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GLOBAL REGIME FOR GENERAL ADDITIVE FUNCTIONALS OF
CONDITIONED BIENAYME-GALTON-WATSON TREES

ROMAIN ABRAHAM, JEAN-FRANCOIS DELMAS, AND MICHEL NASSIF

ABSTRACT. We give an invariance principle for very general additive functionals of conditioned
Bienaymé-Galton-Watson trees in the global regime when the offspring distribution lies in the
domain of attraction of a stable distribution, the limit being an additive functional of a stable
Lévy tree. This includes the case when the offspring distribution has finite variance (the Lévy tree
being then the Brownian tree). We also describe, using an integral test, a phase transition for toll
functions depending on the size and height.

1. INTRODUCTION

In view of the many applications of trees (in computer science, biology, physics, ...), the study of
additive functionals on large random trees has seen a lot of development in recent years, see refer-
ences below. In this paper, we consider asymptotics for general additive functionals on conditioned
Bienaymé-Galton-Watson (BGW for short) trees in the so-called global regime.

Recall that a functional F' defined on finite rooted ordered discrete trees is said to be additive
if it satisfies the recursion

d
F(t) =) F(t;) + f(t), (1.1)
i=1
where tq,...,ty are the subtrees rooted at the d children of the root of the tree t and f is a given

toll function. Notice that this can also be written as

F(t) =3 f(tw), (1.2)
wet

where t,, is the subtree of t above the vertex w and rooted at w. Such functionals are encountered in
computer science where they represent the cost of divide-and-conquer algorithms, in phylogenetics
where they are used as a rough measure of tree shape to detect imbalance or in chemical graph
theory where they appear as a predictive tool for some chemical properties. Among these, we
mention the total path length defined as the sum of the distances to the root of all vertices,
the Wiener index [43] defined as the sum of the distances between all pairs of vertices, the shape
functional, the Sackin index, the Colless index and the cophenetic index, see [42] for their definitions
and also [14] for their representation using additive functionals, and the references therein. See
also [39] for other functionals such that the number of matchings, dominating sets, independent
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sets for trees. We also mention the Shao and Sokal’s B; index [6,42] defined by

Bu(t) = zﬁ (1.3)
pon)

where for every finite rooted ordered tree t, h(t) is its height and t° is the set of internal vertices.
It is used for assessing the balance of phylogenetic trees, see e.g. [21,27,31,38,41].

We shall consider in this paper random discrete trees 7" which are BGW trees conditioned to
have n vertices, and then study the limit of rescaled additive functionals as n goes to infinity. One
can distinguish between local and global regime. In the local regime, the toll function is small or
even vanishes when the subtree is large; so the main contribution to the additive functional comes
from the small subtrees. These being almost independent, we understand intuitively why the limit
distribution is Gaussian. See [29,39,45] for asymptotic results in the local regime. In the global
regime, the toll function is large when the subtree is large; so the main contribution comes from
large subtrees which are strongly dependent. This intuitively explain why we expect the limit
to be non-Gaussian. As far as we know, asymptotic results in the global regime deal with toll
functions depending only on the size. In this paper, we shall focus on the global regime for general
toll functions. In particular, our results apply to toll functions depending on the size and height.
When the toll function is monomial in the size of the tree f(t) = |[t|*’, with [t| the cardinal of t, Fill
and Kapur [24] observed a phase transition at o’ = 1/2 for binary trees under the Catalan model
(which is a special case of conditioned BGW trees): the global regime corresponds to o > 1/2.
This was later generalized by Fill and Janson [23] to BGW trees with critical offspring distribution
with finite variance using techniques from complex analysis; they identified a local regime for
o/ < 0 and an intermediate regime for 0 < o < 1/2. When the offspring distribution has infinite
variance but lies in the domain of attraction of a stable distribution with index v € (1, 2], Delmas,
Dhersin and Sciauveau [14] proved convergence in distribution for o/ > 1 using stable Lévy trees
and conjectured a phase transition at o/ = 1/y. We shall prove this conjecture, as a particular
case of our main result, see Theorem 1.1.

Let £ be a N-valued random variable. We write BGW(&) tree for a BGW tree with offspring
distribution (the law of) £&. We denote by 7 a BGW(§) tree conditioned to have n vertices and we
assume that & is critical, i.e. E[{] = 1, nondegenerate, i.e. P (£ =0) > 0, and that it belongs to
the domain of attraction of a stable distribution with index v € (1, 2], i.e. there exists a positive
sequence (b,, n > 1) such that if ({,, n > 1) is a sequence of independent random variables
with the same distribution as & then b, ! (37_, & — n) converges in distribution towards a stable
random variable whose Laplace transform is given by exp(kAY) for A > 0, with index v € (1, 2]
and normalizing constant £ > 0 (the constant x depends on the choice of the sequence (b,, n > 1).
Under these assumptions, it is also well known that, as n goes to infinity, 7" properly rescaled
converges in distribution with respect to the Gromov-Hausdorff-Prokhorov topology to the stable
Lévy tree T with index v (and branching mechanism ¥ (\) = kA7) which is a rooted random
real tree (see Section 4.2 for a precise definition), see Aldous [7] for the finite variance case and
Duquesne [15] for the general case. The stable Lévy tree is a generalization of Aldous’ Brownian
continuum random tree which corresponds to v = 2. We recall that the stable Lévy tree is the
real tree coded by the normalized excursion of the height process associated with a stable Lévy
process and that it codes the genealogy of continuous-state branching processes, see e.g. Le Gall
and Le Jan [35], Duquesne and Le Gall [16,17]. We recall that any real tree T' is endowed with the
length measure ¢(dy) (which roughly speaking is the Lebesgue measure on the branches of the tree)
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and that the Lévy tree is naturally endowed with a mass measure (which roughly speaking is the
uniform probability measure on the infinite set of leaves). One of our main results can be stated
as follows. We refer the reader to Proposition 7.1 and Theorem 7.3 for more general statements.
Recall that t° denotes the set of internal vertices of the discrete tree t.

Theorem 1.1. Let 7 be a BGW(E) tree conditioned to have n vertices, with & being critical,
nondegenerate and in the domain of attraction of a stable distribution with index v € (1,2]. We
suppose moreover that the sequence (b,, n > 1) defined as above is such that (b,/n*/”, n > 1) is

bounded away from zero and infinity. Let T be the stable Lévy tree with branching mechanism
(X)) = kAT, Let o/, 5 € R.

