
HAL Id: hal-02941295
https://hal.science/hal-02941295

Submitted on 16 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DataStates: Towards Lightweight Data Models for Deep
Learning

Bogdan Nicolae

To cite this version:
Bogdan Nicolae. DataStates: Towards Lightweight Data Models for Deep Learning. SMC’20: The
2020 Smoky Mountains Computational Sciences and Engineering Conference, Aug 2020, Nashville
(virtual conference), United States. �hal-02941295�

https://hal.science/hal-02941295
https://hal.archives-ouvertes.fr


DataStates: Towards Lightweight Data Models
for Deep Learning

Bogdan Nicolae

Argonne National Laboratory, USA
bogdan.nicolae@acm.org

Abstract. A key emerging pattern in deep learning applications is the
need to capture intermediate DNN model snapshots and preserve or clone
them to explore a large number of alternative training and/or inference
paths. However, with increasing model complexity and new training ap-
proaches that mix data, model, pipeline and layer-wise parallelism, this
pattern is challenging to address in a scalable and efficient manner. To
this end, this position paper advocates for rethinking how to represent
and manipulate DNN learning models. It relies on a broader notion of
data states, a collection of annotated, potentially distributed data sets
(tensors in the case of DNN models) that AI applications can capture
at key moments during the runtime and revisit/reuse later. Instead ex-
plicitly interacting with the storage layer (e.g., write to a file), users
can “tag” DNN models at key moments during runtime with metadata
that expresses attributes and persistency/movement semantics. A high-
performance runtime is the responsible to interpret the metadata and
perform the necessary actions in the background, while offering a rich
interface to find data states of interest. Using this approach has benefits
at several levels: new capabilities, performance portability, high perfor-
mance and scalability.

Keywords: deep learning, state preservation, clone, model reuse

1 Introduction

Deep learning applications are rapidly gaining traction both in industry and
scientific computing. A key driver for this trend has been the unprecedented
accumulation of big data, which exposes plentiful learning opportunities thanks
to its massive size and variety. Unsurprisingly, there has been significant interest
to adopt deep learning at very large scale on supercomputing infrastructures
in a wide range of scientific areas: fusion energy science, computational fluid
dynamics, lattice quantum chromodynamics, virtual drug response prediction,
cancer research, etc.

Initially, scientific applications have gradually adopted deep learning more
or less in an ad-hoc fashion: searching for the best deep neural network (DNN)
model configuration and hyperparameters through trial-and-error, studying the
tolerance to outliers by training with and without certain datasets, etc. Often,



2 B. Nicolae

the lack of explainability, i.e., being able to understand why a DNN model learned
certain patterns and what correlations can be made between these patterns and
the training datasets was overlooked if the results were satisfactory. However,
with increasing complexity of the DNN models and the explosion of the training
datasets, such a trend is not sustainable. Scientific applications are particularly
affected by this because they are often mission-critical (e.g., a patient misdiag-
nosis can have severe consequences), unlike many industrial applications (e.g., a
misclassification of a picture as a dog instead of a cat is mostly harmless).

In a quest to solve this challenge, systematic approaches are beginning to
emerge: guided model discovery where the DNN architecture [26] and hyperpa-
rameters [3] are automatically identified, sensitivity analysis [29], which is used
to identify what parts/layers of the DNN model and/or training samples are the
most influential the learning process and how robust the DNN model is regard-
ing tolerance to outliers or transfer learning (i.e., ability to reuse the learned
patterns to solve related problems), etc.

All these approaches rely on several fundamental data management abilities:
(1) capture intermediate snapshots of the DNN model in order to study its
evolution in time and potentially reuse it later; (2) clone a DNN model whose
training has progressed up to a point into many parallel alternatives where slight
variations are introduced; (3) apply the FAIR principles [2] (findable, accessible,
interoperable, reusable) to the snapshots, to make it easy to navigate through
their evolution and/or search for interesting snapshots that can be reused.

