep[a] = �. The use of consensus
represents the slow path of the protocol.
If a coordinator can ensure that all the values that can

possibly be proposed to consensus are the same, then it can
take the fast path of the protocol, avoiding the use of consen-
sus. In Figure 1, this is the case for process 5 coordinating
command b. For a process to take the fast path, we require it
to receive a response from every process in the fast quorum,
motivating the name of the latter.
After consensus or the shortcut via the fast path, a coor-

dinator of a command sends its final dependencies to other
processes in an MCommit message. A process stores these
dependencies and marks the command as having entered the
commit phase. A command can be executed (and thereby
transition to the execute phase) only after all its depen-
dencies are in the commit or execute phases. Since in our
example dep[a] = �, processes can execute command a right
after receiving its final dependencies (�). This is exploited by
processes 1 and 2 in Figure 1. However, as dep[b] = {a}, pro-
cesses must delay the execution of b until a is executed. This
is the case for processes 3, 4 and 5 in Figure 1. Such an execu-
tion mechanism guarantees that the conflicting commands
a and b are executed in the same order at all processes.

3.2 Protocol in Detail

Algorithm 1 specifies the Atlas protocol at process i ∈ 𝒫 in
the failure-free case. We assume that self-addressed protocol
messages are delivered immediately.

3.2.1 Start phase. A client submits a command c ∈ 𝒞 by
invoking submit(c) at one of the processes running Atlas,
which will serve as the initial command coordinator. When
submit(c) is invoked at a process i (line 1), this coordinator
first assigns to command c a unique identifier – a pair ⟨i, l⟩
where l − 1 is the number of commands submitted at process
i before c . In the following we denote the set of all identifiers
by ℐ . At the bottom of Algorithm 1, we summarize the data
maintained by each process for a command with identifier
id ∈ ℐ . In particular, the mapping cmd stores the payload of
the command, and the mapping phase tracks the progress of
the command through phases. For brevity, the name of the
phase written in lower case also denotes all the identifiers
in that phase, e.g., start = {id ∈ ℐ | phase[id] = start}.

Once the coordinator assigns an identifier to c , the com-
mand starts its collect phase, whose goal is to compute a
set of identifiers that are the dependencies of c . At the end of
this phase, the coordinator sends an MCommit(id, c,D) mes-
sage including the computed dependencies D. Before this,
it agrees with other possible coordinators on the same final
value of D, resulting in the following invariant.

Invariant 1. For any two messages MCommit(id, c,D) and
MCommit(id, c ′,D ′) sent, c = c ′ and D = D ′.

Hence, each identifier is associated with a unique com-
mand and final set of dependencies. The key property of
dependencies is that, for any two distinct conflicting com-
mands, one has to be a dependency of the other. This is stated
by the following invariant.

Invariant 2. Assume that messages MCommit(id, c,D)
and MCommit(id ′, c ′,D ′) have been sent. If id , id ′ and
conflict(c, c ′) then either id ′ ∈ D or id ∈ D ′, or both.

This invariant is key to ensure that conflicting commands
are executed in the same order at all processes, since we allow
processes to execute commands that are not a dependency of
each other in any order. We next explain how Atlas ensures
the above invariants.

3.2.2 Collect phase. To compute the dependencies of a
command c , its coordinator first computes the set of com-
mands it knows about that conflict with c (denoted by
past, line 3) using a function conflicts(c) = {id < start |
conflict(c, cmd[id])}. The coordinator then picks a fast quo-
rum Q of size ⌊ n2 ⌋ + f that includes itself (line 4) and sends
an MCollect message with the information it computed to
all processes in Q .

Upon receiving an MCollect message from the coordina-
tor, a process in the fast quorum computes its contribution
to c’s dependencies as the set of commands that conflict with
c , combined with past (line 8). The process stores the com-
puted dependencies, command c and the fast quorum Q in
mappings dep, cmd and quorum, respectively, and sets the
command’s phase to collect. The process then replies to
the coordinator with an MCollectAck message, containing
the computed dependencies (line 11).
Once the coordinator receives an MCollectAck message

from all processes in the fast quorum (line 13), it computes
the dependencies for the command as the union of all re-
ported dependencies D =

⋃
Q dep =

⋃{depj | j ∈ Q}
(line 14). Since a fast quorum contains at least a majority of
processes, the following property implies that this computa-
tion maintains Invariant 2.

Property 1. Assume two conflicting commands with iden-
tifiers id and id ′ and dependencies D and D ′ computed as
in line 14 over majority quorums. Then either id ′ ∈ D or
id ∈ D ′, or both.

State-Machine Replication for Planet-Scale Systems EuroSys ’20, April 27–30, 2020, Heraklion, Greece

Algorithm 1: Atlas protocol at process i: failure-free
case.
1 function submit(c)
2 id ← ⟨i,min{l | ⟨i, l⟩ ∈ start}⟩
3 past ← conflicts(c)
4 Q ← fast_quorum(i)
5 send MCollect(id, c, past,Q) to Q

6 receive MCollect(id, c, past,Q) from j
7 pre: id ∈ start
8 dep[id] ← conflicts(c) ∪ past
9 cmd[id] ← c; quorum[id] ← Q

10 phase[id] ← collect
11 send MCollectAck(id, dep[id]) to j

12 receive MCollectAck(id, depj) from all j ∈ Q
13 pre: id ∈ collect ∧Q = quorum[id]
14 D ← ⋃

Q dep

15 if

⋃
Q dep =

⋃
f Q dep then

16 send MCommit(id, cmd[id],D) to all

17 else

18 Q ′← slow_quorum(i)
19 send MConsensus(id, cmd[id],D, i) to Q ′

20 receive MConsensus(id, c,D,b) from j
21 pre: bal[id] ≤ b

22 cmd[id] ← c; dep[id] ← D

23 bal[id] ← b; abal[id] ← b

24 send MConsensusAck(id,b) to j

25 receive MConsensusAck(id,b) from Q
26 pre: bal[id] = b ∧ |Q | = f + 1
27 send MCommit(id, cmd[id], dep[id]) to all

28 receive MCommit(id, c,D)
29 pre: id < commit ∪ execute
30 cmd[id] ← c; dep[id] ← D; phase[id] ← commit

cmd[id] ← noOp ∈ 𝒞 Command
phase[id] ← start Phase
dep[id] ← � ⊆ ℐ Dependency set

quorum[id] ← � ⊆ 𝒫 Fast quorum
bal[id] ← 0 ∈ N Current ballot
abal[id] ← 0 ∈ N Last accepted ballot

Proof. Assume that the property does not hold: there are
two conflicting commands with distinct identifiers id and
id ′ and dependencies D and D ′ such that id ′ < D and id <
D ′. We know that D was computed over some majority Q
and D ′ over some majority Q ′. Since id ′ < D, we have: (i)
the majority Q observed id before id ′. Similarly, since id <
D ′: (ii) the majority Q ′ observed id ′ before id . However, as

majorities Q and Q ′ must intersect, we cannot have both (i)
and (ii). This contradiction shows the required. □

For example, in Figure 1 coordinator 5 determines the
dependencies for b using the computation at line 14 (co-
ordinator 1 uses an optimized version of this computation
presented in §4).

After computing the command’s dependencies, its coordi-
nator decides to either take the fast path (line 15) or the slow
path (line 17). Both fast and slow paths end with the coordi-
nator sending an MCommitmessage containing the command
and its final dependencies.

3.2.3 Slow path. If the coordinator of a command is sus-
pected to have failed, another process may try to take over
its job and compute a different set of dependencies. Hence,
before an MCommit message is sent, processes must reach an
agreement on its contents to satisfy Invariant 1. They can
always achieve this by running a consensus protocol – this
is the slow path of Atlas. Consensus is implemented using
single-decree (Flexible) Paxos [11]. For each identifier we
allocate ballot numbers to processes round-robin, with ballot
i reserved for the initial coordinator i and ballots higher than
n for processes that try to take over. Every process stores for
each identifier id the ballot number bal[id] it is currently par-
ticipating in and the last ballot abal[id] in which it accepted
a proposal (if any).

When the initial coordinator i decides to go onto the slow
path, it performs an analog of Paxos Phase 2: it sends an
MConsensus message with its proposal and ballot i to a slow
quorum that includes itself (line 18)3. Following Flexible
Paxos [11], the size of the slow quorum is only f + 1, rather
than a majority like in classical Paxos. This minimizes the
additional latency incurred on the slow path in exchange for
using larger quorums in recovery (as described below). As
usual in Paxos, a process accepts an MConsensus message
only if its bal[id] is not greater than the ballot in the message
(line 21). Then it stores the proposal, sets bal[id] and abal[id]
to the ballot in the message, and replies to the coordinator
with MConsensusAck. Once the coordinator gathers f + 1
such replies (line 26), it is sure that its proposal will survive
the allowed number of failures f , and it thus broadcasts the
proposal in an MCommit message (line 27).

3.2.4 Fast path. The initial coordinator of a command can
avoid consensus when it can ensure that any process per-
forming recovery will propose the same set of dependencies
to consensus [16] – this is the fast path of Atlas, in which
a command is committed after a single round trip to the
closest fast quorum (line 16). In order to take the fast path,
previous SMR protocols, such as Generalized Paxos [15] and
EPaxos [23], require fast-quorum replies to match exactly.

3The initial coordinator i can safely skip Paxos Phase 1: since processes
perform recovery with ballots higher than n, no proposal with a ballot
lower than i can ever be accepted.

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Vitor Enes, Carlos Baquero, Tuanir França Rezende, Alexey Gotsman, Matthieu Perrin, and Pierre Sutra

1{a}

2

{a, b, c}

3

{a, b, d}

54

{a, c, d}

(a)

✓ Atlas f = 2
✗ matching replies

1�

2

�

3

�

54

{b}

(b)

✗ Atlas f = 2
✗ matching replies

1{a}

2

{a, b}

3

54

{a, c}

(c)

✓ Atlas f = 1
✗ matching replies

1{a}

2

{a}

3

54

{a}

(d)

✓ Atlas f = 1
✓ matching replies

Figure 2. Examples in which the fast path is taken ✓ or not ✗, for both Atlas and protocols that requirematching replies from
fast-quorum processes, such as EPaxos [23]. All examples consider n = 5 processes while tolerating f faults. The coordinator
is always process 1, and circles with a solid line represent the processes that are part of the fast quorum. Next to each process
we depict the set of dependencies sent to the coordinator (e.g. {a, b}).

One of the key innovations of Atlas is that it is able to
take the fast path even if this is not the case, e.g., when con-
flicting commands are submitted concurrently. This feature
significantly improves performance in practice (§5).

In more detail, the coordinator takes the fast path if every
dependency reported by some fast-quorum process is actu-
ally reported by at least f such processes. This is expressed
by the condition

⋃
Q dep =

⋃
f Q dep in line 15, where⋃

f Q dep = {id | count(id) ≥ f };
count(id) = |{j ∈ Q | id ∈ depj }|.

Figure 2 contains several examples that illustrate the flexi-
bility of the above fast-path condition. All examples consider
n = 5 processes while tolerating varying numbers of faults f .
The example in Figure 2a considers Atlas f = 2. The coordi-
nator of some command, process 1, picks a fast quorum Q =
{1, 2, 3, 4} of size ⌊ n2 ⌋ + f = 4. It receives replies dep1 = {a},
dep2 = {a, b, c}, dep3 = {a, b, d}, dep4 = {a, c, d}. The coor-
dinator then computes

⋃
2 Q dep = {a, b, c, d}, i.e., all the de-

pendencies reported at least twice. Since
⋃

Q dep =
⋃
2 Q dep,

the coordinator takes the fast path. This is not the case for the
example in Figure 2b where

⋃
Q dep = {b} , � =

⋃
2 Q dep

(b is excluded from
⋃
2 Q dep because count(b) = 1). In this

case the coordinator has to take the slow path. Back in Fig-
ure 1 we had the same situation: coordinator 1 had to take
the slow path because dependency b was declared solely by
process 4. On the other hand, coordinator 5 was able to take
the fast path, because dependency a was declared by f = 2
processes: 2 and 3.
Notice that in Figure 2a, the coordinator takes the fast

path even though dependencies reported by processes do
not match, a situation which may arise when conflicting
commands are submitted concurrently. Furthermore, when
f = 1 we have {id | count(id) < f } = �, so that the fast-
path condition in line 15 always holds. Hence, Atlas f = 1

always takes the fast path, as is the case in Figures 2c and 2d.
In contrast, EPaxos is able to take the fast path only in Fig-
ure 2d, since it is the only example in which fast-quorum
replies match.