(i) If v/ + (v — 1)8 > 1, we have the convergence in distribution and of the first moment

bifﬁ n|a’ nyg (d)+mean o B
s X [T [ (T 6(T,) (), (1.4)

weTm°
where the right hand-side of (1.4) has finite mean and, for y € T, T, is the subtree of T

above y, m(T,) is its mass, and H(T,) its height.
(ii) If vo/ + (v — 1) < 1, we have the convergence in distribution and of the first moment

b,ll—i—ﬁ — n\ B (d)+mean
T8 > Il b))’ ——— oo (1.5)
weTm°
We complete the previous result with some comments.
Remark 1.2. (i) From Theorem 1.1, we obtain a phase change for functionals of the mass and

height at ya/ + (v — 1) = 1. Heuristically, the condition on o and 3 is due to the fact that
the height of a (unnormalized) stable Lévy tree scales as its mass to the power (v — 1) /7.
Let us mention that this phase change is specific to BGW trees, see Remark 4.13 in this
direction.

(ii) See conditions (£1) and (£2) in Section 4 for a more detailed discussion of the assumptions
on the offspring distribution. The additional boundedness assumption on (b,/n'/7, n > 1)
is also equivalent to (£2)’. This latter can be dropped in (i) of Theorem 1.1 when o/ > 1 and
£ > 0 according to Proposition 4.10.

(iii) We also have the convergence (and finiteness) of the moments of all order p > 1 in (1.4) as
soon as p(ya + (y — 1)) > 1 — v, with a« = o — 1, see Proposition 7.1. In particular for
B = 0, we have the convergence of all nonnegative moments for o/ > 1. However, in the
finite variance case, for o/ € (1/2,1) (and 5 = 0), our result is not optimal, see (vi) below.

(iv) Theorem 1.1 generalizes a result by Delmas, Dhersin and Sciauveau where only functionals
of the mass are considered (i.e. § = 0), see [14, Lemma 4.6]. In particular, we prove the
conjecture stated therein: when 5 = 0, there is a phase transition at o/ = 1/ (the parameter
a therein corresponds to o’ — 1 here). If we fix o/ = 0 and let 8 vary, the phase transition
occurs at f = 1/(y —1) > 1. In particular, Shao and Sokal’s By index, which corresponds
to « = 0 and = —1, lies in the local regime, whatever the value of the index v and is
therefore not covered by our results. See also (v) below.

(v) If the offspring distribution has finite variance o7 € (0,00), one can take b, = by/n in which
case T is distributed as the Brownian continuum random tree with branching mechanism
P(A) = 02N?/(2b%). For b = o, the contour process of T is a standard Brownian motion
under its normalized excursion measure.
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vi) Assume that the offspring distribution has finite variance o2 € (0, 00), which implies that
g ¢

v = 2. We consider the asymptotics in the local regime of 3, c.no [77% b(77)?, that is when
o/, B € R such that 2a' + 5 < 0. Denote by F, 5 the additive functional (1.2) associated
with the toll function fu 5(t) = [t|*'h(t)?1(t>1y. By [29, Theorem 1.5] and Lemma 4.5, we

have

Fopg(m") —np (a) 2
\/ﬁ n—oo N(O,§ >’

where 11, ¢? are finite and given by = E [fu 5(7)] and by ¢? = 2E [fu (7)) (Fur (T) — |7|1t)]—
Var(fo g(7)) — pi*/0Z, and 7 is the corresponding unconditioned BGW tree. In particular,
this covers Shao and Sokal’s B; index (where o/ = 0 and 5 = —1). Notice that this leaves
a gap for 0 < 2a’ + 8 < 1. At least when 8 = 0, the situation is well understood. Fill and
Janson [23] identify three different regimes: the global regime for o/ > 1/2, the local regime
for o/ < 0 and an intermediate regime for 0 < o/ < 1/2. The nontrivial asymptotic behavior
of Fo (") for v € (1,2) and v/ 4+ (v — 1)8 < 1 (that is the non global regime in the non
quadratic case) is an open question.

(vii) When 7" is uniformly distributed among the set of full binary ordered trees with n vertices
(which corresponds to a conditioned BGW(§) tree with P (( =0) = P (£ =2) = 1/2), Fill
and Kapur [24] studied the local and global regime when the toll function is a power of the
size of the tree. Concerning the global regime, they showed the convergence in distribution,
using the convergence of all positive moments in (1.4) for o/ > 1/2 and = 0, see Eq. (3.14)
and Proposition 3.5 therein. In that case, one can take b, = /n and T is the Brownian
tree with branching mechanism t(\) = A\?/2. See also Fill and Janson [23] for general
critical offspring distribution with finite variance. The explicit formula for the first moment
of the right hand-side of (1.4) are given by the right hand-side of (1.12) with x = 1/2 and
a=ad —1.

(viii) As an application, using (1.4), we obtain, when o/ > 1/, in Example 7.5 (with o/ = o + 1)

T log |7

an asymptotic expansion in distribution for b, n=0+*) ¥ ..

More generally, if one views a discrete tree as a real tree, then the left-hand side in (1.4) is
related to the discrete length measure ¢,,(dy) = 3, e 0w(dy) of 7 (after rescaling by b,/n). One
way to interpret the result would be to say that the sequence of measures [ .. drn £, (dy) converges
in distribution to [-d7, {(dy) in some sense. One might then hope to prove that the mapping
T — [7 07, ((dy) is continuous on the space of compact real trees. This is not true however, see
Remark 4.13, one problem being that the length measure is not finite in general. To overcome this
difficulty, our approach, inspired by [14], consists in considering the length measure biased by the
size of the subtree above y, thus penalizing small subtrees.

More precisely let T be the space of (equivalent classes of) weighted rooted compact real trees
(i.e. the set of quadruplets (T, 0,d, ) where (T,d) is a real tree, () is a distinguished vertex of
T called the root, and the mass measure y is a finite measure on T'). We recall that the length
measure £ on a real tree (T, d) has an intrinsic definition. For every (T,0,d, ) € T, we define a
measure W on T x R, by: for every nonnegative measurable function f defined on T x R,

Ur(f) = | w(T)F (T, H ) o) (16)
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where H(y) = d(0,y) denotes the height of y (i.e. the distance to the root) in T'. We also consider

the measure \I/?h on R% defined similarly to ¥z for functions depending only on the mass and
height of the tree, see (3.2).