However, with increasing complexity and sizes of DNN models and train-
ing data, a mix of data parallel, model parallel, pipeline parallel and layer-wise
parallel approaches are emerging to speed-up the training process. In this con-
text, a training instance is not a single process anymore, but an entire group
of tightly coupled processes that are distributed across many devices and/or
compute nodes of large scale HPC infrastructures. Such groups of processes col-
laboratively work on a shared, distributed DNN model state, exhibiting specific
properties and access patterns. In addition, HPC data centers are increasingly
equipped with complex heterogeneous storage stacks (multi-level memory hier-
archies on compute nodes, distributed caches and burst buffers, key-value stores,
parallel file systems, etc.). Under such circumstances, the fundamental data man-
agement abilities mentioned above become highly challenging to implement in a
scalable and efficient manner.

In this position paper we advocate for DataStates, a new data model that
addresses the aforementioned challenges by rethinking how to represent and ma-
nipulate scientific datasets. At its core is the notion of a data state, which is
a collection of annotated, potentially distributed data structures that applica-
tions can capture at key moments during the runtime and revisit/reuse later.
Instead explicitly interacting with the storage layer (e.g., to save the dataset into
a file), users define such coupled datasets and “tag” them at key moments dur-
ing runtime with metadata that expresses attributes and persistency/movement
semantics. Tagging triggers asynchronous, high performance I/O strategies that
run in the background and capture a consistent snapshot of the datasets and



DataStates 3

associated metadata into the lineage, a history that records the evolution of the
snapshots. Using dedicated primitives, users can easily navigate the lineage to
identify and revisit snapshots of interest (based on attributes and/or content)
and roll back or evolve the lineage in a different parallel direction.

Using this approach, clone and revisit of DNN model states become lightweight
primitives focused on high performance, scalability and FAIR capabilities, which
not only accelerates existing approaches for model exploration, sensitivity anal-
ysis and explainability, but also encourages new algorithms and techniques that
can take advantage of frequent reuse of intermediate DNN models. We summa-
rize our contributions as follows:

– We discuss a series of challenges and opportunities that arise in the context of
deep learning, where a mix of data parallel, model parallel, pipeline parallel
and layer-wise parallel approaches are increasingly applied to improve the
performance and scalability of the training (Section 2).

– We introduce an overview of DataStates, the data model and runtime we ad-
vocate in this paper. We insist both on how the notion of data states can be
used as a fundamental abstraction to capture, search for and reuse interme-
diate datasets, as well as the advantages of such an abstraction (Section 3).

– We position DataStates in the context of state-of-art, insisting both on the
gaps filled by our approach and the complementarity that can be achieved
by using DataStates in conjunction in other approaches (Section 4).

2 Background

Deep learning approaches have evolved from independent training and inference
into complex workflows (Figure 1): they involve training sample pre-processing
and augmentation (e.g., create more training samples by stretching or rotating
images), model discovery (both DNN architecture and hyperparameters), train-
ing and validation of the inference, sensitivity analysis used to explain the model
and/or influence the data pre-processing and model discovery.

In this context, there is a need to explore a large number of alternatives,
which applies for each step of the workflow. For example, model discovery strate-
gies based on evolutionary techniques [26] (such as genetic algorithms) need to
maintain a large population of promising DNN model individuals, which are
combined and/or mutated in the hope of obtaining better individuals. Training a
DNN model may also involve alternatives, especially in the case of reinforcement
learning [35], where there are multiple variations of environments and alterna-
tive actions possible. DNN models with early exits [30] are becoming increasingly
popular: in this case, the inference can take alternative shorter (and thus faster)
paths through the model layers when they provide sufficient accuracy (e.g., non-
ambiguous regions in a classification problem). Sensitivity analysis [29] needs to
explore many alternative training paths that include/exclude certain training
samples and/or layers in order to understand their impact. For example, CAN-
DLE [32] (Cancer Deep Learning Environment) employs an approach where the



4 B. Nicolae

Fig. 1. Structure of a modern deep learning workflow

input data is split into regions and the training process is forked into alterna-
tive directions, each of which excludes one of the regions. This process continues
recursively for each excluded region until a desired granularity for the excluded
training samples is reached, enabling the study of their impact in the training
process.

Such alternatives introduce the need for advanced data management ap-
proaches: capture intermediate DNN model/layer snapshots as the training (or
inference) progresses and then either preserve them for later study/revisiting, or
clone them for the purpose of forking the training (or inference) into different
parallel directions. To make these snapshots usable, several capabilities related
to the FAIR principles (findable, accessible, interoperable, reusable) are needed:
automatically capture the evolution of the snapshots, expose their properties, en-
able search based on such properties, reshape the snapshots on-the-fly to adapt
to a new context where it needs to be used.

