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On-plate localization and mapping for an inspection robot using
ultrasonic guided waves: a proof of concept

Cédric Pradalier1, Othmane-Latif Ouabi1, Pascal Pomarede1 and Jan Steckel2

Abstract— This paper presents a proof-of-concept for a local-
ization and mapping system for magnetic crawlers performing
inspection tasks on structures made of large metal plates. By
relying on ultrasonic guided waves reflected from the plate
edges, we show that it is possible to recover the plate geometry
and robot trajectory to a precision comparable to the signal
wavelength. The approach is tested using real acoustic signals
acquired on metal plates using lawn-mower paths and random-
walks. To the contrary of related works, this paper focuses on
the practical details of the localization and mapping algorithm.

I. INTRODUCTION

This paper aims at demonstrating the interest of using ul-
trasonic guided waves to support inspection robots operating
on structures made of metal plates. Such structures include,
in particular, ship outer hulls and large storage tanks, as
depicted in fig. 1. On such a structure, localization with
respect to individual plates can be beneficial to precisely
triangulate defects such as corrosion patches [1], [2] or
even attempt acoustic tomography as in [3]. In combination
with odometry and an external localization system (laser
theodolite, Ultra-Wide Band (UWB) beacons...), this would
also lead to precise absolute localization of the inspection
results.

Fig. 1. Typical inspection conditions for magnetic crawlers operating on
a structure assembled out of welded steel plates [Source: RoboPlanet3].

On metal plates, Ultrasonic Guided Waves (UGWs) can
mostly be generated using piezo-electric transducers in con-
tact with the plate. When the relation between the frequency,
the plate thickness and the wave velocity is right, these
waves propagate radially around the emitter through the plate
material, like ripples around a stone thrown into a pool. For
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metal plates relevant to inspection tasks, frequencies in the
range of hundreds of kHz are typically appropriate, with
wavelengths of the order of a few centimeters.

In this paper, we are considering short bursts of a few
wave cycles emitted from a transducer mounted on a mobile
platform. When encountering the plate edges, these waves
are reflected normally and these reflections are measured by
a transducer co-located with the emitter to be converted into
electrical signals. From these signals, it is possible to identify
the reflected waves and, from them, recover the distance to
the edge. In a practical case, while working on a rectangular
plate, the acquired signal may include reflections from mul-
tiple edges as well as spurious detections. These sequences
of edge detections are essentially range-only measurements
to a line. We intend to use these ranges to both reconstruct
the geometry of the plate and the localization of the emitter-
receiver device over time. In the robotic community, this is a
SLAM problem with a non-trivial data-association challenge
to identify which edge has been observed at a given time.
Although numerous different works have considered the very
similar problem of room shape reconstruction from acoustic
echoes as a SLAM problem, most of them only consider
simulated measurements and do not describe exhaustively
their map management strategies.

In summary, the contributions of this paper are:
1) a demonstration of the applicability of a sparsity-based

reconstruction of the arrival times of the ultrasonic
reflections in the plate using an L1-regularized least
squares approach;

2) a demonstration of the applicability of room recon-
struction methodologies to on-plate mapping with a
description of the map management strategy, from
initialization to landmark addition and outlier removal;

3) a proof-of-concept for the use of FastSLAM[4] in the
context of on-plate localization for inspection tasks.

II. RELATED WORKS

a) Non-Destructive Evaluation: Ultrasound-based in-
spection technique is the most common tool for Non-
Destructive Evaluation (NDE) on metal plates. In the most
common set-up, the transducers are put in transmission or
in echo mode. In the first one, two transducers are aligned
along the same axis, one transducer is used as an emitter
and the second receives the signal after propagation through
the sample. In the second mode, one transducer acts both as
emitter and receiver and the signal is recorded after reflecting
on the sample. This is typically used with high frequencies
(i.e. 5MHz) for thickness measurements. Alternatively, this



paper considers the use of Lamb waves, a specific type of
UGWs. Those waves propagate along the metal plate, po-
tentially for large distances. In industry, they have been used
to detect defects in pipelines, rails, or large structures with
success [5], [6], but never deployed on autonomous mobile
systems. Another technique is to use signals obtained during
the inspection from different positions in order to localize
defects using acoustic tomography [1], [2]. This technique
is usually used in the Structural Health Monitoring (SHM)
field with sensors embedded in the structures [7]. However,
for such a technique to work, it is critical to know the
location of the emitters and receivers with a good precision,
which is a challenge for magnetic crawlers operating on an
inspected structure. Most of the mentioned works assume a
known localization of the emitter and receiver with respect
to the inspected plate, and to the authors’ knowledge, there is
no work considering that the UGWs themselves could both
provide the defect detection capabilities and help to infer the
plate geometry and sensor localization.

