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Abstract—Through recent wireless technologies, such as
Centralized Radio Access Network, baseband unit and remote radio
heads are physically separated and connected using fronthaul links.
Compressing complex baseband signal samples prior transmission
over fronthaul link is an effective way to satisfy the pressing need
to decrease the huge required transported data rates. In this paper,
we analyze the existing IQ data compression schemes exploiting
time and spectral signal characteristics. We consider compression
system evaluation parameters to have a smooth trade-off between
required signal quality and complexity performance while achieving
an acceptable compression gain. We propose an optimized uniform
quantization technique combined with entropy coding achieving
non-uniform quantization performance in exploiting signal temporal
statistical characteristics with much less computational complexity.
We also present a comparison between simulation results analyzing
the trade-off between the removal of the signal spectral redundancies
and vector quantization in terms of performance and complexity.

Index Terms—CPRI, Uniform and Non-Uniform Quantization,
Decimation, Vector Quantization, Compression Ratio.

I. INTRODUCTION

The Centralized, Cooperative, Cloud Radio Access Network (C-
RAN) relying on centralized processing, collaborative radio and real
time cloud infrastructure, define the next generation wireless network
architecture. Through C-RAN, processing is done in a Baseband Unit
(BBU) located centrally in a pool configuration and connected to many
Remote Radio Head (RRHs), where solely radio frequency (RF) units
remain [1]. Fronthaul links, which are implemented over electrical or
optical based interfaces, are then responsible for the transmission of
digitized complex IQ baseband signals [2]. Consequently, the C-RAN
strategy leads to an increased amount of traffic on the Fronthaul
links which hereby become the bottleneck of such an architecture.
A natural solution to face this issue is to accommodate the increasing
data traffic demand through the installation of more higher bandwidth
optical fibers. A less expensive approach is to find ways to decrease
the required transmitted data rate over the fronthaul before being
transmitted. Hence, baseband IQ data rate compression has gained
increased interest through the last years. Various strategies of data
rate compression have recently been investigated, namely taking
basis on time-domain samples streams resulting from Orthogonal
Frequency Division Multiplexing (OFDM), as used in many of the
recent technologies. Therefore, fronthaul link compression techniques
commonly found in literature are based on exploiting the temporal
and spectral characteristics of the OFDM signal.

In [3] and [4], uniform scalar quantization was used with
oversampling to remove the inherent redundancy in oversampled
OFDM signals and block scaling has been carried out to compensate
for the redundant information appeared due to the large dynamic range
of signal power. This is especially useful for uplink signals facing large
and small scale propagation effects. In [5], non-uniform quantization
based on an iterative gradient algorithm was proposed to take

advantage of the signal statistical structure over uniform quantization,
and dithering is performed across parallel links to reduce compression
error. In [6], relatively low complexity compression methods were
used, where compression is done by encoding the difference between
the current and the previous sample and the algorithm was tested
using high oversampling factors. Vector quantization combined with
decimation, block scaling before quantization and entropy coding
for the quantizer output was adopted in [7]. The aim was to exploit
time correlated samples and led to improved performance however
at the expense of substantial increase of computational complexity.
In [8] and [9] authors explored the correlation between samples by
the well known linear predictive coding, hereby trying to solve the
complexity issue introduced by vector quantization. This approach
remains however restricted to uplink signal.
Throughout this paper, we explore the well known lossy and lossless
compression methods exploiting scalar-based and vector-based
characteristics of the signal samples to satisfy the goal of finding
a solution which balances the compression performance, complexity
and system end to end performance. After a reminder of the main
ingredients which can be used to build a global compression scheme,
we explore two main strategies at the scalar and vector levels.

We first propose to leverage the signal statistical characteristics by
using a simple optimized uniform quantizer combined with entropy
coding instead of designing a more complex non-uniform quantizer
as usually done in the literature. Our proposed approach yields a
substantial compression gain and lower computational complexity.

Secondly, we investigate in which extend correlation between
signal samples can be efficiently exploited from a compression goal
perspective. Thus, according to wireless system specifications, we
present an illustration in attaining optimum performance in terms
of compression, signal quality and complexity between removing
OFDM signal oversampling overhead using decimation or exploiting
this time correlated IQ baseband signals using vector quantization.
Differently to what is proposed in [7] where decimation is followed
by vector quantization, we rather compare both strategies since the
former eliminates the main memory advantage of the latter due
to diminishing the signal correlation. A performance/complexity
analysis is then led and discussed.