However, providing such advanced data management capabilities is challeng-
ing, because DNN training approaches are constantly being adapted to take
advantage of large-scale infrastructures. In this context, the most widely used
technique is synchronous data-parallel training. It creates replicas of the DNN
model on multiple workers, each of which is placed on a different device and/or
compute node. We denote such workers as ranks, which is the terminology typ-
ically used in high performance computing (HPC). The idea is to train each
replica in parallel with a different mini-batch, which can be done in an embar-
rassingly parallel fashion during the forward pass on all ranks. Then, during
back-propagation, the weights are not updated based on the local gradients, but
using global average gradients computed across all ranks using all-reduce oper-
ations. This effectively results in all ranks learning the same pattern, to which
each individual rank has contributed. The process is illustrated in Figure 2(a).

Model parallelism [11] is another complementary approach (Figure 3). It
works by partitioning the DNN model across multiple ranks, each of which is



DataStates 5

(a) Data parallelism: DNN model is repli-
cated, local gradients are averaged.

(b) Pipeline parallelism: DNN model
partitioned and distributed as stages
(full layers).

Fig. 2. Data parallelism vs. pipeline parallelism (adapted from [19])

running on a different device and/or compute node. This solves the problem of
large DNN models that do not fit in the memory of a rank, but requires data
transfers between operations and disallows parallelism within an operation.

Pipeline parallelism [19] combines model parallelism with data parallelism.
The idea is to partition the DNN model into stages, each of which is made of
one or more layers (and can be replicated like in the case of data-parallelism).
Each stage is assigned to a different rank, which effectively form a pipeline
(Figure 2(b)). Unlike data and model parallelism, where only one mini-batch is
active at a given moment for the whole duration of the training step, pipeline
parallelism injects multiple mini-batches into the stages one after the other:
during the forward pass, each stage sends the output activations to the next
stage, while simultaneously starting to process another mini-batch. Similarly,
after completing the backward-propagation for a mini-batch, each stage sends
the gradients to the previous stage and begins to process another mini-batch.

DL algorithms take advantage of multi-core and hybrid architectures (e.g.,
CPUs + GPUs) to parallelize the gradient computation and weight updates.
Specifically, once a rank has finished computing the local gradients for a layer, it
immediately proceeds to compute the local gradients of the previous layer. At the
same time, it waits for all other ranks to finish computing their local gradients
for the same layer, then updates the weights (based on the average gradients ob-
tained using all-reduce in the case of data-parallelism). This is called layer-wise
parallelism. Another way of reasoning about this process is by means of a DAG



6 B. Nicolae

Fig. 3. Model parallelism: DNN model is partitioned and distributed

(directed acyclic graph), where each layer is a pipeline: compute local gradients,
average gradients globally, update weights. The local gradient computation of
each layer is a dependency for both the local gradient computation of the pre-
vious layer and the rest of the pipeline: once it is complete, both paths in the
DAG can be executed in parallel.

As a consequence, the distributed nature of DNN model snapshots and the
complex multi-level parallelism considerations make the problem of capturing
and preserving/cloning intermediate DNN model snapshots non-trivial. This is
further augmented by the need to adopt the FAIR principles and the increas-
ingly complex heterogeneous storage stacks [14] that are deployed in modern
HPC data centers. Nevertheless, there are also significant opportunities in this
space: according to our previous study [13], the combination of data parallelism
and layer-wise parallelism leads to subtle delays that can be exploited to to
overlap the back-propagation with fine-grain asynchronous data management
operations in the background, which can significantly reduce their overhead. We
demonstrated the feasibility of this idea both for DNN model checkpointing [23]
and DNN model cloning [25], obtaining an overhead reduction of an order of
magnitude compared with other state-of-art alternatives.

3 DataStates: An Overview

In this section, we introduce the main ideas and principles behind DataStates,
the data model we advocate in this paper.

