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ABSTRACT Data Center (DC) management aims at promptly serving user requests while minimizing the
energy consumed. This is achieved by turning off unnecessary servers to save energy and adapting the number
of servers that are on to the time-varying and heterogeneous user requests. A great change in the number of
servers on leads to a considerable management effort, also called control effort in the literature, which should
be reduced as much as possible. Since feedback control can improve the performance of computing systems
and networks, we propose to use it to achieve this dynamic capacity provisioning of the DC. In order to
design this feedback control, first, we developed a dynamic model of the DC. The purpose of this paper is to
design a feedback control strategy based on the DC model, able to optimize i) the Quality of Service, ii) the
energy consumed and iii) the management effort. A simple Reactive open-loop Control which provides an
amount of energy equal to the amount requested in the previous time interval is considered as a benchmark
for comparison. Second, two feedback controls based on the balance equations of the DC are studied, namely
i) Reactive Feedback Control providing an amount of energy equal to that provided by the reactive open-loop
control but adding the accumulated demand that has not yet been served, and ii) Model Predictive Control
optimizing a constrained cost that weights the management effort and the prediction error. Reactive Control,
Reactive Feedback Control andModel Predictive Control are compared in terms of energy consumed, energy
error andmanagement effort. Quantitative results of the comparative performance evaluation are given, based
on a data set collected from a real DC.

INDEX TERMS Data center management, energy efficiency, quality of service, dynamic capacity provi-
sioning, reactive control, reactive feedback control, model predictive control.

I. INTRODUCTION
Data Center (DC) management must achieve two fundamen-
tal goals, which are conflicting. On the one hand, it must
serve the time varying user requests in the shortest possible
time and, on the other hand, it must minimize its energy
consumption. The former constitutes an important parameter
to quantify the Quality of Service (QoS). For example, having
a high number of servers powered on that exceeds peak
demand is an optimal strategy from the QoS point of view,
but it consumes excessive energy since much of it is not being
used. An efficient way to reduce power consumption in a DC
is to shut down servers that are not being used and turn them
on only when they are needed.

The associate editor coordinating the review of this manuscript and

approving it for publication was Peng-Yong Kong .

Time-varying jobs arriving at the DC require that the num-
ber of servers that are on at any given time is periodically
adjusted in order to process the job requests. This is called
dynamic capacity provisioning. If the amount of power sup-
plied matches the power required to serve requests in the
current DCmanagement period, these requests will be served.
If the provisioning is less than the power required to process
the requests, there will not be enough servers running in
the DC to process all the incoming requests. Requests that
cannot be served with the resources available in the current
period have towait for the next DCmanagement period, when
some servers can be added (i.e. reactive action). If the supply
power is greater than the requested, the DC resources will be
underutilized and a part of the available power will be wasted.

Considering a periodic DC management (i.e. one that is
done at constant time intervals), there are two main strategies
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to achieve this provisioning: reactive and proactive. A reac-
tive strategy consists in providing energy only expecting
that the demand in the next period is the same as in the
previous period. There are two approaches in the reactive
paradigm, one is based on providing an amount of energy
for the next period equal to the amount of energy requested
in the previous period. This is an open-loop strategy, since it
does not require measuring the requests served in the previous
period. This strategy is optimal from the energy point of view,
since the amount of energy provided and the energy requested
are equal. However, it does not provide a good QoS due
to the possible significant mismatch between demand and
provisioning. Since this approach works in open loop, it is
not able to correct possible mismatches between demand and
provisioning. Therefore, a second approach that uses on-line
feedback of the requests served allows such mismatches to be
corrected.

On the other hand, a proactive strategy which is based on
predicting the amount of energy requested, by using past and
present information, is better from the QoS point of view,
but not necessarily from the energy point of view, unless the
prediction is perfect, which, in practice, is impossible. Thus,
we are faced with a trade-off between energy saving and QoS.

