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Measurements in a cylindrical Taylor-Couette device of the shear-induced radial nor-

mal stress in a suspension of neutrally buoyant non-Brownian (non-colloidal) spheres

immersed in a Newtonian viscous liquid are reported. The radial normal stress of

the fluid phase was obtained by measurement of the grid pressure Pg, i.e. the liquid

pressure measured behind a grid which restrained the particles from crossing. The

radial component of the total stress of the suspension was obtained by measurement

of the membrane pressure Pm, i.e. the total pressure obtained with a transducer ex-

posed to both phases. Pressure measurements, varying linearly with the shear rate,

were obtained for shear rates low enough to insure a grid pressure below a particle

size dependent capillary stress. Under these experimental conditions, the membrane

pressure is shown to equal the second normal stress difference, N2, of the suspen-

sion stress whereas the difference between the grid pressure and the total pressure,

Pg − Pm, equals the radial normal stress of the particle phase, Σp
rr. The collected

data show that the radial normal stress is about one order of magnitude higher than

the second normal stress difference of the suspension. The Σp
rr values obtained in

this manner are independent of the particle size, and their ratio to the suspension

shear stress increases quadratically with φ, in the range 0 < φ < 0.4. This finding,

in agreement with the theoretical particle pressure prediction of Brady and Morris

(J. Fluid Mech. 348 pp 103-139, 1997) for small φ, supports the contention that

the particle phase normal stress Σp
rr is due to asymmetric pair interactions under

dilute conditions, and may not require many-body effects. Moreover we show that

the values of Σp
rr, normalized by the fluid shear stress, ηf |γ̇| with ηf the suspending

fluid viscosity and |γ̇| the magnitude of the shear rate, are well-described by a simple

analytic expression recently proposed for the particle pressure.
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Suspensions of non-Brownian particles are ubiquitous in a wide range of applications

(concrete, water purification, “recycling” of nuclear waste) and have been the subject of

many theoretical, numerical and experimental studies. Despite the large amount of work

performed, the flowing properties of concentrated suspensions remain incompletely charac-

terized. This work will address the measurement of normal stresses in a suspension, an area

which has received limited attention.

By contrast, numerous studies over the past century have focused on the shear viscosity

of particles immersed in a Newtonian fluid. Einstein (1905), in his pioneering work, calcu-

lated the viscosity of a dilute suspension (neglecting hydrodynamic interactions) of spheres

as a function of the particle volume fraction φ : η = η0 (1 + 2.5φ). Batchelor and Green

(1972), taking into account pair interaction, extended the result of Einstein to the second

order: η = η0 (1 + 2.5φ +Bφ2 ) +O(φ3) with B = 6.2 for non-Brownian spheres. At higher

concentration, multi-body interactions must be considered and numerous theoretical and

empirical expressions for the shear viscosity with φ have been proposed (see the review

of Stickel and Powell (2005)). While the various expressions tend to agree with the Einstein

viscosity for dilute suspensions (φ < 0.1), there is no consensus for the maximum packing

volume fraction, φmax, at which viscosity must diverge. A factor that complicates the viscos-

ity measurement is shear-induced migration (Leighton and Acrivos (1987a,b)) which leads

to non-uniform volume fraction of the sheared suspension (Phillips et al. (1992); Morris

and Boulay (1999); Chow et al. (1994)). Gadala-Maria and Acrivos (1980) and Parsi and

Gadala-Maria (1987) have shown that the viscosity is strongly influenced by the macroscopic

spatial organization of the particles. In an attempt to eliminate shear-induced migration

and measure the bulk viscosity of a suspension, Gauthier et al. (2005) used the damping of

waves that propagate at the surface of a suspension, obtaining good agreement with sev-

eral models but with φmax = 0.58. Recently, Ovarlez et al. (2006) used magnetic resonance

imaging (MRI) to perform simultaneous measurement of shear stress, local shear rate and

local volume fraction; this work found φmax = 0.605. Bonnoit et al. (2010), using an inclined

plane rheometer, measured shear viscosity of non-Brownian suspensions up to similar solid

fraction of φ = 0.61.

While the Newtonian viscosity of suspensions seems more or less understood, this is not

the case for the non-Newtonian properties typical of concentrated non-Brownian suspen-

sions. Indeed, the origin of shear thinning (cf. Van der Werff and De Kruif (1989)), shear
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thickening (cf. Barnes (1989); Fall et al. (2008)), yield stress (cf. Fall et al. (2009)) and nor-

mal stresses, including both the normal stress differences and the isotropic particle pressure,

in non-colloidal suspensions remain unclear, as discussed in the review by Morris (2009).

Gadala-Maria (1979) was apparently the first to report normal stress differences (NSD

in the following) in sheared non-Brownian suspensions, with his measurements obtained in

a parallel-plate rheometer. This led to work in which Gadala-Maria and Acrivos (1980) and

Kolli et al. (2002) showed irreversibility in the torque and normal stress responses, respec-

tively, of a suspension subjected to large oscillatory straining, and Parsi and Gadala-Maria

(1987) demonstrated an asymmetry in the fore-aft pair distribution function. The origin

of the asymmetry in any given suspension is not clear: it may be due to the nonlinearity

of multi-particle interactions, or, as asserted by Da Cunha and Hinch (1996), to contact

interactions between particles that are allowed by the roughness of the particles even at

low Reynolds number. The latter mechanism for asymmetric interaction is supported by

the work of Rampall et al. (1997), which shows that surface roughness induces significant

asymmetry in the fore and aft region of a two-particle interaction.