3.2.5 Recovery idea. The initial coordinator of a com-
mand may fail or be slow to respond, in which case Atlas
allows a process to take over its role and recover the com-
mand and its dependencies. We start by describing the idea
of the most subtle part of this mechanism – recovering deci-
sions reached by failed coordinators via the fast path.
Let D =

⋃
Q dep =

⋃
f Q dep be some fast-path proposal

(line 16). By definition of
⋃
f Q dep, each id ∈ D was reported

in the MCollectAck message of at least f fast-quorum pro-
cesses. It follows that D can be obtained without f − 1 of
those processes by taking the union of the dependencies
reported by the remaining processes. Moreover, as the initial
coordinator is always part of the fast quorum and each pro-
cess in the quorum combines its dependencies with the ones
declared by the coordinator (i.e., past in line 8), the latter is
also not necessary to obtain D. Thus, the proposal D can be
obtained without f fast-quorum processes including the ini-
tial coordinator (e.g., if the processes fail), by combining the
dependencies reported by the remaining ⌊ n2 ⌋ + f − f = ⌊ n2 ⌋
processes. The following property captures this observation.

Property 2. Any fast-path proposal can be obtained by
taking the union of the dependencies sent in MCollectAck
by at least ⌊ n2 ⌋ fast-quorum processes that are not the initial
coordinator.

As an example, assume that after the fast path is taken in
Figure 2a, f = 2 processes inside the fast quorum fail, one
of them being the coordinator, process 1. Independently of
which ⌊ n2 ⌋ = 2 fast-quorum processes survive, the proposal
is always recovered by set union:

⋃
{2,3} dep =

⋃
{2,4} dep =⋃

{3,4} dep = {a, b, c, d}.

State-Machine Replication for Planet-Scale Systems EuroSys ’20, April 27–30, 2020, Heraklion, Greece

Algorithm 2: Atlas protocol at process i: recovery.
31 function recover(id)
32 b ← i + n(⌊ bal[id]n ⌋ + 1)
33 send MRec(id, cmd[id],b) to all

34 receive MRec(id, _, _) from j
35 pre: id ∈ commit ∪ execute
36 send MCommit(id, cmd[id], dep[id]) to j

37 receive MRec(id, c,b) from j
38 pre: bal[id] < b ∧ id < commit ∪ execute
39 if bal[id] = 0 ∧ id ∈ start then
40 dep[id] ← conflicts(c); cmd[id] ← c

41 bal[id] ← b

42 phase[id] ← recover
43 send MRecAck(id, cmd[id], dep[id], quorum[id],

abal[id],b) to j

44 receive MRecAck(id, cmd j , depj ,Q
0
j ,abj ,b) from all j ∈Q

45 pre: bal[id] = b ∧ |Q | = n − f

46 if ∃k ∈ Q . abk , 0 then
47 let k be such that abk is maximal
48 send MConsensus(id, cmdk , depk ,b) to all

49 else if ∃k ∈ Q .Q0
k , � then

50 Q ′← if id .1 ∈ Q then Q else Q ∩Q0
k

51 send MConsensus(id, cmdk ,
⋃

Q ′ dep,b) to all

52 else send MConsensus(id, noOp,�,b) to all

In the case of Figure 2b it is unsafe to take the fast path
since the proposal may not be recoverable: the failure of
process 4 would lead to losing the dependency b, since this
dependency was reported exclusively by this process.

3.2.6 Recovery in detail. A process takes over as the co-
ordinator for some command with identifier id by calling
recover(id) (line 31 in Algorithm 2). In order to find out
if a decision on the dependencies of id has been reached
in consensus, the new coordinator first performs an analog
of Paxos Phase 1. It picks a ballot number it owns higher
than any it participated in so far (line 32) and sends an MRec
message with this ballot to all processes.
Upon the receipt of such a message, in case id is already

committed or executed (line 35), the process notifies the new
coordinator with an MCommit message. Otherwise, as is stan-
dard in Paxos, the process accepts the MRec message only if
the ballot in themessage is greater than its bal[id] (line 38). In
this case, if the process is seeing id for the first time (line 39),
it computes its contribution to id’s dependencies as the set
of conflicting commands (line 40). Then, the process sets
bal[id] to the new ballot and phase[id] to recover. Finally,
the process replies with an MRecAck message containing all
the information it has regarding id: the corresponding com-
mand (cmd), its current set of dependencies (dep), the ballot

at which these were previously accepted (abal), and the fast
quorum (quorum). Note that quorum[id] = � if the process
did not see the initial MCollect message, and abal[id] = 0 if
the process has not yet accepted any consensus proposal.
In the MRecAck handler (line 44), the new coordinator

computes its proposal given the information provided by
processes and sends this proposal in an MConsensusmessage
to all processes. As in Flexible Paxos, the new coordinator
waits for n − f MRecAck messages. This guarantees that,
if a quorum of f + 1 processes accepted an MConsensus
message with a proposal (which could have thus been sent
in an MCommit message), the new coordinator will find out
about this proposal. To maintain Invariant 1, if any process
previously accepted a consensus proposal (line 46), by the
standard Paxos rules [11, 14], the coordinator selects the
proposal accepted at the highest ballot (line 47).
If no consensus proposal has been accepted before, the

new coordinator checks whether any of the processes that
replied has seen the initial MCollectmessage, by looking for
any non-empty fast quorum (line 49). If the fast quorum is
known, depending on whether the initial coordinator replied
or not, there are two possible cases that we describe next.
1) The initial coordinator replies to the new one (id.1 ∈ Q ,

line 50). In this case the initial coordinator has not taken
the fast path before receiving the MRec message from the
new one, as it would have replied with MCommit instead
of MRecAck (line 36). It will also not take the fast path in
the future, since when processing the MRec message it sets
the command phase to recover (line 42), which invalidates
the MCollectAck precondition (line 13). Since the initial
coordinator never takes the fast path, the new coordinator
can choose the command’s dependencies in any way, as long
as it maintains Invariant 2. By Property 1, this is satisfied if
the coordinator chooses the set union of the dependencies
declared by at least a majority of processes. Hence, the new
coordinator takes the union of the dependencies reported by
the n − f ≥ n − ⌊ n−12 ⌋ ≥ ⌊

n
2 ⌋ + 1 processes in Q (line 51).

2) The initial coordinator does not reply to the new one
(id.1 < Q , line 50). In this case the initial coordinator could
have taken the fast path and, if it did, the new coordinator
must propose the same dependencies. Given that the recov-
ery quorum Q has size n − f and the fast quorum Q0

k has
size ⌊ n2 ⌋ + f , the set of processes Q ′ = Q ∩Q0

k (line 51) con-
tains at least ⌊ n2 ⌋ fast-quorum processes (distinct from the
initial coordinator, as it did not reply). Furthermore, recall
that when a process from Q ′ replies to the new coordinator,
it sets the command phase to recover (line 42), which in-
validates the MCollect precondition (line 7). Hence, if the
initial coordinator took the fast path, then each process in
Q ′ must have processed its MCollect before the MRec of the
new coordinator, and reported in the latter the dependencies
from the former. Then using Property 2, the new coordinator
recovers the fast-path proposal by taking the union of the

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Vitor Enes, Carlos Baquero, Tuanir França Rezende, Alexey Gotsman, Matthieu Perrin, and Pierre Sutra

dependencies from the processes in Q ′ (line 51). It can be
shown that, even if the initial coordinator did not take the
fast path, this computation maintains Invariant 2, despiteQ ′
containing only ⌊ n2 ⌋ processes and Property 1 requiring a
majority of them. This is for the same reason this number of
processes is sufficient in Property 2: dependencies declared
by the initial coordinator are included into those declared
by other fast-quorum processes (line 8).
It remains to address the case in which the process per-

forming the recovery observes that no process saw the
initial fast quorum, and consequently the submitted com-
mand (line 52). For instance, suppose that process i sends an
MCollect(id, c, _, _) only to process j and then fails. Further,
assume that j receives another MCollect(_, c ′, _, _) from pro-
cess k , replies with a dependency set that includes the iden-
tifier id of c , and also fails. Now, process k cannot execute c ′
without executing c (since c is a dependency of c ′), and it can-
not execute c because its payload has been lost. We solve this
issue similarly to EPaxos: if a process takes over as the new
coordinator and cannot find the associated payload, it may
replace it by a special noOp command (line 52) that is not
executed by the protocol and conflicts with all commands.
With this, the final command for some identifier can take
two possible values: the one submitted (line 1) or noOp. It is
due to this that we include the command payload in addition
to its dependencies into consensus messages associated with
a given identifier (e.g., line 19), thus ensuring that a unique
payload will be chosen (Invariant 1). Due to the possible
replacement of a command by a noOp, the protocol actually
ensures the following weakening of Invariant 2, which is
still sufficient to establish its correctness.

Invariant 2′. Assume that messages MCommit(id, c,D) and
MCommit(id ′, c ′,D ′) have been sent. If id , id ′, conflict(c, c ′),
c , noOp and c ′ , noOp, then either id ′ ∈ D or id ∈ D ′, or
both.

3.2.7 Command execution. Algorithm 3 describes a
background task employed by Atlas that is responsible for
executing commands after they are committed. This task
runs in an infinite loop trying to execute a batch of com-
mands. We define a batch as the smallest set of commit-
ted identifiers S ⊆ commit such that, for each identifier
id ∈ S , its dependencies are in the batch or already executed:
dep[id] ⊆ S ∪ execute (line 54). This ensures that a command
can only be executed after its dependencies or in the same
batch with them, which yields the following invariant.

Invariant 3. Assume two commands c and c ′ with identi-
fiers id and id ′, respectively. If a process executes a batch of
commands containing c before executing a batch containing
c ′, then id ′ < dep[id].

As processes agree on the dependencies of each command
(Invariant 1), the batch in which a command is executed is
equal in every process, as reflected in following invariant.

Algorithm 3: Atlas protocol: command execution.
53 loop

54 let S be the smallest subset of commit such that
∀id ∈ S . (dep[id] ⊆ S ∪ execute)

55 for id ∈ S ordered by < do

56 execute(cmd[id])
57 phase[id] ← execute

Invariant 4. If a process executes command c in batch S
and another process executes the same command c in batch
S ′, then S = S ′.

Inside a batch, commands are ordered according to some
fixed total order < on identifiers (line 55). This guarantees
that conflicting commands are executed in a consistent order
across all processes.
Consider again the example in Figure 1, where the final

dependencies are dep[a] = � and dep[b] = {a}. There are
two cases, depending on the order inwhich processes commit
the commands a and b:
• a then b: at processes 1 and 2. When the command a is
committed, the processes execute it in a singleton batch,
as it has no dependencies. When later the command b is
committed, the processes execute it in a singleton batch
too, since its only dependency a has already been executed.
• b then a: at processes 3, 4 and 5. When the command
b is committed, the processes cannot execute it, as its
dependency a has not yet been committed. When later
the command a is committed, the processes execute two
singleton batches: first a, then b.
Note that a is executed before b in both cases, thus ensur-

ing a consistent execution order across processes.
Assume now we had final dependencies dep[a] = {b} and

dep[b] = {a}. In this case, independently of the order in
which processes commit the commands, a batch will only
be formed when both are committed. Since all processes
will form the same batch containing both a and b, these
commands will be executed in a predefined order on their
identifiers, again ensuring a consistent execution order.

3.3 Atlas Properties and Comparison with EPaxos

Complexity. Atlas commits a command after two com-
munication delays when taking the fast path, and four other-
wise. As pointed out in §3.2, when f = 1, a fast quorum con-
tains exactly a majority of processes and Atlas always takes
the fast path. This is optimal for leaderless protocols [9, 17]
and results in a significant performance pay-off (§5).

Fault tolerance. Atlas is parameterized by the number
of tolerated concurrent faults f : smaller values of f yield
smaller fast and slow quorums, thus reducing latency. As
observed in the literature [7, 19] and as we experimentally

State-Machine Replication for Planet-Scale Systems EuroSys ’20, April 27–30, 2020, Heraklion, Greece

confirm in §5.1, assuming small values of f is acceptable for
geo-distribution. Furthermore, violating our assumption that
the number of failures is bounded by f may only compromise
the liveness of the protocol, and never its safety: if more than
f transient outages occur, due to, e.g., connectivity problems,
Atlas will just block until enough sites are reachable.

Comparison with EPaxos. Atlas belongs to the family
of leaderless SMR protocols. We now provide a concise com-
parison with the most prominent protocol in this family,
EPaxos [23]. The two protocols share the message flow, in-
cluding the splitting into fast and slow paths. However, as we
demonstrate experimentally in §5, Atlas significantly out-
performs EPaxos, which is due to a number of novel design
decisions that we took.