Since this trade-off is the main desired objective when
designing dynamic control strategies, there are several
approaches that can be used for DC management. The prob-
lem is, in fact, a multi-objective optimization subject to con-
straints. It consists of maximizing the quality of the service
or the latency time while minimizing the cost in terms of
energy to process the demand by controlling efficiently the
energy provided. Since these two goals are contradictory, the
solution is a set of optimal compromises called a Pareto set.
Then, a compromise can be selected according to the user’s
preference. Instead of obtaining the whole set of optimal
compromises at each period, which is infeasible in real time,
we use a classical feedback control to optimize a quadratic
cost of the weighted objectives, theModel Predictive Control
(MPC). Each weight of the cost function gives an optimal
solution, thereby instead of choosing the best solution in a
set of optimal compromises the user chooses a particular
weight. To this end, three different control strategies using
a DC model based on balance equations are analyzed. The
first is the Reactive Control (RC), the second is the Reactive
Feedback Control (RFC) and the third is theModel Predictive
Control (MPC) which takes into account the management
effort. To use these control approaches, it is necessary to
formulate a dynamic DC model as done in Section IV.

In this paper, we show that Reactive Control is very effi-
cient in terms of energy but provides a poor Quality of
Service. Based on the DC model developed in Section IV,
Reactive Feedback Control uses a periodic measure of the
imbalance. RFC improves the Quality of Service while con-
suming an amount of energy close to RC, but uses a great
management effort. For this reason, we introduce MPC,
which provides a better Quality of Service than RFC and
additionally has a control on the management effort. This

is the main contribution of our paper: MPC is by far the
most efficient strategy to optimize 1) the management effort,
2) energy efficiency and 3) Quality of Service.

This paper is organized as follows. Section II presents
some related work. Section III deals with the computation of
the energy demand. Section IV defines the DC model and
the three different control strategies studied. Results of the
comparative performance evaluation of those three control
strategies are given in Section V, based on a data set collected
from a real DC. Finally, we conclude in Section VI.

II. RELATED WORK
In the literature, several authors address the trade-off
between energy consumption of servers and user Quality
of Service (QoS) satisfaction in Mobile Edge Computing
(MEC), [24], [25] or in DC, [2], [12].

InMEC, the problem consists in selecting theMEC servers
able to offload the computation of mobile devices while
satisfying the QoS requested by users. In [24], this satis-
faction problem is solved by a non-cooperative game where
MEC servers learn how to decide to be ‘‘on’’ or ‘‘off’’,
whereas mobile devices learn how to select an ‘‘on’’ server
for computation offloading. The distributed solutions pro-
posed in [24], [25] are based on game theory and machine
learning. Both require message exchanges which consume
time and network bandwidth. In this paper, we propose a
centralized solution based on a dynamic DC model. This is a
very powerful tool able to provide a very fast solution based
on prediction.

The bibliography on DC management using proactive
actions based on user request prediction is increasing due
to the interest in energy efficiency and Quality of Service
(QoS). An energy-efficient resource provisioning framework
for cloud data centers is proposed in [2]. The authors report
significant energy saving by predicting the number of user
requests per category to compute the number on machines
required to serve these requests. Unneeded machines are
turned off to save energy. In [3] a proactive DC management
strategy is presented together with its upper bound of cost sav-
ings obtained with respect to a purely reactive management.
Delimitrou et al. proposed Quasar [4] to increase resource
utilization in clusters, while providing high application per-
formance.

An energy-efficient DC management should take into
account the dynamicity and heterogeneity of jobs submitted
by users. The aim of the DC management is to maximize its
revenues. This profit maximization problem, is formulated
as a mixed integer non-linear programming problem in [26]
and [29]. Various methods are used to solve this problem such
as i) simulated annealing and particle swarm optimization
in [26], ii) genetic algorithm in [27], and iii) Lagrange relax-
ation followed by some adjustments of task placement and
resource allocation in [29], to name but a few.

None of these strategies uses feedback explicitly. It is well
known that feedback control can improve performances in
computing systems and networks. The authors of [5] show
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how feedback control can be used for memory management,
CPU utilization in distributed real-time embedded systems,
stable and automated workload management in virtualized
Data Centers (DCs), power and QoS in DCs, and many other
applications. In [6], the authors discuss the application of
both centralized and distributed state-feedback for resource
allocation of tasks in DCs to significantly improve perfor-
mance and also resource saving. In [7], properties of several
predictive controllers to reduce resource over-provisioning
for enterprise applications using dynamic resource allocation
are compared.