b) Echo detection: Time delay estimation is often
performed using a matched filter approach, which allows
high-resolution time-delay estimation under the condition
that the signal bandwidth is sufficiently high, and that the
auto-correlation function of the used signals is sufficiently
narrow [8]. More recently, sparsity-based methods using
an L1-regularized least squares approach have surfaced as
super-resolution time-delay estimation, and have been exten-
sively applied to ultrasonic time-delay estimation [9], [10].
This approach promises the detection of highly-overlapping
reflections, even under low Signal-to-Noise Ratio (SNR)
conditions. In our approach, we will use this sparsity-based
approach to solve the time-of-arrival estimation problem.

c) Localization and Mapping: Outside of the field
of NDE, the closest problem to on-plate localization and
mapping is acoustic room reconstruction. In this sub-field
of acoustics and signal processing, there are different works
that attempt to reconstruct the shape of a room based on
acoustic echoes. [11] addressed the problem of a moving
emitter-receiver device to reconstruct a room shape using a
geometric solution. [12] showed that SLAM techniques could
be used to estimate the shape of a convex room. Both works,
however, were only tested in simulation, and did not consider
the presence of spurious echoes. [13] expresses the problem
as an optimization but is again tested only in simulation
and does not address explicitly the ambiguous matching of
measurements to room walls.

Besides, in all the works above, the map management
strategy is not described exhaustively: in particular, they do
not explicit how the geometry of the room is initialized and
how map edges are included when first detected or removed
when proven to be outliers. From a more practical standpoint,
[14] and [15] build a practical room reconstruction system
running on a smart-phone. The latter would be used to emit
sound pulses that would reflect from the room walls. In [15],
a rectangular environment is assumed, with known sizes, and
the focus is on localization. In [14], both the localization and
the wall estimation are considered with only the first echo

but very little information is given on the map management.
In the context of SLAM, data association has always been

a critical step, as described in reference works such as [16].
FastSLAM [4] is an alternative formulation of the SLAM
problem where the state is estimated by sampling and where
each sample contains an estimate of the trajectory and the
map collected along this trajectory. FastSLAM also allows
handling uncertain data association by including multiple
samples for the various association hypotheses. This is par-
ticularly important for the problem at hand since the validity
of wall hypotheses can sometimes only be estimated several
steps after their initialization. To our knowledge, FastSLAM
has not been used previously in the context of the acoustic
room reconstruction and localization problem.

d) Summary: This work will use UGWs to build on
the room reconstruction techniques within a FastSLAM
framework. While moving an emitter-receiver pair on a metal
plate, this will allow recovering the trajectory of the device
and the geometry of the plate. To support fast and robust
echo detection, we make use of an L1-regularized least
squares approach to signal-delay estimation using a sparse
signal model. This approach allows a very accurate time-
delay estimation of multiple overlapping reflections to be
performed, even in low SNR conditions. The next section
will describe how these components combine together to
demonstrate the feasibility of using UGWs for on-plate
localization and plate geometry inference.

III. METHODOLOGY

A. Notations and assumptions

In this paper we are considering a mobile unit transporting
an acoustic emitter-receiver pair on a metal plate. At the k-th
scanning position, the emitter sends an acoustic pulse skb (t).
Under mild assumptions of the acoustic properties of the
ultrasonic probing system, we can model the received trans-
ducer signal skr (t) as a linear system through convolution:

sr(t) = x(t) ∗ sb(t) (1)

with x(t) the environments impulse response and sr(t) which
contains information about reflections on the plate edges. The
superscript k is omitted when unambiguous.