First, EPaxos requires the conflicts reported by the fast quo-
rum processes to the coordinator to match exactly, whereas
Atlas allows processes to report different dependencies,
as long as each dependency can be recovered after f fail-
ures. This allows Atlas to take the fast path even when
non-commuting commands are submitted concurrently.
Second, Atlas allows choosing the number of failures

f independently of the size of the system n, which yields
fast quorums of size

⌊ n
2
⌋
+ f . EPaxos assumes up to

⌊ n
2
⌋

failures and sets the fast quorum size to
⌊ 3n

4
⌋
. Our decision

results in smaller quorums for small values of f , which are
appropriate in planet-scale systems [7, 19, 21]; smaller quo-
rums then result in lower latency. Note that EPaxos cannot
be straightforwardly modified to exploit the independent
bound on failures f due to its very complex recovery mech-
anism [22, 33] (which, in fact, has been recently shown to
contain a bug [31]). In contrast, Atlas achieves its smaller
fast quorums with a significantly simpler recovery protocol
that is able to recover fast-path decisions using Property 2.

3.4 Correctness

We have rigorously proved Invariants 1 and 2 (see §A; we
omit the easy proofs of Invariants 3 and 4). We now prove
that the protocol invariants imply the correctness of Atlas,
i.e., that it satisfies the SMR specification. The only nontrivial
property is Ordering, which we prove next.

Lemma 1. The relation
⋃n

i=1 7→i is asymmetric.

Proof. By contradiction, assume that for some processes i
and j and conflicting commands c and c ′ with identifiers id
and id ′, we have c 7→i c

′ and c ′ 7→j c; then c , noOp and
c ′ , noOp. By Integrity we must have i , j and c , c ′.

Assume first that c and c ′ are executed at process i in
the same batch S . Then by Invariant 4 they also have to be
executed at process j in the batch S . Since inside a batch
commands are ordered using the fixed order < on their iden-
tifiers, c and c ′ have to be executed in the same order at the
two processes: a contradiction.

Assume now that c and c ′ are not executed at process i in
the same batch. Then by Invariant 4 this also must be the case
at process j. Hence, Invariant 3 implies that id ′ < dep[id]
at process i , and id < dep[id ′] at process j. Then process
i received MCommit(id, c,D) with id ′ < D, and process j re-
ceived MCommit(id ′, c ′,D ′) with id < D ′, which contradicts
Invariant 2′. □

Lemma 2. Assume c1 7→ . . . 7→ cn for n ≥ 2. Whenever a
process i executes cn , some process has already executed c1.

Proof. We prove the lemma by induction on n. The base
case of n = 2 directly follows from the definition of 7→. Take
n > 3 and assume c1 7→ . . . 7→ cn−1 7→ cn . Consider the
moment when a process i executes cn . We want to show that
by this moment some process has already executed c1. Since
cn−1 7→ cn , either cn−1 { cn or cn−1 7→j cn for some process
j. Consider first the case when cn−1 { cn . Then cn−1 is
executed at some process k before cn is submitted and, hence,
before cn is executed at process i . By induction hypothesis, c1
is executed at some process before cn−1 is executed at process
k and, hence, before cn is executed at process i , as required.
We now consider the case when cn−1 7→j cn for some process
j . Since process i executes cn , wemust have either cn−1 7→i cn
or cn 7→i cn−1. The latter case would contradict Lemma 1, so
that cn−1 7→i cn . By induction hypothesis, c1 is executed at
some process before cn−1 is executed at process i and, hence,
before cn is executed at process i , as required. □

Proof of Ordering. By contradiction, assume that c1 7→
. . . 7→ cn = c1 for n ≥ 2. Then some process executed
c1. Consider the moment when the first process did so. By
Lemma 2 some process has already executed c1 before this,
which yields a contradiction. □

4 Optimizations

This section presents two mechanisms employed by the At-
las protocol to accelerate command execution.

Reducing dependencies in the slow path. When com-
puting dependencies in the slow path, instead of proposing⋃

Q dep to consensus (line 19), the coordinator can propose⋃
f Q dep. This allows Atlas to prune from dependencies

those commands that been reported by less than f fast-
quorum processes ({id | count(id) < f }) without breaking
Invariant 2′. Smaller dependency sets allow batches to form
more quickly in execution (Algorithm 3), thus reducing the
delay between a command being committed and executed.

Back in Figure 1, command b was reported to coordinator
1 solely by process 4. Since b was reported by less than
f = 2 processes, the above optimization allows coordinator
1 to prune b from the dependencies of a, thus proposing
dep[a] = � to consensus. This maintains Invariant 2′, as a
is still a dependency of b: dep[b] = {a}. In §A.2.1 we prove
that this optimization always maintains Invariant 2′.

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Vitor Enes, Carlos Baquero, Tuanir França Rezende, Alexey Gotsman, Matthieu Perrin, and Pierre Sutra

Non-fault-tolerant reads. We observe that reads can be
excluded from dependencies at lines 3 and 8 when the con-
flict relation between commands is transitive. In this case,
a read is never a dependency and thus it will never block a
later command, even if it is not fully executed, e.g., when
its coordinator fails (or hangs). For this reason, reads can be
executed in a non-fault-tolerant manner. More precisely, for
some read with identifier id, the coordinator selects a plain
majority as a fast quorum (line 4), independently of the value
of f . Then, at the end of the collect phase, it immediately
commits id, setting dep[id] to the union of all dependen-
cies returned by this quorum (line 16). This optimization,
that we denote by NFR, accelerates the execution of lineariz-
able reads and reduces their impact in the protocol stack.
We show its correctness in §B. The transitivity requirement
on conflicts is satisfied by many common applications. We
experimentally evaluate the case of a key-value store in §5.

5 Performance Evaluation

In this section we experimentally compare Atlas with
Flexible Paxos (FPaxos) [11] and two leaderless protocols,
EPaxos [23] and Mencius [20]. Mencius distributes the leader
responsibilities round-robin among replicas; because of this,
executing a command in Mencius requires contacting all
replicas. As discussed previously, FPaxos uses a quorum of
f +1 replicas in the failure-free case in exchange for a bigger
quorum of n − f replicas on recovery.
To improve the fairness of our comparison, Atlas and

EPaxos use the same codebase. This codebase consists of
a server component, written in Erlang (3.7K SLOC), and a
client component, written in Java (3.1K SLOC). The former
commits commands, while the latter executes them. Thus,
the implementation of two protocols differs only in the logic
of the commit component. For Mencius and Paxos we use the
Golang implementation provided by the authors of EPaxos
[23], which we extended to support FPaxos.
Our evaluation takes place on Google Cloud Platform

(GCP), in a federation of Kubernetes clusters [4]. The federa-
tion spans from 3 to 13 geographical regions spread across
the world, which we call sites. When protocols are deployed
in all 13 sites, we have 4 sites in Asia, 1 in Australia, 4 in
Europe, 3 in North America, and 1 in South America. A site
consists of a set of virtualized Linux nodes, each an 8-core In-
tel Xeon machine with 30 GB of memory (n1-standard-8).
At a site, the SMR protocol and its clients execute on distinct
machines. When benchmarking FPaxos, we take as leader
the site that minimizes the standard deviation of clients-
perceived latency. This site corresponds to the fairest loca-
tion in the system, trying to satisfy uniformly all the clients.

5.1 Bounds on Failures

In a practical deployment of Atlas, a critical parameter is
the number of concurrent site failures f the protocol can

 0

 1

 2

 3

 4

 5

 6

 7

O
ct

 0
7

O
ct

 1
9

O
ct

 3
0

N
ov

 1
1

N
ov

 2
3

D
ec

 0
4

D
ec

 1
6

D
ec

 2
7

Ja
n

08

T/O threshold

lin

k
fa

ilu
re

s 3s
5s

10s

Figure 3. The number of simultaneous link failures among
17 sites in GCP when varying the timeout threshold.

tolerate. It has been reported that concurrent site failures are
rare in geo-distributed systems [7]. However, the value of f
should also account for asynchrony periods during which
sites cannot communicate due to link failures: if more than
f sites are unreachable in this way, our protocol may block
for the duration of the outage. We have thus conducted an
experiment to check that assuming small values of f is still
appropriate when this is taken into account.

Our experiment ran for 3 months (October 2018 – January
2019) among 17 sites, the maximal number of sites available
in GCP at the time. During the experiment, sites ping each
other every second (in the spirit of [19] but on a much larger
scale). A link failure occurs between two sites when one of
them does not receive a reply after a (tunable) amount of time.
Figure 3 reports the number of simultaneous link failures
for various timeout thresholds. Note that no actual machine
crash occurred during the campaign of measurements.

When the timeout threshold is set to 10s, only two events
occur, each with a single link failure. Fixing the threshold
to either 3s or 5s leads to two events of noticeable length.
During the first event, occurring on November 7, the links
between the Canadian site (QC) and five others are slow for
a couple of hours. During the second event, on December
8, the links between Taiwan (TW) and seven other sites are
slow for around two minutes.
From the data collected, we compute the value of f as

the smallest number of sites k such that, at any point in
the experiment, crashing k sites would cover all the slow
links. During our experiment, timeouts were reported on the
links incident to at most a single site (e.g., the Canadian site
on November 7). Thus, we may conclude that f ≤ 1 held
during the whole experiment, even with the smallest timeout
threshold. In other words, Atlas with f ≥ 1 would have
been always responsive during this 3-month experiment. In
light of these results, we evaluate deployments of Atlas in
which f is set to 1, 2 or 3.

5.2 Benchmarks

Our first set of experiments uses a microbenchmark – a stub
application that executes dummy commands (§5.2-§5.6). We

State-Machine Replication for Planet-Scale Systems EuroSys ’20, April 27–30, 2020, Heraklion, Greece

0

20

40

60

80

100

0 10 20 40 60 80 100

fa
st

pa
th

(%
)

conflict (%)

ATLAS f = 1
ATLAS f = 2
ATLAS f = 3

EPaxos f = 2
EPaxos f = 3

Figure 4. Ratio of fast paths for varying conflict rates.

then evaluate Atlas with a geo-replicated key-value store
under the YCSB workload [6] (§5.7). In our microbenchmark
a varying number of closed-loop clients access the service at
the closest (non-failed) site. Clients measure latency as the
time between submitting a command and the system execut-
ing it. Each command carries a key of 8 bytes and (unless
specified otherwise) a payload of 100 bytes. We assume that
commands conflict when they carry the same key. To mea-
sure performance under a rate ρ of conflicting commands, a
client chooses key 0 with a probability ρ, and some unique
key otherwise.

5.3 Fast-Path Likelihood

Figure 4 evaluates the benefits of our new fast-path condition.
To this end, it compares the fast-path ratio of Atlas and
EPaxos for different conflict rates and values of f . The system
consists of 3 sites when f = 1, 5 sites when f = 2, and 7
sites when f = 3. There is a single client per site (the results
with more clients are almost identical).

As noted before, Atlas always commits a command on the
fast path when f = 1. For higher values of f , our condition
for taking the fast-path significantly improves its likelihood
in comparison to EPaxos. With 5 sites and f = 2, when the
conflict rate increases by 20%, the ratio of fast paths in EPaxos
decreases on average by 20%. In contrast, the fast-path ratio
in Atlas only decreases by 10%.When all commands conflict,
EPaxos rarely takes the fast path, while Atlas does so for
50% of commands. Similar conclusions can be drawn from
Figure 4 when the two protocols are deployed with f = 3.

5.4 Planet-Scale Performance

We now consider two planet-scale scenarios that motivate
the design of Atlas. In these experiments we measure how
the performance of Atlas evolves as the system scales up
progressively from 3 to 13 sites. In the first experiment, the
load on Atlas is constant, using a fixed number of clients
spread across all 13 sites. We demonstrate how bringing
the service closer to already existing clients, by adding new
replicas, improves the latency these clients perceive. In the
second experiment, each Atlas site hosts a fixed number of
clients, so that the growth in the number of sites translates

0

100

200

300

400

500

3 5 7 9 11 13

la
te

nc
y

(m
s)

#sites

FPaxos f = 1

49
%

54
%

74
%

71
%

93
%

12
1%

FPaxos f = 2

58
% 11

9%

11
5%

12
5%

13
5%

Mencius

63
%

72
%

10
7% 13

3%

13
7% 18

2%

EPaxos

4% 5%

55
%

46
%

65
%

78
%

ATLAS f = 1

4%

3%

4% 7%

9%

13
%

ATLAS f = 2

21
%

37
%

27
%

25
%

32
%

optimal

Figure 5. Latency when scaling-out from 3 to 13 sites with
1000 clients spread across 13 sites and 2% conflict rate. Per-
centages indicate the overhead wrt the optimal performance.

into increased load. This models a scenario where the service
expands to new locations around the globe in order to serve
new clients in these locations. In this case we demonstrate
that Atlas gracefully copes with this growth, maintaining
its performance in contrast to state-of-the-art SMR protocols.