In the case of linear systems, there exist well-known opti-
mal feedback solutions, see for example [8]. Applications
in computer systems are generally presented as non-linear
system control problems subject to constraints in states, input
and output variables. In these conditions, it is very difficult to
ensure optimal solutions using feedback. A widely used strat-
egy for this type of problem is Model Predictive Control [9].
Using a model of the system, MPC consists in optimizing the
control over a finite time-horizon (i.e. a sliding window of
time intervals), while implementing only the control for the
next time interval. Then again, MPC optimizes on the next
sliding window, repeatedly.

A linear constrained model predictive control approach is
applied in [10] to a coordinated dynamic server provisioning
and thermal dynamics for energy control of data centers.
In [11], it is applied to critical time-sensitive cyber-physical
systems, taking advantage of cloud and edge computing.
In [12], which is the closest work to ours, the objective is
to adjust the incremental number of machines that are turned
on or off in a cloud data center. In this study, the problem is
formulated as a pseudo-optimization problem in two steps.
First, by obtaining the number of machines that minimizes
the operational cost expressed as the sum of the energy cost
and the delay violation penalty cost. Second, anMPC strategy
is used to minimize a constrained quadratic cost taking into
account, on the one hand, the error between the number of
machines and its optimal number and, on the other hand, the
control penalty corresponding to the reconfiguration cost paid
each time a machine is turned on or off. The weighting coef-
ficients in the quadratic cost allow the DC manager to favor
either an aggressive control to maximize power savings or,
on the contrary, a smoother control to minimize the reconfig-
uration cost. Thus, the strategy consists in solving two costs
by optimizing only the last one leading to a pseudo-optimal
solution. This study is the closest to ours since we also use
MPC to maximize energy savings and user satisfaction, while
taking into account the reconfiguration. However, we will see
that in our approach we use only one cost to optimize the
energy cost, the delay violation and the reconfiguration cost,
thereby making our solution optimal.

Several papers cited use a publicly available set of
traces collected in one of Google’s DCs over a period of
29 days [14], [16]. This DC data set has been extensively
studied by researchers [15], [17]–[20]. The analysis of this
data set can help researchers i) to make valid assumptions,

ii) design more accurate models of jobs, tasks and machines,
and iii) propose more efficient job scheduling algorithms.
We apply our theoretical study to this data set and make a
quantitative comparison.

TABLE 1. Notations.

III. ENERGY DEMAND
A. NOTATIONS AND ASSUMPTIONS
The notations used in this paper are listed in Table 1. For the
energy computation, the following assumptions are used:
• A0 Job arrivals are random.
• A1 Amounts of requested resources are random.
• A2 Request durations are random.
• A3 DC management is in charge of maintaining the bal-
ance between the number of servers on and the amount
of resources used during the period T . This is done by
either turning on the necessary servers or turning off
the unnecessary ones periodically with period T . The
time interval [(k − 1)T , kT ) is also denoted step k for
simplicity reasons.
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FIGURE 1. r j
i (ti ) requests the amount of resources r j

i from time ti for

duration τ j
i (not represented here). The request is represented by a

rectangular pulse of amplitude r j
i for a time t meeting ti ≤ t ≤ ti + τ

j
i ,

and zero otherwise; in red r j (t) is the sum of the amplitude of all
rectangular pulses counted at time t ∈ [(k − 1)T ,kT ); y j (k) is the energy
provided by server j during the interval [(k − 1)T ,kT ).

• A4 The allocation algorithm is in charge of assign-
ing available servers to globally provide the requested
resources in terms of CPU and memory, etc.

• A5 When a job is waiting to be scheduled, it does not
consume any energy.

B. ENERGY COMPUTATION
The allocation algorithm is in charge of assigning servers to
globally provide the requested resources, of which concern
there are different classes (e.g. CPU, memory, disk). Hence,
any server j that is on in the time interval [(k−1)T , kT ) has to
serve the ith request in theDC that has been assigned to it. This
request, denoted by r ji (t), requires an amount of resources
r ji from time ti and for a duration τ ji , which is represented
by a rectangular pulse of amplitude r ji and zero otherwise,
as shown in Fig 1. The sum of the amplitude of all rectangular
pulses at time t ∈ [(k − 1)T , kT ) is the amount of requested
resources at this time on server j and is given by:

r j(t) =
∑
i

r ji (t) (1)

For example, Fig 1 depicts several requests, some arriving
during the interval [(k − 1)T , kT ) and others whose service
started in a previous period but has not yet finished. The total
amount of resources requested on j is depicted in red. The
area under r j(t) during the interval time (k − 1)T to kT is
proportional to the energy needed by server j to serve its the
requests in this interval.