The remaining of this paper is organised as follows. Section II
presents the system model. In Section III, compression algorithms
are described in details. Numerical analysis are presented in Section
IV. Finally, Section V concludes the paper.

II. SYSTEM MODEL

Fig. 1 depicts the basic functional blocks of the system used
where time domain baseband signal is subject to compression before
being transmitted through fronthaul link. Throughout this study, the
considered modules for compression are decimation, quantization
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Figure 1: Fronthaul link compression algorithm framework.

and entropy encoding at the transmitter side and reverse operations
are performed at decompression in the receiver side.

Let the signal x ∈ CNc×1 be the M-QAM frequency domain
symbol vector where Nc is the number of loaded sub-carriers.
z∈CNf×1 is the corresponding time domain symbol vector loaded
with Nf−Nc empty sub-carriers, i.e. known as guard sub-carriers
andNf is the FFT size. z can be expressed as

z=FHMx (1)

where F ∈ CNf×Nf is the DFT matrix and M ∈ CNf×Nc is a
mapping matrix decomposed into Nf−Nc

2 ×Nc null matrices and
identity matrix of sizeNc as follows

M=


0Nf−Nc

2 ×Nc

INc

0Nf−Nc
2 ×Nc


where 0n×p and In is the n×p null matrix and the square identity
matrix of size n, respectively. Finally, x̂ is the demodulating vector
at the receiver. According to the Central Limit Theorem (CLT), for
a sufficiently large IFFT lengthNf , the resulting amplitude statistical
distribution of the real and imaginary components converge to a
zero-mean Gaussian distribution. Thus, exploiting OFDM signal
statistical distribution is an important consideration in the quantizer
design. Practically, the sampling value of the OFDM signal is usually
higher than the minimum required by Nyquist theorem (Nf>Nc).
Thus, time correlated baseband signals are expected and compression
techniques exploiting this correlation must be considered.

On this basis, Compression Ratio (CR) and Modulation Error
Ratio (MER) are the metrics used to evaluate the performance of
the compression system, as introduced hereafter.

A. Compression Ratio

The compression ratio is defined as the ratio between the
uncompressed size and the compressed one, defined as following

CR=
Ro
R

(2)

R0 is the uncompressed bit width of I or Q component of each
sample set, e.g. 15 (bits/sample) according to [2], and R is the
compressed I or Q component bit width.

B. Performance

MER quantifies the ratio between the power of the original signal
over the distortion introduced by the quantization in the log domain:

MER(dB)=10 log10

(
E
{
|x|2
}

E{|x−x̂|2}

)
(3)

III. COMPRESSION SCHEMES

A. Scalar based Compression Techniques

1) Scalar Uniform Quantization: IQ samples are quantized
sample by sample using a quantizer with Rsq bit resolution per
each complex component. Uniform quantization (UQ) is optimum
only for a uniform distributed signal [10]. N quantization levels
are simply uniformly distributed between

[
−2Rsq−1,···,2Rsq−1−1

]
,

centered at zero, with total number of N =2Rsq levels. Quantizer
performance is evaluated by quantization distortion measured by
the Mean Square Error (MSE) between the signal and the chosen
quantization level expressed as

D=

N∑
i=1

∫ ti

ti−1

(x−yi)2pX(x)dx (4)

where yi is the ith quantization level, ti−1 and ti are the decision
thresholds of the ith level. The first and last threshold levels t0
and tN are set to −∞ and∞ respectively. MSE in (4) could be
decomposed into two effects as following

D=

D1︷ ︸︸ ︷
N−1∑
i=2

∫ ti

ti−1

(x−yi)2pX(x)dx

+

∫ t1

−∞
(x−y1)2pX(x)dx+

∫ ∞
tN−1

(x−yN)2pX(x)dx︸ ︷︷ ︸
D2

(5)

whereD1 is the distortion occurred when an input value lies in the
bounded intervals (granular distortion) and D2 is the distortion at
the first and last unbounded intervals a.k.a. overload distortion.