In a nutshell, a data state is a collection of annotated, potentially distributed
data structures that applications can capture at key moments during the run-
time. For the purpose of this work, we assume such distributed data structures
to represent the DNN model state. The application indicates such key moments
explicitly (noting that automation of this process opens an interesting research
question). More formally, a data state is tuple (C,Ms,Ma) that defines a content
C and any associated metadata Ms and Ma. We differentiate between summary
metadata (denoted Ms), used to label and/or summarize C, and actionable meta-
data (denoted Ma), used to express intents over how C is managed. These intents



DataStates 7

take the form of hints (e.g., access pattern) and/or properties (e.g., durability,
scope, relationship to other data states). Users do not care how the intent is
materialized: it is the job of the DataStates runtime to formulate an appropriate
plan through a series of actions, which in our case refer to persisting, caching
and fetching a data state. This is a general principle: new intents and action
plans can be added as needed.

Many distributed ranks (owners) can share the same data state and mutate it
collaboratively by updating its content and/or metadata. We assume the owners
are directly responsible for concurrency control and consistency, which in our
case is transparently handled by the deep learning frameworks. When the owners
reach a key moment during runtime (e.g., an epoch of the training has finished),
they tag the data state. This triggers a transition into a new data state. From the
owner’s perspective, nothing changed: they can continue working on C as usual.
Meanwhile, in the background, the runtime applies the action plan corresponding
to Ma for the original data state as it was at the moment of tagging. The runtime
guarantees that any side effects due to the action plan are tied to the original data
state and do not affect the new data state (which may trigger internal temporary
copies during tagging or copy-on-write). A data state that was tagged is stable
if its action plan completed successfully and unstable otherwise. It is illegal to
access unstable states, but the runtime offers support to query about their status
and wait for them to become stable.

Both the data states and the transitions between them are recorded into
the lineage, which keeps the evolution of the data states. The lineage exposes
primitives to navigate (i.e., move to a successor or predecessor) and to search
(i.e., find data states that satisfy given properties) the lineage. Applications can
use such primitives to discover and visit interesting data states. For example,
this can be used to follow the evolution of tagged DNN model states during
training or to search for previously tagged intermediate DNN models based on
their accuracy and/or other attributes. Furthermore, each data state can be
part of one or more scopes, which are explicitly specified in Ma. To avoid the
explosion of storage space utilization, non-critical data states that have gone out
of scope (e.g., non-critical or locally relevant intermediate DNN models) and
their transitions can be pruned from the lineage as needed. Pruning is subject
to garbage collection algorithms, but can also be triggered explicitly through a
dedicated primitive.

The lineage can be combined with two additional powerful primitives: fork
and reshape. Both of them are similar to tagging (i.e., they trigger a transition
to a new data state and the execution of an asynchronous action plan) but with
important differences. Fork creates a clone of the data state on an entirely differ-
ent set of processes and “splits” the lineage into two independent directions that
can evolve separately. For example, fork can be used to explore an alternative di-
rection for training a DNN model (e.g., using different hyper-parameters and/or
training samples). Reshape enables the processes to change the layout and/or
distribution of C, by specifying appropriate attributes in Ma. Specifically, this
refers to operations such as migrate (to different processes) and shuffle (i.e., ex-



8 B. Nicolae

change pieces of C between processes, which is a common pattern in distributed
training of DNN models). Combined with tagging and search/navigation, these
two primitives allow flexible strategies to explore multiple parallel evolutions and
revisit/reuse previous data states. Note the versatility of reshape, which can be
extended with multiple other patterns. For example, data states could be used to
record a lineage for Tensorflow [1] by introducing support for tensor operations:
slice, rebalance, stack, etc.

This approach has several advantages. First, it introduces native constructs
that addresses the FAIR (findable, accessible, inter-operable, reusable) princi-
ples [2]: (1) findability is directly enabled by the lineage through navigation and
search capabilities; (2) accessibility is enabled in a declarative fashion by spec-
ifying the desired intent (thus freeing applications from having to worry where
their data is and how to bring it where it is needed); (3) inter-operability hiding
the implementation of the I/O strategies from the user (thus eliminating differ-
ences in the interpretation of actionable metadata); (4) reusability is naturally
facilitated by a single, unified view of all data states and the relationship between
them, which can be revisited as desired.

Second, the separation of the intents from the actual implementation of the
constraints and desired effects they represent is an important step towards per-
formance portability, i.e., avoiding the need to customize the application codes on
each machine to account for differences in performance characteristics, custom
vendor APIs, etc. Specifically, since data states capture the intent only, action
plans can be customized for a dedicated supercomputing infrastructure, poten-
tially taking advantage of differences in architecture, performance characteristics
of heterogeneous storage and vendor-specific features in order to introduce spe-
cific optimizations.