We assume that the plate is a homogeneous material
(steel, aluminium,...) of a constant thickness. We assume the
plate to be a convex polygon, but we do not assume it to
be rectangular, even though this is to be expected in any
industrial case. Because the edges are linear, we will also
assume that only the orthogonal reflection of the signal is
picked up by the receiver. Any other reflection may lead to
secondary echoes after bouncing from several edges but these
are neglected in our work.

Out of the reflected signal skr (t), we will denote as
{rl(k), l = 1 . . . n(k)} the set of detected ranges to the plate
edges, assuming that not all the edges are detected all the
time and that spurious detection may be included in the list.

Additionally, because we assume the transducers are car-
ried by a mobile device on the plate, we assume that some



level of odometry is available to estimate the displacement
between measurements. Because the inspection crawlers we
are considering are moving on vertical structures (boat hulls,
storage tanks), they can easily embed an accelerometer
from which the crawler heading with respect to gravity
can be observed with a good enough precision. Also, by
construction, to avoid falling from the inspected structures,
these crawlers need to have an extremely good adherence and
incur very little slippage. We can hence assume the odometry
locally very precise. These two assumptions (known heading
and very precise odometry) are an important distinction with
respect to the room reconstruction works.

In the next section, we will describe first how these echoes
can be robustly extracted from the signal and then how they
can be integrated with the proprioceptive measurements into
a localization and mapping framework.

B. Echo detection

One of the key enabling technologies for the on-plate
SLAM approach is the robust and accurate detection of
ultrasonic echoes in the metallic plate. Due to the physics
of the sound propagation in the metallic plate, only signals
with limited bandwidth can be used for probing the underly-
ing material. This limited bandwidth constraint complicates
accurate time-of-arrival estimation for the reflections in the
medium, removing classical signal processing techniques
such as matched filtering from the set of applicable tech-
niques. We apply a super-resolution technique based on L1-
regularized least-squares and the concept of sparsity to solve
this estimation problem. The underlying hypothesis of this
approach is that most of the metal plate does not reflect the
ultrasonic waves, and that only discontinuities in the medium
cause reflections to occur. In that case, the environment
response x(t) from eq. 1 has only a limited number of non-
zero components and can be considered sparse.

After discretization of the problem, this allows us to cast
the following L1-regularized least squares problem:

min
x
|D · x− sr|22 + λ · |x|1 (2)

with x the discretized vector-representation of the impulse
response x(t) of size [nt × 1], sr the discretized received
acoustic signal of size [nt × 1], where nt is the number of
time-samples used in the discretization process. The vector
norms |a|p denote the Lp-norm of vector-object a, with the
well-known fact that the L1-norm promotes sparsity of the
least-squares solution. The matrix D is called a dictionary
matrix of size [nt×nt], and contains time-delayed copies of
the emitted echo signal sb:

D =


sb(1) 0 . . . 0
sb(2) sb(1) . . . 0

...
...

. . .
...

sb(nt) sb(nt−1) . . . sb(1)

 (3)

This minimization problem is a convex problem which can
easily be solved using open-source toolboxes such as the
Matlab CVX toolbox [17].

C. From echoes to edge hypotheses

A single echo rl(k) provides information about the dis-
tance to an object. As will be described later, this information
is useful to refine the parameters of the edge which reflected
this echo. However, this is too ambiguous to initialize a new
edge: it could be any tangent to the circle centered on the
current pose with radius rl(k).

In [12], the authors show that 2 echoes taken at different
known positions are sufficient to define two line hypotheses:
there are only two lines tangent to the two circles defined by
these radii and centered on the known poses. A third echo
can be used to disambiguate between the two lines if the
trajectory is not parallel to the line. Beside requiring three
perception steps and the corresponding delay, using three
echoes requires considering all the O(n3) 3-tuples of ranges.

Instead, we use only the last two echoes and deal with
the multiple hypotheses in a later step. There are several
arguments for this choice: first, the disambiguation with 3
echoes is only useful when the path is not parallel to the edge.
However, in most practical deployments where the robot uses
its accelerometer to realize vertical or horizontal transects,
the path is aligned with the plate edges. Second, even on
a non-parallel path, a clear disambiguation requires a large
translation between the second and third echo to compensate
for the perception noise. Last, when moving on a direction
normal to the edge, two measurements are sufficient for a
unique solution. Both cases are illustrated in fig. 2.
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Fig. 2. Line hypotheses generated from two measurements at position
Pt−1 and Pt. Left: the robot moves away from the edge and generate a
single hypothesis, right: generic case leading to two hypotheses.

