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Abstract

This paper studies a variation of the continuous-time mean-variance portfolio selec-
tion where a tracking-error penalization is added to the mean-variance criterion. The
tracking error term penalizes the distance between the allocation controls and a refe-
rence portfolio with same wealth and fixed weights. Such consideration is motivated
as follows: (i) On the one hand, it is a way to robustify the mean-variance allocation
in case of misspecified parameters, by “fitting” it to a reference portfolio that can be
agnostic to market parameters; (ii) On the other hand, it is a procedure to track a
benchmark and improve the Sharpe ratio of the resulting portfolio by considering a
mean-variance criterion in the objective function. This problem is formulated as a
McKean-Vlasov control problem. We provide explicit solutions for the optimal portfo-
lio strategy and asymptotic expansions of the portfolio strategy and efficient frontier
for small values of the tracking error parameter. Finally, we compare the Sharpe ratios
obtained by the standard mean-variance allocation and the penalized one for four dif-
ferent reference portfolios: equal-weights, minimum-variance, equal risk contributions
and shrinking portfolio. This comparison is done on a simulated misspecified model,
and on a backtest performed with historical data. Our results show that in most
cases, the penalized portfolio outperforms in terms of Sharpe ratio both the standard
mean-variance and the reference portfolio.
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tion, parameter misspecification.
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1 Introduction

The Markowitz mean-variance portfolio selection problem has been initially considered in
Markowitz (1952) in a single-period model. In this framework, investement decision rules
are made according to the objective of maximizing the expected return of the portfolio for
a given financial risk quantified by its variance. The Markowitz portfolio is widely used
in the financial industry due to its intuitive formulation and the fact that it produces,
by construction, portfolios with high Sharpe ratios (defined as the ratio of the average of
portfolio returns over their volatility), which is a key metric used to compare investment
strategies.

The mean-variance criterion involves the expected terminal wealth in a nonlinear way
due to the presence of the variance term. In a continuous-time dynamic setting, this in-
duces the so-called time inconsistency problem and prevents the direct use of the dynamic
programming technique. A first approach, from Zhou and Li (2000), consists in embed-
ding the mean-variance problem into an auxiliary standard control problem that can be
solved by using stochastic linear-quadratic theory. Some more recent approaches rely on
the development of stochastic control techniques for control problems of McKean-Vlasov
(MKV) type. MKV control problems are problems in which the equation of the state
process and the cost function involve the law of this process and/or the law of the control,
possibly in a non-linear way. The mean-variance portfolio problem in continuous-time is
a McKean-Vlasov control problem of the linear-quadratic type. The state diffusion, which
represents the wealth of the portfolio, involves the state process and the control in a linear
way while the cost involves the terminal value of the state and the square of its expectation
due to the variance criterion. In Andersson and Djehiche (2011), the authors solved the
mean-variance problem as a McKean-Vlasov control problem by deriving a version of the
Pontryagin maximum principle. More recently, Pham and Wei (2017) have developed a
general dynamic programming approach for the control of MKV dynamics and applied it
for the resolution of the mean-variance portfolio selection problem. In Fischer and Livieri
(2016), the mean-variance problem is viewed as the MKV limit of a family of controlled
many-component weakly interacting systems. These prelimit problems are solved by stan-
dard dynamic programming, and the solution to the original problem is obtained by passage
to the limit.

A frequent criticism addressed to the mean-variance allocation is its sensitivity to the
estimation of expected returns and covariance of the stocks and the risk of a poor out-of-
sample performance. Several solutions to these issues have been considered. An approach
consists in using a more sophisticated model than the Black-Scholes model, in which the
parameters are stochastic or ambiguous and to take decisions under the worst-case scenario
over all conceivable models. Robust mean-variance problems have thus been considered in
the economic and engineering literature, mostly on single-period or multi- period models;
see, e.g., Fabozzi et al. (2010), Pinar (2016), and Liu and Zeng (2016). In a continuous-time
setting, Ismail and Pham (2019) have developed a robust approach by studying the mean-

2



variance allocation with a market model where the model uncertainty affects the covariance
matrix of multiple risky assets. In Guo et al. (2020), the authors study the problem of
utility maximization under uncertain parameters in a model where the parameters of the
model do not evolve freely within a given range, but are constrained via a penalty function.
Let us also mention uncertain volatility models in Matoussi et al. (2012) and Lin and Riedel
(2014) for robust portfolio optimization with expected utility criterion. Another approach
is to rely on the shrinking of the portfolio weights or of the wealth invested in each risky
asset in order to obtain a more sparse or more stable portfolio. In DeMiguel et al. (2009),
the authors find single-period portfolios that perform well out-of-sample in the presence of
estimation error. Their framework deals with the resolution of the traditional minimum-
variance problem with the additional constraint that the norm of the portfolio-weight vector
must be smaller than a given threshold. In Ho et al. (2015), the authors study a one-period
mean-variance problem in which the mean-variance objective function is regularized with
a weighted elastic net penalty. They show that the use of this penalty can be justified by
a robust reformulation of the mean-variance criterion that directly accounts for parameter
uncertainty. In the same spirit, in Chen et al. (2013), lp-norm regularized models are used
to seek near-optimal sparse portfolios.

In this paper, we investigate the mean-variance portfolio selection in continuous time
with a tracking error penalization. This penalization represents the distance between the
optimized portfolio composition and the composition of a reference portfolio with the same
wealth but fixed weights that have been chosen in advance. Typical reference portfolios
widely used in the financial industry are the equal weights, the minimum variance and
the equal risk contribution (ERC) portfolios. The equal weights portfolio studied, e.g. in
Duchin and Levy (2009), is a portfolio where all the wealth of the investor is invested in risky
assets and divided equally between the different assets. The minimum variance portfolio is a
portfolio where all the wealth is invested in risky assets and portfolio weights are optimized
in order to attain the minimal portfolio volatility. The ERC portfolio, presented in Maillard
et al. (2010) and in the monography Roncalli (2013), is totally invested in risky assets and
optimized such that the contributions of each asset to the total volatility of the portfolio are
equal. The mix of the mean-variance and of this tracking error criterion can be interpreted
in two different ways: (i) From a first viewpoint, it is a procedure to regularize and robustify
the mean-variance allocation. By choosing reference portfolio weights which are not based
on the estimation of market parameters, or which are less sensible to estimation error,
the allocation obtained is more robust to parameters estimation error than the standard
mean-variance one. (ii) From a second viewpoint, this optimization permits to mimic an
allocation corresponding to the reference portfolio weights while improving its Sharpe ratio
via the consideration of the mean-variance criterion.

