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Abstract

Fiber reinforced polymers (FRPs) are increasingly being used and im-
plemented in many industrial fields such as transportation, automotive,
aerospace aviation and civil engineering due to their low cost, light weight
and high mechanical properties. Yet the use of such complex materials
could sometimes be limited by their surface poor adhesion properties and
low resistance to severe environmental conditions such as moisture and
temperature. The aim of this research is to highlight organic composite
use barriers and so far founded solutions.
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1 Introduction

Composite is the assembly of two or more immiscible materials. In general,
there is a discontinuous phase distributed in a continuous phase. Discontinuous
phase plays the role of inclusions. This phase usually has mechanical properties
superior to the continuous phase that plays the role of the matrix. The matrix
maintains inclusions’ geometrical disposition and enables applied stress distri-
bution. Composite materials are very heterogeneous and strongly anisotropic.
Their properties depend on components properties, inclusions geometrical dis-
tribution and inclusion/matrix interface nature.
The most communally used composites are polymers reinforced with synthetic
fibers such as glace, aramid and carbon fibers [1]. Bio-composites, mainly poly-
mers reinforced with natural fibers like hemp and flax fibers are gradually being
included in the industry. Fiber reinforced polymers (FRPs) are characterized by
a brittle and a linearly elastic behavior up to failure and a high tensile strength
in fiber direction [2, 3]. Composites could be custom tailored in order to increase
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their strength by modifying the fiber content or their geometrical distribution
[4, 5, 6].
Due to their lightweight, good corrosion resistance, non-conductivity and failure
elongated strain, FRPs have been used as alternative reinforcements for steel in
civil engineering structural application [7, 8]. Glace fiber reinforced polymers
(GFRPs) are one of the more cost effective FRP products commercially avail-
able with significant cost advantage over stainless steel. The combination of
GFRP and steel bars as column reinforcements was also proven to be effective
[8]. Yet the use of composite materials in this field could sometimes be lim-
ited by their low compressive stress and low resistance to fire and temperature
[9, 10, 11, 12, 13].
Joining processes are unavoidable in manufacturing fiber reinforced polymers
especially those with complex geometries. Structural bonding is the most used
and profitable composite assembling technology. Nevertheless, composites’ poor
adhesion properties at their raw state limited the use of this technique in hybrid
structures. Surface treatment before bonding is essential in order to enhance
composites’ surface quality. Another problematic issue for composites’ indus-
trial implementation is their low resistance to severe environmental conditions
such as moisture and high temperature [2, 14, 15]. Aging is a complicated prob-
lem for composite materials that usually leads to their mechanical properties
degradation thus reducing their service life by inducing premature and catas-
trophic failure modes.
Fiber reinforced polymers use limitations and their so far founded solutions are
discussed in this paper.

2 Moisture effect on fiber reinforced polymers
(FRPs)

Moisture is one of the most damaging factors to organic composites. It affects all
of its components starting from the matrix and the fibers to the fiber-matrix in-
terface. Matrix is the primary victim of water absorption due to the hydrophilic
nature of many widely used resins [15]. A research carried out by Chilali et al.
[16] revealed that thermostat composites absorb more water than thermoplastic
composites. Resin water absorption usually results in its plasticization, swelling,
hydrolysis, and fiber debonding. Plasticization and hydrolysis are irreversible
phenomena that can change both the stiffness and the strength of the polymer.
Many studies [2, 14] have reported the decrease of FRPs maximum load, frac-
ture toughness and Young’s modulus due to water absorption. Synthetic fibers,
such as glass and carbon fibers, are hardly affected by humidity. Hence, aging
resistance of polymers reinforced with synthetic fibers depends mainly on the
resin permeability and cracking resistance. Composites’ weakness to moisture
is located at the matrix-fiber interface. Due to fiber water non-absorption and
some resin hydrophilic nature, a differential swelling could occur causing residual
stress. Fiber reinforced polymers aging resistance could be enhanced by increas-
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ing fiber-matrix adhesion strength using fiber surface chemical treatments such
as silane [17, 18], epoxy [19] and poly methacrylic acid [20]. Synthetic fiber based
composites have higher water aging resistance compared to bio-composites [21].
This is mainly due to the hydrophilic nature of natural fibers. Natural fibers
based composites hybridization with GFRP, CFRP or BFRP was proven to be
a good solution for this problem [22, 23, 24, 25]. Carbon fibers have a higher
resistance to moisture than aramid and glace fibers [2]. Water absorption usu-
ally increases with the increase of temperature and the presence of external
stress. Interlayer delamination is the most critical deterioration mode for or-
ganic composites. The rupture can occur in the matrix, between plies, and at
the fiber-matrix interface level.

3 Fiber reinforced polymers behavior under high
temperature and fire

Synthetic fibers can maintain their strength at relatively high temperature. Yet,
most polymers are vulnerable at much lower temperature due to their low glace
transition temperature Tg. Hajiloo et al. [11] studied GFRP reinforced bars
mechanical behavior under severe conditions. All bars lost their strength and
stiffness at elevated temperature. Another study [15] revealed that high tem-
perature could enhance GFRPs’ strength when it is under the material’s Tg.
Exposed to heat, GFRP components can ignite and sustain flaming combus-
tion during a short time period [10]. The flames spread depends on several
factors essentially the resin type and flammability and the fiber content. The
decomposition of the composite polymeric matrix releases fine soot particles and
non-combustible fiber micro-fragments that may induce dense smoke. Hawileh
et al [12] carried out a numerical study in order to investigate the behavior of
continuous concrete decks doubly reinforced with top and bottom GFRP bars
subjected to top surface fire. The study revealed that the top concrete cover
thickness is the most important parameter that influences the fire resistance of
GFRP reinforced concrete slabs when exposed to top fire loading.

4 Composite surface treatment before bonding

At their raw state, composite materials have poor surface adhesion properties
[26]. Hence surface treatment before bonding is necessary in order to improve
the surface quality. Mechanical surface treatment such as sanding [27, 28],
sandblasting [28], peel ply [29, 30, 28] and milling [31] improve mechanical an-
choring between joined materials by roughening the surface, creating more areas
for bonding and enhancing the surface free energy. Chemical surface treatment
such as plasma and corona discharge [32] reinforce high energy chemical inter-
actions between the composite and the adhesive. Peel ply is a no-complicated
low cost surface treatment. The effect of this treatment depends on the peel
ply fabric nature, its grammage and fiber size. Polyamide tear-off fabrics were
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proven to provide more adhesion strength to composite bonded structures than
polyester tear-off fabrics [29, 30]. Peel ply generates homogeneous surface with
regular and controlled roughness. Materials with regular surface topography
were reported to have high adhesion properties [33]. Peel ply fiber remainings
could cause surface defects and weaken the bonded substrates adhesion [28].
Hence, cleaning the surface after treatment is highly recommended. Abrasion
treatments such as sanding and sandblasting were also proven to highly improve
the adhesion properties of composite materials. The effect of these treatments
depends on the abrasive grains grit size [27, 34]. Sanding and sandblasting were
reported to cause fiber exposure at the treated surface level and in some cases
fiber damage and sand residues. Milling could also be used as a surface treat-
ment for composite materials [31]. Similar to sandblasting, the effect of this
treatment depends on machining parameters.
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