We denote by Pj(t) the power consumed at time
t ∈ [(k − 1)T , kT ) by server j that is on, during this time
interval. In order to obtain the expression of Pj(t), we adopt
the linear power model of the server, which has been exten-
sively used bymany authors, [21], [22], where the total power
consumed is the sum of the idle power, Pjidle, and the power
due to each resource consumption. By defining the resource

utilization factor of a given resource at time t equal toµj(t) =
r j(t)/C j

ap, the ratio between the amount of resource requested
at time t and the resource capacity;µjx(t) the utilization factor
of resource x ∈ {x1, . . . , xn} in server j at time t; and ηjx
the power variation coefficient associated with the utilization
factor of resource x on server j, the power consumed by server
j at time t ∈ [(k − 1)T , kT ) is given by:

Pj(t) = Pjidle +
∑
x∈DC

ηjxµ
j
x(t). (2)

The summation is done over all n resource classes (e.g. CPU,
memory, disk, etc.) that are made available by the DC, these
resource classes do not vary over time. The power variation
coefficients, ηjx , can be obtained by filling with N � n
sampled data at different times t the following vectorized
equation:

[
µjx1 (t), . . . , µ

j
xn (t)

] η
j
x1
...

η
j
xn

 = Pj(t)− Pjidle, (3)

and solving it via the Least Squares method.
LetM (k) denote the number of servers turned on in the DC

at any time t ∈ [(k−1)T , kT ), the total power P(t) consumed
by the DC taking into account all resources used is equal to
the sum of two components:

P(t) = Pidle(k)+
∑
x∈DC

Px(t) (4)

where

Pidle(k) =
M (k)∑
j=1

Pjidle (5)

Px(t) =
M (k)∑
j=1

ηjxµ
j
x(t) (6)

The energy associated with all resource requests in the time
interval [(k − 1)T , kT ) can be written as:

y(k) = yidle(k)+
∑
x∈DC

yx(k) (7)

where:

yidle(k) = TPidle(k) (8)

yx(k) =
∫ kT

(k−1)T
Px(t)dt (9)

IV. DC MODEL AND CONTROL
The goal is to satisfy user requests while minimizing the
energy consumed. This is accomplished by shutting down
unnecessary servers to save power or turning on the necessary
ones while serving heterogeneous user requests. For this
purpose, we propose different control strategies by providing
the necessary energy, ux(k), to meet the demand of each
requested resource, yx(k). Each of these strategies applies to
each of the n resource classes requested in the time interval
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[(k − 1)T , kT ), although here, for the sake of simplicity,
we consider generically only one. Thus, the suffix x will be
omitted. Since the power Pidle cannot be explicitly controlled,
it is assumed that within the set of admissible servers with
the same resource capacity, those with a minimum Pidle are
chosen. Three control strategies based on the DC balance
equations are studied, namely: i) Reactive Control (RC),
which is an open-loop control that provides an amount of
energy equal to the energy requested in the previous time
interval, ii) Reactive Feedback Control (RFC), which is the
same as RC but includes the accumulated demand that has
not yet been served, and iii) Predictive ControlModel (MPC),
which optimizes a cost that weights management effort and
prediction error. All these strategies are based on the dynamic
model of DC determined by its balance equations.

A. DYNAMIC ENERGY BALANCE
The input variables of the dynamic DC model are, on the
one hand, u(k), the energy provided to serve user requests
by managing the number of available servers and, on the
other hand, y(k) the energy required to serve user requests
(e.g. CPU and memory). The demand is served proactively,
providing at time (k − 1)T , the energy u(k − 1) provisioned
for the next period [(k − 1)T , kT ), see Fig 2.

FIGURE 2. DC management: y (k) and u(k − 1) are the energy demanded
and the energy provided in the DC during the interval [(k − 1)T ,kT ),
respectively.