Third, the design of DataStates is lightweight and data-centric. DataStates is
focused on the evolution of data and metadata alone, leaving other components
to worry about computational and synchronization aspects. The data states
are wrapping in-memory user data structures directly and are close to their
intended life-cycle, therefore minimizing overheads related to data movements
(which is not the case when using external repositories). Furthermore, DataS-
tates masks the data management overhead asynchronously in the background,
therefore minimizing the interruption of the application. Combined with clever
interleaving of such asynchronous operations at fine-granularity during the back-
propagation, this approach becomes crucial in facilitating the goal of achieving
high performance and scalability.

4 Related Work and Positioning

Checkpoint-restart is a well researched HPC pattern relevant in the context
of clone and revisit. In this regard, multi-level checkpointing, as adopted by
frameworks such as SCR [18] and FTI [4], is a popular approach that leverages
complementary strategies adapted for HPC storage hierarchies. VELOC [24, 31]
takes this approach further by introducing asynchronous techniques to apply



DataStates 9

such complementary strategies in the background. When the checkpoints of dif-
ferent processes have similar content, techniques such as [20, 21] can be applied
to complement multi-level checkpointing. However, redundancy is detected on-
the-fly, which can be an unnecessary overhead for clone and revisit (e.g., model
replicas are known to be identical for data-parallel training). Dedicated check-
pointing techniques for deep learning are rudimentary: TensorFlow checkpoints
model to files in its SavedModel format, 1 or in HDF5 files through Keras.2

These file-based methods, while simple and adapted for single-node training, are
becoming a bottleneck when scaling data-parallel training to a large number of
compute nodes. Our own previous work [23, 25] introduced scalable approaches
to address these limitations. Although not flexible enough in the general clone
and revisit scenarios, they can be used as a building block for DataStates.

In a quest to achieve scalability and flexibility, HPC storage stacks have be-
come increasingly heterogeneous [14]. In addition to parallel file systems, modern
supercomputers feature a variety of additional storage subsystems (e.g., burst
buffers [7] or key-value stores such as DAOS [16]) and deep memory hierarchies
(HBM, DDRAM, NVM). Such storage subsystems focus on raw I/O performance
acceleration by implementing low-level read/write or put/get abstractions. They
complement well the rigid POSIX model used by parallel file systems (e.g., lack
of efficient support for fine-grained I/O operations and concurrency control).
However, this is not enough to implement the high-level capabilities necessary
for clone and revisit. Furthermore, the large diversity of services leads to added
complexity and limited sharing and reuse potential because of the lack of per-
formance portability.

In the big data community, Spark [34, 28] has gained considerable traction as
a generic analytics framework. Part of its success lies in the functional data pro-
cessing model that hides the details of parallelism from the user, enabling ease
of use and performance portability through high-level in-memory transforma-
tions. Notable in this context is the concept of RDDs [33] (Resilient Distributed
Data Sets), which are Spark’s abstraction for intermediate data. Despite efforts
to leverage heterogeneous storage for RDDs (e.g., Apache Ignite [6]), they are
tied to the rigid programming model of Spark, which emphasizes loosely coupled
patterns and high-level languages that trade off performance for productivity.
Therefore, such abstractions are unsuitable for the HPC ecosystem, which em-
phasizes high performance and scalability, tightly-coupled patterns and hybrid
programming models.

Provenance tracking and reproducibility is another area closely related to
DataStates. In the HPC ecosystem, EMPRESS [12] aims to provide an alterna-
tive to rudimentary attribute capabilities offered by HDF5 and NetCDF through
extensible metadata. This broadens the scope beyond single files or application-
specific formats, but does not feature a lineage. In the Spark ecosystem, RDDs
feature a computation-centric lineage that records what data transformations
were applied. This lineage is hidden from the application and used internally

1 https://www.tensorflow.org/guide/saved model
2 https://www.tensorflow.org/guide/keras/save and serialize



10 B. Nicolae

to recompute RDDs (e.g., in case of failures or need to reuse). By contrast,
DataStates has the opposite goal: a lineage that records actual data snapshots
annotated with metadata (thus avoiding expensive recomputation), which is ex-
posed to the application and used as a tool to revisit previous states. In itself,
this is already a powerful introspection mechanism that aids provenance tracking
and reproducibility. Of course, there is value in combining both approaches to
create a complete picture. Unfortunately, capturing the computational context
in the HPC ecosystem is nontrivial, as it involves a large number of libraries and
runtimes. Containers are one possible solution and are used by approaches such
as Data Pallets [15]. DataStates can complement well such efforts.