The issue of shear-induced normal stress has been addressed in numerical simulations,

using Stokesian Dynamics (Brady and Bossis (1988)), by Sierou and Brady (2001) and in

theoretical work by Brady and Morris (1997), and continuum modeling of suspension flow

by Nott and Brady (1994) and Morris and Boulay (1999). The latter two studies noted

here showed that particle migration may be explained as due to spatial variation of the

particle NS, and can be observed at low Reynolds number (Stokes regime) but with short

range forces between particles, or actual contact. Brady and Morris (1997) argued that the

presence of a non-hydrodynamic interaction force or weak Brownian motion, however small,

results in non-Newtonian effects such as normal stress differences. They found that the

normal stresses in dilute suspension scale as ηγ̇φ2 and vanish in the purely hydrodynamic

regime (when only Stokes-flow interactions are active, i.e. without Brownian motion or

interparticle forces). Their work was then extended by Singh and Nott (2000) and Sierou

and Brady (2002) in the hydrodynamic regime showing that normal stress differences could

have hydrodynamic origin for concentrated suspensions. The prediction of Brady and Morris

(1997) for the influence of the microstructural asymmetry indicates a close relation between

the normal stresses and self-diffusivity of a suspension. This point is demonstrated by

the experimental results of Breedveld et al. (2001, 2002) who reported anisotropy in the
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self diffusion coefficient, with differences in the velocity gradient (D̂22) and in the vorticity

direction (D̂33 ≈ 0.66D̂22). Attempts to deduce the complete normal stress from NSD

measurements and other experimental data available for non-Brownian suspensions have

been conducted by Zarraga et al. (2000) and Singh and Nott (2003). We note however

that first, Zarraga et al. (2000) have used measurements obtained from the shear-induced

migration of buoyant particles, the sedimentation of which may induce additional particle

pressure or gradient diffusion (Martin et al. (1995)). Second, Zarraga et al. (2000) and Singh

and Nott (2003) have also used the NSD of the total suspension stress, as measured through

the normal force on rheometers, or through the large scale surface deformation. And these

NSD of the suspension stress, may differ a priori, from the NSD of the particle phase stress

(see Lhuillier (2009), for example). Quantitative measurements of the particle phase stress

are not easy to perform, but they are crucially needed, as they are necessary to describe

particles migration in various flow geometries (Morris and Boulay (1999)), and to address

such phenomena as the shear banding instability (see for example Besseling et al. (2010)).

The first direct measurement of particle stress in a viscous regime appears to be due

to Prasad and Kytömaa (1995) who measured the normal stress for fixed particle volume

fraction or measured the volume fraction for an imposed normal loading in a cylindrical

device that allowed the sheared suspension to suck fluid though a porous wall. The imposed

normal loading approach was used by Boyer et al. (2011) to obtain very clean data relating

the shear and normal stress in sheared suspensions. The results of these studies are in

good general agreement with numerical evaluations of Yurkovetsky and Morris (2008), and

theoretical predictions of Mills and Snabre (2009). Recently Deboeuf et al. (2009) measured

the fluid pressure of a neutrally buoyant suspension in a cylindrical Couette flow and argued

that fluid pressure is a good approximation of the negative of the particle pressure ∆Pf ≈

−Π. The quantitative agreement of their results with previous experimental and numerical

studies of Morris and Boulay (1999); Sierou and Brady (2002); Yurkovetsky and Morris

(2008); Mills and Snabre (2009) supports this assertion. Interestingly, the work of Deboeuf

et al. showed some dependence of the particle pressure on the size of the particles, an issue

which will be addressed in the present study.

In the present paper, the experimental technique of Deboeuf et al. (2009) is described

in detail and the analysis of the measurements within a rheological framework is revisited.

The technique is extended to include direct measurement of individual phase and complete
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suspension normal stress at the Couette boundary. This increased capability allows measure-

ment of the second NSD of the suspension stress. Furthermore, more accurate transducers

have allowed measurement of fluid and total pressure for suspensions of volume fraction

as low as φ = 0.20. Finally, new results show that a dependence of the measured fluid

pressure with the particle size observed previously was due to particle interaction with the

air-suspension interface at the top of the Couette cell.

The experimental material, set-up and method are presented in section I. Section II is de-

voted to the raw experimental results while section III presents interpreted results confronted

with previous studies and existing models.

I. EXPERIMENTAL SET-UP

A. Particles

Suspensions, with particle volume fractions ranging from φ = 0.2 to 0.5 have been pre-

pared with two sizes of polystyrene particles, Microbeads Dynoseeds TS 40 and TS 140, of

average diameter dsm = 40µm and dsm = 140µm, respectively, as reported by the vendor.

The size distribution and the shape of the particles have been measured by a visual method

using a Morphology G3 from Malvern Instruments. In the method, a camera mounted on an

automated microscope images a layer of particles. Images are binarised, and two measure-

ments are reported here for each particle: the average diameter and the sphericity (as noted

below, this is actually determined as the circularity from simple images of the particles).

From the average diameter measurements, the size distribution of each batch is constructed.

Figures 1-a,b display the volume distribution of TS-40 and TS-140, respectively, with the

number distribution of particles in the inset. Both distributions exhibit a well-defined peak

which corresponds to the mean diameter of the distribution, dm = 37µm for the TS-40 and

dm = 130µm for the TS 140. Figures 1-a,b show that particle distributions are far from

monodisperse; for instance, there is a small fraction of particles ranging from a few microns

to 200 µm in the batch of TS-140. Likewise, a secondary peak at 55 µm is clearly visible

in the size distribution of the TS-40 (fig. 1-a). Nevertheless, 80% of the volume of TS-40

is in the interval [34, 41]µm, while 70% of the volume is in the range [125, 140]µm for TS-

140. The average circularity C of the particles is classically defined by the ratio C = 4πA
P2
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FIG. 1. Top : Size distribution of the particle used for the suspensions. a) Dynoseeds TS-40

(dm = 37µm) and b) Dynoseeds TS-140 (dm = 130µm). Bottom : Ellipticity of the particles.