UQ performance could be enhanced by dynamically adapting the
input signal level to have a trade-off between granular and overload
distortions [9]. The loading factor γ is defined as

γ=
yN
σxsx

(6)

where yN is the maximum quantizer’s output amplitude, σx is the
original random input signal standard deviation and both are fixed
attributes, while sx is the adjustable factor scaling the input signal
before quantization to have optimum quantizer performance. Hence,
a convenient value of γ controlling this trade-off is required. When
Rsq→∞,D1 can be expressed as follows [10]

D1=
γ2σ2

3N2
(7)

and we derive a closed form of D2 for a zero-mean Gaussian
distributed signal in terms of γ as

D2=

[
σ2(1+γ2)Q

(
γ

(
1− 1

N

))]
−
[
γσ2√
2π

(
1+

1

N

)
e−

γ2

2 (1−
1
N )

2
]

(8)

where Q(u) = (1/
√
2π)

∫∞
u

exp(−v2/2)dv is the Q-function.
According to (8) which consists of a constant and monotonically
decreasing functions, overload distortion is decreasing by increasing
γ. while, in contrast, granular distortion increases with γ. Thus, as
well known, explicit solution for γ trading between granular and
overload distortions satisfying

γopt=argmin
γ

D (9)

is impossible and numerical search is used to find the optimum
depending on the input signal variance and the number of quantization
levels.



2) Scalar Non-uniform Quantization: Optimum quantizer for
a non-uniformly distributed data samples requires more quantization
levels in the range of samples with high probability of occurrence.
Thus, non-uniform quantizer (NUQ) has non-equal distances between
quantization levels according to input signal statistical amplitude
distribution. According to [11], for minimum mean square error
(MMSE) optimality, decision thresholds for each quantization level
are derived by setting the partial derivative of (4) with respect to ti
to zero, which generates

ti=
yi+yi+1

2
(10)

and by setting the partial derivative of (4) with respect to yi to zero,
each quantization level is optimally the centroid of its decision region

yi=

∫ ti
ti−1

xpX(x)dx∫ ti
ti−1

pX(x)dx
. (11)

For a zero-mean Gaussian distributed signal, we have

yi=
σ√
2π

(
e−

t2i−1

2σ2 −e
−t2i
2σ2

)
Q
(
ti−1

σ

)
−Q
(
ti
σ

) (12)

3) Entropy Coding: Entropy coding is a lossless data compression
scheme that utilizes the probability mass function (PMF) of the
quantization levels. More bits for levels with lower frequency and
lower bits for the higher frequency levels. Huffman coding [13] is the
most common practically used entropy coding technique approaching
the Shannon’s lossless source coding theorem. Thus the average
codeword length assigned to the ith quantization level is

LHuff,i=−log2

∫ ti

ti−1

pX(x)dx (13)

For a zero-mean Gaussian distributed signal, we derive it in a closed
form as

LHuff,i=−log2

(
Q

(
ti−1
σ

)
−Q
(
ti
σ

))
(14)

Hence, additional compression is gained by eliminating the potential
redundancy from the distribution of quantization levels.

4) Entropy Constrained Quantization: it merges quantization
with entropy coding [14]. Through ECQ, distortion and codeword
lengths are optimized simultaneously by embedding entropy coding
into the Lloyd’s algorithm. The optimal quantizer is then obtained
by minimizing the distortion subject to a constraint on the maximum
transmission rate as following

min.
ti,yi

D=

N∑
i=1

∫ ti

ti−1

(x−yi)2pX(x)dx

Subject to −
N∑
i=1

p(yi)Li ≤Rmax

(15)

Quantization level are still as in (11) but decision thresholds are
updated to

ti=
yi+yi+1

2
+
λ

2

Li+1−Li
yi+1−yi

(16)

where λ is the Lagrange multiplier of the rate constraint. This
method has a remarkable complexity enhancement compared to
using quantization and entropy coding functions separately.

B. Vector based Compression Techniques

Additional gained compression could be achieved by considering
the fact that the amplitude of the OFDM baseband signals are oversam-
pled. Two solutions will be used to exploit this spectral redundancy.

1) Spectral Domain Redundancies Removal: OFDM signal
is transmitted in broader spectrum than required by the system
bandwidth, i.e. oversampled by factor L defined as

L=
fs
fm

(17)

where, fs is the original signal sampling rate and fm is the system
bandwith. This can be exploited to further increase the compression
without degrading signal quality by removing the redundant spectrum
leaving a signal with lower sampling rate fds before being transmitted
through fronthaul link.
Decimation is used in the redundancy removal process, first by
upsampling the input signal by factor m. The upsampled signal is
then filtered with an FIR low-pass filter with a bandwidth limited
to [−fds/2,fds/2]. Finally, filtered signal is downsampled by factor
k. the decimation factor F is the key parameter for performance
evaluation and is defined as

F=
fs
fds

=
k

m
≥1 (18)

which is limited to the oversampling factor L, i.e. that depends on
the amount of redundancy spectrum to be removed while retaining
useful data F ≤L, and the filter length which must be chosen to
have the best trade-off between ensuring good amplitude and phase
response in the passband of the filter and the filter complexity.