Versioning and revision control systems (e.g. SVN [10], GIT [8], Mercurial [5])
are widely used to keep track of changes to source code during software develop-
ment. They feature native support for data-centric provenance: users can keep
track of successive changes and revisit, roll-back, branch, merge, etc. They also
feature an entire array of space-efficient techniques to store only incremental dif-
ferences. However, these optimizations are designed for text data (mostly source
code) and are not designed for high-performance and scalability (they assume
each user has room to maintain a whole local copy of the repository). Systems
were proposed before to address this issue: For example, BlobSeer [22] is a dis-
tributed data store for binary large objects that manages intermediate snapshots
much like revision control systems. However, it was not designed to handle het-
erogeneous data and metadata (its abstraction is a blob, i.e., a large sequence of
bytes): largely, it behaves like a key-value store with versioning support, therefore
missing support to search and navigate the history.

Repositories for VM images [27] and containers (e.g. Docker [17]) are an in-
dustry standard to facilitate collaboration and sharing between multiple users for
computational environments. In a similar spirit, recent efforts such as DLHub [9]
aim to build model repositories for deep learning applications: users publish, dis-
cover and share full models, including dependencies (e.g., Python environment),
into executable servables (that may include Docker images, Amazon S3 buckets,
etc.) through REST APIs. DataStates also focuses on enabling search and reuse
semantics, but from a different perspective: it introduces a general data model
(useful beyond deep learning), lightweight (HPC-oriented) and data life-cycle
oriented (mix ephemeral with persistent data, leverage local storage and in-situ
capabilities, data-centric lineage). This is more appropriate for the DNN model
clone and revisit scenarios we target, where an external repository can become a
bottleneck. On the other hand, DataStates is well complemented by approaches
like DLHub, as they can handle security and other aspects needed to enable
multi-user sharing beyond a single supercomputer.

5 Conclusions

In this position paper we have introduced DataStates, a new data model that ex-
poses high-level primitives to capture, fork, search and reuse of scientific datasets.
Such high-level primitives are especially important for an efficient implementa-



DataStates 11

tion of many deep learning scenarios that involve the need to capture interme-
diate DNN models and explore a large number of alternative training and/or
inference paths.

Despite increasing complexity due to distributed DNN model state, as well
as a mix of distributed training approaches (data, model, pipeline, layer-wise
parallel), DataStates is well positioned to leverage the opportunity such cir-
cumstances present, especially with respect to overlapping the back-propagation
phase of training with asynchronous fine-grain operation in the background in
order to progress on data management aspects with minimal overhead on an
ongoing training. Additionally, DataStates has three other advantages: it brings
FAIR (findable, accessible, inter-operable, reusable) semantics to deep learning
frameworks, it enables performance portability by separating data management
intents (defined by the user) from actions necessary to satisfy them, it enables
high performance and scalability by introducing lightweight, in-situ data manip-
ulation semantics that are close to the data life-cycle of DNN models.

Encouraged by promising initial results, especially for the related problem
of scalable checkpointing and cloning of DNN models for data-parallel training
approaches, we plan to illustrate in future work the benefits of DataStates in the
context of deep learning.

Acknowledgments

This material is based upon work supported by the U.S. Department of Energy
(DOE), Office of Science, Office of Advanced Scientific Computing Research,
under Contract DE-AC02-06CH11357.

References

1. Abadi, M., Agarwal, A., Barham, P., et al.: TensorFlow: Large-scale machine learn-
ing on heterogeneous systems (2015), http://tensorflow.org/, software available
from tensorflow.org

2. et al, M.D.W.: The fair guiding principles for scientific data management and
stewardship. Scientific Data 3(160018) (2016)

3. Balaprakash, P., Egele, R., Salim, M., Wild, S.M., Vishwanath, V., Xia, F., Brettin,
T., Stevens, R.: Scalable reinforcement-learning-based neural architecture search
for cancer deep learning research. In: SC’19: The 2019 International Conference for
High Performance Computing, Networking, Storage and Analysis. pp. 37:1–37:33
(2019)