We tackle this problem as a McKean-Vlasov linear-quadratic control problem and adopt
the approach developed in Basei and Pham (2019), where the authors give a general method
to solve this type of problems by means of a weak martingale optimality principle. We
obtain explicit solutions for the optimal portfolio strategy and value function, and provide
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asymptotic expansions of the portfolio strategy and efficient frontier for small values of
the portfolio tracking error penalization parameter. We then compare the Sharpe ratios
obtained by the standard mean-variance portfolio, the penalized one and the reference port-
folio in two different ways. First, we compare these performances on simulated market data
with misspecified market parameters. Different magnitudes of parameter misspecifications
are used to illustrate the impact of the parameter estimation error on the performance of
the different portfolios. In a second time, we compare the performances of these portfolios
on a backtest based on historical market data. In these tests, we shall consider three ref-
erence portfolios cited above: the equal weights, the minimum variance and the equal risk
contribution (ERC) portfolios. Finally, we will also consider the case where the reference
portfolio weights are all equal to zero. This case corresponds to a shrinking of the wealth
invested in the different risky assets along the investment horizon.

The rest of the paper is organized as follows. Section 2 formulates the mean-variance
problem with tracking error. In Section 3 we derive explicit solutions for this control prob-
lem and provide expansion of this solution for small values of the tracking error penalization
parameter. Section 4 is devoted to the applications of those results and to the comparison
of the mean-variance, penalized and reference portfolio for the different reference port-
folios presented above. We show the benefit of the penalized portfolio compared to the
standard mean-variance portfolio and the different reference portfolios on simulated and
historical data in terms of Sharpe ratio and the lower sensitivity of the penalized portfolio
to parameter estimation error.

2 Formulation of the problem

Throughout this paper, we fix a finite horizon T ∈ (0,∞), and a complete probability
space

(
Ω,F ,P,F = {Ft}0≤t≤T

)
on which a standard F-adapted d-dimensional Brownian

motion W = (W 1, ...,W d) is defined. We denote by L2
F(0, T ; Rd) the set of all Rd-valued,

measurable stochastic processes (ft)t∈[0,T ] adapted to F such that E
[ ∫ T

0 |ft|
2dt
]
<∞. We

consider a financial market with price process P := (Pt)t∈[0,T ], composed of one risk-free
asset, assumed to be constant equal to one, i.e., P 0 ≡ 1, and d risky assets on a finite
investment horizon [0, T ]. These assets price processes P it , i = 1, ..., d satisfy the following
stochastic differential equation:{

dP it = P it

(
bi dt+

∑n
j=1 σijdW

j
t

)
, t ∈ [0, T ]

P i0 > 0

where bi > 0 is the appreciation rate, and σ := (σij)i,j=1,...,d ∈ Rd×d is the volatility matrix
of the d stocks. We denote by Σ := σσ> the covariance matrix. Throughout this paper,
we will assume that the following nondegeneracy condition holds

Σ ≥ δId,
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for some δ > 0, where Id is the d× d identity matrix.
Let us consider an investor with total wealth at time t ≥ 0 denoted by Xt, starting

from some initial capital x0 > 0. It is assumed that the trading of shares takes place
continuously and transaction cost and consumptions are not considered. We define the set
of admissible portfolio strategies α = (α1, . . . , αd) as

A :=

{
α : Ω× [0, T ]→ Rd s.t α is F− adapted and

∫ T

0
E[|αt|2]dt <∞

}
,

where αit, i = 1, ..., d represents the total market value of the investor’s wealth invested
in the ith asset at time t. The dynamics of the self-financed wealth process X = Xα

associated to a portfolio strategy α ∈ A is then driven by

dXt = α>t b dt+ α>t σdWt. (2.1)

Given a risk aversion parameter µ > 0, and a reference weight wr ∈ Rd, the objective of
the investor is to minimize over admissible portfolio strategies a mean-variance functional
to which is added a running cost:

J(α) = µVar(XT )− E[XT ] + E
[ ∫ T

0
(αt − wrXt)

> Γ (αt − wrXt) dt
]
. (2.2)

This running cost represents a running tracking error between the portfolio composition
αt of the investor and the reference composition wrXt of a portfolio of same wealth Xt

and constant weights wr. The matrix Γ ∈ Rd×d is symmetric positive definite and is used
to introduce an anisotropy in the portfolio composition penalization. The penalization∫ T

0 (αt − wrXt)
> Γ (αt − wrXt), which we will call “tracking error penalization”, is intro-

duced in order to ensure that the portfolio of the investor does not move away too much
from this reference portfolio with respect to the distance |M | := M>ΓM, M ∈ Rd.

The mean-variance portfolio selection with tracking error is then formulated as

V0 := inf
α∈A

J(α), (2.3)

and an optimal allocation given the cost J(α) will be given by

α∗t ∈ arg min
α∈A

J(α).

We complete this section by recalling the solution to the mean-variance problem when
there is no tracking error running cost, and which will serve later as benchmark for com-
parison when studying the effect of the tracking error with several reference portfolios.

Remark 2.1 (Case of no tracking error). When Γ = 0, it is known, see e.g. Zhou and
Li (2000) that the optimal mean-variance strategy is given by

α∗t = Σ−1b

[
1

2µ
eb
>Σ−1b T + x0 −X∗t

]
, 0 ≤ t ≤ T, (2.4)
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where X∗t is the wealth process associated to α∗. The vector Σ−1b, which depends only on
the model parameters of the risky assets, determines the allocation in the risky assets.

In the sequel, we study the quantitative impact of the tracking error running cost on
the optimal mean-variance strategy.

3 Solution allocation with tracking error

Our main theoretical result provides an analytic characterization of the optimal control to
the mean-variance problem with tracking error.

Theorem 3.1. There exist a unique pair (K,Λ) ∈ C
(
[0, T ],R∗+

)
× C ([0, T ],R+) solution

to the system of ODEs
dKt =

{
(Ktb− Γwr)

> S−1
t (Ktb− Γwr)− w>r Γwr

}
dt, KT = µ

dΛt =
{

(Λtb− Γwr)
> S−1

t (Λtb− Γwr)− w>r Γwr

}
dt, ΛT = 0

(3.1)

where St := KtΣ + Γ. The optimal control for problem (2.3) is then given by

αΓ
t = S−1

t ΓwrXt − S−1
t b
[
KtXt + Yt − (Kt − Λt)E[Xt]

]
, (3.2)

with

Yt = −1

2
e−
∫ T
t b>S−1

s (Λsb−Γwr)ds

Rt =
1

2

∫ T

t
b>S−1

s b e−2
∫ T
s b>S−1

u (Λub−Γwr)du ds,

and X = XαΓ
is the wealth process associated to αΓ. Moreover, we have

V0 = J(αΓ) = Λ0X
2
0 + 2Y0X0 +R0.