Because of our combinatorial generation of edge hypothe-
ses, a method is required to identify inconsistent edges
and remove them. To this end, we take advantage of the
hypothesis that only orthogonal reflections are reaching the
receiver. Hence, with the assumption of a convex plate, if we
consider two edges L1 and L2 observed from pose P and
Pi the projection of P on Li, then L2 cannot intersect the
segment [PP1] and L1 cannot intersect the segment [PP2].
If one of these conditions is true, then both edges cannot
exist simultaneously on a convex plate because observing one
edge would require the UGWs to cross the other one, which
is not possible. In the following, this test will be denoted as
the consistency check between two edge hypotheses.

D. FastSLAM integration

FastSLAM[4] is a solution to the simultaneous localization
and mapping problem which is particularly relevant in the



context of uncertain data association. In essence, FastSLAM
relies on a particle filter in the localization space and every
particle holds a hypothesis of the map that can be inferred
from the trajectory of this particle. In order to integrate
FastSLAM into our localization and plate geometry inference
problem, this section will define the particle state, the chosen
map representation, the particle initialization strategy, how
the internal maps are updated and the evaluation of a particle
based on the measured echoes.

1) FastSLAM state: Because of our assumption of a
known orientation, we only consider the sensor coordinates
(x, y) on the plate as a system state. Orientation could be
added to the state without significant changes.

As a map representation, we use a list of infinite lines
represented by an angle and an offset. This is a relatively
simple representation comparing to grid maps for example,
but still, it offers enough flexibility on the plate geometry.
In practice, a line is represented by a pair (θ, b) that defines
the line equation:

cos(θ) · x+ sin(θ) · y + b = 0 (4)

A particle Pi is then described as a trajectory hypothesis
associated with an estimated map defined as a set of lines:

Pi = [(xi(s), yi(s))s=1...k, {(θi,j , bi,j), j = 1 . . . ni}] (5)

2) FastSLAM initialization: Most of the earlier papers
[12], [13] on room reconstruction do not discuss the initial-
ization of the Bayesian filter, which is an important element
for practical implementation. In our case, we rely on the edge
hypotheses generated from section III-C. After waiting for
the second set of range measurements, we estimate a number
of edge hypotheses from which we extract maximally con-
sistent sets. These sets are built using a dynamic program-
ming approach inspired by JCBB/JCDA [16] which will be
omitted here for the sake of page limits. As a result, every
particle is initialized by sampling around the zero position
and randomly selecting a consistent set of edges from the
maximally consistent sets. Including all the edge hypotheses
in all the particles would be a viable alternative given the
outlier removal decision described below. It would however
add more ambiguity than necessary in the estimation.

3) Particle evaluation: Given {rl(k), l = 1 . . . n(k)} the
set of echoes measured at the k-th scanning position, we
evaluate a particle based on its ability to explain the mea-
surements. For a line Li,j = (θi,j , bi,j) in particle Pi, the
expected measured range is:

di,j(k) = | cos(θi,j) · xi(k) + sin(θi,j) · yi(k) + bi,j |

From this range, the likelihood of measurement rl(k) due to
a reflection on the line Li,j is expected to follow a Gaussian
distribution centered on di,j(k), with a standard deviation
consistent with the echo detection uncertainty. If the highest
likelihood over all the lines is lower than a threshold, then
the measurement is considered “unexplained” and allocated
a low probability P0. Otherwise, the index of the line leading
to the highest likelihood is recorded as j?k,l. For the purpose

of map update, the list of unexplained measurements is also
stored to create additional line hypotheses.

For a complete set of echoes, the evaluation of a particle
will then be the product of the likelihood of the n(k)
likelihoods of the independent measurements:

L(Pi) =

n(k)∏
l=1

max

(
P0,max

j
(P (rl(k) | Pi, Li,j))

)
In this formulation, the product has n(k) terms which makes
the evaluation of different particles comparable. Performing
the product over the set of lines of each particle would result
in a varying number of terms, which is incompatible with
importance sampling.