Smaller axis a as a function of the larger axis b normalized with the average particle diameter. c)

Dynoseeds TS-40 (dm = 37µm) and d) Dynoseeds TS-140 (dm = 130µm). The average aspects

ratios a/b are equal to 0.924 for the TS-40 and to 0.927 for the TS-140.

which equals unity for a circular disk.With this definition the circularity of the TS-40 and

TS-140 are very close: C40 = 0.904 and C140 = 0.913. To have a better knowledge of the

noncircularity of the particles, the contour of each particle image, has been fitted with an

ellipse of minor axis a and major axis b. The average aspect ratio a/b is equal to 0.924

and 0.927 for the TS-40 and TS-140 respectively. Figure 1-c,d displays the population of

the particles in the plane (b/dm , a/dm), where a/dm and b/dm represent the major and

minor axis, normalized with the average diameter, dm, of the respective distributions (i.e

dm = 37µm for TS-40 and dm = 130µm for TS-140). On these figures spherical particles

are on the line a/dm = b/dm. Figure 1-d reveals that TS-140 are mostly spherical since only

a few of them are significantly off this line. Pictures of individual particles show that the
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subset of particles of larger axis b = 2a corresponds to particles in contact at the time of

analysis, which reduces the number of truly non-spherical particles. TS-40 samples contain

a large number of anisotropic particles (see fig.1.c). This is especially true for very small

(a/dm < 0.5) particles and particles of minor axis equal to the mean diameter (a/dm ≈ 1).

For this latter case, images of particles in this sub-set reveal that typically two particles

have been stuck together during the fabrication process. Finally, AFM measurements show

that the particle roughness is approximately 100 nm, whatever the size.

B. Viscosity measurements

The carrier fluid is poly(ethylene glycol-ran-polypropylene glycol) monobutyl ether of

density ρf = 1.05 (at 20 ◦C, with an expansion coefficient of 7.5 10−4 ◦C−1) that matches

the nominal density of the polystyrene particles. It has been tested, by parallel plate (of

diameter 50 mm) and cylindrical Couette (of diameter 10 mm) rheometry (Anton Paar MCR

501), and found to be Newtonian up to a shear rate of |γ̇| ≈ 700 s−1, with a viscosity of

ηf = 2.9 Pa · s at T = 20 ◦C (cf. fig. 2-a). However, the shearing of highly viscous fluids

induces an increase of the fluid temperature which in turn induces a decrease of the fluid

viscosity and density. To minimize this effect, fluid temperature is permanently recorded

and experiments are carried out at a temperature slightly above the room temperature which

allow a free cooling when the shearing is stopped. This method allow to keep temperature

variations below 0.5 ◦C which induces a variation of the viscosity of the order of 2% and a

density variation less than 1‰.

The bulk effective viscosity of the suspension has been measured in parallel plate geometry

where little particle migration occurs (Morris and Boulay (1999)). For each suspension,

the effective viscosity has been found to be rather constant for 1 ≤ |γ̇| ≤ 30 s−1. The

variation of the viscosity with the solid volume fraction φ is found to be in good agreement

with the empirical Krieger-Dougherty form (Krieger (1972)) : ηs = ηf(1 − φ/φmax)
−2, with

φmax = 0.625, as shown on fig. 2-b. The value obtained for the maximum volume fraction

and the exponent of the Krieger-Dougherty law are in general agreement with values found

in the literature (Stickel and Powell (2005); Ovarlez et al. (2006)). Using these suspensions,

the Péclet number, the ratio of shear to Brownian motion, is Pe = 6πηf |γ̇|a
3/kT = O(108)

at |γ̇| = 1 s−1, and therefore Brownian diffusion is negligible.
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FIG. 2. Rheometry: in a 50 mm parallel plate geometry. (Left) Viscosity of the pure fluid as a

function of the shear rate |γ̇|. Measurements have been performed at T = 20 ◦C. (Right) Viscosity

of the suspension as a function of the particle volume fraction, for |γ̇| = 20 s−1 and T = 20 ◦C. The

continuous line corresponds to a Krieger-Dougherty law (Krieger (1972)): ηs = ηf (1− φ/φmax)
−2,

with φmax = 0.625.

C. Experimental apparatus

Experiments are conducted in a cylindrical Taylor-Couette cell sketched in fig. 3. The

height of the cylinders is h = 150mm. The radii of the inner and outer cylinders are,

respectively, Ri = 17.5mm and Ro = 20mm which achieved a constant gap b0 = 2.5mm

along the axis of the cylinders. Great attention has been paid to the circularity of the

two cylinders since any inhomogeneous shear will result in gradients of volume fraction, as

reported by Leighton and Acrivos (1987a,b). The inner cylinder is driven by a brushless

motor, while the outer cylinder is fixed. To easily fill the cell, the inner cylinder can move

along the z (vertical) axis.

The outer cylinder is drilled with ten holes, of diameter 6 mm; eight holes are equipped

with nylon grids of 20×20µm2 square openings and two with latex membranes 10 µm thick

(cf. fig. 3). Grids and membranes are glued on small tubes of outer diameter 6mm, one of

whose faces have been machined to match the curvature of the inner surface of the Couette

cell. Each tube is filled with liquid (carrier fluid behind grids and water behind membranes)

transmitting the pressure to a piezoelectric transducer (PR-23 by Keller Drukmesstechnick)

of accuracy 1 Pa. Four of the grids are placed along a circle located 20mm from the bottom

of the cell while the four others are along a circle 60mm from the bottom of the cell. On
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each circle, grids are spaced at 90o intervals. The two membranes are located 40 mm from

the bottom of the cell and 90o apart from each other, vertically aligned with two of the

grids. Transducers located behind grids measure the fluid pressure in the suspension (pore

pressure) while the membrane transducers measure the total pressure.

Top view

FIG. 3. Sketch of the Taylor-Couette cell.