If t is a finite rooted ordered tree and a > 0, we denote by at the real tree associated with t,
rescaled so that all edges have length a and equipped with the uniform probability measure on
the set of vertices whose height is an integer multiple of a, see Section 2.3 for a precise definition.
Furthermore, for w € t, we write aw for the corresponding vertex in at and at,, for the subtree
of at above aw. The height of w in t is denoted by H(w); and thus the height of aw in at is
aH(w). In the spirit of [14], we consider the measure A7, on T x R, defined by: for nonnegative
measurable function f defined on T x ]R+,

talf > Itulf (atw, aH (w)). (1.7)
|t| wete

In (1.7), instead of summing over all the internal vertices (w € t°) one could also sum over all

vertices including the leaves (w € t); in this case the measure is denoted by Ag .. The two measures

are close in total variation as dry (A, A7 ,) < a, see (4.18). We mention that the measure A,

was already considered in [14] for functions f depending only on the size.

For every finite rooted ordered tree t and a > 0, we show (see Lemma 4.8) that the measures
to and Ag , can be approximated by W,¢. In Proposition 3.4, we give another expression for Wr:

Ur(f) = [ @) [ £ (T, (1)

for every nonnegative measurable function f defined on T x R.. Here T, , is the subtree of T’
above level r containing x. This latter expression of W7 is used to prove it is continuous as a
function of T', see Proposition 3.3.

Theorem 1.3. The mapping T +— Vr, from T endowed with the Gromov-Hausdorff-Prokhorov
topology to M(T x R,), the space of nonnegative finite measures on T x Ry, endowed with the
topology of weak convergence, is well defined and continuous.

This allows to derive a general invariance principle: for any sequence of random discrete trees
(7™, n € N) such that a,, 7" converges in distribution to some random real tree 7 in the Gromov-
Hausdorff-Prokhorov topology where (a,, n € N) is a sequence of positive numbers converging
to 0 and such that (a, E[H(7")], n € N) is bounded, one has the convergence in distribution of
the measures A7, , and A;n,, to Uy (this is a consequence of Lemma 4.8 and Theorem 1.3).
For example, this applies to Pélya trees, see Remark 4.12, which were shown to converge to the
Brownian tree, see [25] and [36]. For BGW trees, we have the following result which is a direct
consequence of the convergence on conditioned BGW trees to stable Lévy tree, see [15], and

Theorem 1.3 and Lemma 4.8.

Corollary 1.4. Let 7™ be a BGW(E) tree conditioned to have n vertices, with & satisfying (1) and
(€2), and (b,, n > 1) be defined as in Theorem 1.1. Let T be the stable Lévy tree with branching
mechanism () = rX'. We have the following convergence in distribution and of all positive
moments

b n_n b (d)+moments
v S ety (e ) ) e ),
weTm°

where f is a bounded continuous real-valued function defined on T x R,.
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We improve this result by allowing the function f to blow up as either the mass or the height
goes to zero under the stronger assumption (£2)": see Proposition 7.1, and more precisely Theorem
7.3 when f is a product of a function of the mass and a function of the height, one of them being
a power function. As a particular case, property (i) of Theorem 1.1 gives a precise result when f
is a power function of the mass and the height. Related to this latter result, we give a complete
description of the finiteness of ‘I@h (f) for power functions f where 7 is the stable Lévy tree and we
also compute its first moment. We refer to Corollaries 6.4 and 6.7, and Proposition 6.9 for a more
general statement. By convention, we write W3 (g(x)h(u)) for URO(f) where f(x,u) = g(x)h(u)
and we see g as a function of the mass and h as a function of the height. In particular, thanks to
(1.6), we have for a, f € R that W3 (z*u®) = [ m(T;)* b(T,)? £(dy) with o/ = o + 1.

Proposition 1.5. Let T be the stable Lévy tree with branching mechanism (\) = kXY and let
a, € R. We have

ya+(y—1D)(B+1)>0 <= U@’ <ocoas <+ E [\If;“-h(xauﬁ)} <oo, (1.9)
ya+(y—=1)(F+1) <0 <= W?h(xo‘uﬁ) =00 a.5s. <= E [W?h(ajauﬁ)} =o0. (1.10)
For every o, B € R such that yao+ (y — 1)(8 + 1) > 0, we have

1
mB(a+(ﬁ+l)(l—1/7),1—1/7)E[b(T)5} ; (1.11)

E {\I@h (xauﬁ)} =
where I is the gamma function and B is the beta function. Furthermore, we have E [\I@h (xauﬁ)p} <

oo for every p > 1 such that p(ya + (v —1)8) > 1 — v. In the Brownian case (y = 2), for every
a, 8 € R such that 2a+ 5+ 1 > 0, we have

E [05° (2°07)] = \/;_K (g)ﬁmg(ﬁ)B@ + % %) : (1.12)

where & is the Riemann xi function defined by &(s) = 1s(s — 1)m=/?I'(s/2)((s) for every s € C
and ¢ is the Riemann zeta function.

Thanks to Duquesne and Wang [18], E {l‘)(T)fB} is finite for all § € R, so that the right hand
side of (1.11) is finite.

We conclude the introduction by giving a formula for the distribution of 7, the subtree above v,
when y is chosen according to the length measure ¢(dy) on the stable Lévy tree T, see Proposition
6.3. This is a key result for the proof of Proposition 1.5 and it is also interesting by itself (it is in
particular related to the additive coalescent and the uniform pruning on the skeleton of the Lévy
tree, see Remark 6.2 in this direction). Let N denote the excursion measure of height process H
which codes the (unnormalized) stable Lévy tree Ty. (Notice that 7 under P is distributed as Ty
conditionally on {m(7y) =1} under N.)

Proposition 1.6. Let T be the stable Lévy tree with branching mechanism () = kXY where
k>0 and~y € (1,2]. Let f be a nonnegative measurable function defined on T. We have:

E|[ £(T)tdy)| = N[ = m(Ti) ™ Ly £(Tin)]

The paper is organized as follows. Section 2 establishes notation and defines the main objects
used in this paper (discrete trees using Neveu’s formalism, real trees, Gromov-Hausdorff-Prokhorov
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topology). In Section 3, we give properties of the measure W and prove its continuity with
respect to T'. Section 4 introduces the setting of BGW trees and stable Lévy trees and gives a
first convergence result for continuous functions. We gather some technical results in Section 5.
Section 6 is devoted to the study of functionals of the mass and height on the stable Lévy tree and
Section 7 presents the general convergence result for functions that may blow up and describes the
phase change. Appendix A introduces a space of measures and studies random elements thereof;
its results are used in the proofs of Proposition 7.1 and Theorem 7.3.