4) Map update: The map update stage has three purposes,
first for “explained” measurements, the associated line needs
to be updated to account for the new piece of information.
Second, the “unexplained” measurements are used to create
additional line hypotheses. Third, consistency checks are
used to eliminate line hypotheses which are no longer
supported by the observations.

a) Line update: Knowing a measurement rl(k) and its
associated line in particle Pi, Li,j?k,l

, one needs to update
the corresponding (θi,j? , bi,j?). The definition of di,j(k)
suggests the use of an Extended Kalman Filter. Even though
such a filter is feasible, the individual measurements can
often be explained equivalently by changing θi,j? or bi,j? ,
which prevents a precise convergence of the filter. To sidestep
this issue, an alternative is to keep a record of the pairs of
sensor poses and ranges associated with this line in a set
Ei,j? , and to minimize the following cost function:

Ci,j?(θ, b) = (6)∑
(s,l)∈Ei,j?

[
(xi(s) cos(θ) + yi(s) sin(θ) + b)

2 − r2l (s)
]2

Although much more expensive, this approach converges
without bias even when the measurements are taken on a
monotonic walk along the edge.

b) New lines: For unexplained measurements, we need
to combine them with the measurements from the previous
pose to create edge hypotheses (sec. III-C). Every pair made
of one previous measurement and a new unexplained mea-
surement is used to generate one or two edge hypotheses. All
the previous measurements are used for additional robustness
against incorrectly associated measurements at the previous
time step. All these hypotheses are added to the line set of
the current particles.

c) Map clean-up: In a final stage of the map update,
all the lines in a particle line set are checked for pairwise
consistency. If two lines are deemed inconsistent and one
of them has been observed (i.e. associated with a measure-
ment) significantly more than the other since its creation,
then the least observed line is marked for deletion. In our
implementation, this criterion is defined as being observed
two additional times. In this stage, we also mark for deletion
lines that were not re-observed enough since their creation.



For instance, we delete a line that is more than 10 step-
old but has been observed less than 3 times. The simple
delayed outlier removal described in this paragraph is what
makes possible the generation of many edge hypotheses from
the set of detected echoes. This is critical since many of
these hypotheses cannot be ruled out until the robot moves
significantly and changes direction. In comparison, in [12]
the authors made the hypotheses of a random walk of the
agent, which is a much more informative path, but also much
less realistic for a robotic crawler.

IV. RESULTS

A. Experimental setup

At the time of this writing, the experimental setup is not
yet integrated on a robotic crawler. Instead, in order to test
our framework in a setup as close as possible from reality,
we used a pair of emitter-receiver piezo-electric transducer
on two different aluminium plates (plate 1: 470x470x5mm
and plate 2: 600x450x6mm) and moved them by hand on
the vertices of a regular grid with 30 to 40mm spacing.
At every position, the response to 10 ultrasonic scans were
averaged and recorded with their acquisition position. A scan
in this context is the emission of two periods of a 100kHz
sine wave and the recording of 400µs of an analog signal at
1Msample/second.
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Fig. 3. Experimental setup for metal plate 1. The emitter and receiver
transducer can be seen on the bottom right of the figure.

To simulate a sweep of a plate by a robotic crawler, the
corresponding sequence of measurements is selected from
the database and presented to the SLAM framework, with the
theoretic displacement between grid cells used as odometry,
even though the hand placement of the transducers is only
precise up to 2mm. We believe that, apart from the size of the
plates which is smaller than real ones, this setup is a correct
representation of a real system in terms of signal quality.

B. Echo detection

Figure 4 illustrates the echo detection process. Panel a)
shows the emitted signal, which is a 2-cycle burst at 100kHz.
The reflected signal from the plate structure can be seen in
panel b). It shows the pickup of the emission at the beginning
of the signal, and a reflection due to coupling mismatches.
Then, a series of echoes is apparent. Using the L1-based

approach, the impulse response can be reconstructed (see
panel b, orange trace). The method reconstructs the major
echo components of the impulse response, while ensuring
that the solution is sparse. Panel c) shows the reconstruction
error. The fact that this residual is not zero can be explained
by the fact that the direction-dependent filtering of the
transducer is not taken into account during the reconstruction
phase with the signal model D. However, as the remaining
experiments show, this crude approach to the echo detection
process is sufficient for the plate-estimation algorithm.
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Fig. 4. Illustration of the echo detection process. Panel a) shows the emitted
signal. Panel b) shows the echo signal (blue trace) and the reconstructed
impulse response (orange trace). Panel c) shows the reconstruction residual.