Proof. Given the existence of a pair (K,Λ) ∈ C
(
[0, T ],R∗+

)
×C ([0, T ],R+) solution to (3.1),

the optimality of the control process in (3.2) follows by the weak version of the martingale
optimality principle as developed in Basei and Pham (2019). The arguments are recalled
in appendix A.1.

Here, let us verify the existence and uniqueness of a solution to the system (3.1).

(i) We first consider the equation for K, which is a scalar Riccati equation. The equation
for K is associated to the standard linear-quadratic stochastic control problem:

ṽ(t, x) := inf
α∈A

E

[∫ T

t

(
w>r Γwr(X̃

t,x,α
s )2 − 2α>s ΓwrX̃

t,x,α
s + α>s Γαs

)
ds

]
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where X̃t,x,α
s is the controlled linear dynamics solution to

dX̃s = α>s b ds+ α>s σdWs, t ≤ s ≤ T, X̃t = x.

By a standard result in control theory (Yong and Zhou, 1999, Ch. 6, Thm. 6.1,
7.1, 7.2), there exists a unique solution K ∈ C([0, T ],R+) to the first equation of
system (3.1) (more, K ∈ C([0, T ],R∗+) if wr is nonzero). In this case, we have
ṽ(t, x) = x>Ktx.

(ii) Given K, we consider the equation for Λ. This is also a scalar Riccati equation.
By the same arguments as for the K equation, there exists a unique solution Λ ∈
C([0, T ],R+) to the second equation of (3.1), provided that

ΛT ≥ 0, w>r Γwr −w>r Γ (KtΣ + Γ)−1 Γwr ≥ 0, KtΣ + Γ ≥ δId, 0 ≤ t ≤ T

for some δ > 0. We already have that ΛT = 0. From the fact that K > 0, together
with the nondegeneracy condition on the matrix Σ, we have that KtΣ + Γ ≥ Γ ≥ δId.
Since Γ > 0, and under the nondegeneracy condition of matrix Σ, we can use the
Woodbury matrix identity to obtain

(KtΣ + Γ)−1 = Γ−1 − Γ−1

(
Γ−1 +

Σ−1

Kt

)−1

Γ−1.

We then get

w>r Γwr − w>r Γ (KtΣ + Γ)−1 Γwr = w>r

(
Γ−1 +

Σ−1

Kt

)−1

wr ≥ 0.

(iii) Given (K,Λ), the equation for Y is a linear ODE, whose unique continuous solution
is explicitly given by

Yt = −1

2
e−
∫ T
t b>S−1

s (Λsb−Γwr)ds.

(iv) Given (K,Λ, Y ), R can be directly integrated into

Rt =
1

2

∫ T

t
b>S−1

s b e−2
∫ T
s b>S−1

u (Λub−Γwr)du ds.

�

We can see from the expression of the optimal control (3.2) that the allocation in the
risky assets has two components. One component is determined by the vector S−1

t Γwr =
(KtΣ + Γ)−1 Γwr with leverage Xt, and the second one by the vector S−1

t b = (KtΣ + Γ)−1 b
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with leverage [KtXt + Yt − (Kt − Λt)E[Xt]]. Computing the average wealth X = E[X]
associated to αΓ, we can express the control αΓ as a function of the initial wealth of the
investor x0 and the current wealth Xt

αΓ
t = S−1

t ΓwrXt − ΛtS
−1
t b

(
X0C0,t +

1

2
Ht

)
(3.3)

+ S−1
t b

[
Kt

(
X0C0,t +

1

2
Ht −Xt

)
− Yt

]
where we set Cs,t := e−

∫ t
s b
>S−1

u (Λub−Γwr)du and Ht := Ct,T
∫ t

0 C
2
s,t b

>S−1
s b ds.

Remark 3.2. In the case when Γ is the null matrix, Γ = 0, we see that the first component
of the optimal control (3.3) vanishes,

Yt = −1

2
, Rt =

1

4µ

(
1− eb>Σ−1b (T−t)

)
,

and the system of ODES (3.1) of (K,Λ) becomes
dKt = Ktb

>Σ−1b dt, KT = µ

dΛt =
Λ2
t

Kt
b>Σ−1b dt, ΛT = 0,

which yields the explicit forms

Kt = µe−b
>Σ−1b (T−t), Λt = 0.

We get S−1
t = Σ−1

Kt
= Σ−1eb

>Σ−1b (T−t)

µ , C·,· = 1 and Ht = 1
µ

∫ t
0 b
>Σ−1b eb

>Σ−1b (T−s)ds. The

first line of the optimal control αΓ equation vanishes and the second line can be rewritten
as

αΓ
t = Σ−1b

[
1

2µ

(
eb
>Σ−1b (T−t) +

∫ t

0
b>Σ−1b eb

>Σ−1b (T−s)ds

)
+X0 −Xt

]
.

Computing the integral in this expression, we recover the optimal control of the classical
mean-variance problem (2.4).

Remark 3.3 (Limit of αγt for Γ = γId →∞). If we consider Γ in the form Γ = γId, the
optimal control can be rewritten as

αγt =

(
Id +

Kt

γ
Σ

)−1

wrXt −
1

γ

(
Id +

Kt

γ
Σ

)−1

b
[
KtXt + Yt − (Kt − Λt)Xt

]
. (3.4)
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We show in appendix A.4 that Kt and Λt are bounded functions of the penalization param-
eter γ, thus Kt

γ ,
Λt
γ −→γ→∞ 0.

We rewrite Yt as

Yt = −1

2
eb
>wr(T−t)e

−
∫ T
t

1
γ
b>
(

Id+Ks
γ

Σ
)−1

(Λsb+KsΣwr)ds

and we get that Yt −→
γ→∞

−1
2e
b>wr(T−t). Thus the second term of (3.4) vanishes and we get

αγt −→γ→∞ wrXt

which corresponds to the reference portfolio.