2. DEFINITIONS AND NOTATIONS

2.1. Weak convergence in a Polish space. Let (5, p) be a Polish metric space. We denote by
B(S) (resp. Bi(S5), resp. By(S)) the set of measurable functions defined on S and taking values
in [—oo, +0o0] (resp. in [0, +o0], resp. in R and bounded) and by C(S) (resp. C.(S), resp. Cp(S5))
the set of continuous real-valued functions defined on S (resp. nonnegative, resp. bounded). For
f e B(S), we set ||f|l., = sup,eq|f(z)|. For f € Cy(S), we define its Lipschitz and bounded
Lipschitz norm:

151k, = sup PO and 171, = 11+ 151,

We denote by M(S) the set of nonnegative finite measures on S. For every u € M(S) and
f € By(S), we write pu(f) = [ f(x) u(dz). The set M(S) is endowed with the topology of weak
convergence which can be metrized (see [12, Section 8.3 and Theorem 8.3.2]) by the bounded
Lipschitz distance (also known as the Kantorovich-Rubinstein distance): if u,v € M(S), set

dpr(p,v) = sup {|u(f) = v(f)], f € Co(5) such that |[f]lg, <1}

Moreover, the space (M(S), dgy,) is Polish by [12, Theorem 8.9.4]. We also recall the total variation
norm given by

dre(n,v) = g sup {u(F) = v, f € B(S) sueh that |f]l, <1},

2.2. Discrete trees. We recall Neveu’s formalism for rooted ordered discrete trees. Let U =
Un>0(N*)" be the set of labels with the convention (N*)? = {}. If v = (vl ..., v™) € U, we denote
by H(v) = n. By convention, we set H(@) = 0. If v = (v},...,v"),w = (w!,...,w™) € U, we
write vw = (v', ..., 0" w', ... w™) for the concatenation of v and w. In particular, vf) = v = v.
We say that v is an ancestor of w and write v < w if there exists u € U such that w = vu.
If v < wand v # w then we shall write v < w. The mapping pr: U \ {0} — U is defined by
pr(vt,... ;0" = (v, ..., 0" ) (pr(v) is the parent of v). A finite rooted ordered tree t is a finite
subset of U such that

(i) D e,
(i) v et \ {0} = pr(v) € t,
(iii) for every v € t, there exists a finite integer k,(t) > 0 such that, for every j € N* vj € t if
and only if 1 < j < k,(t).

The number k,(t) is interpreted as the number of children of the vertex v in t, H(v) is its generation,
pr(v) is its parent and more generally, the vertices v, pr(v), pr?(v), . .. prf’®) (v) = () are its ancestors.
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The vertex v is called a leaf (resp. internal vertex) if k,(t) = 0 (resp. k,(t) > 0). The vertex () is
called the root of t. We denote the set of leaves by Lf(t) and the set of internal vertices by t°. If
v € t, we define the subtree t, of t above v as

t, ={wel: vw e t}.
Moreover, for every 0 < k < H(v), we define the subtree ty, , of t above level k containing v as
tk,v — ter(v)—k(v)

where prf)=%(y) is the unique ancestor of v with height k, with the convention that pr’(v) = v.
We denote by [t| = Card(t) the number of vertices of t and by h(t) = sup,, H(v) the height of t.

2.3. Real trees. We recall the formalism of real trees, see [20]. A metric space (7,d) is a real
tree if the following two properties hold for every x,y € T

(i) (Unique geodesics). There exists a unique isometric map f;,: [0,d(z,y)] — T such that

fuy(0) =z and [y, (d(z,y)) = y.
(ii) (Loop-free). If ¢ is a continuous injective map from [0, 1] into 7" such that ¢(0) = x and

(1) =y, then we have ¢((0,1]) = fa, ([0, d(z,y)]).

For a rooted real tree (T, (), d), that is a real tree with a distinguished vertex () € T called the root,
we define the set of leaves by

Li(T) ={xz e T\ {0}: T\ {z} is connected},

with the convention that Lf(T) = {0} if T = {0}. A weighted rooted real tree (T,0,d, p) is a
rooted real tree (T, 0, d) equipped with a nonnegative finite measure p. In what follows, real trees
will always be weighted and rooted and we will simply call them real trees.

Let us consider a real tree (T, (), d, u). The total mass of the tree T is defined by m(T") = u(7T)
and its height by §(T) = sup,cp H(z) € [0,00], with H(z) = d(0, ) the height of z. Note that if
(T, d) is compact, then h(7") < co. The range of the mapping f, , described in (i) above is denoted
by [x,y] (this is the line segment between = and y in the tree). We also write [z, y[= [z,y] \ {y}.
In particular, [@, z] is the path going from the root to 2 which we will interpret as the ancestral
line of vertex x. We define a partial order on the tree by setting x < y (z is an ancestor of y) if
and only if x € [0,y]. If z,y € T, there is a unique z € T such that [0, z] N[0, y] = [0, z]. We
write z = x A y and call it the most recent common ancestor of x and y. Let x € T be a vertex.
Let r € [0, H(z)]. We denote by x, € T be the unique ancestor of « with height H(x,) = r. As in
the discrete case, we also define the subtree T, of T above x as

T.={yeT: z <y},
and the subtree 7). , = T}, of T above level r containing z as
T..={yeT: HaxNhy)>r}=T,,.

Then T, (resp. T, ) can be naturally viewed as a real tree, rooted at = (resp. at x,) and endowed
with the distance d and the measure ju;, = p(-N7;) (resp. the measure g, , ). Note that Ty , =T
and TH(x),:c = Tx.
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Remark 2.1. We recall the construction of a real tree from an excursion path, see e.g. [20,
Example 3.14] or [17, Section 2.1]. Let e be a positive excursion path, that is e € C; (R, ) such that
e(0) =0, e(s) >0for 0 < s <o and e(s) =0 for s > o where o == inf{s > 0: e(s) =0} € (0,00)
is the duration of the excursion. Set d.(t,s) = e(t) 4 e(s) — 2infns s € for every ¢, s € [0, 0] and
define an equivalence relation on [0, o] by letting ¢ ~. s if and only if d.(¢,s) = 0. The real tree
T. coded by e is defined as the quotient space [0, 0]/ ~, rooted at p(0) where p: [0, 0] — T, is the
quotient map and equipped with the distance d, and the pushforward measure A o p~! where \ is
the Lebesgue measure on [0, o]. This defines a compact weighted rooted real tree. Notice that the
mass and height of T, are given by m(7,) = o and h(T;) = ||| ..