4. Bautista-Gomez, L., Tsuboi, S., Komatitsch, D., Cappello, F., Maruyama, N., Mat-
suoka, S.: FTI: High performance fault tolerance interface for hybrid systems. In:
SC ’11: The 2011 ACM/IEEE International Conference for High Performance Com-
puting, Networking, Storage and Analysis. pp. 32:1–32:32. Seattle, USA (2011)

5. Bernard, J.: Mercurial–revision control approximated. Linux J. 2011(212) (2011)

6. Bhuiyan, S., Zheludkov, M., Isachenko, T.: High Performance In-memory Comput-
ing with Apache Ignite. Lulu.com (2017)



12 B. Nicolae

7. Cao, L., Settlemyer, B.W., Bent, J.: To share or not to share: Comparing burst
buffer architectures. In: HPC ’17: The 25th High Performance Computing Sympo-
sium. pp. 4:1–4:10. Virginia Beach, Virginia (2017)

8. Chacon, S., Straub, B.: Pro Git. Apress, Berkely, CA, USA, 2nd edn. (2014)
9. Chard, R., Ward, L., Li, Z., Babuji, Y., Woodard, A., Tuecke, S., Chard, K.,

Blaiszik, B., Foster, I.: Publishing and serving machine learning models with dlhub.
In: PEARC ’19: Practice and Experience in Advanced Research Computing on Rise
of the Machines (Learning). Chicago, USA (2019)

10. Collins-Sussman, B.: The subversion project: Buiding a better cvs. Linux J.
2002(94) (2002)

11. Dean, J., Corrado, G.S., Monga, R., Chen, K., Devin, M., Le, Q.V., Mao, M.Z.,
Ranzato, M., Senior, A., Tucker, P., Yang, K., Ng, A.Y.: Large scale distributed
deep networks. In: NIPS’12: The 25th International Conference on Neural Infor-
mation Processing Systems. p. 1223–1231. Lake Tahoe, USA (2012)

12. Lawson, M., Ulmer, C., Mukherjee, S., Templet, G., Lofstead, J.F., Levy, S.,
Widener, P.M., Kordenbrock, T.: Empress: extensible metadata provider for
extreme-scale scientific simulations. In: PDSW-DISCS@SC’17: The 2nd Joint In-
ternational Workshop on Parallel Data Storage & Data Intensive Scalable Com-
puting Systems. pp. 19–24 (2017)

13. Li, J., Nicolae, B., Wozniak, J., Bosilca, G.: Understanding scalability and fine-
grain parallelism of synchronous data parallel training. In: MLHPC’19: 5th Work-
shop on Machine Learning in HPC Environments (in conjunction with SC19). pp.
1–8. Denver, USA (2019)

14. Lockwood, G., Hazen, D., Koziol, Q., Canon, R., Antypas, K., Balewski, J., e.a.:
Storage 2020: A vision for the future of hpc storage. Tech. rep., Lawrence Berkeley
National Laboratory (2017)

15. Lofstead, J., Baker, J., Younge, A.: Data pallets: Containerizing storage for re-
producibility and traceability. In: ISC’19: 2019 International Conference on High
Performance Computing. pp. 36–45 (2019)

16. Lofstead, J., Jimenez, I., Maltzahn, C., Koziol, Q., Bent, J., Barton, E.: Daos and
friends: A proposal for an exascale storage system. In: SC ’16: The 2016 Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis. pp. 50:1–50:12. Salt Lake City, Utah (2016)

17. Merkel, D.: Docker: Lightweight linux containers for consistent development and
deployment. Linux J. 2014(239) (2014)

18. Moody, A., Bronevetsky, G., Mohror, K., Supinski, B.R.d.: Design, modeling, and
evaluation of a scalable multi-level checkpointing system. In: SC ’10: The 2010
ACM/IEEE International Conference for High Performance Computing, Network-
ing, Storage and Analysis. pp. 1:1–1:11. New Orleans, USA (2010)

19. Narayanan, D., Harlap, A., Phanishayee, A., Seshadri, V., Devanur, N.R., Ganger,
G.R., Gibbons, P.B., Zaharia, M.: Pipedream: Generalized pipeline parallelism for
dnn training. In: SOSP ’19: The 27th ACM Symposium on Operating Systems
Principles. p. 1–15. Huntsville, Canada (2019)