Remark 3.4 (Expansion for Γ = γId → 0). We take Γ = γId. Since the covariance
matrix Σ is symmetric, there exists an invertible matrix Q ∈ Rd×d and a diagonal matrix
D ∈ Rd×d such that Σ = Q ·D ·Q−1. We can then rewrite the matrix S−1

t := (KtΣ + γId)
−1

as
S−1
t = Q · (KtD + γId)

−1Q−1

with (
(KtD + γId)

−1
)
ij

=

{
1

Ktdi+γ
if i = j

0 if i 6= j

where di is the i-th diagonal value of the diagonal matrix D. From the nondegeneracy
condition of the covariance matrix, we have di > 0, ∀i ∈ J1, nK. As γ −→ 0, we want
to write the Taylor expansion of the diagonal elements of the inverse matrix (D + γId)

−1

equal to 1
Ktdi

(
1 + γ

Ktdi

)−1
. We have that Kt −→

γ→0
µe−ρ(T−t), thus γ

Kt
−→
γ→0

0. We can then

write the Taylor expansion of the matrix S−1
t as

S−1
t =

Σ−1

Kt
− γ

(
Σ−1

)2
K2
t

+O(γ2)

keeping only the terms up to the linear term in γ.
Putting this expression in the differential equation of K, and keeping only the terms up to
the linear term in γ, we get the differential equation

dKt

dt
= Ktρ− γ‖wr + Σ−1b‖2 +O(γ2), (3.5)

where we set ρ := b>Σ−1b. We look for a solution to this equation of the form

Kγ
t = K0

t + γK1
t +O(γ2).
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Putting this expression in the differential equation (3.5), we get two differential equations,
for the leading order and the linear order in γ respectively{

dK0
t

dt = K0
t ρ, K0

T = µ
dK1

t
dt = K1

t ρ− ‖wr + Σ−1b‖2, K1
T = 0

which yield the explicit solution

Kγ
t = K0

t + γ‖wr + Σ−1b‖2 1− e−ρ(T−t)

ρ
+O(γ2)

where K0
t = µe−ρ(T−t) is the solution to the differential equation in the unpenalized case.

From the expansion for K, we can write the expansion of the differential equation for Λ up
to the linear term in γ. We use the expansion

1

Kγ
t

=
1

K0
t

(
1− γ‖wr + Σ−1b‖2 1− e−ρ(T−t)

K0
t ρ

)
+O(γ2)

and we get the following expansion of the differential equation of Λ

dΛt
dt

=
Λ2
t

K0
t

ρ

(
1− γ‖wr + Σ−1b‖2 1− e−ρ(T−t)

K0
t ρ

)
(3.6)

− γ

(
2

Λt
K0
t

b>Σ−1wr −
(

Λt
K0
t

)2

b>Σ−2b− ‖wr‖2
)

+O(γ2).

As before, we look for a solution of this differential equation of the form

Λγt = Λ0
t + γΛ1

t +O(γ2).

Plugging this expression into the equation (3.6), we get the two following differential equa-
tions 

dΛ0
t

dt =
(Λ0

t )
2

K0
t
ρ, Λ0

T = 0

dΛ1
t

dt = 2
Λ0
tΛ

1
t

K0
t
ρ−

(
Λ0
t

K0
t

)2
ρ‖wr + Σ−1b‖2 1−e−ρ(T−t)

ρ

−
(

2
Λ0
t

K0
t
b>Σ−1wr +

(
Λ0
t

K0
t

)2
b>Σ−2b+ ‖wr‖2

)
, Λ1

T = 0.

The first differential equation yields the solution Λ0
t = 0, ∀t ∈ [0, T ]. Replacing Λ0

t by this
value in the second differential equation, we get the equation

dΛ1
t

dt
= −‖wr‖2
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and obtain the solution
Λγt = γ‖wr‖2(T − t) +O(γ2).

We can also compute the first order expansion of C·,·

Cγs,t =1− γ
∫ t

s

ρ

K0
u

(
‖wr‖2(T − u)− b>Σ−1wr

ρ

)
du+O(γ2)

=1− γC1
s,t +O(γ2)

where we set

C1
s,t :=

eρ(T−t)

µρ

{
ρ‖wr‖2(t− s) +

(
eρ(t−s) − 1

)(
‖wr‖2(ρT − 1)− b>Σ−1wr

)}
,

and we have

Y γ
t = −1

2
+
γ

2
C1
t,T .

The last expansion we need to compute before rewritting the optimal control is the expansion
of Ht. We can rewrite

Ht =
eρT

µ

(
1− e−ρt

)
− γH1

t +O(γ2)

with

H1
t :=

∫ t

0

(
2C1

s,t + C1
t,T

) b>Σ−1b

K0
s

ds+

∫ t

0
b>

Σ−1

(K0
s )2

(
K1
s Id + Σ−1

)
b ds.

As shown in appendix A.2, we can rewrite the optimal control

αγt = Σ−1b α0
t + γ

(
Σ−1wr α

1,3
t − Σ−2b α1,2

t − Σ−1b α1,1
t

)
+O(γ2) (3.7)

where we set Σ−2 := (Σ−1)2, and with

α0
t = 1

2µe
ρT +X0 −Xt

α1,1
t = ‖wr‖2

K0
t

(T − t)
(
X0 + eρT

µ

(
1− e−ρt

))
+X0C

1
0,t +

H1
t

2 +
K1
t

2(K0
t )

2 +
Ct,T
2K0

t

α1,2
t = eρT

2K0
t µ

(
1− e−ρt

)
+ 1

2(K0
t )

2

α1,3
t = Xt

K0
t
.

(3.8)

We see that for γ = 0, we recover the classical mean-variance optimal control. For non-
zero values of γ, we see that a mix of three different portfolio allocations is obtained. The
weight of the allocation Σ−1b is modified and two allocations Σ−2b and Σ−1wr appear with
weights γα1,2

t and γα1,3
t .
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From this expansion of the control αγ, we can compute the first order asymptotic ex-
pansion in γ of the equation giving the relation between the variance of the terminal wealth
of the portfolio and its expectation. In the classical mean-variance case, this equation is
called the efficient frontier formula. As shown in appendix A.3, with the tracking error
penalization, the first order asymptotic expansion in γ gives

V ar(XT ) =
e−ρT

1− e−ρT
(
XT

0 −X0

)2

+ γ

{
b>Σ−1wr

µ2

[
X0T −

1

2µ
eρT

(
T − 1− e−ρT

ρ

)]
−
∫ T

0

(
ρ

µ
α1,1
s +

b>Σ−2b

µ
α1,2
s

)
e−ρ(T−s)ds

}
+O(γ2).

The leading order term corresponds to the efficient frontier equation of the classical mean-
variance allocation computed in Zhou and Li (2000), and thus for γ = 0, we recover
this classical result. The linear term in γ contains contributions of the three perturbative
allocations. A modification of ”leverage” of the original mean-variance allocation Σ−1b and
two different allocations Σ−2b and Σ−1wr.