We will need to view discrete trees as real trees. Let t be a finite rooted ordered tree and let
a > 0. Suppose that t is embedded into the plane such that the edges are straight lines with
length a that only intersect at their incident vertices. Denote by ¢ ,: t — R? the embedding and
by at = 7, (t) C R? the embedded set. Moreover, for a vertex v € t, we denote by av = ¢ .(v)
the corresponding vertex in at. Then at can be considered as a compact real tree (at, dg, pig): the
distance dg(z,y) between two points z,y € at is defined as the shortest length of a curve that
connects x and y, and the measure p4 is the pushforward of the uniform probability measure on
t by the embedding 7 ,. In other words, at is obtained from t by connecting every vertex to its
children in such a way that all edges have length a and is equipped with the measure puy supported
on the set {av: v € t} and satisfying u¢({av}) = 1/|t] for every v € t. The tree at is naturally
rooted at af) (also denoted )). Notice that vertices of the form av with v € t are precisely those
vertices in at whose height is an integer multiple of a. Finally, to simplify notation, for every
v € t, we will write at, instead of (at),, for the subtree of at above av. We stress that, unless
v = (), the measure of the compact real tree at, has mass less than one, whereas the measure of
the compact real tree a(t,) is by definition a probability measure.

2.4. Gromov-Hausdorff-Prokhorov topology. Denote by T the set of measure-preserving and
root-preserving isometry classes of compact real trees. We will often identify a class with an element
of this class. So we shall write that (T',0,d, ) € T if (T, 0, d) is a rooted compact real tree and p
is a nonnegative finite measure on 7. When there is no ambiguity, we may write T for (T, 0, d, u).

We start by giving the standard definition of the Gromov-Hausdorff-Prokhorov distance. Let
(E, ) be a metric space. Given a non-empty subset A C E and € > 0, the e-neighborhood of A is
A® ={z € E: d(z,A) < ¢}. The Hausdorff distance oy between two non-empty subsets A, B C E
is defined by

du(A, B) =inf{e > 0: AC B and B C A}.
Next, denoting by B(E) the Borel o-field on (FE,d), the Lévy-Prokhorov distance between two
finite nonnegative measures p, v on (E,B(F)) is

op(p,v) =inf{e > 0: pu(A) <v(A%) +eand v(A) < u(A%) +¢, VA € B(E)}.

We can now give the standard distance used to define the Gromov-Hausdorff-Prokhorov topology.
For two compact real trees (T,0,d, ), (T",0,d', ') € T, set

are (T, ') = inf {3((0), ' (1)) V Su(p(T), & (T)) Voo™ w0 @™}, (21)

where the infimum is taken over all isometries ¢: T'— FE and ¢': T — FE into a common metric
space (E,d). This defines a metric which induces the Gromov-Hausdorff-Prokhorov topology on
T.
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It will be convenient for our purposes to define another metric which induces the same topology
on T. Let (T,0,d,u),(T",0,d,1') € T. Recall that a correspondence between T and T” is a
subset R C T x T" such that for every = € T, there exists ' € T” such that (z,z') € R, and
conversely, for every ' € T’, there exists x € T such that (z,2’) € R. In other words, if we
denote by p: T'x T" — T (resp. p': T x T'" — T') the canonical projection on T (resp. on
T"), a correspondence is a subset R C T" x 7" such that p(R) = T and p/(R) =T'. If R is a
correspondence between T and T, its distortion is defined by

dis(R) = sup {|d(z,y) — d'(2’,y)| = (z,27),(y,9') € R}.

Next, for any nonnegative finite measure m on T' x T", we define its discrepancy with respect to p
and ' by

D(m; p, 1) = dpy(mop~t, ) + dey(mop ™ 1),
Then the Gromov-Hausdorff-Prokhorov distance between T' and T” is defined as
1

where the infimum is taken over all correspondences R between 7' and 7" such that (0,0') € R
and all nonnegative finite measures m on 7' x T". It can be verified that dgyp is indeed a distance
on T which is equivalent to d&yp and that the space (T, dgup) is a Polish metric space, see [4].

We gather some facts about the Gromov-Hausdorff-Prokhorov distance that will be useful later.
We refer the reader to [4] or [40]. We have that

1
5 0(T) = (T V [m(T) = m(T")] < dene(T, T") < (0(T) +5(T") V (m(T) +m(T7)).  (2.3)
When 7" = {(}} is the trivial tree consisting only of the root with mass 0, we have
1
0T Vm(T) < dene(T {0}) < b(T) v m(T). (2.4)
We consider the subset of T of trees with either height or mass equal to 0:

To={T €T: m(T) =0 or h(T) = 0} . (2.5)

Note that Ty C T is a closed subset since the mappings m: T — R and h: T — R are continuous
with respect to the Gromov-Hausdorff-Prokhorov topology, thanks to (2.3). We now give bounds
for the distance of a tree T' to Ty which are similar to (2.4).

Lemma 2.2. Let T € T. Then we have

%U(T) Am(T) < deup(T', To) < H(T) Am(T). (2.6)

Proof. Let (T,d, 0, u) € T and 6 > dgup (T, To). Then there exists 77 € Ty such that dgup(T,T") <
J. By (2.3), we get

1

5 [0(1) = (T V [m(T) = m(T")| < 6.

But since 7" € Ty, either h(7") = 0 or m(7”) = 0. Therefore, either h(7') < 26 or m(7") < . Since
d > dgup (T, Ty) is arbitrary, this yields the lower bound.
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To prove the upper bound, let 7" = T endowed with the zero measure p/ = 0, and take
R = {(z,z): x € T} and m the zero measure on 7' x T". Then dis(R) = 0, m(R°) = 0 and
D(m; p, ') = p(T) = m(T). It follows that dgup(T,T") < m(T). Note that 7" € Ty, therefore

denp (T, To) < deup(T,T") < m(T).

Next, let 7" = {0} be the trivial tree consisting only of the root with mass m(7'), i.e. endowed
with the measure " = m(7)d0y. Take R = T x {0} and m(A x B) = u(A)dy(B). Then, we have
R¢ =0, so m(R®) = 0. Moreover, we have
dis(R) = sup {|d(z,y)|: =,y € T} < 2p(T).