To avoid shear induced migration to the bottom of the cell, the bottoms of the inner

and outer cylinders are of conical form, so that the shear rate remains comparable in this

region. Again, great attention has been paid to the inner and outer cylinder co-axiality. In

a cylindrical Couette geometry, variations of the gap lead to variations of the fluid pressure.

The pressure is higher upstream of a reduction of the gap and lower downstream (Acheson

(1990)). The angular (θ) dependence of the pressure distribution, at a given constant ro-

tation velocity Ω, can be determined using lubrication analysis and is shown to follow the

relation (Flügge (1962))

∆P f(θ,Ω) = P f(θ,Ω)− P f(θ, 0) =
6ηfΩ

ǫ2
λ (2 + λ cos θ) sin θ

(2 + λ2) (1 + λ cos θ)2
, (1)

where ǫ = b/Ri ≪ 1, λ = a/b ≤ 1, a is the eccentricity (distance between the cylinder

axes), and b(θ)− b0 is the gap variation, maximum at θ = 0. The lubrication pressure with

pure fluid is displayed in Figure 4, for a misalignment a = 100µm and γ̇ = 100 s−1; here

the shear rate is written with its sign to indicate the importance of direction of motion. To

achieve a good alignment of the cylinders, the outer cylinder is mounted on four micrometric

displacement systems that allow translation in the horizontal, or x-y, plane and rotations

around the x and y axes. After a rough alignment of the outer cylinder axis along the
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axis of the rotor (parallel to gravity), we use the lubrication pressures measured with the

Newtonian fluid alone to align the cylinders axes: the alignment is as good as possible when

the measured pressures are zero whatever the direction of rotation (c.f. Fig. 4). We note

however that the replacement of the Newtonian liquid with the suspension requires moving

the rotor up and down, a procedure which may result in a very slight misalignment. The
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FIG. 5. (- -) Ramp of shear rate γ̇ (s−1) (right hand axis) against time (s) and (—) pressure

transducer signal (left hand axis) measured a) behind one grid and b) (—) behind one impermeable

membrane, for a suspension of particles of diameter 40 µm at volume fraction φ ≈ 0.5.

importance of the residual effects of this misalignment relative to measured pressure can be
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seen in fig. 5, which displays typical pressure measurements obtained, for a step ramp of

rotations, behind a grid in fig.5-a and behind a membrane in fig.5-b. As one can see, there

is a systematic difference between pressure measurements realized with the inner cylinder

rotating in one or the other direction. This systematic error is eliminated by averaging

measurements over the two directions of rotation; this is simply because the difference in

the measured pressures is a result of the lubrication pressure which is linear in the motion

and thus cancels upon averaging the values for the two directions of motion.

Because the membrane pressure is transmitted through a small confined volume between

the membranes and the transducers, thermal expansion induced by any temperature varia-

tion affects the pressure readings. This effect is corrected by considering only the deviation

from the background pressure in the absence of shearing, ∆Pm = P γ̇ 6=0
m − P γ̇=0

m . Figure 5-a

(respectively b) shows that when a shear rate is applied to the suspension, a depression,

∆Pg, or overpressure, ∆Pm, is observed with an increasing magnitude of the shear rate |γ̇|.

To minimize shear induced migration effects (Parsi and Gadala-Maria (1987); Kolli et al.

(2002); Blanc et al. (2011)), pressure measurements are performed during less than a pe-

riod of rotation (one period is 14π > 40 strain) and, as noted to overcome residual effects of

misalignment, pressure measurements are averaged over both directions of rotation. Revers-

ing the direction of rotation leads to transient decrease of suspension viscosity and normal

stresses, which reach stationary values for a strain |γ| ≈ 2 (Kolli et al. (2002) and Blanc

et al. (2011)). To remove this transient effect, we discard the initial measurements after a

rotation change, and average over those acquired for a strain |γ| > 2 following the reversal.

Finally, measurements of grid (and membrane) pressure are averaged over the 8 (respec-

tively 2) pressure transducers to minimize the scattering due to stress fluctuations reported

in previous studies (Dasan et al. (2002); Singh et al. (2006)).

II. EXPERIMENTS

A. Observations

Experiments consist in measuring pressure for various shear rates. However, when the

suspension is sheared above a given shear rate |γ̇c|, a whitish band forms at the top of

our cylindrical Couette cell, as shown in fig. 6-a. The shear rate threshold depends on the
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volume fraction of the suspension and the size of the particles (|γ̇| ≈ 20 s−1 for TS-140 and

60 s−1 for TS-40 at φ = 0.45). Figure 6-b displays the spatio-temporal diagram of a vertical

line of fig. 6-a. The formation time is short compared to the rotation period (about half

a rotation period) and the thickness of this white strip increases in time, destabilizes and

becomes wavy. Once the rotation is stopped, the white strip remains. Analyzing a sample of

the suspension taken in the white strip reveals that it contains almost no suspending liquid.

This “dry cream” layer has been formed by particles that have crossed the air/suspension

interface. We note that corrugations of the interface had been observed by Loimer et al.

(2002), Timberlake and Morris (2005) and Singh et al. (2006) in other free surface suspension

flows and studied numerically by Min and Kim (2010). However, in our case the particles

actually escape from the suspension. Once created, the “dry cream” thickness increases as

a result of a downward air flux across its top interface (which rises), and an upward particle

flux across its bottom one (which lowers). Although the bulk suspension particle fraction

is not significantly decreased by the outgoing particles, the dry cream is likely to exert an

axial (vertical) solid frictional stress at the wall. In such a case, our pressure measurements

can no longer be directly related to the magnitude of the particle stress (see Sec. III).