The balance equation represents the dynamic accumulation
of energy during a time interval T in the DC. It is equal to the
difference between:
• the energy requested to serve the demands arrived during
the period y(k) plus the demands arrived in previous
periods but not yet served, max{0, e(k − 1)},

• and the energy provided, u(k − 1).
Then, the dynamic energy balance of the accumulated error

is given by:

e(k) = max{0, e(k − 1)} + y(k)− u(k − 1) (10)

u(k) = u(k − 1)+1u(k) (11)

where max(0, e(k−1)) stands for the amount of accumulated
demands that have not been served when starting the time
interval [(k−1)T , kT ). Considering the case where e(k−1) =
0, the error is positive when the demand is greater than the
provision, y(k) > u(k − 1), and conversely, if the error is
negative, y(k) < u(k − 1), there is more provision than

demand. Hence, in Equation (10) the positive part of the error
represents the accumulated demand not served previously and
which needs to be served as soon as possible. On the other
hand, when the energy provided is in excess, it is lost. As a
consequence, only the positive part of the error is accumu-
lated. The incremental change of energy provided, given by
Equation (11), 1u(k) = u(k) − u(k − 1), quantifies the
variation in energy supplied to maintain the balance. This is
called the management effort. Optimal performance consists
in minimizing the error while keeping minimal the manage-
ment effort. However, these two objectives are conflicting.
Then, to obtain a good balance control, some strategies are
required.

B. THREE CONTROL STRATEGIES
The different strategies proposed to obtain the requested
energy are obtained from the error given by Equation (10)
and under the assumption that the error e(k) can be measured
at step k .

1) REACTIVE CONTROL
The first strategy consists in providing at time kT for the time
interval [kT , (k+1)T ), the amount of energy requested at step
k , that is during the time interval [(k − 1)T , kT ). Thus,

u(k) = y(k). (12)

Initializing e(0) = u(0) = 0 and replacing u(k) = y(k)
in (10), the error is e(k) = y(k) for all k . This strategy has
two properties:

i) There is no waste of energy, since it is used to serve all
requests exactly.

ii) All requests from the previous period whose service has
not yet started at the end of the period are served in the
next period.

Another strategy could be to accumulate the demand from the
previous period and release it in the next, achieving zero error.
Both strategies are energy-efficient but relatively poor from
the point of view of Quality of Service due to the significant
mismatch. Note that starting with e(0) = 0, the error in (10)
is zero only if y(k + 1) = y(k).

2) REACTIVE FEEDBACK CONTROL
The problem with Reactive Control is that there is always
a mismatch between the energy requested and the energy
provided in the same period. In order to improve this, it is
possible to take into account the accumulated error given by
the amount of non-served requests in (10). Thus, an improved
reactive energy provisioning is as follows:

u(k) = max{0, e(k)} + y(k). (13)

Now, initializing e(0) = u(0) = 0 and replacing u(k) in (10),
the error is reduced to e(k) = y(k)−y(k−1) for all k . Note that
also starting with e(0) = 0, the error is zero if y(k+1) = y(k).
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3) MODEL PREDICTIVE CONTROL
Generally, only a countable number of servers, say N , are
available in the DC. Then, one possible solution is to use
servers such that their global capacities are the closest as
possible to the amount required. This procedure could lead to
sub-optimal solutions. Thus, we propose amethod that allows
the best solution to be chosen, given the available servers, that
minimizes the management effort. The strategy proposed is
called Model Predictive Control, MPC, which can be stated
as the following constrained minimization problem:

min
1u(k)

{(
max{0, e(k)} + ŷ(k + 1)− u(k)

)2
++ρ12

u(k)
}

st :



e(k) = max{0, e(k − 1)} + y(k)− u(k − 1)
u(k) = u(k − 1)+1u(k)
1u(k) ∈ {11,12, . . . ,1N , }

ρ ≥ 0 weight of the management effort
e(0) = 0

(14)

Note that in the case where ρ = 0 and ŷ(k + 1) = y(k),
the RFC control strategy, defined in Equation (13), coincides
with the optimal solution of this constrained optimization
problem. This strategy consists in providing the demand
predicted for the next period plus the error correction of the
previous period. Then, the improvement of MPC for ρ = 0
with respect to RFC depends on how good the prediction of
the future demand is. In order to proceed with MPC, we need
a prediction.