4 Applications and numerical results

In this section, we apply the results of the previous section and study the allocation obtained
by considering four different static portfolios as reference. First, we shall study these
allocations on simulated data, in the case of misspecified parameters. The misspecification
of parameters means that the market parameters used to compute the portfolio allocations
are different from the ones driving the stocks prices. This study allows us to estimate
the impact of the estimation error on the portfolio performance. In a second time, we
perform a backtest and run the different portfolios on real market data. To simplify the
presentation, we will assume now that the tracking error penalization matrix is in the form
Γ = γId with γ ∈ R∗+. With this simplification, we have S−1

t = (KtΣ + γId)
−1 and we can

rewrite the system of ODEs (3.1) and the optimal control (3.2) as
dKt =

{
(Ktb− γwr)> S−1

t (Ktb− γwr)− γ (wr)
>wr

}
dt, KT = µ

dΛt =
{

(Λtb− γwr)> S−1
t (Λtb− γwr)− γ (wr)

>wr

}
dt, ΛT = 0

12



and

αγt =γS−1
t wrXt − ΛtS

−1
t b

(
X0C0,t +

1

2
Ht

)
+ S−1

t b

[
Kt

(
X0C0,t +

1

2
Ht −Xt

)
− Yt

]
where

St = KtΣ + γId, Cs,t := e−
∫ t
s b
>S−1

u (Λub−γwr)du, Yt = −1

2
Ct,T .

We will consider three different classical allocations as reference portfolio.

(i) Equal-weights portfolio: in this classical equal-weights portfolio, the same capital
is invested in each asset, thus

wew
r =

1

d
e

where d is the number of risky assets considered and e ∈ Rd is the vector of ones.

(ii) Minimum variance portfolio: the minimum variance portfolio is the portfolio
which achieves the lowest variance while investing all its wealth in the risky assets.
The weight vector of this portfolio is equal to

wmin-var
r =

Σ−1e

e>Σ−1e
.

These weights correspond to the one-period Markowitz portfolio when every asset
expected return bi is taken equal to 1. In that case, only the portfolio variance is
relevant and is minimized during the optimization process.

(iii) ERC portfolio: the equal risk contributions (ERC) portfolio, presented in Maillard
et al. (2010) and in the monograph Roncalli (2013) is constructed by choosing a risk
measure and computing the risk contribution of each asset to the global risk of the
portfolio. When the portfolio volatility is chosen as the risk measure, the principle of
the ERC portfolio lays in the fact that the volatility function satisfies the hypothesis
of Euler’s theorem and can be reduced to the sum of its arguments multiplied by
their first partial derivatives. The portfolio volatility σ(w) =

√
w>Σw of a portfolio

with weights vector w ∈ Rd can then be rewritten as

σ(w) =

d∑
i=1

wi∂iσ(w) =

d∑
i=1

wi (Σw)i

σ(w)
.

The term under the sum wi(Σw)i

σ(w) , corresponding to the i-th asset, can be interpreted
as the contribution of this risky asset to the total portfolio volatility. The equal risk
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contribution allocation is then defined as the allocation in which these contributions
are equal for all the risky assets of the portfolio, wi(Σw)i

σ(w) = wj(Σw)j

σ(w) for every i, j ∈
J1, dK. The equal risk contribution allocation is thus obtained when the portfolio
weights w∗ are given by

w∗ =

{
w ∈ [0, 1]d :

d∑
i=1

wi = 1, wi (Σw)i = wj (Σw)j , ∀i, j ∈ J1, dK

}
.

With this risk measure, the ERC portfolio weights can be expressed in a closed-form
only in the case where the correlations between every couple of stocks are equal, that
is corr(Pi, Pj) = c, ∀ i, j ∈ J1, dK, with the additional assumption that c ≥ − 1

d−1 .

Under these assumptions, and with the constaint that
∑d

i=1 (werc
r )i = 1, the weights

of this portfolio are equal to

(werc
r )i =

σ−1
i∑d

j=1 σ
−1
j

where σi is the volatility of the i-th asset.

In the general case, the weights of the ERC portfolio do not have a closed form and
must be computed numerically by solving the following optimization problem

werc
r = argmin

w∈Rd

d∑
i=1

d∑
j=1

(
wi (Σw)i − wj (Σw)j

)2

s.t e>w = 1 and 0 ≤ wi ≤ 1, ∀i ∈ J1, dK.

(iv) Control shrinking (zero portfolio): this is the portfolio where all weights are
equal to zero, wir = 0 for all i. This case corresponds to a shrinking of the controls of
the penalized allocation, in the same spirit as the shrinking of regression coefficients
in the Ridge regression (or Tikhonov regularization).

4.1 Performance comparison with Monte Carlo simulations

In this section we compare, for each reference portfolio, the classical dynamic mean-variance
allocation, the reference portfolio and the “tracking error” penalized portfolio. In a real
investment situation, expected return and covariance estimates are noisy and biased. Thus,
in order to compare the three portfolios and observe the impact of adding a tracking error
penalization in the mean-variance allocation, we will run Monte Carlo simulations, assum-
ing that the real-world expected returns breal and covariances σreal are equal to reference
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expected returns b0 and covariances σ0 plus some noise:

b0 =


0.12
0.14
0.16
0.10

 , v0 =


0.20
0.30
0.40
0.50

 , C0 =


1. 0.05 −0.05 0.10

0.05 1. −0.03 0.12
−0.05 −0.03 1. −0.13
0.10 0.12 −0.13 1.

 ,

with the volatilties v0 and correlations C0 and

breal = b0 + ε× noise, σreal = σ0 + ε× noise

where the covariance matrix σ0 is obtained from v0 and C0. The noise follows a standard
normal distribution N (0, 1) and ε is its magnitude. We use Monte Carlo simulations to
estimate the expected Sharpe ratio of each portfolio, equal to the average of the portfolio
daily returns R divided by the standard deviation of those returns: E

[ E[R]
Stdev(R)

]
.

We consider an investment horizon of one year, with 252 business days and a daily
rebalancing of the portfolio. The risk aversion parameter µ is chosen so that the targeted

annual return of the classical mean-variance allocation is equal to 20%, thus µ = eb
>Σ−1b

2x0∗1.20
according to Zhou and Li (2000). The initial wealth of the investor x0 is chosen equal to 1
and we choose the penalization parameter γ = µ/100. Indeed, as the value of µ depends on
the value of the stocks expected return and covariance matrix and on the targeted return,
and can be very big, we express γ a function of this µ in order for the penalization to be
relevant and non-negligible.