Bringing the service closer to clients. We deploy 1000
clients equally spread over 13 sites, which issue commands
at a fixed 2% conflict rate. Figure 5 reports how the average
latency changes as Atlas is gradually deployed closer to
client locations. The black bar in Figure 5 gives the aver-
age of the sum of round-trip latencies from a client to the
closest coordinator, and from the coordinator to its closest
majority. As clients execute no protocol logic and may not
be co-located with sites, this gives the optimal latency for
leaderless protocols (§3.3). The percentages on bars indicate
the overhead of the different protocols with respect to this
theoretical value.
As shown in Figure 5, Atlas improves its performance

when deployed closer to clients: these can access a closer
coordinator site, which in its turn accesses the closest fast
quorum of sites. In Figure 5, the latency of Atlas f = 1
improves on average by 25ms whenever two new sites are
added; for f = 2 this improvement is 33ms. For 13 sites, the
optimal latency is 151ms, and Atlas f = 1 is only 13% above
this value, with an average latency of 172ms; Atlas f = 2 is
32% above the optimum, with an average latency of 200ms.
Overall, going from 3 to 13 sites with Atlas (f = 1, 2) cuts
down client-perceived latency by 39%-42%.
As seen in Figure 5, the performance of Atlas greatly

contrasts with that of the three other SMR protocols. With
13 sites, FPaxos executes commands after 336ms when f = 1
and after 358ms when f = 2, which is almost twice as slow
as Atlas with identical failure assumptions. This large gap
comes from the fact that, for a command to execute in a
leader-based protocol, clients wait for four message delays
on the critical path: a round trip from the client to the leader,
and a round trip from the leader to a quorum.

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Vitor Enes, Carlos Baquero, Tuanir França Rezende, Alexey Gotsman, Matthieu Perrin, and Pierre Sutra

1x

1.5x

2x

2.5x

3x

3.5x
3 5 7 9 11 13

la
te

nc
y

pe
na

lty

#sites

FPaxos f = 1
FPaxos f = 2

Mencius
EPaxos

ATLAS f = 1
ATLAS f = 2

Figure 6. Latency penalty (with respect to the optimal per-
formance) when scaling-out from 3 to 13 sites, with 128
clients deployed on each site, and 1% of conflict rate.

The performance of EPaxos remains almost constant,
within 10% of 300ms. With 13 sites, EPaxos is 78% slower
than the optimum, and 57% slower than Atlas f = 1. This
penalty is due to the large fast quorums it employs.
Finally, Mencius exhibits a high latency – above 400ms

– in every configuration. This is because a replica needs to
contact all the other replicas to execute a command, and
thus, the performance of Mencius is bounded by the speed
of its slowest replica.

Expanding the service. We now consider another planet-
scale experiment that models a situation in which the service
expands to new locations to serve new clients. The experi-
ment considers 3 to 13 sites, with 128 clients per site, and
each clients submits commands with a payload of 3KB. Fig-
ure 6 reports the latency penalty with respect to the optimal.

FPaxos f = 1 exhibits a latency penalty ranging from 1.7x
to 4.7x (the last value is not shown in Figure 6 for readability).
In particular, starting from 9 sites its performance degrades
sharply with the increase in the number of sites and, hence,
the number of clients. This happens because the leader can-
not cope with the load, having to broadcast each command
to all replicas. FPaxos f = 2 follows a similar trend.
EPaxos behaves better than FPaxos, hitting the optimal

performance with 3 and 5 sites. However, starting from 11
sites, the latency of EPaxos becomes at best 50% of the opti-
mum. Overall, due to its large fast quorums, the performance
of EPaxos lowers as the number of sites increases.
In contrast to the prior two protocols, Atlas distributes

the cost of broadcasting command payloads among replicas
and uses small fast quorums. This allows the protocol to be
within 4% of the optimum when f = 1, and within 26% when
f = 2. Atlas is thus able to cope with the system growth
without degrading performance.

5.5 Varying Load and Conflict Rate

To further understand the performance of Atlas, we conduct
an experiment in which the load and the conflict rate vary.
The protocol is deployed at 5 sites, and the load increases

200
300
400
500
600
700
800
900
1000

100 1000 10000
200
300
400
500
600
700
800
900
1000

100 1000 10000

la
te

nc
y

(m
s)

throughput (ops/s) throughput (ops/s)

FPaxos f = 1 EPaxos ATLAS f = 1

8 16 32 64 128
256

512

ATLAS f = 2

Figure 7. Throughput and latency with 5 sites when the
load (number of clients) increases under moderate (left, 10%)
and high (right, 100%) conflict rates.

from 8 to 512 clients per site, under a moderate (10%) to high
(100%) conflict rate. As before, messages carry a payload of
3KB. The results are presented in Figure 7, where we also
compare with FPaxos f = 1 and EPaxos.
Under a 10% conflict rate (left-hand side of Figure 7) and

with up to 64 clients per site, Atlas f = 1 executes com-
mands with an average latency below 336ms. When this
load doubles and then quadruples, the latency increases to
respectively 366ms and 381ms. Compared to Atlas, the per-
formance of EPaxos degrades faster with increasing load,
yielding latencies of 368ms, 404ms and 484ms for 64, 128
and 256 clients per site, respectively. FPaxos performance is
stable at 437ms for up to 256 clients per site, as the leader is
capable of handling such a moderate load.
At a high load, with 512 clients per site, all the protocols

but Atlas f = 2 saturate. In particular, FPaxos saturates
because the leader is no longer capable of coping with the
load. Although Atlas f = 1 is the most efficient protocol
until saturation, its performance degrades sharply at 512
clients per site due to large batches formed during command
execution. Interestingly, Atlas f = 2 behaves better due to
the slow-path optimization in §4. Since this protocol uses
larger fast quorums, the optimization allows it to prune de-
pendencies that Atlas f = 1 cannot: while coordinators in
Atlas f = 1 must include every dependency reported by
a fast-quorum process for a given command, coordinators
in Atlas f = 2 only include the dependencies reported by
at least 2 fast-quorum processes. This reduces the size of
batches in execution, improving the overall protocol latency.
With a 100% conflict rate (right-hand side of Figure 7),

EPaxos performs worse than the remaining protocols. It exe-
cutes commands with an average latency of at least 780ms,
making the protocol unpractical in this context. As pointed
out in §5.3, this is explained by its fast-path condition which
rarely triggers when the conflict rate is high. In contrast,
Atlas f = 1 is consistently the fastest protocol. Atlas is
slower than FPaxos f = 1 only when providing a higher
fault-tolerance level (f = 2).

State-Machine Replication for Planet-Scale Systems EuroSys ’20, April 27–30, 2020, Heraklion, Greece

0
200
400
600
800
1000
1200

10 20 30 40 50 60 70
0

200
400
600
800
1000
1200

10 20 30 40 50 60 70

0
200
400
600
800
1000
1200

10 20 30 40 50 60 70
0

500
1000
1500
2000
2500
3000

10 20 30 40 50 60 70

th
ro

ug
hp

ut
(o

ps
/s

) TW FI
th

ro
ug

hp
ut

(o
ps

/s
)

time (s)

SC

time (s)

all sites

Paxos ATLAS

Figure 8. The impact of a failure on the throughput of Paxos
and Atlas (3 sites, f = 1).

5.6 Availability under Failures

Figure 8 depicts an experiment demonstrating that Atlas is
inherently more available than a leader-driven protocol. The
experiment runs across 3 sites: Taiwan (TW), Finland (FI) and
South Carolina (SC). Such configuration tolerates a single site
failure, so FPaxos is the same as Paxos. We do not evaluate
EPaxos, as its availability guarantees are similar to those of
Atlas in this configuration. Each site hosts 128 closed-loop
clients. Half of the clients issue commands targeting key 0
and the other half issue commands targeting a unique key per
client. Hence, commands by clients in the first half conflict
with each other, while commands by clients in the second
half commute with all commands by a different client.

After 30s of execution, the SMR service is abruptly halted
at the TW site, where the Paxos leader is located. Based on
the measurements reported in §5.1, we set the timeout after
which a failure is suspected to 10s for both protocols. Upon
detecting the failure, the clients located at the failed site (TW)
reconnect to the closest alive site, SC. In the case of Paxos,
the surviving sites initiate recovery and elect SC as the new
leader. In the case of Atlas, the surviving sites recover the
commands that were initially coordinated by TW.
As shown in Figure 8, Paxos blocks during the recovery

time. In contrast, Atlas keeps executing commands, albeit
at a reduced throughput. The drop in throughput happens
largely because the clients issuing commands on key 0 (50%
of all clients) collect as dependencies some of the commands
being recovered (those that also access key 0). The execu-
tion of the former commands then blocks until the latter
are recovered. In contrast, the clients at non-failed sites is-
suing commands with per-client keys continue to operate
as normal. Since commands by these clients commute with
those by other clients, their execution never blocks on the
commands being recovered. This means that these clients
operate without disruption during the whole experiment.

0

1

2

3

4

20%-80% 50%-50% 80%-20% 100%-0%

0

2

4

6

8

10

12

20%-80% 50%-50% 80%-20% 100%-0%

th
ro

ug
hp

ut
(K

op
s/

s)

read-write percentages

EPaxos
*EPaxos

1.1x
1.2x

1.3x

1.3x

ATLAS f = 1

1.7x
1.7x

1.6x

1.3x

*ATLAS f = 1

1.9x
1.9x

1.8x
1.3x

ATLAS f = 2

1.5x 1.4x 1.3x
1x

*ATLAS f = 2

1.6x
1.6x

1.6x

1.3x

th
ro

ug
hp

ut
(K

op
s/

s)

1.1x

1.4x

1.5x

1.5x

1.9x 1.8x

1.8x

1.4x

2x

2.2x

2.2x

1.5x

1.9x
1.9x

1.7x

1.2x

2.1x

2.3x

2.1x

1.5x

Figure 9. YCSB performance for update-heavy (20%-80%),
balanced (50%-50%), read-heavy (80%-20%) and read-only
(100%-0%) workloads, with 7 (top) and 13 sites (bottom). A *
before the protocol name indicates that theNFR optimization
(§4) is enabled. The number at the top of each bar indicates
the speed-up over (vanilla) EPaxos.

The bottom right plot contains the aggregate throughput
of the system. Before failure, Atlas is almost two times
faster than Paxos, and operates consistently better during the
whole experiment. Note, however, that Paxos has a slightly
higher throughput at the leader (TW) before the crash, and
at the new leader (SC) after recovery. This is due to the delay
between committing and executing commands in Atlas.

5.7 Key-Value Store Service

Our final experiment compares Atlas and EPaxos when the
protocols are applied to a replicated key-value store (KVS)
service. When accessing a KVS record stored under key k ,
a client executes either command read(k) to fetch its con-
tent, or write(k,v) to update it to valuev . To benchmark the
performance of the replicated KVS we use the Yahoo! Cloud
Serving Benchmark (YCSB) [6]. We apply four types of work-
loads, each with a different mix of read/write operations. The
KVS contains 106 records and all workloads select records
following a Zipfian distribution with the default YCSB skew.
In this experiment, Atlas (f = 1, 2) and EPaxos are de-

ployed over 7 and 13 sites (respectively, top and bottom of
Figure 9). At each site running the benchmark we execute
128 YCSB client threads. The protocol name is preceded with
the * symbol if the NFR optimization is enabled. As pointed
out in §4, this optimization accelerates the execution of read
commands. The number at the top of each bar indicates the
speed-up over (vanilla) EPaxos.

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Vitor Enes, Carlos Baquero, Tuanir França Rezende, Alexey Gotsman, Matthieu Perrin, and Pierre Sutra

With 7 sites, EPaxos executes 1.8K ops/s in the update-
heavy workload, whereas Atlas executes 3.2K ops/s when
f = 1, and 2.8K ops/s when f = 2. Although EPaxos and
Atlas f = 2 have the same fast-quorum size with n = 7,
the performance gap between the protocols is large for two
reasons. First, the key-access distribution in YCSB does not
allow EPaxos to take the fast path frequently, since the first
12 records have a 20% chance of getting picked. Due to this,
Atlas f = 2 takes the fast path for 88% of commands, while
EPaxos does so in 70% of cases. This makes the average com-
mit latency of Atlas f = 2 lower by 50ms. Second, batches
formed in execution with EPaxos are larger than with Atlas
f = 2 because Atlas prunes unnecessary dependencies (§4):
once commands are committed, EPaxos takes on average
147ms to execute them, while Atlas f = 2 needs only 30ms.
With f = 1, Atlas has a longer execution delay of 73ms
(this difference between f = 1 and f = 2 is explained in
§5.5). Nevertheless, Atlas f = 1 beats Atlas f = 2, since
it always commits commands after contacting the closest
majority, and this compensates for its higher execution delay.
Increasing the percentage of read operations improves

the performance of all the protocols because reads do not
conflict with other reads. In the read-only workload the
performance is simply determined by the quorum size, since
all the protocols take the fast path. In this case, both EPaxos
and Atlas f = 2 execute 3.2K ops/s, while Atlas f = 1,
which has a smaller fast quorum, executes 4.2K ops/s.