20. Nicolae, B.: Towards Scalable Checkpoint Restart: A Collective Inline Memory
Contents Deduplication Proposal. In: IPDPS ’13: The 27th IEEE International
Parallel and Distributed Processing Symposium. Boston, USA (2013), http://hal.
inria.fr/hal-00781532/en

21. Nicolae, B.: Leveraging naturally distributed data redundancy to reduce collective
I/O replication overhead. In: IPDPS ’15: 29th IEEE International Parallel and
Distributed Processing Symposium. pp. 1023–1032 (2015)



DataStates 13

22. Nicolae, B., Antoniu, G., Bougé, L., Moise, D., Carpen-Amarie, A.: BlobSeer: Next-
generation data management for large scale infrastructures. J. Parallel Distrib.
Comput. 71, 169–184 (2011)

23. Nicolae, B., Li, J., Wozniak, J., Bosilca, G., Dorier, M., Cappello, F.: Deep-
freeze: Towards scalable asynchronous checkpointing of deep learning models. In:
CGrid’20: 20th IEEE/ACM International Symposium on Cluster, Cloud and In-
ternet Computing. pp. 172–181. Melbourne, Australia (2020)

24. Nicolae, B., Moody, A., Gonsiorowski, E., Mohror, K., Cappello, F.: VeloC: To-
wards high performance adaptive asynchronous checkpointing at large scale. In:
IPDPS’19: The 2019 IEEE International Parallel and Distributed Processing Sym-
posium. pp. 911–920. Rio de Janeiro, Brazil (2019)

25. Nicolae, B., Wozniak, J.M., Dorier, M., Cappello, F.: DeepClone: Lightweight State
Replication of Deep Learning Models for Data Parallel Training. In: CLUSTER’20:
The 2020 IEEE International Conference on Cluster Computing. Kobe, Japan
(2020)

26. Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y.L., Tan, J., Le, Q.V., Ku-
rakin, A.: Large-scale evolution of image classifiers. In: ICML’17: The 34th Inter-
national Conference on Machine Learning. p. 2902–2911. Sydney, Australia (2017)

27. Saurabh, N., Kimovski, D., Ostermann, S., Prodan, R.: Vm image repository and
distribution models for federated clouds: State of the art, possible directions and
open issues. In: Euro-Par 2016: Parallel Processing Workshops. pp. 260–271. Greno-
ble, France (2016)

28. Shanahan, J.G., Dai, L.: Large scale distributed data science using apache spark.
In: KDD ’15: The 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. pp. 2323–2324. Sydney, Australia (2015)

29. Shu, H., Zhu, H.: Sensitivity analysis of deep neural networks. In: AAAI’19: The
33rd AAAI Conference of Artificial Intelligence. pp. 4943–4950 (2019)

30. Teerapittayanon, S., McDanel, B., Kung, H.T.: Branchynet: Fast inference via early
exiting from deep neural networks. In: ICPR’16: The 23rd International Conference
on Pattern Recognition. pp. 2464–2469. Cancun, Mexico (2016)

31. Tseng, S.M., Nicolae, B., Bosilca, G., Jeannot, E., Cappello, F.: Towards portable
online prediction of network utilization using MPI-level monitoring. In: EuroPar’19
: 25th International European Conference on Parallel and Distributed Systems. pp.
1–14. Goettingen, Germany (2019)

32. Wozniak, J., Jain, R., Balaprakash, P., et al.: Candle/supervisor: A workflow frame-
work for machine learning applied to cancer research. BMC Bioinformatics 19(491)
(2018)

33. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin,
M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: A fault-tolerant ab-
straction for in-memory cluster computing. In: NSDI’12: Proceedings of the 9th
USENIX Conference on Networked Systems Design and Implementation. pp. 2–2.
San Jose, USA (2012)

34. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: Cluster
computing with working sets. In: HotCloud’10: The 2Nd USENIX Conference on
Hot Topics in Cloud Computing. pp. 10–10. Boston, MA (2010)

35. Zhang, S., Boehmer, W., Whiteson, S.: Deep residual reinforcement learning. In:
AAMAS ’20: The 19th International Conference on Autonomous Agents and Mul-
tiAgent Systems. p. 1611–1619. Auckland, New Zealand (2020)