We are interested now in finding a prediction of the
requested energy to be used in the MPC. The optimal predic-
tor, ŷ(k) = g(Y ), is a nonlinear function of previous samples
given by the elements of the vector Y = [y(k − 1), y(k −
2), . . .]. In order to find the function, let us minimize the
expected value of the quadratic error, E[J ], where

J = (y(k)− g(Y ))2, (15)

This problem is equivalent to finding the function g(Y ) that
minimizes the conditional expected value of y(k) given the
previous values y(k−1), y(k−2), . . . , see Section 7.4 of [23].
Basically, written in terms of the conditional probabilities

g(Y ) =
∫
∞

−∞

y p(y|Y ) dy

where p(y|Y ) is the density of y, conditioned to a given Y .
Given a vector Y ∗ = [y∗(k − 1), y∗(k − 2), . . . , y∗(k − n)],
where n is the number of previous samples considered, the
conditional distribution p(y|Y ∗) is obtained by i) finding in
a set of training samples all the vectors Y = [y(k − 1),
y(k − 2), . . . , y(k − N )] that match Y ∗ and then, ii) obtain-
ing the subset Y with the corresponding value y(k) corre-
sponding to each. The optimal predictor, is given by the
mean value of the subset Y . The values of y are associ-
ated with vectors Y which are obtained by selecting them
in a previously stored database. This database can be built
off-line to be accessed in real time to compute the MPC
solution.

The minimization procedure in the MPC is as follows:

i) given the measured accumulated demand at time k ,
which is equivalent to max{0, e(k−1)} in Equation (10),
themeasured energy y(k) requested, and the value of past
control u(k − 1), the error e(k) is obtained.

ii) using the prediction ŷ(k + 1) the cost (14) is evaluated
for each 1i for i = 1, . . . ,N . The increment that gives
the minimum cost is chosen.

iii) update u(k) and go to step i).

The three proposed strategies are experimentally evaluated
in Section V.

V. EXPERIMENTAL RESULTS
The results reported in this paper are obtained by comparing
the three different DC management strategies under study,
considering the requests in the Google DC whose traces [16]
were collected over a period of 29 days. This data set has
been selected, because 1) it corresponds to an operational data
center and 2) it has been made publicly available by Google.
The quantitative values reported in this section are representa-
tive of the data center considered. However, this paper shows
how to apply the method proposed to any data center. In these
traces, no energy data is explicitly provided. However, we use
the amount of resource requested and the duration of each
task to compute the energy consumed by task execution as
explained in Section III-B, where Figure 1 depicts how dif-
ferent resource requests are taken into account in the energy
computation.

Since in the data set considered, 92.65% of servers have
the same CPU capacity of 0.5 as noted in [3], we consider
that all servers have the same CPU capacity. Each server is
such that for any admissible demand the limiting factor is
the CPU. In other words, for all the tasks to be served, the
CPU utilization factor is always greater than or equal to the
memory utilization factor. Thus, the CPU is the bottleneck
resource. Consequently, the control will be analyzed based
on the imbalance only for the accumulated demand of CPU.
The great heterogeneity of tasks in a DC, which has been
pointed out by many authors [2], [13], [15], is taken into
account by the method proposed. For instance, some tasks are
more CPU-intensive than others and require more CPU. This
is expressed by the task contribution to the CPU utilization
factor on server j (µjCPU (t)), which may considerably differ
from one task to another.We assume that theDC ismade up of
1660 servers, each with the parameters given in Table 2. The
peak power of the DC, without considering the idle power,
is 5 × 105 [Watts]. Then, the peak energy consumed during
a given time interval T , is upeak = 5 × 105 T Joules.
In this paper, we use a DC management period T in the range
[60, 3600] seconds. The smallest value of T is determined
in such a way that turning off a server during T = 60 s and
then turning it on in the next time interval allows a very small
amount of energy to be saved [2], [3]. The greatest value of
T = 3600 s is chosen to limit user dissatisfaction in case of
under-provisioning.
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TABLE 2. Parameter values.