FIG. 6. a) Image of the experimental cell with a suspension of TS-140 of volume fraction φ = 0.45

for |γ̇| = 45 s−1 taken 10 seconds after the beginning of the shear. b) Spatiotemporal diagram built

by plotting the light intensity of a vertical line along time (horizontal direction). The white strips

on the top of the suspension correspond to a “ cream” of particles that have been ejected from the

suspension due to shear.
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B. Measurements

The evolution of the fluid pressure (pressure behind grids) and the total stress at the outer

wall (pressure behind membrane) with the shear rate have been measured for suspensions of

volume fraction φ = 0.45 for both TS-40 and TS-140. Grid pressure, the negative of which

is displayed in fig. 7-a, decreases with the absolute value of the shear rate |γ̇| until a limit

value which depends on the particle size. Before this limit, grid pressure measurement is

independent of particle size. Membrane pressure measurements are presented in fig 7-b. As

for the grid measurements, membrane pressure increases with |γ̇| until |γ̇c| ≈ 60 s−1 beyond

which measurements seem to reach a plateau, although the data are scattered. However, fig 7

exhibits a surprising particle size dependence of the total pressure. For the larger-particle

suspension (using TS-140), pressure signals behind membranes are weak and measurement

errors are of magnitude comparable to the measured values. However, membrane pressures

seem also to reach a constant value for |γ̇| > 20 s−1.
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FIG. 7. Evolution of the grid (a) and membrane (b) pressure as a function of the shear rate for a

suspension with volume fraction φ = 0.45. (◦) Dynoseeds TS-40, (�) Dynoseeds TS-140. The two

dashed lines correspond to the asymptotic values of the pressure (i.e. 540 Pa for TS-140 and 1050

Pa for TS-40).

The critical values |γ̇c| ≈ 60 s−1 for TS-40 and |γ̇c| ≈ 20 s−1 for TS-140 are found, beyond

which pressure measurements do not evolve linearly with |γ̇|. The asymptotic value depends

on the particle size. This observation suggests that surface tension plays a role at the free

surface. For a particle to leave the suspension the stress exerted by the surrounding mixture

must be larger than the stress which keeps the particle inside, i.e. the Laplace pressure
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∆PL = τ/R where τ is the fluid-air surface tension and R the curvature of the interface

at the moment the particle escapes. In the experiment, the maximum pore pressure is

−∆Pgmax
= 540Pa.s for TS-140 and −∆Pgmax

= 1050Pa.s for TS-40. Using the Laplace

pressure to estimate an equivalent diameter, one obtains de = τ/∆P = 66µm for TS-40 and

de = 130µm for TS-140.

These effective diameters are in reasonable agreement with the average diameter found

for the distribution of TS-140 (see Sec IA) but larger for TS-40 (dm = 37µm compared to

de = 66µm). However, the size distribution of TS-40 shows a non-negligible proportion of

particles of diameter ≈ 60µm which is closer to de. In addition, when a particle escapes from

a viscous fluid, the effective diameter is the diameter of the particle added to the thickness

of the liquid film which coats each bead (Maru et al. (1971); de Gennes et al. (2004)),

during the ejection process. This leads to an effective diameter larger than the particle,

and could explain the remaining discrepancy between the estimated Laplace pressure and

the asymptotic one measures for the suspension of TS-40. These measurements support the

interpretation of the formation of the cream at the top of the suspension, and provide a

likely explanation for the size dependence of particle pressure reported by Deboeuf et al.

(2009). Consequently, all further results are for experiments conducted for shear rates below

|γ̇c| for each suspension. Note that the grid and membrane pressures evolve linearly with

the shear rate for |γ̇| ≤ 20 s−1 for both TS-40 and TS-140 so that in this range ∆Pg/|γ̇| and

∆Pm/|γ̇| depend only on the volume fraction φ.

Variations of grid and membrane pressure with φ are presented, with normalization by

ηf |γ̇|. Evolution of ∆Pg/ηf |γ̇| and ∆Pm/ηf |γ̇| are displayed on fig. 8 for the TS-40 and TS-

140 suspensions. The dependence of ∆Pg and ∆Pm on φ is clearly nonlinear, and we note

that ∆Pg is independent of the particle size. The insets of fig. 8-a and b present respectively

the evolution of the grid and membrane pressures, normalized with the suspension shear

stress in logarithmic scale. We note that the shear stress is not measured in our device, but

is estimated by the product of the imposed shear rate with the viscosity law (Ovarlez et al.

(2006)) obtained in a parallel plate device (see fig. 2-b).
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FIG. 8. Evolution of the dimensionless grid (a) and membrane (b) pressure as a function of

the particle volume fraction. Pressures are normalised by ηf |γ̇|. (◦) Dynoseeds TS-40 and (�)

Dynoseeds TS-140. The insets display in logarithmic scale the pressures normalized with the shear

stress of the suspension (ηs|γ̇|).

III. RESULTS AND DISCUSSION

A. Normal Stresses

To relate the measurements to suspension rheology, grid and membrane pressure must

be translated into normal stress components. In the absence of inertia, the momentum

equations, for the two phases, particles and fluid (Jackson (1997); Nott and Brady (1994);

Morris and Boulay (1999); Lhuillier (2009)), are derived from the Cauchy equations:

∇ ·Σp + FH + Φ(ρp − ρf )g = 0 (2)

∇ ·Σf − FH + ρfg = 0 (3)

where FH is the friction force, proportional to the difference between the phase averaged

velocities, < v >p − < v >f , Σf is the fluid phase stress, and Σp is the particle phase

stress, in which the Archimedes force has been included for convenience (Lhuillier (2009)).