2) Vector Quantization: Vector quantization (VQ) differs from the
scalar one in exploiting time correlation between samples. VQ is a
vector codebook based quantizer. The input is a k-dimensional vector
whose components are the source IQ samples x= [x1,x2,··· ,xk]
and mapped to one of the k-dimensional vectors yi in the codebook,
where i∈

{
1,2,···,2k.Rvq

}
and Rvq is the number of bits per each

scalar sample. According to [12], Lloyd’s optimality conditions can
be extended to the vector quantizer (VQ) design.

By having a set of training samples extracted from the source,
vector quantizer codebook is designed offline by partitioning the
k-dimensional space of random vectors x intoN convex quantization
cells, which seeds are the output vector y occurences. Each input is
mapped to a certain cell which minimizes its Euclidean distance with
the codeword representing it. VQ is supposed to outperform the per-
formance of scalar quantization by exploiting the correlation occurred
by oversampling. Hence, to investigate the time correlated samples,
consecutive IQ samples are vector grouped as an input to the quantizer.

IV. ANALYSIS AND PROPOSAL

In this section we first numerically investigate the scalar quanti-
zation performance described in Section III-A. A 64-QAM signal is
considered, which modulatesNc=27260 sub-carriers out ofNf=
32768 IFFT entries per each OFDM symbol, that corresponds to a
8-MHz DVB-T2 frame structure. In order to assess the performance
and compare with the idealized quantizer, we consider independent
identically distributed (i.i.d) input samples, i.e. no redundancy in the
spectral domain. MER of an ideal scalar quantization compression
system is MERub=22Rsq [15] and it is considered as an upper bound.

A. Scalar based analysis

In Fig. 2, MER is presented as a function of the resolution Rsq.
First, the dashed curves present the proposed optimized uniform quan-
tizer and Lloyd-based non-uniform quantizer. UQ at each resolution
is optimized at certain γopt according to the number of quantization
levels and signal variance as shown in Fig. 3 which presents the MER
as a function of the loading factor γ from 6 to 10 quantization bits [9].
Non-uniform quantizer has a clear advantage over the optimized
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Figure 3: MER versus loading factor γ for different resolution bits.

uniform one and the difference is increasing at higher resolutions.
Using the Huffman coding at the output of both uniform and non-
uniform quantizers allow more compression by assigning variable-
length codewords to different quantization levels according to their
probability. As shown in the dashed-dotted lines, the difference
between the two algorithms with Huffman coding is approximately in-
distinguishable. As illustrated in the sub-figures, for lower resolution
NUQ is slightly better than UQ by approximately 0.4 dB at 2 bits
resolution, while, UQ becomes better by increasing resolution per
sample to almost 0.45 dB at 9 bits.

This performance happens due to the increasing of optimum load-
ing factor γopt with increasing resolution as shown in (6) and also illus-
trated in Fig. 3. Higher γ leads to a lower scaling factor sk according
to (6), thus, the scaled signal amplitudes at the input of the quantizer
diminishes and quantized to levels near zero. Huffman encoded these
levels with shorter codeword lengths due to their higher probability
of occurrence under Gaussian distribution. Hence, The loading factor
based optimized uniform quantizer combined with entropy coding
is having the role of exploiting signal statistical distribution like non-
uniform quantization with lower computational complexity.
This can be assessed analytically by analyzing the asymptotic gap

Table I: Illustration simulation results

Resolution bits 2 3 4 5 6 7 8

γopt 1.80 2.33 2.76 3.21 3.52 3.89 4.09

RUQ−RNUQ 0.66 0.29 0.05 -0.17 -0.30 -0.43 -0.52

between the entropy of uniform and non-uniform quantizer outputs
derived from the asymptotic distortion-rate functions for uniform and
non-uniform quantization derived in [10] and [16] respectively. This
gap is expressed as following

lim
R→∞

RUQ−RNUQ=
1

2
log2

(
3
√
3π

2γ2

)
(19)

Substituting in (19) by the simulated γopt obtained from Fig. 3 for
different resolutions is shown in Table I, which shows the improve-
ment of UQ over NUQ by increasing number of resolution bits, i.e.
more compression gain can be achieved by UQ at the same MER.
Finally, ECSQ performance can be considered as an upper limit to the
compression gain obtained by a scalar quantization scheme and it is
approximately 1.6 dB lower than the upper bound MERub. While, UQ
followed by Huffman coding performance is approximately 2.4 dB
lower than the upper bound. Thus, according to system requirements,
we can decide whether approximately 1 dB gain obtained by ECSQ
over using UQ and Huffman code worth the additional complexity
of ECSQ implementation.