A. ENERGY AND SAMPLED ENERGY
The amount of resources to serve user requests is quantified in
terms of energy, that is, a quantity proportional to the amount
of requested resources accumulated during the interval time
T , named y(k) as defined in (7). It is worth noting that this
measure differs from the amount of resources sampled at
time t = kTo and multiplied by To, named sampled energy
and denoted by y∗(k). For example, the usage of each type
of resource is reported at each To = 300s interval. The
relative Euclidean norm of the difference between y(kT ) and
the sampled energy y∗(kTo) is used to evaluate the relative
error between these two approaches when To = 300s for
different values of time, T , as shown in Figure 3. It can
be seen that this metric increases as the period T becomes
smaller, reaching errors of up to 75% for T = 60 seconds.
Figure 4 depicts the values of y, y∗ and y− y∗ measured each
T = To = 300 seconds. It is worth noting that the error is
zero mean.

FIGURE 3. Relative Euclidean norm of the differences between energy
y (k) and sampled energy y∗(k), for To = 300s..

B. ENERGY ERROR AND MANAGEMENT EFFORT
Control strategies provide the number of servers according to
the energy balance at each period T . This balance assumes a
constant arrival flow of demand during the interval, which is
equivalent to consider constant demanded power during each
period. However, the arrival power is generally time-varying
so that it is possible that additional amount of energy supplied
could be not fully utilized. For example, it could happen that
for the same energy demanded in a period, it arrives towards
the end of the period, causing an additional underutilized
energy supplied. Then, to analyze QoS and energy waste

FIGURE 4. Evolution over time of the amount of energy y (k) and sampled
energy y∗(k) and differences between both for T = To = 300s.

for different dispatch periods T , simulations are performed
using multi-sampling. A small period of 10 s is used to take
into account the time-distribution of the arrival of demand in
the balance equation (10) and (11). The provisioned energy
u(kT ) is dispatched each period T = nTs, where n is an
integer number of small periods periods. Figure 5 depicts the
energy imbalance of the different control strategies versus
the management effort for dispatch periods T equal to 240,
480, 1840, and 3600 seconds. For MPC, the increments or
decrements, 1u(k), are chosen by turning on or turning off
the necessary number of servers among the 1660 servers. The
Euclidean norm of the error versus the incremental control,
both relative to reactive control is depicted in Figure 5.a for
different values of the management period T in a range of
ρ ∈ (0, 10). In this Figure, we can see all the solutions
that optimize the quadratic cost where a stronger control
of increment allows a reduction in the imbalance between
energy demanded and energy provided.

Since the demands served are represented by the positive
part of the imbalance while the negative part represents the
wasted energy, the performance of each control strategies
depends on how much the variable e(k) can be reduced.
Thus, from the Figures, MPC optimally improves QoS and
control effort. In Figure 5a, it is observed that the norm of the
imbalance can be reduced by app. 60% with the same man-
agement effort using MPC with respect to RC. By reducing
the management effort, the error increases depending on the
value of ρ and on the contrary, by increasing the management
effort it is possible to reduce by app. 80% the imbalance.
From Figure 5b this imbalance reduction costs approximately
between 10% and 30% more energy. It is important to note
that for ρ = 0 the differences between MPC and RFC are
explained by the predictor used.

On the other hand, we know that RC is energy efficient,
thus we can assert that the other strategies share the same
property. This is corroborated by observing the histogram
of the errors in Figure 6a, 6b, and 6c in which the error is
almost always positive, y(k) > u(k) for all k , which means
that all energy provided is efficiently used. In Figures 6b
and 6c, we observe, due to the feedback, that the accumulated
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FIGURE 5. Model predictive control MPC, reactive Feedback control RFC,
and reactive control RC strategies for different values of intervals T.

demand given by the distribution of positive values of the
imbalance is significantly reduced in comparison with the
reactive control in Figure 6a. Moreover, using feedback the
error is optimally concentrated near zero. In the next subsec-
tion, we will see that this reduction of accumulated demand
is related with the reduction of the scheduling time.