Since mo p~! = g and mo p’ ' = m(T)dy = p’, we get D(m,pu,p”) = 0. It follows that
deup(T,T") < H(T). Since T” € Ty, we deduce that

denp(T, To) < daup(T,T") < b(T).
This finishes the proof of the upper bound. O

-1

3. A FINITE MEASURE INDEXED BY A TREE

Let (T,0,d, ) be a compact real tree. Let « € T and r € [0, H(z)], where H(x) = d(0, z).
Recall that T, , = {y € T : H(z Ay) > r} is the subtree containing x and starting at height r,
endowed with the distance d and the measure p7, .. It is straightforward to check that T, . is a
compact real tree and thus belongs to T. Define a nonnegative measure W7 on T x R, by, for

every f € BL(T xR,),
wr(f) = [ @) [ F (T G.1)

As we will consider functions depending only on the mass and height of the subtrees, we introduce
the measure WJt" on R defined by, for every f € B, (R%),

(1) = [ ptae) [ f (0, (7)) dr. 3:2)

Lemma 3.1. Let T be a compact real tree. The mapping (r,x) — T, . from {(r,z) e Ry xT: r <
H(x)} to T is measurable with respect to the Borel o-fields. Furthermore, the measure Wr is finite
and does not depend on the choice of representative in the equivalence class in T of T.

Proof. Let (T, 0,d, 1) be a compact real tree and set A == {(r,x) € R xT: r < H(x)}. For every
(r,z) € A, recall that x, € T is the unique ancestor of x with height H(z,) = r. We start by
showing that the mapping (7, x) — z, is continuous from A to T. Let (r,z),(s,y) € A. Without
loss of generality, we can assume that r > s. If H(z Ay) > s, then we have y; < = and thus
ys < xr. This implies that d(z,,ys) =r —s. If H(z Ay) < s, then we have z, € [x A y,z] and
ys € [z Ay,y]. This implies that z, and y, belong to [z,y], and thus d(z,,ys) < d(z,y). In all
cases, we have

d(l’r, ys) < d(x,y) + |r - S|'

This proves that (r,z) — z, is continuous.
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The mapping y — T}, from T to T is continuous from below, in the sense that for y € T
y_r)% deup(1,,T,) = 0. (3.3)
25y

To see this, let § > 0, y € T and (y,, n € N) be a sequence in T converging to y such that y, <y
for every n € N. Notice that since T is compact, it holds that there is a finite number of subtrees
with height larger than ¢ attached to the branch [(),y]. Thus, there are no subtrees with height
larger than § attached to [y,, y[ for n larger than some ny. Moreover since Ty = pen 1y, , We get
that lim,,_,o p(7},) = 1(7},) implying that the mass of the subtrees attached to [yn, y[ goes to 0
as n goes to infinity.

Define a correspondence between T}, and 7}, by

R ={(z2): ze T,}J{(z,9): z€ T, \T,}.

It is straightforward to check that dis(R) < 2(6 + d(yn,y)) for n > ngy. Consider the mea-
sure on T, x T, defined by m(dz, dz) = pug,(dz)d.(dz) = pg,(dz)d.(dz). Then we have
D(m; iz, yr,) < u(Ty,) — u(Ty) and m(R°) = 0. It follows from (2.2) that

lim_}sup deunp(T,,,T,) < lim%sup (0 + d(yn,y) + u(T,,) — u(T,)) = 9.
Since 0 > 0 is arbitrary, (3.3) readily follows.

Now it is not difficult to see that the continuity from below (3.3) of the mapping y +— T, implies
its measurability. By composition, it follows that the mapping (r,z) — T, , = T, from A to T is
measurable.

Next, notice that U is finite since

/H p(dz) < B(T)m(T) < 0.

Finally, let f € B, (T x Ry) and (T,0,d, ), (T",0',d’, i) be two compact real trees such that
there is a measure-preserving and root-preserving isometry ¢: 7" — T”. This means that ¢ is an
isometry satisfying p/ = o ¢! and p(0) = (/. Moreover, for every z,y € T, since H(z A y) =

“1(d(0,z) + d(0,y) — d(z,y)), we deduce that
H(x Ny) = H(p(x) A ely)).
Using this and the definitions of T, , and T ., it is easy to see that, for every z € T and

€ [0, H(z)], ¢ induces a measure-preserving and root-preserving isometry from 7, , to T},
and therefore f(T;. .,7) = f(T] () 7). Since H(x) = H(p(z)), it follows that

we(p) = [ ) [*7 Ty ar

Hip)
= T,u(dx)/o f(TTW(x),T) dr

= Upn(f).
This proves that W7 does not depend on the choice of representative in the equivalence class of T’
which completes the proof. 0J
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Recall that Lf(7T') is the set of leaves of T. It is well known that there exists a unique o-finite
measure ¢ on (T, B(T)), called the length measure, such that ¢(Lf(7")) = 0 and ¢([z,y]) = d(x,y),
see e.g. [20, Chapter 4, §4.3.5]. The next result gives an alternative expression for ¥z in terms of
the length measure.

Proposition 3.2. Let (T,0,d, p) be a compact real tree. For every f € By (T x Ry), we have
Ur(f) = | p(T) (T, Hy) (). (3.4)

Proof. Let (T,0,d, 1) be a compact real tree and f € B, (T x R ). Notice that {(z,y) € T?: y <
z} = {(z,y) € T?: d(0,z) = d(0,y) + d(x,y)} is closed in T? and thus measurable. Moreover,
the mapping y — T}, is measurable from 7" to T by the proof of Lemma 3.1. Thus the mapping
(2,y) = Llyy<ay f(T,, H(y)) is measurable. By Fubini’s theorem, it follows that

[ @)1 (T H ) dy) = [ 1@2) [ gy (T, H ) £y
— /Tu(dx) /[[w’xﬂf(Ty,H(y)) ((dy).

Let x € T and let fy,: [0, H(x)] — [0,z] be the unique isometry such that f.(0) = 0 and
fo.o(H(x)) = x. Using that {jpp . = Ao f(zfi where A is the Lebesgue measure on [0, H(z)], we get

that
H(z)
o T H) y) = [ (T o, Hfoa(r))

H(z)], fo.(r) is the unique ancestor of x at height 7,
T, =T, , for every r € [0, H(z)], it follows that

Since fy, is an isometry, for every r € [0
that is z,, and H(fp.(r)) =7r. As Ty ()

[ w(m)f (@ 1) gy = [ ey [1 F (T ) an
oY v T 0 '
This concludes the proof. O

The main result of this section concerns the continuity of the mapping ¥: T — Wy,

Proposition 3.3. The mapping V: T +— Yy, from T endowed with the Gromov-Hausdorff-
Prokhorov topology to M(T x Ry) endowed with the topology of weak convergence, is well defined
and continuous.