B. Vector based analysis
We now consider the fact that the amplitude of the OFDM baseband

signals are correlated due to oversampling as described in Section
III-B. We will present a comparison between exploiting this corre-
lation in gaining additional compression for different oversampling
factors, i.e the attribute affecting the compression performance of the
two solutions: i) decimation followed by scalar uniform quantization
and ii) vector quantization as shown in Fig. 4a and 4b respectively.
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As the oversampling factor L increases, the number of guard
zero-padded sub-carriersNNull=Nf−Nc within OFDM symbol
increases. Thus, the ratio NNull

Nf
will be our oversampling parameter,

i.e increases by increasing the oversampling factor. In Fig. 5,
compression ratio is presented as a function of oversampled factor
represented by NNull/Nf . Compression ratio is calculated for the
first system of decimation followed by SQ as CR= R0

m
k Rsq

and for
VQ as CR = R0

Rvq
. Thus, in general compression ratio increases

by increasing the oversampling factor. For the first system due to
increasing the decimation factor (F ) degree of freedom maximally
limited to the oversampling factor as mentioned in Section III-B1.
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While for vector quantization implemented using Lloyd algorithm,
CR increases by increasing the quantizer memory advantage of
exploring the dependency between input vector components, which
increases by increasing vector dimension k.

In Fig. 5, we assume fixed MER = 30 dB to compare the
compression achieved by the two systems. Hamming window based
FIR filter is implemented in the decimation process and Table II shows
the selected decimation parameters (m,k) and filter lengthNw that
achieve an acceptable signal quality and complexity performance for
different oversampling factors. Simulations results show that the gain
obtained by decimation at low oversampling factor is very small due
to the small decimation factor degree of freedom and VQ with higher
vector lengths can achieve a better performance. While the decimation
gain increases significantly by increasing the oversampling factors,
achieving about 6 times compression gain higher than vector quantizer
with vector length 3 at 0.8 oversampling factor and 30 dB MER.
Nevertheless, computational complexity of the two algorithms is
an important parameter to be taken into consideration in deciding
the preferable used algorithm beside the compression performance.
The timing computational complexity of the first algorithm is
O(Nw logNw + 2Rsq), which is the FIR filter complexity and
SQ codebook size and for VQ is O(2KRvq). VQ has higher
computational complexity compared to the decimation and scalar
uniform quantization due to the exponential increase of the VQ
codebook size by increasing the vector length compared to the
logarithmic increasing rate of the filter complexity with the filter
length, which leads to a longer codebook training time, search
process and larger codebook storage.
Hence, the above numerical analysis may be used to decide on
the application of the most suitable compression scheme. As
an illustration, without loss of generality, DVB-T2 or ATSC3.0
broadcasting technologies are having empty sub-carriers in
approximately ∼ 4/25 of their spectrum. Thus, for having more
compression, VQ with higher vector lengths is preferable, taking
into consideration its complexity. While, for an LTE like system has
an approximately ∼ 2/5 empty sub-carriers, decimation with UQ
can achieve an acceptable compression gain at 30 dB MER and with
nearly acceptable complexity according to Table II.

Table II: Hamming window FIR filter specifications

Nnull/Nf 0.1 0.2 0.4 0.6 0.8

Decimation factor (F) 16/15 6/5 3/2 11/5 9/2

Filter length (Nw) 730 470 150 310 310

V. CONCLUSION

In this paper, we have analyzed various IQ data compression
strategies for the data rate limitation on fronthaul links of a C-RAN
architecture. Through our analysis, two main conclusions can be
driven. First, we have showed that an optimized scalar uniform
quantization algorithm coupled by entropy coding over the resulting
scalar codebook efficiently exploits the non-uniform OFDM signal
statistical distribution. This proposed strategy achieves a substantial
compression gain, only 2.4 dB lower than the idealized scalar
quantizer, with much lower complexity compared to the non-uniform
quantization approach. Second, we have provided a comparison be-
tween decimation and vector quantization in exploiting time-domain
correlations. We have showed that a smooth trade-off exists between
the required signal quality, compression performance and system
complexity based on operator choice of suitable parameter values.
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