In our experiment, the suspension is neutrally buoyant, ρp = ρf = ρ, and (2) reduces to

∇ ·Σp + FH = 0. (4)

We note that a stress balance equation for the suspension is obtained by the sum of (3) and

(2):

∇ ·Σ+ ρg = 0, (5)
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where the total stress of the suspension,

Σ = Σp +Σf , (6)

is also related to the phase averaged stresses Σ = (1 − Φ) < σ >f +Φ < σ >p (Jackson

(1997)), although Σf 6= (1−Φ) < σ >f and Σp 6= Φ < σ >p a priori (Lhuillier (2009); Nott

et al. (2011)). Note that the description of suspension flows, using Σ, requires nevertheless

the concentration field of the particles, which results from the migration described by either

(3) or (4). As a consequence, unlike the normal stress differences ofΣ which may be neglected

in most suspension flows, the normal stress components of Σf orΣp, are definitely needed to

describe the dynamics of the migration of the particles, or at least the stationary (or quasi-

static) migrated state, obtained for < v >p − < v >f= 0, which corresponds to ∇ ·ΣP = 0

as shown by (4); for the case of present interest, this means a uniform particle phase normal

stress in the cross-stream direction. The originality of our experiment is that it addresses a

situation where no migration occurs, but which nevertheless provides a measurement of the

phase stresses in the radial direction, as will be shown in the following.

We note first that to relate our pressure measurements to rheological properties, one

should remove the hydrostatic pressure. Assuming that the shearing of the suspension does

not generate any tangential stress in the vorticity direction, (which is true if there is no solid

friction along the z-axis of the walls, i.e. no dry cream layer),

Σzr = Σzθ = 0, (7)

and the z-projection of (5) is written ∂Σzz

∂z
+ ρg = 0, and can be solved, with the condition

that the pressure at the free surface, z = hs is the atmospheric pressure, Pa:

Σzz = −Pa + ρg(z − hs). (8)

As expected, when the suspension is at rest (γ̇ = 0), the weight of the suspension is balanced

by Σγ̇=0
zz , which obeys a hydrostatic equation.

Moreover, when the suspension is sheared, hs remains uniform in our experiments: the

centrifugal forces, the lubrication pressures, and the anti-Weissenberg effect (see for instance

Zarraga et al. (2000)) do not generate any significant large scale (much larger than the
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particles diameter a) deformation of the interface. As a result, the right hand side of (8)

remains unchanged, and the variation due to the shearing, ∆Σzz = Σzz − Σγ̇=0 is null:

∆Σzz = 0. (9)

In other words, the hydrostatic contribution (i.e. the z-varying offset of Σii, Σf
ii, ∆Pm

and ∆Pg) remains unchanged when the shear is applied. To remove this hydrostatic z-

dependence, we introduce the variations ∆N = N γ̇ 6=0 − N γ̇=0, of a generic normal stress

N , induced by shearing at |γ̇| 6= 0. Due to the cylindrical geometry of the setup, ∆N does

not depend on θ either. As a consequence, all the variations ∆N , measured or evaluated at

r = Ro, can be combined or compared. They represent actual shear-induced normal stresses,

and are thus expected to vary linearly with |γ̇| in the Stokesian regime studied here.

In our setup, there is no radial flux of either the fluid or particle phase across the grids.

On one hand, the particles are stopped by the grids, which means that the radial particle

phase stress is balanced by the grids. On the other hand, the radial fluid phase stress (inside

the Couette device) must be balanced by the “grid pressure”, Pg = −Σf
rr, which we write in

terms of variations:

∆Pg = −∆Σf
rr. (10)

The balance between normal stresses (and their variations) on both sides of the membrane

is written, with the use of (6):

∆Pm = −∆Σrr = −∆Σp
rr −∆Σf

rr. (11)

From a combination of (11) and ( 10), one gets the radial particle stress:

∆Σp
rr = ∆Pg −∆Pm. (12)

Moreover, the second normal stress difference of the suspension stress, N2 = Σ22 −Σ33 =

Σrr −Σzz (2 and 3 being the directions of the velocity gradient and the vorticity of the bulk

flow, respectively), is obtained by adding (11) and (9):

N2 = ∆Σrr −∆Σzz = −∆Pm. (13)
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To summarize, the membrane pressure, ∆Pm, the grid pressure, ∆Pg, and their com-

bination, (∆Pg − ∆Pm), provide, respectively, measurements of the second normal stress

difference, N2, as shown by (13) of the total stress of the suspension, Σ; of the second (i.e.

radial) normal stress component of the fluid phase stress, Σf , as shown by (10); and of the

particle phase stress, Σp (12), in a cylindrical Couette geometry.

Figure 9 displays the normalized second normal stress difference (−N2 = ∆Pm), measured

for the suspensions containing the beads TS-40 and TS-140, as a function of the volume

fraction φ in a semilog scale. For the sake of comparison, numerical predictions of Sierou

and Brady (2002), using Stokesian Dynamics, and of Yeo and Maxey (2010), based on Force

Coupling Method, are also displayed in fig. 9, together with experimental results of Zarraga

et al. (2000), Singh and Nott (2003) and Couturier et al. (2011).
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FIG. 9. Variation of the normalized (relative to the shear stress of the pure liquid) second normal

suspension stress difference N2, with the volume fraction φ. (◦) Dynoseeds TS-40, (� Dynoseeds

TS-140, (+) Yeo and Maxey (2010),(⋄) Sierou and Brady (2002), (▽) Zarraga et al. (2000),

(△) Singh and Nott (2003) and (⋆) Couturier et al. (2011).