C. EVOLUTION OVER TIME
In order to observe the effect of the weight ρ on the time
responses of the variables we choose as an example a por-
tion of the record for different signals in the case of T =
1840s. Figure 7 depicts the evolution over time of the energy
requested y(k), the energy provided u(k) and the error e(k)
for the three strategies evaluated. Figure 7a (upper) depicts
the MPC time response for ρ = 0 which means no penalty of
the reconfiguration effort, whereas Figure 7a (lower) depicts
the time response for ρ = 10 meaning a moderate penalty.
It can be seen that in the former the error of MPC is similar

FIGURE 6. Relative error probability for interval T = 1840s.

to the RFC depicted in Figure 7b (upper). In the case of MPC
for ρ = 10, the control action is softer as can be seen from
Figure 7b (lower).

D. AVERAGE SCHEDULING DELAY
From the standpoint of the data center manager, the main
factor that defines the QoS is the scheduling delay which is
also important for sustaining the SLA (Service Level Agree-
ment). Several simulations were carried out to obtain the
average scheduling delay which is depicted in Figure 8 for
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FIGURE 7. Evolution over time of y (k) the energy requested, u(k) the
energy provided, and e(k) the error, for interval T = 1840s..

several time-intervals T and ρ ∈ [0, 10] with respect to
the energy consumed relative to the peak energy upeak . It
can be observed that for all time intervals T , the scheduling
delay decreases with large values of ρ, corresponding to
an increased control action. The minimum scheduling delay
ranges from 30s for small T to 100s for large T , and the
corresponding energy consumption remains less that 0.1 in all
cases. This result confirms that the more reduced the dispatch
interval is, the shorter the scheduling time is, because the
system is better controlled. The energy consumed decreases
with the reduction of the scheduling time due to a stronger
action of the control effort that is achieved by increasing ρ.
This is because both the non served demand, represented by
the positive part of e(k), and the energy waste, represented by
the negative part of e(k), are reduced simultaneously by the
MPC through the optimization of the quadratic cost of e(k).
The energy consumed to provide a given average scheduling
delay is considerably smaller than other approaches using
the same data. For example, the solution presented in [12]
requires a relative consumption of 0.5 to obtain an average
scheduling time of 80s, whereas optimal MPC requires less
than 0.1 relative energy for the same average scheduling
delay. This is due to the use of an optimal solution rather than

FIGURE 8. Average queuing delay versus energy relative to the peak
energy.

a sub-optimal one. In the case of RFC, both the scheduling
time and the energy consumed are greater than those obtained
with the optimal MPC. Whatever the solution evaluated, both
the scheduling time and the energy consumed decrease with a
reduction of the DC-dispatch period. However, for periods T
less than 500s, the minimum scheduling time and the energy
consumed do not change significantly.

VI. CONCLUSION
The DC manager is faced with two conflicting goals: on the
one hand, to provide the best QoS to users by reducing the
scheduling delay by increasing the number of servers on, and
on the other hand, to save energy by turning off all unused
servers. Dynamic capacity provisioning is applied periodi-
cally to tune the DC capacity according to the dynamic and
heterogeneous workload submitted to the DC. In this paper,
we compare three DC control strategies. The first one, Reac-
tive Control (RC), is an open-loop control which provides
the energy requested in the previous period. Consequently,
it provides the exact amount of energy requested, which
makes it energy efficient, but with a big large latency, leading
to a significant scheduling delay. The second one, Reactive
Feedback Control (RFC), is a closed-loop strategy; it needs
to measure the service on-line. It uses the accumulated error
from the previous period to decide the provisioning period
allowing the requests to be served in less than two time
periods, but is not energy efficient. The third one is Model
Predictive Control (MPC) which is a feedback control and is
also proactive, since it uses prediction of the demand. MPC
is an optimal solution between weighted error and control
effort. From the comparison of these three control strategies
applied to the traces of a real DC, three conclusions can be
drawn: 1) The proposed optimal proactive MPC, that simul-
taneously minimizes the waste of energy with maximum
possible QoS by managing the control effort, significantly
improves reactive open-loop control. This scheme achieves
scheduling times of the order of 10% of those used by reactive
control while only increasing the energy used by 10%. It is
important to note that this reduction is the maximum possible
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with this type of proactive scheme since the design is optimal.
2) DC dispatch time is shown to affect Quality of Service
in all three control settings, but not energy savings, which
remain almost the same as RC energy efficiency. 3) It is
shown that when the control effort is not taken into account,
the same optimal performance as in MPC is obtained using
RFC.
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