For each reference portfolio, we compare the reference portfolio, the classical mean-
variance allocation and the penalized one for values of noise amplitude ε ranging from 0 to
1. For each value of ε, we run 2000 scenarios and we plot the graphs of the average Sharpe
ratio as a function of ε.

On the following graphs, we can see that in the four cases, the mean-variance and the
penalized portfolios are superior to the reference. In the case where the equal weights
portfolio is chosen as reference, the penalized portfolio’s Sharpe ratio is lower than the
mean-variance one for small values of ε. For ε greater than approximately 0.25, the penal-
ized portfolio’s Sharpe ratio becomes larger and the gap with the mean-variance’s Sharpe
tends to increase with ε. The same phenomenon occurs in the case where the ERC port-
folio is chosen as reference, with a smaller gap between the mean-variance and penalized
portfolios’ Sharpe ratios. When the minimum variance portfolio is chosen as reference, the
penalized portfolio’s Sharpe ratio is lower than the one of the mean-variance portfolio for
all ε in the interval [0, 1]. This is certainly due to the sensitivity of the minimum vari-
ance portfolio to the estimator of the covariance matrix. Finally, in the case of the control
shrinking, the Sharpe ratio of the penalized portfolio is significantly higher that the Sharpe
ratio of the mean-variance portfolio, for every value of the noise amplitude ε in the interval
[0, 1].
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• Equal-weights reference portfolio
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Figure 1: The highest average Sharpe ratio attained by the equal-weight portfolio is equal
to 0.047 for ε = 0.

• Minimum-variance reference portfolio
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Figure 2: The highest average Sharpe ratio attained by the minimum-variance portfolio is
equal to 0.057 for ε = 0.

16



• ERC reference portfolio
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Figure 3: The highest average Sharpe ratio attained by the ERC portfolio is equal to 0.051
for ε = 0.

• Control shrinking (zero reference)
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Figure 4: In this case the reference weights are equal to zero, and no Sharpe ratio is
computed for the reference portfolio.
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4.2 Performance comparison on a backtest

We now compare the different allocations on a backtest based on adjusted close daily prices
available on Quandl between 2013-09-03 and 2017-12-28 for four stocks: Apple, Microsoft,
Boeing and Nike. Here we chose a value of µ which corresponds to an annual expected
return of 25%. In our example, we express again γ as a function of µ and we consider two
different values, γ = µ and γ = µ/100.

Figures 5, 6 and 7 show the total wealth of the four different portfolios, mean-variance,
reference and the penalized portfolio with the big and the small penalization as a function
of time. On these graphs we observe that, at the beginning of the investment horizon, the
mean-variance allocation has the largest wealth increase, hence the largest leverage. As the
wealth of this portfolio attains the target wealth, expressed as 1

2µe
b>Σ−1b T+x0 in the mean-

variance control equation (2.4), its leverage decreases and its wealth curve flattens. The
same phenomenon occurs for the penalized allocation with large penalization parameter
γ = µ. In this case, the high value of the penalization parameter keeps the penalized
portfolio controls close to the ones of the mean-variance portfolio. On the contrary, the
reference portfolios have constant weights and no target wealth. We can see that in each
case the reference portfolio’s wealth keeps increasing over the entire horizon. The wealth of
the penalized portfolio with penalization parameter γ = µ/100 follows the wealth of these
reference portfolio due to the small value of the tracking error penalization.

For these three reference portfolios, we observe that the penalized portfolio with pe-
nalization parameter γ = µ outperforms both the mean-variance and the reference portfo-
lios in terms of Sharpe ratio whereas the penalized portfolio with penalization parameter
γ = µ/100 outperforms the mean-variance but underperforms the reference portfolio. This
can be attributed to the larger weight of the mean-variance criterion with respect to the
tracking error in the optimized cost (2.2) with penalization parameter γ = µ.

Finally, Figure 8 corresponds to the case of a reference portfolio with weights all equal
to zero. This corresponds to a shrinking of the optimal control of the penalized portfolio.
In that case, for a better visualization, we plot the total wealth of the mean-variance
and penalized portfolios for penalization parameters γ = µ and γ = µ/100 normalized
by the standard deviation of their daily returns. On this graph, we can see that the
normalized wealth of the two penalized portfolio is higher than the one of the mean-
variance allocation. Similarly to the three precedent reference portfolios, the two penalized
portfolios outperform the mean-variance allocation in terms of Sharpe ratio. As previously,
we observe that the Sharpe ratio of the penalized portfolio with penalization parameter
γ = µ is greater than the one with γ = µ/100, due to the larger weight of the mean-variance
criterion in the functional cost.
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• Equal-weights reference portfolio
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Figure 5: Sharpe ratios:
Mean-variance : 0.183
Equal weights : 0.258
Penalized γ = µ : 0.260
Penalized γ = µ/100 : 0.226

• Minimum variance reference portfolio
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Figure 6: Sharpe ratios:
Mean-variance : 0.183
Minimum variance : 0.255
Penalized γ = µ : 0.256
Penalized γ = µ/100 : 0.220
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• ERC portfolio
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Figure 7: Sharpe ratios:
Mean-variance : 0.183
ERC : 0.258
Penalized γ = µ : 0.260
Penalized γ = µ/100 : 0.225

• Zero portfolio (shrinking)
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Figure 8: Total wealth of the mean-variance and penalized portfolios for γ = µ and γ =
µ/100, normalized by the standard deviation of daily returns, as a function of time.
Sharpe ratios:
mean-variance : 0.183
Penalized γ = µ : 0.252
Penalized γ = µ/100 : 0.221
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5 Conclusion

In this paper, we propose an allocation method based on a mean-variance criterion plus
a tracking error between the optimized portfolio and a reference portfolio of same wealth
and fixed weights. We solve this problem as a linear-quadratic McKean-Vlasov stochastic
control problem using a weak martingale approach. We then show using simulations that
for a certain degree of market parameter misspecification and the right choice of reference
portfolio, the mean-variance portfolio with tracking error penalization outperforms the
standard mean-variance and the mean-variance allocations in terms of Sharpe ratio. An-
other backtest based on historical market data also shows that the mean-variance portfolio
with tracking error outperforms the traditional mean-variance and the reference portfolios
in terms of Sharpe ratio for the four reference portfolios considered.