The end of this section is devoted to the proof of Proposition 3.3. For T" a compact real tree,
xeT,se|0,+o], r€[0,s AN H(z)], we define the following set of elements of 7" such that their
common ancestor with  has height in [r, s]

Tysle ={y €T+ H(yAa) € [r,s]}.

Recall that z, is the ancestor of = at height 7 in 7', and is also seen as the root of the tree T;. ,. We
shall see T}, 4 , as a compact real tree rooted at x, with measure Ty = p(- N Ty g, 2) and thus
Tir.s,» € T. Recall that m(Tj,. ), 2) = it(Ti,s,2) denotes its mass and h(Tj,.q,2) = sup{H(y): y €
Tir.s),= C T} — 7 its height. Notice in particular that T}, o) » = 15, for r € [0, H(x)].

We first establish an estimate for the Gromov-Hausdorff-Prokhorov distance between subtrees
of two real trees in terms of the distance between the trees themselves.
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Lemma 3.4. Let T, T" be compact real trees and let § > dgup(T,T"). Let R be a correspondence
between T and T" such that (0,0") € R and let m be a measure on T x T' such that

1
3 dis(R) V D(m; p, ') V m(R¢) < 6.
Then for every (z,x') in R and every r > 0 such that 66 < r < H(z) N H(z'), we have

dGHP(TT,xu T7/‘7 ;p/) < 80 +2m (ﬂr—G(S,r—i—Gé},x) + Qh(,—r[r—?)é,r—i-(ié},x)- (35)

Proof. Similarly to x,, we denote by /. the ancestor of 2’ at height r in 7", which is also seen as
the root of 77 ,,. We shall bound daup(7}, ., T} /) from above by

1 -
5 dis(R) v D(m; i, ji') v m(R°)

where R is a well chosen correspondence between T, , and 17, and m (resp. fi, fi') is the restriction
of the measure m (resp. w, pi') to T, x T} .. (vesp. T ., 1) /). We begin by noticing that, for
every (t,t'),(s,s’) € R, we have

|d(t,s) —d'(t',s)] <dis(R) < 24. (3.6)
In particular, taking (s,s’) = (0,0") € R yields
|H(t) — H(t")| < 20. (3.7)
Using this, we get that for (¢,t') € R
1
H{t' ANa') = 3 (Ht")+ H(2') —d'(t',2)))
1
> 3 (H(t) — 20 + H(z) — 26 — d(t,z) — 20)
=H(tNz)— 30 (3.8)

Step 1: we construct a correspondence between T, , and T ,, and give an upper bound of its
distortion. Let (t,t') € R. Assume that H(t A x) > r + 3. Then, we get that ¢ € T, , and
that H(t' A2') > r by (3.8), that is ¢ € T ,. This gives that (t,t') € T, , x T] ,,. Similarly, if
H{t'AN2') > 1r+30, we get (t,t') € T, , x T} ,,. Therefore, the following set

R={(t,t) € R: max(H(t Ax), HE Aa')) > 7+ 30} (Thrsas.e x {22}) U ({20} X T, pa97,00)
is a correspondence between T,. , and 17 ,. We give a bound of its distortion. Let (¢,7), (s,s’) € R.
Case 1: Assume that (¢,#') € R and (s,s’) € R, then by (3.6) we have
d(t,s) —d'(t',s)] < 26.
Case 2: Assume that (¢,#') € R and (s,s") ¢ R. Without loss of generality, we may assume that
s = x, and thus H(s' A2') € [r,r + 3d]. Let y' € T" such that (z,,y’) € R, then using (3.6) and
the triangle inequality, we get
|d(t,s) —d'(t',s)] < |d(t, z,) = d'(t',9))| + |d'(t',y) = d' (', 5)|
<20 +d(y',s)
<26+d(y )+ d(x,s).
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Notice that by (3.8), we have H(y' A 2') > H(xz, AN x) — 35 = r — 39, so either H(y' Na') > r
or Hiy' Na') € [r —30,7). In the first case, z] is necessarily an ancestor of y' and we have
H(y' Axl) =r. In the second case, we have y' Ax’ =y Azl and H(y Ax]) > r —30. Thus, in all
cases we have H(y' A zl) > r — 36 and then

d,2)=H)+ H(z) —2H(y Nxl) < H(x,) + 20 + 1 —2(r — 35) = 80.

On the other hand, since we assumed that H(s' Ax') € [r,r + 30], we get that 2/ is an ancestor of
s'and §" € Tj 145 . We deduce that

d'(% s') = H(s") = H(z;) = H(s) = r < B(T}, 135, 00)- (3.9)

It follows that
|d(ta S) (t S )| < 105 + b( [r,r+36], )
Case 3: Assume that (¢,t'), (s,s") ¢ R.
Case 3a. If t = s = x,, then necessarily H(t' A 2'), H(s' A 2") € [r,r 4+ 3J). Arguing as in (3.9),
we have
ld(t,s) —d'(t',s)| =d(t,s) <d{t 2)+d(,s) < 2f)(T['T7T+35Lx,).
Case 3b. If s = x, and t/ = z/, then by the same argument we used to get (3.9), we have

jd(t, s) = d(t', )| < d(t, z,) + d(,, 8) <H(Thrrrsa.a) + (T pa0),00)-

It follows that -
dis(R) < 108+ 20(Tir.2) + 20(T),5.00) (3.10)

Step 2: we define a measure on 7., x T} ., and give an upper bound of its discrepancy. Denote
by m the restriction of the measure m to T, , x 17 ,,. Let A C T, , be a Borel set. We have
mop (A) =m(AXT, ) =m(AXxT, ) where p: T, , x T ., — T, , is the canonical projection.
Notice that

va, m’))

m(AxT’)—m(AxT,f,m,) m( \
m (A x (T'\T, )N R) +m (A x (I'"\T,,)NR)
m(Ax (I'\T. ) R) +0.
For (t,t') € (A x (T"\T7. w,)) NR, using (3.8) and the fact that A C T, ,, we get
H{t' AN2') > H(tAx)—30 >r— 30.
Moreover, we have H(t' A x') < r < r+ 36 since t' ¢ T, . This gives the inclusion (A x (T"\
Tr{,x’)) NRCTx T[T 36,7+36), 2 . As dpy(mop'™ ,,u’) < D(m; p, ') <8, we deduce that

A x (T

IA

m(AxT)—m (A X Tr,m’) =m (T X T[/r—35,r+35},mf) +0
<u (T[;—gaﬁsa},x/) +dry(mop ™ 1) +6

<u (T[/r_35,r+35},mf) + 20.
Recall that fi is the restriction of the measure p to 7, ,. It follows that

o5 (A) = i(A)] = |m (A x T7.,.) = ()]
< ‘m (A X Trlw,) —m(AxT)

+[m (A x T') = u(A)|



16 ROMAIN ABRAHAM, JEAN-FRANCOIS DELMAS, AND MICHEL NASSIF
< ‘m (A X TAI,) —m(AxT")|+ D(m; u, 1)

< (ﬂ;—gamﬁa},x/) + 34.