With the NFR optimization and n = 7, the protocols exe-
cute up to 33% more operations. The highest speedup occurs
in the read-only workload, where the protocols execute all
commands after a single round trip to the closest majority. In
this case, NFR allows EPaxos and Atlas f = 2 to match the
performance of vanilla Atlas f = 1 while maintaining their
higher fault-tolerance level. Compared to vanilla EPaxos, At-
las with NFR is up to 1.9x faster with f = 1, and 1.6x with
f = 2. Similar conclusions can be drawn from Figure 9 when
the protocols are deployed over 13 sites. Overall, Atlas with
NFR outperforms EPaxos by 1.5-2.3x.

6 Related Work

The classical way of implementing SMR is by funneling all
commands through a single leader replica [13, 14, 25, 26],
which impairs scalability. A way to mitigate this problem is
to distribute the leader responsibilities round-robin among
replicas, as done in Mencius [20]. However, this makes the
system run at the speed of the slowest replica.
Exploiting commutativity to improve the scalability of

SMR was first proposed in Generalized Paxos [27] and
Generic Broadcast [15]. These protocols still rely on a leader
to order concurrent non-commuting commands, which cre-
ates a bottleneck.
The closest SMR protocol to ours is EPaxos [23], which

is also leaderless and exploits commutativity. We compared

Atlas with EPaxos in detail in §3.3. There have been two
follow-up protocols to EPaxos, Alvin [32] and Caesar [2].
Atlas compares to these protocols similarly to EPaxos; in
particular, both follow-ups have large fast quorums that
depend on the overall number of processes only.

Flexible Paxos [11] reduces the size of Paxos Phase 2 quo-
rums to f + 1, a technique we also use on the slow path of
Atlas. However, this technique is not directly applicable to
computing dependencies via fast path, as required by lead-
erless SMR. To the best of our knowledge, Atlas is the first
protocol to reduce the size of fast quorums to ⌊ n2 ⌋ + f .
An approach to scaling SMR is to shard the state of the

application being replicated and add cross-shard coordina-
tion to preserve consistency [3]. Such approaches build on a
non-sharded SMR protocol and are hence orthogonal to our
proposal: Atlas can be combined with them to scale SMR
even further. Protocols such as M2Paxos [28], WPaxos [1]
and DPaxos [24] scale up SMR using a variation of the shard-
ing approach. These protocols exploit access locality by op-
timizing for workloads where commands do not frequently
access objects in multiple locations.
There have been recent proposals of SMR protocols that

improve scalability using special hardware capabilities, such
as low-latency switches or RDMA [8, 18, 34]. However, cur-
rently these protocols work within a single data center only.

7 Conclusion

This paper presented Atlas, the first leaderless SMR protocol
parameterized with the number of allowed failures. Atlas
is designed for planet-scale systems where concurrent site
failures are rare. It uses tight quorums, executes a high per-
centage of the operations within a single round trip and
executes quick linearizable reads. As demonstrated empiri-
cally with large-scale experiments in Google Cloud Platform,
all these innovations pay off in practice: adding new nearby
replicas improves client-perceived latency, and expanding to
new locations maintains the system performance. Compared
to the state of the art, Atlas consistently outperforms exist-
ing protocols: it is up to two times faster than Flexible Paxos
with identical failure assumptions, and more than doubles
the performance of EPaxos in mixed read-write workloads.

Acknowledgments

We thank Lennart Oldenburg for his valuable feedback on
early versions of this paper. We also thank our shepherd,
Liuba Shrira, and the anonymous reviewers for their com-
ments and suggestions. Vitor Enes was supported by an
FCT PhD Fellowship (PD/BD/142927/2018). Tuanir França
Rezende and Pierre Sutra were supported by EU H2020 grant
No 825184 and ANR grant 16-CE25-0013-04. Alexey Gotsman
was supported by an ERC Starting Grant RACCOON. This
work was partially supported by the Google Cloud Platform
research credits program.

State-Machine Replication for Planet-Scale Systems EuroSys ’20, April 27–30, 2020, Heraklion, Greece

References

[1] Ailidani Ailijiang, Aleksey Charapko, Murat Demirbas, and Tevfik
Kosar. Multileader WAN Paxos: Ruling the Archipelago with Fast
Consensus. arXiv CoRR, abs/1703.08905, 2017.

[2] Balaji Arun, Sebastiano Peluso, Roberto Palmieri, Giuliano Losa, and
Binoy Ravindran. Speeding up Consensus by Chasing Fast Decisions.
In International Conference on Dependable Systems and Networks (DSN),
2017.

[3] Carlos Eduardo Benevides Bezerra, Fernando Pedone, and Robbert
van Renesse. Scalable State-Machine Replication. In International
Conference on Dependable Systems and Networks (DSN), 2014.

[4] Brendan Burns, Brian Grant, David Oppenheimer, Eric A. Brewer, and
John Wilkes. Borg, Omega, and Kubernetes. ACM Queue, 2016.

[5] Michael Burrows. The Chubby Lock Service for Loosely-Coupled
Distributed Systems. In Symposium on Operating Systems Design and
Implementation (OSDI), 2006.

[6] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. Benchmarking Cloud Serving Systems with YCSB.
In Symposium on Cloud Computing (SoCC), 2010.

[7] James C. Corbett, JeffreyDean,Michael Epstein, Andrew Fikes, Christo-
pher Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christo-
pher Heiser, Peter Hochschild, Wilson C. Hsieh, Sebastian Kanthak,
Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik, David
Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Ya-
sushi Saito, Michal Szymaniak, Christopher Taylor, Ruth Wang, and
Dale Woodford. Spanner: Google’s Globally-Distributed Database. In
Symposium on Operating Systems Design and Implementation (OSDI),
2012.

[8] Huynh TuDang, Daniele Sciascia,Marco Canini, Fernando Pedone, and
Robert Soulé. NetPaxos: Consensus at Network Speed. In Symposium
on Software Defined Networking Research (SOSR), 2015.

[9] Seth Gilbert and Nancy A. Lynch. Brewer’s Conjecture and the Feasi-
bility of Consistent Available Partition-Tolerant Web Services. SIGACT
News, 2002.

[10] Maurice Herlihy and JeannetteM.Wing. Linearizability: A Correctness
Condition for Concurrent Objects. ACM Trans. Program. Lang. Syst.,
1990.

[11] Heidi Howard, Dahlia Malkhi, and Alexander Spiegelman. Flexible
Paxos: Quorum Intersection Revisited. In International Conference on
Principles of Distributed Systems (OPODIS), 2016.

[12] Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira, and Benjamin
Reed. ZooKeeper: Wait-free Coordination for Internet-scale Systems.
In USENIX Annual Technical Conference (USENIX ATC), 2010.

[13] Flavio Paiva Junqueira, Benjamin C. Reed, and Marco Serafini. Zab:
High-performance broadcast for primary-backup systems. In Interna-
tional Conference on Dependable Systems and Networks (DSN), 2011.

[14] Leslie Lamport. The Part-Time Parliament. ACM Trans. Comput. Syst.,
1998.

[15] Leslie Lamport. Generalized Consensus and Paxos. Technical Report
MSR-TR-2005-33, Microsoft Research, 2005.

[16] Leslie Lamport. Fast Paxos. Distributed Computing, 2006.
[17] Leslie Lamport. Lower Bounds for Asynchronous Consensus. Dis-

tributed Computing, 2006.
[18] Jialin Li, Ellis Michael, Naveen Kr. Sharma, Adriana Szekeres, and Dan

R. K. Ports. Just Say NO to Paxos Overhead: Replacing Consensus
with Network Ordering. In Symposium on Operating Systems Design
and Implementation (OSDI), 2016.

[19] Shengyun Liu, Paolo Viotti, Christian Cachin, Vivien Quéma, and
Marko Vukolic. XFT: Practical Fault Tolerance beyond Crashes. In
Symposium on Operating Systems Design and Implementation (OSDI),
2016.

[20] Yanhua Mao, Flavio Paiva Junqueira, and Keith Marzullo. Mencius:
Building Efficient Replicated State Machine for WANs. In Symposium
on Operating Systems Design and Implementation (OSDI), 2008.

[21] Henrique Moniz, João Leitão, Ricardo J. Dias, Johannes Gehrke,
Nuno M. Preguiça, and Rodrigo Rodrigues. Blotter: Low Latency
Transactions for Geo-Replicated Storage. In International Conference
on World Wide Web (WWW), 2017.

[22] Iulian Moraru. Egalitarian Distributed Consensus. Technical Report
CMU-CS-14-133, Carnegie Mellon University, 2014. PhD Thesis.

[23] Iulian Moraru, David G. Andersen, and Michael Kaminsky. There Is
More Consensus in Egalitarian Parliaments. In Symposium on Operat-
ing Systems Principles (SOSP), 2013.

[24] Faisal Nawab, Divyakant Agrawal, and Amr El Abbadi. DPaxos: Man-
aging Data Closer to Users for Low-Latency and Mobile Applications.
In International Conference on Management of Data (SIGMOD), 2018.

[25] Brian M. Oki and Barbara Liskov. Viewstamped Replication: A General
Primary Copy. In Symposium on Principles of Distributed Computing
(PODC), 1988.

[26] Diego Ongaro and John K. Ousterhout. In Search of an Understand-
able Consensus Algorithm. In USENIX Annual Technical Conference
(USENIX ATC), 2014.

[27] Fernando Pedone and André Schiper. Generic Broadcast. In Interna-
tional Symposium on Distributed Computing (DISC), 1999.

[28] Sebastiano Peluso, Alexandru Turcu, Roberto Palmieri, Giuliano Losa,
and Binoy Ravindran. Making Fast Consensus Generally Faster. In
International Conference on Dependable Systems and Networks (DSN),
2016.

[29] Fred B. Schneider. Implementing Fault-Tolerant Services Using the
State Machine Approach: A Tutorial. ACM Comput. Surv., 1990.

[30] Alexander Shraer, Benjamin Reed, Dahlia Malkhi, and Flavio Paiva
Junqueira. Dynamic Reconfiguration of Primary/Backup Clusters. In
USENIX Annual Technical Conference (USENIX ATC), 2012.

[31] Pierre Sutra. On the correctness of Egalitarian Paxos. Inf. Process. Lett.,
2020.

[32] Alexandru Turcu, Sebastiano Peluso, Roberto Palmieri, and Binoy
Ravindran. Be General and Don’t Give Up Consistency in Geo-
Replicated Transactional Systems. In International Conference on Prin-
ciples of Distributed Systems (OPODIS), 2014.

[33] Muhammed Uluyol, Anthony Huang, Ayush Goel, Mosharaf Chowd-
hury, and Harsha V. Madhyastha. Near-Optimal Latency Versus Cost
Tradeoffs in Geo-Distributed Storage. In Symposium on Networked
Systems Design and Implementation (NSDI), 2020.

[34] Cheng Wang, Jianyu Jiang, Xusheng Chen, Ning Yi, and Heming Cui.
APUS: Fast and Scalable Paxos on RDMA. In Symposium on Cloud
Computing (SoCC), 2017.

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Vitor Enes, Carlos Baquero, Tuanir França Rezende, Alexey Gotsman, Matthieu Perrin, and Pierre Sutra

A The Atlas Protocol and its Correctness

A.1 Protocol

Algorithm 4: Full Atlas protocol at process i .