A Appendix

A.1 Proof of Theorem 3.1

The proof of Theorem 3.1 is based on the weak optimality principle lemma stated in Basei
and Pham (2019), and formulated in the case of the mean-variance problem (2.3) as:

Lemma A.1 (Weak optimality principle). Let {V α
t , t ∈ [0, T ], α ∈ A} be a family of

real-valued processes in the form

V α
t = vt(X

α
t ,E[Xα

t ]) +

∫ t

0
(αs − wrXα

s )> Γ (αs − wrXα
s ) ds,

for some measurable functions vt on R× R, t ∈ [0, T ], such that:

(i) vT (x, x̄) = µ(x− x̄)2 − x, for all x, x̄ ∈ R,

(ii) the function t ∈ [0, T ]→ E [V α
t ] is nondecreasing for all α ∈ A

(iii) the map t ∈ [0, T ]→ E
[
V α∗
t

]
is constant for some α∗ ∈ A.

Then, α∗ is an optimal portfolio strategy for the mean-variance problem with tracking error
(2.3), and

V0 = J(α∗).

We aim to construct a family of processes {V α
t , t ∈ [0, T ], α ∈ A} as in Lemma (A.1),

and given the linear-quadratic structure of our optimization problem, we look for a mea-
surable function vt in the form:

vt(x, x) = Kt(x− x)2 + Λtx
2 + 2Ytx +Rt (A.1)

21



for some deterministic processes (Kt,Λt, Yt, Rt) to be determined. Condition (i) in Lemma
(A.1) fixes the terminal condition

KT = µ, ΛT = 0, YT = −1/2, RT = 0.

For any α ∈ A, with associated wealth process X := Xα, let us compute the derivative of

the deterministic function t→ E[V α
t ] = E

[
vt(Xt,E[Xt]) +

∫ t
0 (αs − wrXs)

> Γ (αs − wrXs) ds
]

with vt as in (A.1). From the dynamics of X = Xα
t in (2.1) and by applying It’s formula,

we obtain

dE[V α
t ]

dt
=Var(Xt)

(
K̇t + w>r Γwr

)
+X

2
t

(
Λ̇t + w>r Γwr

)
+ 2XtẎt + Ṙt (A.2)

+ E[Gt(α)]

where
Gt(α) := α>t Stαt + 2

{(
Kt(Xt −Xt) + Yt + ΛtXt

)
b> −Xtw

>
r Γ
}
αt.

By completing the square in α, and setting St := KtΣ + Γ and ρ̃t := b>S−1
t b, we rewrite

Gt(α) as

Gt(α) =E
[(
αt − αΓ

t

)>
St
(
αt − αΓ

t

)]
−Var(Xt)

{
K2
t ρ̃t + w>r ΓS−1

t Γwr − 2Ktb
>S−1

t Γwr

}
−X2

t

{
Λ2
t ρ̃t + w>r ΓS−1

t Γwr − 2Λtb
>S−1

t Γwr

}
− 2Xt

{
ΛtYtρ̃t − Ytb>S−1

t Γwr

}
− Y 2

t ρt

with αΓ
t := S−1

t ΓwrXt−S−1
t b

[
KtXt + Yt − (Kt − Λt)Xt

]
. The expression in (A.2) is then

rewritten as

dE[V α
t ]

dt
=E
[(
αt − αΓ

t

)>
St
(
αt − αΓ

t

)]
+ Var(Xt)

{
K̇t −K2

t ρ̃t + w>r Γwr + 2Ktb
>S−1

t Γwr − w>r ΓS−1
t Γwr

}
+X

2
t

{
Λ̇t − Λ2

t ρ̃t + w>r Γwr + 2Λtb
>S−1

t Γwr − w>r ΓS−1
t Γwr

}
+ 2Xt

(
Ẏt + Ytb

>S−1
t Γwr − ΛtYtρ̃t

)
+ Ṙt − Y 2

t ρ̃t.

Therefore, whenever

22




K̇t −K2

t ρ̃t + w>r Γwr + 2Ktb
>S−1

t Γwr − w>r ΓS−1
t Γwr = 0

Λ̇t − Λ2
t ρ̃t + w>r Γwr + 2Λtb

>S−1
t Γwr − w>r ΓS−1

t Γwr = 0

Ẏt + Ytb
>S−1

t Γwr − ΛtYtρ̃t = 0

Ṙt − Y 2
t ρ̃t = 0

holds for all t ∈ [0, T ], we have

dE[V α
t ]

dt
= E

[(
αt − αΓ

t

)>
St
(
αt − αΓ

t

)]
which is nonnegative for all α ∈ A, i.e., the process V α

t satisfies the condition (ii) of Lemma
(A.1). Moreover, we see that V α

t = 0, 0 ≤ t ≤ T if and only if αt = αΓ
t , 0 ≤ t ≤ T .

XΓ := XαΓ
is solution to a linear McKean-Vlasov dynamics and, since K ∈ C([0, T ],R∗+),

Λ ∈ C([0, T ],R+) and Y ∈ C([0, T ],R), XΓ satisfies the square integrability condition

E

[
sup

0≤t≤T
|XΓ

t |2
]
<∞, which implies that αΓ is F-progressively measurable and

∫ T
0 E[|αΓ

t |2]dt <

∞. Therefore, αΓ ∈ A, and we conclude by the verification lemma A.1 that it is the unique
optimal control. �
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A.2 Computation linear expansion of αγ for Γ = γId → 0

αγt =Σ−1b

(
1

2µ
eρT +X0 −Xt

)
+ γ

(
Σ−1wr + Σ−2b

) Xt

K0
t

− γ‖wr‖2(T − t)Σ−1

K0
t

b

(
X0 +

eρT

µ

(
1− e−ρt

))
− γ

(
Σ−1bX0C

1
0,t + Σ−2b

X0

K0
t

)
− γ

(
Σ−1b

H1
t

2
+ Σ−2b

eρT

2K0
t µ

(
1− e−ρt

))
− γ

2

{
1(
K0
t

)2 Σ−1
(
K1
t 1 + Σ−1

)
b+ Σ−1b

Ct,T
K0
t

}
+O(γ2)

=Σ−1b

(
1

2µ
eρT +X0 −Xt

)
+ γΣ−1wr

Xt

K0
t

− γΣ−1b

{
‖wr‖2

K0
t

(T − t)
(
X0 +

eρT

µ

(
1− e−ρt

))
+X0C

1
0,t +

H1
t

2
+

K1
t

2
(
K0
t

)2 +
Ct,T
2K0

t

}

− γΣ−2b

{
eρT

2K0
t µ

(
1− e−ρt

)
+

1

2
(
K0
t

)2
}

+O(γ2).