Our two sets of data exhibit a linear behavior on this semilog plot, supporting an expo-

nential increase of the form exp(20φ). Such behavior is also observed for the data reported

by Singh and Nott (2003) in the same geometry, but with a significantly higher pre-factor in
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that work. We have checked the magnitude ofN2 by carrying out an experiment, at φ = 0.45,

with capillary tubes directly connected to the suspension (with no grid and no membrane):

when the suspension was sheared, the liquid level increased only by a few millimeters, in line

with the membrane pressures obtained for the same shear rates. The discrepancy between

our results and other measurements remains to be explained and although our low N2 values

could be due to the small roughnesses of our beads (Davis et al. (2003)), it is likely that

other explanations come into play. One of the reasons that may explain the difference with

measurements of Singh and Nott (2003), performed in the same geometry, could be the

lubrication effect discussed in paragraph IC, which to our knowledge has not been canceled

in the Singh and Nott (2003) experiment. Moreover, in contrast with the bulk estimations

of simulations, we actually perform measurements at a wall, which may modify the hydro-

dynamic interactions between the particles (Zurita-Gotor et al. (2007)), but may also play a

role through its roughness. There also exists a kind of boundary layer at the wall, in which

the particle concentration decreases from its bulk value to zero. The description of this

boundary layer (in term of boundary conditions) is not well-developed, and its influence on

our measurements is not clear. Moreover, the particle stress tensor, Σp, has been assumed

to depend on the local shear alone, and not on the velocity field curvature. However, it is

well known that the trajectory of a single particle is affected by any flow curvature (Faxén

law), and it is likely that the flow curvature (i.e. the geometry of the device, cylindrical,

plate-plate, cone-plate ...) also some influence on the particle stress. This could explain in

part the difference between our N2 direct measurements, at a wall of a cylindrical geometry,

and those by Couturier et al. (2011), at the free surface of a tilted trough setup: It may be

due to the differences in the geometry and in the nature of the boundary conditions (i.e.

free or solid surface).

The particle phase radial normal stress, ∆Σp
rr = ∆Pg−∆Pm, normalized with the viscous

shear stress of the suspension, |Σ12| = ηs|γ̇|, is plotted as a function of φ and φ2, in fig. 10-a

and 10-b, respectively.

Previous experiments (e.g. Zarraga et al. (2000); Singh and Nott (2003); Couturier

et al. (2011)) reported normal stress differences obtained from classical rheometry or inter-

face deformation and then related to the suspension stress Σ which could differ from the

normal stress difference of the particle phase (Lhuillier, 2009). Nonetheless, we compare our

measurements to those reported by Zarraga et al. (2000) and our data compare fairly well
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FIG. 10. ∆Σp
rr, normalized with the suspension shear stress, as a function of φ (a) and of φ2 (b).

Our data, (◦) Dynoseeds TS-40 and (�) Dynoseeds TS-140, are compared to the data (⋄) of Sierou

and Brady (2002) and the fit (solid line) of Zarraga et al. (2000) in (a), and to y = −2φ2 (solid

straight line) in (b).

with the fit, Σp
rr = −2.17φ3 exp (2.34φ) ηsγ̇, obtained by Zarraga et al. (2000) (solid line in

fig. 10 (a)). However, our measurements are slightly larger in absolute value, which is in

accordance with the asymptotic behavior, Σp
rr = −2φ2ηs|γ̇|, obtained at low enough particle

volume fraction, φ < 0.4, in fig. 10 (b). This quadratic dependence of Σp
rr/(ηs|γ̇|) agrees

with the theoretical particle pressure prediction of Brady and Morris (1997) for small φ, and

supports the contention that the particle phase normal stress Σp
rr is due to asymmetric pair

interactions under dilute conditions, and may not require many-body effects. We note that

our measurements of Σp
rr displayed on fig. 10 (b) have been obtained for particle concentra-

tions as low as φ = 0.2, and do not appear to suggest a concentration threshold. The data

deviation from the φ2 scaling for φ > 0.4 (φ2 > 0.16).

For the sake of completeness, we compare in Fig. 11 our measured values, Σp
rr/(ηf |γ̇|),

with the recent expression proposed by Prof. P. Mills (private communication) and by

Boyer et al. (2011) for the particle pressure Π/(ηf |γ̇|) = (φmax/φ− 1)−2, with φmax = 0.605,

based on the determination of relaxation time τr = ηs/P
s where P s is the particle pressure

used to define the viscous analog of the “inertial number” introduced by da Cruz et al.

(2002) for granular media. Although Σp
rr/(ηf |γ̇|) actually represents only one component

of the normal particle phase stress, it compares remarkably well with the simple analytical

expression for the particle pressure. The normalization (by ηf |γ̇|) used in fig. 11 enables
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FIG. 11. Comparison of −Σp
rr, normalized with the fluid shear stress, ηf |γ̇|, with the theoretical

prediction for the particle pressure, Π/ηf |γ̇|, proposed by Mills (2011).

the comparison with N2 displayed in fig 9. Σp
rr exceeds the fluid shear stress ηf |γ̇|, for

φ & φmax/2 (φmax ≈ 0.6) (whereas, with the exception of one measurement at φ = 0.5, the

values obtained for N2 were always below ηf |γ̇|. More generally, we recall that our pressure

measurements always obeyed | ∆Pg |≫| ∆Pm | (fig. 8) which implies, from (13), (12) and

(10),

| N2 |≪| Σp
rr | (14)

and

∆Σp
rr ≈ ∆Pg = −∆Σf

rr. (15)

Thus, the grid pressure provides an approximate measurement of the particle phase radial

normal stress, ∆Σp
rr ≈ ∆Pg, and a good estimate of the particle pressure if one assumes

that the normal stress difference of Σp is of substantially smaller magnitude. The normal

stress difference, N2, of the suspension stress, Σ, is found to be small when compared to the

particle phase normal stress Σp
rr.
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IV. CONCLUSION

The method for measuring a normal stress component of the particle phase in a Stokesian

suspension through measurements of the grid pressure variation ∆Pg induced by shear in a

Taylor-Couette device (Deboeuf et al. (2009)) has been revisited, including a measurement

of the total suspension radial stress (Σrr) obtained from the pressure variation behind an

impermeable membrane ∆Pm. Analysis shows that the latter is indeed needed to provide

access to the particle phase radial normal stress Σp
rr = ∆Pg −∆Pm. Moreover, we showed

that ∆Pm is also a measurement of the second normal stress difference N2, of the total stress

of the suspension, Σ. Measurements of N2 by the method described in this work exhibit

a linear dependence with the shear rate |γ̇| and an exponential variation with the particle

volume fraction φ, in line with the results of previous studies (Sierou and Brady (2002),

Yeo and Maxey (2010), Zarraga et al. (2000) and Couturier et al. (2011)); they are also

found to be one order of magnitude lower than our measured values of Σp
rr, which can be

estimated, therefore, by the grid pressure alone, Σp
rr ≃ ∆Pg.