1 function submit(c)
2 id ← ⟨i,min{l | ⟨i, l⟩ ∈ start}⟩
3 past ← conflicts(c)
4 Q ← fast_quorum(i)
5 send MCollect(id, c, past,Q) to Q

6 receive MCollect(id, c, past,Q) from j
7 pre: id ∈ start
8 dep[id] ← conflicts(c) ∪ past
9 cmd[id] ← c; quorum[id] ← Q

10 phase[id] ← collect
11 send MCollectAck(id, dep[id]) to j

12 receive MCollectAck(id, depj) from all j ∈ Q
13 pre: id ∈ collect ∧Q = quorum[id]
14 D =

⋃
Q dep

15 if

⋃
Q dep =

⋃
f Q dep then

16 send MCommit(id, cmd[id],D) to all

17 else

18 Q ′← slow_quorum(i)
19 send MConsensus(id, cmd[id],D, i) to Q ′

20 receive MConsensus(id, c,D,b) from j
21 pre: bal[id] ≤ b

22 cmd[id] ← c; dep[id] ← D

23 bal[id] ← b; abal[id] ← b

24 send MConsensusAck(id,b) to j

25 receive MConsensusAck(id,b) from Q
26 pre: bal[id] = b ∧ |Q | = f + 1
27 send MCommit(id, cmd[id], dep[id]) to all

28 receive MCommit(id, c,D)
29 pre: id < commit ∪ execute
30 cmd[id] ← c; dep[id] ← D; phase[id] ← commit

31 function recover(id)
32 b ← i + n(⌊ bal[id]n ⌋ + 1)
33 send MRec(id, cmd[id],b) to all

34 receive MRec(id, _, _) from j
35 pre: id ∈ commit ∪ execute
36 send MCommit(id, cmd[id], dep[id]) to j

37 receive MRec(id, c,b) from j
38 pre: bal[id] < b ∧ id < commit ∪ execute
39 if bal[id] = 0 ∧ id ∈ start then
40 dep[id] ← conflicts(c)
41 cmd[id] ← c

42 bal[id] ← b

43 phase[id] ← recover
44 send MRecAck(id, cmd[id], dep[id], quorum[id],

abal[id],b) to j

45 receive MRecAck(id, cmd j , depj ,Q
0
j ,abj ,b) from all j ∈ Q

46 pre: bal[id] = b ∧ |Q | = n − f

47 if ∃k ∈ Q . abk , 0 then
48 let k be such that abk is maximal
49 send MConsensus(id, cmdk , depk ,b) to all

50 else if ∃k ∈ Q .Q0
k , � then

51 Q ′← if id .1 ∈ Q then Q else Q ∩Q0
k

52 send MConsensus(id, cmdk ,
⋃

Q ′ dep,b) to all

53 else send MConsensus(id, noOp,�,b) to all

54 loop

55 let S be the smallest subset of commit such that
∀id ∈ S . (dep[id] ⊆ S ∪ execute)

56 for id ∈ S ordered by < do

57 execute(cmd[id])
58 phase[id] ← execute

cmd[id] ← noOp ∈ 𝒞 Command
phase[id] ← start Phase
dep[id] ← � ⊆ ℐ Dependency set

quorum[id] ← � ⊆ 𝒫 Fast quorum
bal[id] ← 0 ∈ N Current ballot
abal[id] ← 0 ∈ N Last accepted ballot

State-Machine Replication for Planet-Scale Systems EuroSys ’20, April 27–30, 2020, Heraklion, Greece

A.2 Protocol Correctness

In what follows, we prove Invariants 1 and 2′. To this end, we use the auxiliary invariants below:
5. At any process, if cmd[id] , noOp, then cmd[id] has been previously submitted by a client.
6. Assume MCollect(id, c, _, _) has been sent. Then for any MConsensus(id, c ′, _, _), MCommit(id, c ′, _) and MRec(id, c ′, _),

we have c ′ = c or c ′ = noOp.
7. Assume MConsensus(id, _, _,b) has been sent. Then b = id.1 or b > n.
8. Assume MConsensus(id, c,D,b) and MConsensus(id, c ′,D ′,b ′) have been sent. If b = b ′, then c = c ′ and D = D ′.
9. Assume MRecAck(id, c, _,Q,ab, _) and MRecAck(id, c ′, _,Q ′,ab ′, _) have been sent. If Q , � and Q ′ , �, then Q = Q ′. If

additionally ab = ab ′ = 0, then c = c ′.
10. Assume MRecAck(_, _, _, _,ab,b) has been sent by some process. Then ab < b.
11. Assume MConsensusAck(id,b) and MRecAck(id, _, _, _,ab,b ′) have been sent by some process. If b ′ > b, then b ≤ ab < b ′

and ab , 0.
12. Assume a slow quorum has received MConsensus(id, c,D,b) and responded to it with MConsensusAck(id,b). For any

MConsensus(id, c ′,D ′,b ′) sent, if b ′ > b, then c ′ = c and D ′ = D.
13. Assume MCommit(id, c,D) has been sent at line 16. Then for any MConsensus(id, c ′,D ′, _) sent, c ′ = c and D ′ = D.
14. Assume MCommit(id, c, _) and MCommit(id ′, c ′, _) have been sent, c , noOp, c ′ , noOp and conflict(c, c ′). Assume

further that some process sends two messages: either MCollectAck(id, dep) or MRecAck(id, _, dep, _, 0, _) and either
MCollectAck(id ′, dep′) or MRecAck(id ′, _, dep′, _, 0, _). Then id ′ ∈ dep or id ∈ dep′.

Invariants 5-11 easily follow from the structure of the protocol. We now prove the rest of the invariants.

Proof of Invariant 12. Assume that at some point
(*) a slow quorum has received MConsensus(id, c,D,b) and responded to it with MConsensusAck(id,b).

We prove by induction on b ′ that, if a process i sends MConsensus(id, c ′,D ′,b ′) with b ′ > b, then c ′ = c and D ′ = D. Given
some b∗, assume this property holds for all b ′ < b∗. We now show that it holds for b ′ = b∗. We make a case split depending on
the transition of process i that sends the MConsensus message.

First, assume that process i sends MConsensus at line 19. In this case, b ′ = i . Since b ′ > b, we have b < i . But this contradicts
Invariant 7. Hence, this case is impossible.

The remaining case is when process i sends MConsensus during the transition at line 45. In this case, i has received

MRecAck(id, cmd j , depj , _,abj ,b
′)

from all processes j in a recovery quorum QR . Let abmax = max{abj | j ∈ QR }; then by Invariant 10 we have abmax < b ′.
Since the recovery quorumQR has size n − f and the slow quorum from (*) has size f + 1, we get that at least one process in

QR must have received the MConsensus(id, c,D,b) message and responded to it with MConsensusAck(id,b). Let one of these
processes be p. Since b ′ > b, by Invariant 11 we have abp , 0, and thus process i executes line 49. By Invariant 11 we also have
b ≤ abp and thus b ≤ abmax.

Consider an arbitrary process k ∈ QR , selected at line 48, such that abk = abmax. We now prove that cmdk = c and depk = D.
If abmax > b, then since abmax < b ′, by induction hypothesis we have cmdk = c and depk = D, as required. If abmax = b,
then since abmax , 0, process k has received some MConsensus(id, _, _,abmax) message. By Invariant 8, process k must have
received the same MConsensus(id, c,D,abmax) received by process p. Upon receiving this message, process k stores c in cmd
and D in dep and does not change these values at line 39: abmax , 0 and thus bal[id] cannot be 0 when the process executes
this line. Then process k must have sent MRecAck(id, cmdk , depk , _,abmax,b

′) with cmdk = c and depk = D, which concludes
the proof. □

Proof of Invariant 13. Assume MCommit(id, c,D) has been sent at line 16. Then, the process that sent this MCommitmessage
must be process id.1. Moreover, we have that for some fast quorum QF such that id.1 ∈ QF :

(*) every process j ∈ QF has received MCollect(id, c,QF , past) and responded with MCollectAck(id, depj) such
that D =

⋃
f Q F dep =

⋃
Q F dep.

We prove by induction on b that, if a process i sends MConsensus(id, c ′,D ′,b), then c ′ = c and D ′ = D. Given some b∗, assume
this property holds for all b < b∗. We now show that it holds for b = b∗.

First note that process i cannot send MConsensus at line 19, since in this case we would have i = id.1, and id.1 took the fast
path at line 16. Hence, process i must have sent MConsensus during the transition at line 45. In this case, i has received

MRecAck(id, cmd j , depj ,Q
0
j ,abj ,b)

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Vitor Enes, Carlos Baquero, Tuanir França Rezende, Alexey Gotsman, Matthieu Perrin, and Pierre Sutra

from all processes j in a recovery quorum QR .
If MConsensus is sent at line 49, then we have abk > 0 for the process k ∈ QR selected at line 48. In this case, before sending

MRecAck, process k must have received
MConsensus(id, cmdk , depk ,abk)

with abk < b. Then by induction hypothesis we have c ′ = cmdk = c and D ′ = depk = D. This establishes the required.
If MConsensus is not sent in line 49, then we have abk = 0 for all processes k ∈ QR . In this case, process i sends MConsensus

in either line 52 or line 53. Since the recovery quorum QR has size n − f and the fast quorum QF from (*) has size ⌊ n2 ⌋ + f , we
have that

(**) at least ⌊ n2 ⌋ processes inQR are part ofQF and thus must have received MCollect(id, c,QF , past) and responded
to it with MCollectAck.

Let process p be one these processes. Due to the assignment at line 43 and the check at line 7, process p must have received
MCollect before sending MRecAck. Then, since abp = 0, process p reports the initial fast quorum QF and command c , i.e.,
process p sends MRecAck(id, cmdp , _,Q0

p ,abp , _) with Q0
p = QF and cmdp = c . Then Q0

p , �, so that process i must send
MConsensus at line 52.
By Invariant 9, and since process p has sent MRecAck(id, c, _,QF , _, _), any process k selected in line 50 has Q0

k = QF and
cmdk = c . For this reason, c ′ = cmdk = c , as required. We now show that D ′ = D. By our assumption, process id.1 sent an
MCommit(id, c,D) at line 16. Then due to line 35, this process would reply to MRec with MCommit instead of MRecAck. Hence,
id.1 is not part of the recovery quorum, i.e., id.1 < QR , and with that, quorumQR ∩QF is selected in line 51. Let this quorum be
QU . By Property 2, the fast path proposal D =

⋃
Q F dep can be recovered by the set union of the dependencies initially reported

by any ⌊ n2 ⌋ fast quorum members (excluding the initial coordinator). By (**), and since all processes k ∈ QU have abk = 0,
then all processes in QU replied with the dependencies that were reported to the initial coordinator. Thus, by Property 2 we
have D =

⋃
Q F dep =

⋃
QU dep = D ′, which concludes the proof. □

Proof of Invariant 1. Consider that MCommit(id, c,D) and MCommit(id, c ′,D ′) have been sent. We prove that c = c ′ and
D = D ′.

Note that, if an MCommit(id, c,D) was sent at line 36, then some process sent an MCommit(id, c,D) at line 16 or line 27. Hence,
without loss of generality, we can assume that the two MCommit under consideration were sent at line 16 or at line 27. We can
also assume that the two MCommit have been sent by different processes. Only one process can send an MCommit at line 16 and
only once. Hence, it is sufficient to only consider the following two cases.
Assume first that both MCommit messages are sent at line 27. Then for some b, a slow quorum has received

MConsensus(id, c,D,b) and responded to it with MConsensusAck(id,b). Likewise, for some b ′, a slow quorum has received
MConsensus(id, c ′,D ′,b ′) and responded to it with MConsensusAck(id,b ′).
Assume without loss of generality that b ≤ b ′. If b < b ′, then c ′ = c and D ′ = D by Invariant 12. If b = b ′, then c ′ = c and

D ′ = D by Invariant 8. Hence, in this case c ′ = c and D ′ = D, as required.
Assume now that MCommit(id, c,D) was sent at line 16 and MCommit(id, c ′,D ′) at line 27. Then for some b, a slow quorum

has received MConsensus(id, c ′,D ′,b) and responded to it with MConsensusAck(id,b). Then by Invariant 13, we must have
c ′ = c and D ′ = D, as required. □

Proof of Invariant 14. Assume MCommit(id, c, _) and MCommit(id ′, c ′, _) have been sent, c , noOp, c ′ , noOp and
conflict(c, c ′). Assume further that process j sends two messages: either MCollectAck(id, dep) or MRecAck(id, _, dep, _, 0, _)
and either MCollectAck(id ′, dep′) or MRecAck(id ′, _, dep′, _, 0, _). If MCollectAck(id, dep) is sent, it must be in response to
MCollect(id,d, _, _), and by Invariant 6 we have d = c . Similarly, if MCollectAck(id ′, dep′) is sent, it must be in response
to MCollect(id ′,d ′, _, _), and by Invariant 6 we have d ′ = c ′. If MRecAck(id, _, dep, _, 0, _) is sent, it must be in response to
MRec(id,d, _), and by Invariant 6 we have d ∈ {c, noOp}. If MRecAck(id ′, _, dep′, _, 0, _) is sent, it must be in response to
MRec(id ′,d ′, _), and by Invariant 6 we have d ′ ∈ {c ′, noOp}.
Without loss of generality, assume that process j sends the message about id before the message about id ′. We prove that

id ∈ dep′. We have four cases depending on which message (MCollectAck or MRecAck) is sent for each identifier:
1) Process j sends MCollectAck(id, dep) and then MCollectAck(id ′, dep′). When handling MCollect(id, c, _, _), process

j stores c in cmd[id]. By Invariant 6, cmd[id] can only change to noOp. When handling MCollect(id ′, c ′, _, _), since
cmd[id] ∈ {c, noOp} and noOp conflicts with all commands, we have id ∈ conflicts(c ′) in line 8, and thus id ∈ dep′ in
MCollectAck(id ′, dep′), as required.

2) Process j sends MCollectAck(id, dep) and then MRecAck(id ′, _, dep′, _, 0, _). When handling MCollect(id, c, _, _), process j
stores c in cmd[id]. By Invariant 6, cmd[id] can only change to noOp. When handling MRec(id ′,d ′, _) with d ′ ∈ {c ′, noOp} we
have two cases depending on phase[id ′]. If id ′ ∈ start, then since cmd[id] ∈ {c, noOp} and noOp conflicts with all commands,

State-Machine Replication for Planet-Scale Systems EuroSys ’20, April 27–30, 2020, Heraklion, Greece

we have id ∈ conflicts(d ′) in line 40. If id ′ < start, then process j is a member of the original fast quorum for id ′ and thus
included id into dep[id ′] when it processed MCollect(id ′, c ′, _, _). Thus, in both cases id ∈ dep′ in MRecAck(id ′, _, dep′, _, 0, _),
as required.