A.3 Computation linear expansion of V ar(XT ) for Γ = γId → 0

We recall that the linear expansion of the optimal control can be written as

αγt = Σ−1b α0
t + γ

(
Σ−1wr α

1,3
t − Σ−2b α1,2

t − Σ−1b α1,1
t

)
+O(γ2)

where the coefficients α1,1
t , α1,2

t and α1,3
t are given by (3.8). The average total wealth of

the portfolio constructed by the optimal control at time t is given by the ODE

dXt = ρζ − γ
(
ρα1,1

t + b>Σ−2bα1,2
t

)
+

(
γ
b>Σ−1wr

K0
t

− ρ
)
Xt +O(γ2), Xt = X0,
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where we set ζ := X0 + 1
2µe

ρT . We get the solution

XT =X0e
−ρT + ζ

(
1− e−ρT

)
+ γ

{
b>Σ−1wr

µ

(
Tζ − 1

2µ
eρT

1− e−ρT

ρ

)
−
∫ T

0

(
ρα1,1

s + b>Σ−2bα1,2
s

)
e−ρ(T−s)ds

}
+O

(
γ2
)

=XT
0

+ γXT
1

+O(γ2)

with{
XT

0
:= X0e

−ρT + ζ
(
1− e−ρT

)
XT

1
:= b>Σ−1wr

µ

(
Tζ − 1

2µe
ρT 1−e−ρT

ρ

)
−
∫ T

0

(
ρα1,1

s + b>Σ−2bα1,2
s

)
e−ρ(T−s)ds

and

XT
2

=
(
XT

0
)2

+ 2γXT
0
XT

1
+O(γ2)

The average of the square of the portfolio wealth at time t is given by the ODE

dX2
t =

(
ζ − γα1,1

t

)2
ρ− 2γb>Σ−2bα1,2

t

(
ζ − γα1,1

t

)
+ 2γ

w>r Σ−1b

K0
t

(
ζ − γα1,1

t

)
Xt

− ρX2
t +O(γ2)

which gives the solution

X2
T =X2

0e
−ρT + ζ2

(
1− e−ρT

)
− 2γζ

∫ T

0

{
ρα1,1

s + b>Σ−2bα1,2
s

}
e−ρ(T−s)ds

+ 2γ
w>r Σ−1b

µ
ζ

∫ T

0
Xs

0
ds+O(γ2).

We can then compute the variance of the terminal total wealth of the portfolio given by
the control (3.7)

V ar(XT ) =X2
T −Xt

2

=
e−ρT

1− e−ρT
(
XT

0 −X0

)2

+ γ
b>Σ−1wr

µ2

(
ζT − 1

2µ
eρT

1− e−ρT

ρ

)
− γ

∫ T

0

(
ρ

µ
α1,1
s +

b>Σ−2b

µ
α1,2
s

)
e−ρ(T−s)ds+O(γ2).

�
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A.4 Proof that Kt and Λt are bounded in γ

To prove this, we use a theorem from Gronwall (1919) (also in Hairer et al. (1993), Theorem
14.1, p93). We rewrite the differential equation of K as

dKt

dt
= f(t,Kt, γ), KT = µ

with f(t,Kt, γ) := (Ktb− γwr)> (KtΣ + γ1)−1 (Ktb− γwr)− γ‖wr‖2, where ‖ · ‖ denotes
the euclidean norm in Rd.
For t ∈ [0, T ], the partial derivatives ∂f/∂K and ∂f/∂γ exist and are continuous in the
neighbourhood of the solution Kt. Then the partial derivative

∂Kt

∂γ
= ψt

exists, is continuous, and satisfies the differential equation

ψ
′
t =

∂f

∂K
(t,Kt, γ)ψt +

∂f

∂γ
(t,Kt, γ).

Recalling that the derivative of the inverse of a nonsingular matrix M whose elements are
functions of a scalar parameter p w.r.t this parameter is equal to ∂M−1

∂p
= −M−1 ∂M

∂p
M−1,

we can compute the partial derivatives ∂f/∂K and ∂f/∂γ, and we obtain the following
differential equation for ψ{

(ψt)
′

=
[
−‖σ>S−1

t (Ktb− γwr) ‖2 + 2b>S−1
t (Ktb− γwr)

]
ψt − ‖wr + S−1

t (Ktb− γwr) ‖2, t ∈ [0, T ]

ψT = 0.

This ODE has an explicit solution given by

ψt =

∫ T

t
Ase

−
∫ s
t Bududs

with At ≥ 0, ∀t ∈ [0, T ] equal to

At :=
K2
t

γ2
‖
(

Id +
Kt

γ
Σ

)−1

(b+ Σwr) ‖2 −→
γ→∞

0

and

Bt :=2
Kt

γ
(b+ Σwr)

>
(

Id +
Kt

γ
Σ

)−1

(b+ Σwr)

− K2
t

γ2
(b+ Σwr)

>
(

Id +
Kt

γ
Σ

)−1

Σ

(
Id +

Kt

γ
Σ

)−1

(b+ Σwr)

− 2b>wr − ‖σ>wr‖2.
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We have Bt →
γ→∞

−2b>wr − ‖σ>wr‖2, thus ψt −→
γ→∞

0, ∀t ∈ [0, T ] and Kt is bounded in γ

for every t ∈ [0, T ].
In the same spirit, we rewrite the differential equation of Λt as

dΛt
dt

= g(t,Λt, γ), Λt = 0

with g(t,Λt, γ) := (Λtb− γwr)> S−1
t (Λtb− γwr)− γ‖wr‖2. The partial derivative

∂Λt
∂γ

= φt

exists, is continuous and satisfies the differential equation{
φ
′
t = 2b>S−1

t (Λtb− γwr)φt −
[
‖wr + S−1

t (Λtb− γwr) ‖2 + ψt‖σ>S−1
t (Λtb− γwr) ‖2

]
, t ∈ [0, T ]

φ0 = 0.

which gives the explicit solution

φt =

∫ T

t
Cse

−
∫ s
t Dududs

with Ct ≥ 0, ∀t ∈ [0, T ] equal to

Ct := ‖1

γ

(
Id +

Kt

γ
Σ

)−1

(Λtb+KtΣwr) ‖2 + ψt‖
1

γ
σ>
(

Id +
Kt

γ
Σ

)−1

(Λtb+KtΣwr)− σ>wr‖2

and

Dt := 2

[
1

γ
b>
(

Id +
Kt

γ
Σ

)−1

(Λtb+KtΣwr)− b>wr

]
.

We showed that Kt
γ , ψt −→γ→∞ 0 for every t ∈ [0, T ]. Thus Ct −→

γ→∞
0, Dt −→

γ→∞
−2b>wr and

φt −→
γ→∞

0, ∀t ∈ [0, T ]. Λt is then bounded in γ for every t ∈ [0, T ].
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