Our measurements of Σp
rr show no particle size dependence and increase linearly with

the shear rate |γ̇|. When normalized by the suspension shear stress, ηs|γ̇|, they increase

quadratically with φ, in the range 0 < φ < 0.4, which agrees with the theoretical particle

pressure prediction of Brady and Morris (1997) for small φ, and supports the contention

that the particle phase normal stress Σp
rr is due to asymmetric pair interactions under dilute

conditions, and may not require many-body effects. When normalized by the fluid shear

stress, ηf |γ̇|, these measurements are found to be nicely described by the analytic expression

for the particle pressure Π/(ηf |γ̇|) = (φmax/φ− 1)−2, recently used to describe experimental

data by Boyer et al. (2011) and for high φ having the same functional form as the constitutive

relation proposed by Morris and Boulay (1999).
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in ruhenden flüssigeiten suspendierten teilchen,” Annalen der Physik, 17, 549–560 (1905).

Fall A., Bertrand F., Ovarlez G., and Bonn D., “Yield stress and shear banding in granular

suspensions,” Phys. Rev. Lett., 103, 178301 (2009).

Fall A., Huang N., Bertrand F., Ovarlez G., and Bonn D., “Shear thickening of cornstarch

suspensions as a reentrant jamming transition,” Phys. Rev. Lett., 100, 018301 (2008).
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List of Figures

Figure 1 : Top : Size distribution of the particle used for the suspensions. a) Dynoseeds

TS-40 (dm = 37µm) and b) Dynoseeds TS-140 (dm = 130µm). Bottom : Ellipticity of the

particles. Smaller axis a as a function of the larger axis b normalized with the average parti-

cle diameter. c) Dynoseeds TS-40 (dm = 37µm) and d) Dynoseeds TS-140 (dm = 130µm).

The average aspects ratios a/b are equal to 0.924 for the TS-40 and to 0.927 for the TS-140.

Figure 2 : Rheometry: in a 50 mm parallel plate geometry. (Left) Viscosity of the

pure fluid as a function of the shear rate |γ̇|. Measurements have been performed at

T = 20 ◦C. (Right) Viscosity of the suspension as a function of the particle volume fraction,

for |γ̇| = 20 s−1 and T = 20 ◦C. The continuous line corresponds to a Krieger-Dougherty

law (Krieger (1972)): ηs = ηf (1− φ/φmax)
−2, with φmax = 0.625.

Figure 3 : Sketch of the Taylor-Couette cell.

Figure 4 : Lubrication pressure, calculated in the pure liquid of viscosity ηf = 3 Pa · s,

for an axis misalignment a = 100µm and for (- -) γ̇ = −100 s−1 (Ω = −14.7 rad · s−1),

(· · ·) γ̇ = 100 s−1, (- ·) P f(θ,Ω)− P f(θ,−Ω) and (—) λ cos θ. Note the cancellation of the

lubrication pressure at fixed θ when averaged over the two directions of rotation.

Figure 5 : (- -) Ramp of shear rate γ̇ (s−1) (right hand axis) against time (s) and (—)

pressure transducer signal (left hand axis) measured a) behind one grid and b) (—) behind

one impermeable membrane, for a suspension of particles of diameter 40 µm at volume

fraction φ ≈ 0.5.

Figure 6 : a) Image of the experimental cell with a suspension of TS-140 of volume

fraction φ = 0.45 for |γ̇| = 45 s−1 taken 10 seconds after the beginning of the shear. b)

Spatiotemporal diagram built by plotting the light intensity of a vertical line along time

(horizontal direction). The white strips on the top of the suspension correspond to a “

cream” of particles that have been ejected from the suspension due to shear.
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Figure 7 : Evolution of the grid (a) and membrane (b) pressure as a function of the shear

rate for a suspension with volume fraction φ = 0.45. (◦) Dynoseeds TS-40, (�) Dynoseeds

TS-140. The two dashed lines correspond to the asymptotic values of the pressure (i.e. 540

Pa for TS-140 and 1050 Pa for TS-40).

Figure 8 : Evolution of the dimensionless grid (a) and membrane (b) pressure as a

function of the particle volume fraction. Pressures are normalised by ηf |γ̇|. (◦) Dynoseeds

TS-40 and (�) Dynoseeds TS-140. The insets display in logarithmic scale the pressures

normalized with the shear stress of the suspension (ηs|γ̇|)

Figure 9 : Variation of the normalized (relative to the shear stress of the pure liquid)

second normal suspension stress difference N2, with the volume fraction φ. (◦) Dynoseeds

TS-40, (� Dynoseeds TS-140, (+) Yeo and Maxey (2010),(⋄) Sierou and Brady (2002), (▽)

Zarraga et al. (2000), (△) Singh and Nott (2003) and (⋆) Couturier et al. (2011).

Figure 10 : ∆Σp
rr, normalized with the suspension shear stress, as a function of φ (a)

and of φ2 (b). Our data, (◦) Dynoseeds TS-40 and (�) Dynoseeds TS-140, are compared to

the data (⋄) of Sierou and Brady (2002) and the fit (solid line) of Zarraga et al. (2000) in

(a), and to y = −2φ2 (solid straight line) in (b).

Figure 11 : Comparison of −Σp
rr, normalized with the fluid shear stress, ηf |γ̇|, with the

theoretical prediction for the particle pressure, Π/ηf |γ̇|, proposed by Mills (2011).
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