3) Process j sends MRecAck(id, _, dep, _, 0, _) and then MCollectAck(id ′, dep′). Analogous to the above.
4) Process j sends MRecAck(id, _, dep, _, 0, _) and then MRecAck(id ′, _, dep′, _, 0, _). Analogous to the above. □

Proof of Invariant 2
′
. Assume that MCommit(id, c,D) and MCommit(id ′, c ′,D ′) have been sent with id , id ′, c , noOp,

c ′ , noOp and conflict(c, c ′). The protocol structure ensures that D = ⋃
Q dep for Q and dep given as parameters of handlers

at lines 12 or 45, and the computation of D occurs at lines 14 or 52. We start by proving that there exists a quorum Q̂ with
|Q̂ | ≥ ⌊ n2 ⌋ + 1 and d̂ep such that

⋃
Q dep =

⋃
Q̂ d̂ep, where each process j ∈ Q̂ computes its d̂epj in either line 8 or line 40 and

sends it in either MCollectAck(id, d̂epj) or MRecAck(id, _, d̂epj , _, 0, _).
The computation of D occurs either in the transition at line 12 or at line 52. If the computation of D occurs in the transition

at line 12, then Q is a fast quorum with size ⌊ n2 ⌋ + f . In this case, we let Q̂ = Q and d̂ep = dep. Since f ≥ 1, we have
|Q̂ | ≥ ⌊ n2 ⌋ + 1, as required. If the computation of D occurs at line 52, we have two situations depending on whether id.1 ∈ Q
(line 51). If id.1 ∈ Q , then Q is a recovery quorum of size n − f . In this case, we let Q̂ = Q and d̂ep = dep. Since f ≤ ⌊ n−12 ⌋,
we have |Q̂ | ≥ ⌊ n2 ⌋ + 1, as required. If id.1 < Q , then Q consists of the fast quorum members that are part of the recovery
quorum (line 51). Given that fast quorum size is ⌊ n2 ⌋ + f and the recovery quorum size is n − f , in this case Q contains at
least ⌊ n2 ⌋ + f − f = ⌊ n2 ⌋ fast quorum processes, and thus |Q | ≥ ⌊ n2 ⌋. Since D is computed in the branch where the initial fast
quorum is known (line 50), at least one of the fast quorum members in Q must have computed its set of dependencies at line 8,
including in its dependencies those reported by the original coordinator. In this case, we let Q̂ = Q ∪{id.1}, ∀j ∈ Q . d̂epj = depj
and d̂epid .1 be the set of dependencies sent by id.1 in its MCollectAck(id, d̂epid .1) message. Since |Q | ≥ ⌊ n2 ⌋ and id.1 < Q , we
have |Q̂ | ≥ ⌊ n2 ⌋ + 1, as required.
Similarly to the above, we can also prove that there exists a quorum Q̂ ′ with |Q̂ ′ | ≥ ⌊ n2 ⌋ + 1 and d̂ep′ such that⋃
Q ′ dep

′ =
⋃

Q̂ ′ d̂ep
′, where each process j ∈ Q̂ ′ computes its d̂ep′j in either line 8 or line 40 and sends its d̂ep′j in either

MCollectAck(id ′, d̂ep′j) or MRecAck(id ′, _, d̂ep′j , _, 0, _).
We now prove that id ′ ∈ D or id ∈ D ′. By contradiction, assume that id ′ < D and id < D ′. Since id ′ < D, we have

∀j ∈ Q̂ . id ′ < d̂epj . Similarly, since id < D ′, we have ∀j ∈ Q̂ ′. id < d̂ep′j . Given that |Q̂ | ≥ ⌊ n2 ⌋ + 1 and |Q̂ ′ | ≥ ⌊
n
2 ⌋ + 1, Q̂ and Q̂ ′

must intersect. For this reason, there must exist a process p ∈ Q̂ ∩ Q̂ ′ such that id ′ < d̂epp and id < d̂ep′p . But this contradicts
Invariant 14. □

A.2.1 Slow-path optimization. Section §4 describes an optimization that reduces the number of the dependencies in
the slow path by proposing to consensus

⋃
f Q dep instead of

⋃
Q dep at line 19. The previous proofs are not affected by this

optimization with the exception of the proof of Invariant 2′. We now prove this invariant when the optimization is enabled.

Proof of Invariant 2
′
. Assume that MCommit(id, c,D) and MCommit(id ′, c ′,D ′) have been sent with id , id ′, c , noOp,

c ′ , noOp and conflict(c, c ′). The protocol structure ensures that either D = ⋃
Q dep or D =

⋃
f Q dep for Q and dep given as

parameters of handlers at lines 12 or 45. Similarly, the protocol structure ensures that either D ′ =
⋃

Q ′ dep
′ or D ′ =

⋃
f Q ′ dep′

for Q ′ and dep′ given as parameters of handlers at lines 12 or 45. The computation of D =
⋃

Q dep and D ′ =
⋃

Q ′ dep
′ occurs

at lines 14 or 52, while the computation of D =
⋃
f Q dep and D ′ =

⋃
f Q ′ dep′ occurs at line 19.

Similarly to the previous proof of Invariant 2′, we can prove that if D =
⋃

Q dep, then there exists a quorum Q̂ with
|Q̂ | ≥ ⌊ n2 ⌋ + 1 and d̂ep such that

⋃
Q dep =

⋃
Q̂ d̂ep, where each process j ∈ Q̂ computes its d̂epj in either line 8 or line 40 and

sends it in either MCollectAck(id, d̂epj) or MRecAck(id, _, d̂epj , _, 0, _). Likewise, we can prove prove that if D ′ =
⋃

Q ′ dep
′,

then there exists a quorum Q̂ ′ with |Q̂ ′ | ≥ ⌊ n2 ⌋ + 1 and d̂ep′ such that
⋃

Q ′ dep
′ =

⋃
Q̂ ′ d̂ep

′, where each process j ∈ Q̂ ′

computes its d̂ep′j in either line 8 or line 40 and sends its d̂ep′j in either MCollectAck(id ′, d̂ep′j) or MRecAck(id ′, _, d̂ep′j , _, 0, _).
We now prove that id ′ ∈ D or id ∈ D ′. By contradiction, assume that id ′ < D and id < D ′. We have four cases depending on

the mechanism (
⋃

or
⋃
f) used to compute D and D ′:

1) D =
⋃

Q dep and D ′ =
⋃

Q ′ dep
′. Analogous to previous proof of Invariant 2′.

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Vitor Enes, Carlos Baquero, Tuanir França Rezende, Alexey Gotsman, Matthieu Perrin, and Pierre Sutra

2) D =
⋃

Q dep and D ′ =
⋃
f Q ′ dep′. Since id ′ < D, we have ∀j ∈ Q̂ . id ′ < d̂epj . Since D ′ is computed in line 19, we have that

|Q ′ | = ⌊ n2 ⌋ + f . Moreover, since id < D ′, by the definition of D ′ =
⋃
f Q ′ dep′, we have:

|{j ∈ Q ′ | id ∈ dep′j }| < f

⇔ |{j ∈ Q ′ | id < dep′j }| ≥ ⌊ n2 ⌋ + f − (f − 1) (since |Q ′ | = ⌊ n2 ⌋ + f)
⇔ |{j ∈ Q ′ | id < dep′j }| ≥ ⌊ n2 ⌋ + 1
⇔ ∃Q∗ ⊆ Q ′. |Q∗ | ≥ ⌊ n2 ⌋ + 1 ∧ ∀j ∈ Q∗. id < dep′j

Given that |Q̂ | ≥ ⌊ n2 ⌋ + 1 and |Q∗ | ≥ ⌊
n
2 ⌋ + 1, Q̂ andQ∗ must intersect. For this reason, there must exist a process p ∈ Q̂ ∩Q∗

such that id ′ < d̂epp and id < dep′p . But this contradicts Invariant 14.
3) D =

⋃
f Q dep and D ′ =

⋃
Q ′ dep

′. Analogous to the above.

4) D =
⋃
f Q dep and D ′ =

⋃
f Q ′ dep′. Analogous to the above. □

State-Machine Replication for Planet-Scale Systems EuroSys ’20, April 27–30, 2020, Heraklion, Greece

B State-Machine Replication with Atlas

State-machine replication (SMR) implements what is called in literature a universal construction4, that is a general mechanism
to obtain a linearizable shared object from a sequential one. In Appendix A.2, we proved that Atlas correctly implements the
SMR protocol specification given in §2. This section explains how to build a universal construction from this protocol. To
achieve this, we first introduce some preliminary notions. Then, we explain how to implement any linearizable data type on
top of the Atlas protocol. The bottom of this section covers the NFR optimization proposed in §4.

B.1 Preliminaries

We base our reasoning and algorithms upon the notion of trace5, that is a class of equivalent command words. Two words in a
class contain the same commands and sort non-commuting ones in the same order. A trace can be seen as as special case of
the notion of c-struct used to define the generalized consensus problem [15].

State machine. We assume a sequential object specified by the following components: (i) a set of states 𝒮 ; (ii) an initial
state s0 ∈ 𝒮 ; (iii) a set of commands 𝒞 that can be performed on the object; (iv) a set of their response values 𝒱 ; and (v) a
transition function τ : 𝒮 × 𝒞 → 𝒮 × 𝒱 . In the following, we use special symbols ⊥ and ⊤ that do not belong to 𝒱 . When
applying a command, we use .st and .val selectors to respectively extract the state and the response value, i.e., given a state s
and a command c , we let τ (s, c) = (τ (s, c).st,τ (s, c).val). Without lack of generality, we consider that commands are applicable
to every state. A command c is a read if it does not change the object state: ∀s . τ (s, c).st = s ; otherwise, c is a write. We denote
by Read andWrite the set of read and write commands.

Command words. A command word x is a sequence of commands. The empty word is denoted 1 and 𝒞∗ is the set of
all command words. We use the following notations for a word x : |x | is the length of x ; x[i ≥ 1] is the i-th element in x ;
|x |c is the number of occurrences of command c in x . We write ci ∈ x when c occurs at least i > 0 times in x . pos(ci ,x) is
the position of the i-th occurrence of command c in x , with pos(ci ,x) = 0 when ci < x . The shorthand ci <x d j stands for
pos(ci ,x) < pos(d j ,x). The set cmd(x) is defined as {(c, i) : ci ∈ x}. The operator x \ c deletes the last occurrence of c in x (if
such an occurrence exists). By extension, for some word y, x \ y applies x \ c for every (c, i) ∈ cmd(y). We let ⊑ be the prefix
relation induced by the append operator over 𝒞∗. The prefix of x up to some occurrence ci is the command word x |≤c i . If
ci < x , then by convention x |≤c i equals 1. In case c appears once in x , x |≤c is a shorthand for x |≤c1 .

Lemma 3. Consider a command c and two words x and y. Then, |xy |c equals |x |c + |y |c . Moreover, if ck ∈ xy then pos(ck ,xy)
equals pos(ck ,x), if k ≤ |x |c and |x | + pos(ck−|x |c ,y) otherwise.

Proof. Follows from the definitions. □

Equivalence of command words. We define function τ ∗ by the repeated application of τ . In detail, for a state s we define
τ ∗(s, 1) = (s, nil), for some symbol nil ∈ 𝒱 , and if x is non-empty then we have:

τ ∗(s,x) =
{
τ (s,x[1]), if |x | = 1;
τ ∗(τ (s,x[1]).st,x[2] . . . x[n]), otherwise.

Two commands c and d commute, written c - d , if in every state s we have:

τ ∗(s, cd).st = τ ∗(s,dc).st;
τ ∗(s,dc).val = τ ∗(s, c).val;
τ ∗(s, cd).val = τ ∗(s,d).val.

Relation - is an equivalence relation over 𝒞. We write c ≍ d the fact that c and d do no commute. Two words x ,y ∈ 𝒞∗ are
equivalent, written x ∼ y, when there exist words z1, . . . , zk≥1 such that z1 = x , zk = y and for all i , 1 ≤ i < k , there exist
words z ′, z ′′ and commands c - d satisfying zi = z ′cdz ′′, zi+1 = z ′dcz ′′. This means that a word can be obtained from another
by successive transpositions of neighboring commuting commands. One may show that u ∼ v holds when u and v contain the
same commands and order non-commuting ones the same way. In such a case, commands have the same effects.