C. Edge hypotheses

Fig. 5 gives an example of computed edges from the
combination of the two first measurements on plate 2. As
can be observed, the number of edge hypotheses is relatively
large but a few of them are definitely good estimates of the
real top and bottom edges. At this position, lateral edges
are not observed correctly. The level of uncertainty in the
putative edges is what calls for the FastSLAM framework
and the delayed decision of the validity of the edges.

D. Mapping performance

Figure 6 shows one anecdotal example of a mapping run
on plate 2 by displaying the highest-ranked particle (out of 16
in this case), its line set and its trajectory. The reconstructed
path is clearly visible and the stability of the estimate can
be observed when performing a second sweep of the path
(iterations 225 and 239). The convergence of the estimated
lines to the true plate outline can also be observed, with a
final error in the order of 2cm on the line offsets b (see eq. 4).



Even though this run has a lower precision than the average
case, 2cm is still a very acceptable precision given that the
sensors are positioned by hand and that the wave length in
this plate is approximately 3cm.

r(1): 0.1151,
0.1297,
0.1436,
0.3406,
0.3557

r(2): 0.1454,
0.1594,
0.1788,
0.1933,
0.3163,
0.3333,
0.4484

Fig. 5. Edge hypotheses generated on plate 2 from detected echoes r(1)
(blue dot) and r(2) (purple dot), without consistency check. The purple
rectangle is the outline of the true plate.

1 12 36

124 225 239

Fig. 6. Evolution of the map representation for the highest-ranked particle
at step 1, 12, 36, 124, 225 and 239. The purple frame represents the outline
of the true plate. The red dot is the current estimated sensor pose and the
red line is the history of its estimated trajectory. The darkness of the line is
proportional to the number of times they have been observed. The animation
of the run is available on the linked video.

As a final evaluation, we evaluated in Fig. 7 the precision
and repeatability of our approach through 100 repetitions
in three scenarios. Scenario 1 and 2 consisted of a lawn-
mover path through the plate 1 and 2. The length of the
sweeping path being 81 steps and 108 steps respectively. In
a third scenario, we used plate 1 and simulated localization
and plate geometry estimation over a random walk. In the
three cases, the real measurements described above were
used. However, a single database of measurements was used
for every repetition. The table above presents a summary
of the resulting precision at different steps in the process. It
is clear that the initial estimates after observing only half of
the plate are still very uncertain for all the scenarios, but at

Scenario Angle error [rad] Offset error [m]
Scenario 1, step 50 0.017± 0.057 0.004± 0.032
Scenario 2, step 50 −0.029± 0.154 −0.061± 0.199
Scenario 3, step 50 −0.008± 0.084 −0.031± 0.133

Scenario 1, step 239 0.005± 0.020 0.002± 0.010
Scenario 2, step 239 −0.007± 0.091 −0.015± 0.126
Scenario 3, step 239 −0.001± 0.040 0.002± 0.045

Fig. 7. Average errors and standard deviations on the lines parameters
estimation after 50 and 239 steps. They are evaluated using 100 repetitions.

the end of the simulation, all lines from plate 1 are estimated
with a precision consistent with the signal wavelength. The
poorer performance on plate 2 is due to the somewhat larger
size of the plate and to the presence of artificial defects that
are acting as reflectors and creating detection artifacts.

V. CONCLUSIONS

This paper presented a proof-of-concept for a localization
and plate geometry inference framework for a magnetic
crawler performing inspection of structures assembled out
of metal plates. The results show that there is enough infor-
mation in the reflected signals to achieve a good localization
and mapping precision as long as sufficient coverage of the
plate is performed. The next steps will be to embed this
framework on a robotic platform as presented in fig. 1, to
test on a larger plate, to reduce the computational cost, to
improve the overall system robustness and consider an active
sensing strategy to recover the plate geometry faster and even
more reliably.
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