Lemma 4. Relation x ∼ y holds iff cmd(x) = cmd(y) and for any c ≍ d , ci <x d j ⇔ ci <y d j . 6

Lemma 5. If x ∼ y then for every command c , τ ∗(s0,x |≤c i).val = τ ∗(s0,y |≤c i).val.
4Maurice Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst., 1991.
5Volker Diekert and Grzegorz Rozenberg, editors. The Book of Traces. World Scientific, 1995
6Volker Diekert and Yves Métivier. Partial Commutation and Traces. In Handbook of Formal Languages, Volume 3: Beyond Words. 1997.

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Vitor Enes, Carlos Baquero, Tuanir França Rezende, Alexey Gotsman, Matthieu Perrin, and Pierre Sutra

Proof. We show that the proposition holds if x = z ′abz ′′ and y = z ′baz ′′, for a - b and words z ′ and z ′′. Obviously, this is true
for any command c in z ′. Now, if a = ci , then the proposition holds by definition of relation -. A symmetric argument holds
for b = ci . Then, because a and b are commuting, we may observe that τ ∗(s0, z ′ab).st = τ ∗(s0, z ′ba).st. From which, we deduce
that the result also holds if ci ∈ z ′′. Now, applying the above claim to the definition of x ∼ y, we deduce that the proposition
holds in the general case. □

Command traces. The equivalence class of x for the relation ∼ is denoted [x]. This is the set of words that order non-
commuting commands in the same way as x . Hereafter, we note Traces the quotient set of 𝒞∗ by relation ∼. An element in
Traces is named a command trace. For any x ,y, z ∈ 𝒞∗, it is easy to observe that if x ∼ y holds, then both (zx ∼ zy) and
(xz ∼ yz) are true. As a consequence, ∼ is a congruence relation over 𝒞∗. It follows that Traces together with the append
operator defined as [x][y] = [xy] forms a monoid7. Now, consider the natural ordering induced by the append operator on
Traces. In other words, [x] ⊑ [y] holds iff [x][z] = [y] for some [z]. One can show that relation ⊑ is a partial order over Traces5.

Lemma 6. If [x] ⊑ [y], then [x][y \ x] = [y].

Proof. From [x] ⊑ [y], there exists some z such that [x][z] = [y]. We show that [y \ x] = [z]. If ci ∈ y and ci < x , by
Lemma 4, ci ∈ z. Conversely, if ci ∈ z then ci < x and by Lemma 4, ci ∈ y. Then, by applying again Lemma 4, we deduce that
ci <z d

j ⇔ ci <y\x d j . □

Lemma 7. If cmd(x) ⊆ cmd(y) and for any c ≍ d , ci <y d j ∧ d j ∈ x ⇒ ci <x d j , then [x] ⊑ [y].

Proof. By Lemma 3, cmd(x(y \ x)) = cmd(y). Then, choose c,d ∈ 𝒞 with c ≍ d and ci <y d j . We show that ci <x (y\x) d j . Let
k = |x |c and l = |x |d . (Case l = j) By assumption. (Otherwise) If k = i then ci ∈ x and d j−l ∈ (y \ x). In the converse case, ci−k
and d j−l are both in (y \ x). We then conclude by applying Lemma 3. □

Lemma 8. If [x] ⊑ [y], then for every command c with ci ∈ x , τ ∗(s0,x |≤c i).val = τ ∗(s0,y |≤c i).val.

Proof. From Lemma 6, x(y \ x) ∼ y. Choose ci ∈ x . By Lemma 5, τ ∗(s0,x(y \ x)|≤c i).val = τ ∗(s0,y |≤c i).val. Since ci ∈ x ,
ci < (y \ x) and x(y \ x)|≤c i = x |≤c i . □

Histories. A history is a sequence of events of the form invi (c) or resi (c,v), where i ∈ 𝒫 , c ∈ 𝒞 and v ∈ 𝒱 . The two kinds of
events denote respectively an invocation of command c by process i , and a response to this command returning some value v .
We write c {h d the fact that the response of c precedes the invocation of command d in history h. For a process i , we let h |i
be the projection of history h onto the events by i . The following classes of histories are of particular interest:

– A history h is sequential if it is a non-interleaved sequence of invocations and matching responses, possibly terminated
by a non-returning invocation.

– A history h is well-formed if (i) h |i is sequential for every i ∈ 𝒫 ; (ii) each command c is invoked at most once in h; and
(iii) for every response resi (c,v), an invocation invi (c) occurs before in h.

– A well-formed history h is complete if every invocation has a matching response. We shall write complete(h) the largest
complete prefix of h.

– A well-formed history h is legal if h is complete and sequential and for any command c , if a response value appears in h,
then it equals τ ∗(s0,h |≤c).val.

Linearizability. Two histories h and h′ are equivalent, written h ∼ h′, if they contain the same set of events. History h is
linearizable [10] when it can be extended (by appending zero or more responses) into some history h′ such that complete(h′) is
equivalent to a legal and sequential history l preserving the real-time order in h, i.e.,{h⊆{l .

B.2 Algorithm

Algorithm 5 presents the pseudo-code of our universal construction on top of Atlas. Each line of this algorithm is atomic.
To execute a command c on the shared object, a process executes invoke(c). As usual, we shall assume that no two process
invoke the same command. Algorithm 5 employs the following four variables:

– B is an instance of Atlas with conflict set to the non-commutativity relation among commands (≍).
– S is a local copy of the state of the sequential object under concern. Initially, it equals s0.
– Variable λ stores the log of commands applied to the local copy.
– Variable pending stores the response value of each command call. Initially, pending(c) = ⊥ holds for every command c .

7Gerard Lallement. Semigroups and Combinatorial Applications. John Wiley & Sons, Inc., 1979.

State-Machine Replication for Planet-Scale Systems EuroSys ’20, April 27–30, 2020, Heraklion, Greece

Algorithm 5: SMR with Atlas– code at process i
Variables:

1 B // An instance of Atlas with c ≍ d ⇒ conflict(c,d)
2 S ← s0 // A local copy of the sequential object
3 λ← 1 // A command word
4 pending(c) ← ⊥,∀c ∈ 𝒞 // A map of the response values

function invoke(c)
5 pending(c) ← ⊤
6 B.submit(c)
7 wait until pending(c) , ⊤
8 return pending(c)

9 when B.execute(c) do
10 λ← λ · c; (S,v) ← τ (S, c)
11 if caller(c) = i then
12 pending(c) ← v

Internals. When a process i invokes some command c , it sets pending(c) to ⊤ to signal that the command is invoked (line 5).
Then, i submits c to Atlas and awaits that c is applied locally (line 7) before returning its response value (line 8). Upon the
delivery of a command c , i appends c to λ then executes it. In case i is the caller of c , pending(c) is set to the response value
(line 12).

B.3 Correctness

In what follows, ρ is a run of Algorithm 5 and h the corresponding history. For some variable var , we denote by vari the value
of var at process i . The notation varρi refers to the value of vari at the end of the execution ρ. For starters, we prove that at
any point in time a single occurrence of a command may appear in λi .

Proposition 1. ∀i ∈ 𝒫 . □(∀c ∈ 𝒞. |λi |c ≤ 1).
Proof. (by induction) λi is initially empty. Then, assume that process i appends c to λi at line 10. Command c is thus executed
by Atlas at line 9. By the Integrity property of Atlas, this happens at most once. Hence, (|λi |c = 1) is true from that point in
time. □

The execution mechanism at lines 10 to 12 applies in order the commands of λi to update Si . Such an approach maintains
the following two invariants:

Proposition 2. ∀i ∈ 𝒫 . □(Si = τ ∗(s0, λi).st).
Proof. (by induction.) Initially λi = 1, leading to τ ∗(s0, λi).st = s0. This coincides with the value of Si at start time. At line 10,
variable Si is changed to Si ′ = τ ∗(Si , λ′i).st, with λ′i = λi · c . By induction, Si = τ ∗(s0, λi).st. It follows that:

Si
′ = τ ∗(Si , λi · c).st
= τ ∗(τ ∗(s0, λi).st, c).st
= τ ∗(s0, λ′i).st

□

Proposition 3. ∀resi (c,v) ∈ h. v = τ ∗(s0, λρi |≤c).val.
Proof. From line 12, we havev = pending(c). The map pending(c) is set to⊤ at line 5. Process i then awaits that (pending(c) , ⊤)
holds at line 7. As a consequence, v is the result of the computation at lines 10 to 12. Let λ be the value of λi before this
execution. Applying Proposition 2 leads to Si = τ ∗(s0, λ).st. Thus, we have v = τ ∗(s0, λ · c).val. By Proposition 1, λρi |≤c = λ · c .
Thus, the claim holds. □

The above proposition explains how the response values of h are computed. We now construct a linearization of the
commands submitted to the replicated state-machine that is consistent with these return values. This linearization is denoted
δ and built as follows:

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Vitor Enes, Carlos Baquero, Tuanir França Rezende, Alexey Gotsman, Matthieu Perrin, and Pierre Sutra

Construction 1. Initially, δ is set to 1. Let E be the set
⋃

j ∈𝒫 cmd(λρj). By the Ordering property of Atlas, the transitive
closure of 7→ forms an order over 𝒞. We append each command c ∈ E to δ following some linear extension of this relation over
E.

Proposition 4. ∀i ∈ 𝒫 . [λρi] ⊑ [δ].
Proof. For any λ

ρ
i , we have cmd(λρi) ⊆ cmd(δ). Now consider a pair of non-commuting command (c,d) in δ , with c <δ d

and d ∈ λ
ρ
i . Observe that if c < λ

ρ
i or d <λρi c , then d 7→i c holds; thus, we have necessarily c <λρi

d . Applying Lemma 7,
[λρi] ⊑ [δ]. □

Consider the complete, sequential and legal history l produced by applying the commands in δ to s0 following the order <δ .
For every pending command c in h, if c has no response v in h, we append resi (c,v) to h, where i is the caller of c and v the
response of c in l . Name h′ the resulting history that by construction completes h.

Proposition 5. l ∼ h′

Proof. By applying Proposition 3, Proposition 4 and Lemma 8. □

Proposition 6. {h⊆{l

Proof. By construction of l and the fact that{h⊆<λ . □

At the light of the last two propositions, we may conclude the result that follows.

Theorem 7. For every run ρ of Algorithm 5, the history h induced by ρ is linearizable.

B.4 Non-fault-Tolerant Reads

Command read() in the KVS use case of §5.7 belongs to a class of commands whose conflicts are transitive [23]. This means
that for any such read c and any two writes d and d ′, if c ≍ d ∧ c ≍ d ′ then d ≍ d ′. We denote by Read∗ the set of such reads.
In §4, we introduce the NFR optimization. This optimization skips the commands in Read∗ when computing conflicts

and it allows the coordinator to use a fast quorum which consists of a plain majority. As shown experimentally in §5.7, this
mechanism reduces dependencies for write commands and improves overall performance.
When the NFR optimization is enabled, line 4 in Algorithm 4 assigns a majority quorum if command c belongs to Read∗.

Additionally, function conflicts is redefined to become: conflicts(c) = {id < start | conflict(c, cmd[id]) ∧ cmd[id] < Read∗}.

Sketch of proof. Atlas with the NFR optimization implements the SMR specification given in §2 when the Ordering
property is restricted to 𝒞 \ Read∗. Moreover, if c {h d , c and d do not commute, and c is a write, then d 7→i c cannot hold at
a process i .
Propositions 1 to 3 do not change when NFR is applied. The word δ is built by first applying Construction 1 to E \ Read∗.

Then, for each c ∈ E ∩ Read∗, following some linearization of{h over E ∩ Read∗, δ is extended as follows: Name i the caller
of c . We add c after the last command in δ that either happens-before c in h or does not commute with c and precedes it in λ

ρ
i .

Then, Proposition 4 is established for λ̂ρi and δ̂ , where x̂ the projection of x over 𝒞 \ Read∗. This implies that response
value of some command in c ∈ 𝒞 \ Read∗ is the same in l and h′. To obtain the same result when c ∈ Read∗, we observe that
the commands in λ which do not non-commute with c form a total order in 7→. Thus, Proposition 5 holds. As previously,
Proposition 6 follows from the fact that{h⊆<λ .

	Abstract
	1 Introduction
	2 State-Machine Replication
	3 The Atlas Protocol
	3.1 Overview
	3.2 Protocol in Detail
	3.3 Atlas Properties and Comparison with EPaxos
	3.4 Correctness

	4 Optimizations
	5 Performance Evaluation
	5.1 Bounds on Failures
	5.2 Benchmarks
	5.3 Fast-Path Likelihood
	5.4 Planet-Scale Performance
	5.5 Varying Load and Conflict Rate
	5.6 Availability under Failures
	5.7 Key-Value Store Service

	6 Related Work
	7 Conclusion
	References
	A The Atlas Protocol and its Correctness
	A.1 Protocol
	A.2 Protocol Correctness

	B State-Machine Replication with Atlas
	B.1 Preliminaries
	B.2 Algorithm
	B.3 Correctness
	B.4 Non-fault-Tolerant Reads