By symmetry, we deduce that
D(mv ﬁ> ﬁ/) < m(T[r—36,r+36],x) + m(ﬂ;—35,r+35},x’) + 60. (311)

Step 3: we give an upper bound of m(R°). Let (t,t') € Ty, X Ty, o \ R. If H(t Az) > r+ 30 then
necessarily (¢,t') ¢ R by our construction of R. Therefore, we have

m(R) =m(Tp o x T) y \R) = m () € To x T) ) \R: H(t Az) > 7+ 30) (3.12)
+m ((tt) € Tho x T}t H(tAx) € [r,7 +30))
<m(R)+p (T[r,r+35],m) +drv(mop™, )
< m(T[r,rJrsa},x) + 20.

Step 4: we can now conclude. Combining (3.10), (3.11) and (3.12) and using the definition of the
Gromov-Hausdorft-Prokhorov distance, we get

danp (T2, 1) ) < 60+ m(T[r_35,r+36], w) + m(T[,r—sa,rHa], x’) +b (T[r,r+35], m) +bh (T[,r,r+36], :c’) - (3.13)

First, notice that

m(ﬂ;_35,r+35},mf) =
Ve H(t' Ax') € [r—36,r+368)) + dry(mop ™', 1)
NYeR: HE ANa') € [r—35,7+35]) + m(R°) +6
(t,t)yeR: HX' N2') € [r — 35, r + 3d]) + 20.
Using (3.8), we get by symmetry that, for (¢,¢') € R,

Ht'AN2) =30 <H(tANz)<H{H' N2')+ 30. (3.14)
We deduce that

m(ﬂ;_35,r+35]7x,) <m((t,t') eR: H{t ANx) € [r — 60,7 + 6d]) + 26
<m((t,t"): H{t ANx) € [r— 60,7+ 60]) + 20
<wp(t: HtAz) € [r—606,r+60]) + drv(mop™t, u)+ 29
< m(T[r_65,r+65],x) + 30. (3.15)

Secondly, let t' € T, 45 .. We have H(t' Aa') € [r,r 4+ 30]. Let t € T such that (¢,¢) € R.
Thanks to (3.14), we get H(tAx) € [r—3d,r+66]. Since (t,t') € R, we also have |H (t')—H (t)| < 26
by(3.7). We deduce that

h(ﬂ;ngéLx/) =sup{H(t): ' e T"H{t' N2') € [r,r+ 30|} —r
sup{H(t): teT,H(tNz) €[r—30,r+60]}—r+2J
= U(T[T’—36,T’+66],x) — 0. (316)

IN
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Using (3.15) and (3.16) in conjunction with (3.13) yields the result. O

Proof of Proposition 3.3. Fix a compact real tree T' = (T,d, D, ). We will show that Uy — Urp
weakly as T — T for dgup. Let € > 0 and let 77 = (T",d’, 0, 1) be a compact real tree such
that dgup(7T,T") < e. Then there exist a correspondence R between T and 7" and a measure m
on T x T" such that (0,0") € R, m(R) < ¢, dis(R) < 2¢ and D(m; u, /) < e. In particular, we
will make constant use of the inequalities |m(7T x T") — m(T)| < ¢ and |H(z) — H(z')| < 2¢ for
(x,2") € R. Let f € Cp(T x R;) be Lipschitz. Write

Up(f) =V (f) = Ay + Ay + Az + Ay,

where
H(x)

A :/T,u(d:c) /OH(m)f(T,,x,r)dr_/TmOp—l(dx)/o F(Ty o r)dr
Ay = /R m(dz, do’) ( /0 " e — /0 e f(TT’w,,r)dr)

0

Ay = [ m(dz,dz) ( / " T e — i e f(Tr’w,,r)dr)

1—1 / H(') ! / H(") /
Ay= [ mop (d:c)/ f(r, x,,r)dr—/ ,u(d:)s)/ f(T, ., r)dr.
0 ’ 0 ’

T/

!/

Notice that

H(z)
|A1] < 2dpv(mop™, p) sup | f(Trar)dr < 20(T) |1l (3.17)
Similarly, we have
|Ay| <26(T") [ fll e < 2(0(T) +2¢) || fll & (3.18)

where in the second inequality we used that h(T") < h(T') + 2dcup(T,1") < H(T') + 2¢ by (2.3).
Next, we have

|[As] < m(RE)(O(T) + (1)) 1flloe < 2(6(T) + &) [l & (3.19)

We now provide a bound for A;. We have

o H@ H@)
Ag :/R]-{H(:c)zH(:c’)}m(diC,dx) /0 f(Tr,m,T)dT—/O f(Tnx/,T‘)dT

H(z) H(a")
+/Rl{H(:c)<H(x/)}m(d$,d$/) </0 f(Tr,x,T)dT’—/O f(T,f,m,,r)dr>. (3.20)

We only treat the first term, the second one being similar. We have

/ H(z) H(z") ,
/R 110> 1wy m(dz, dz') /0 F(Th o, r)dr — /0 F(Tr)dr

, H(z") , H(z)
— [ Ywezaenym(de, ) ([ (f(Twr) = J(T o)) dr [ (T r)ar ).
R 0 H(z")

On the one hand, we get

H(z)
L Hen= mdx,d’/ T...r)d
/R (H@)>HE)m(dz, d2') H(x,)f( @ 7)dr

< [ Fl | H @) = H(@')m(da, da)




18 ROMAIN ABRAHAM, JEAN-FRANCOIS DELMAS, AND MICHEL NASSIF

< fll oo m(T x T') dis(R)
<2fll.. (m(T) +2)e. (3.21)
On the other hand, we have

H(z')
|/R Lin(e)>m)ym(de, dl"/)/o (f(Tr,xa r)— f(T;,mT)) dr

H(z") 6e
< [ Lzaeymdr, ') [ done (T2 T2 ) Lpsagdr + [ mide,da’) [ 21 f] dr

H(x)
<2 ||.f||L /m(dx, dl’,)/(; (m(T[r—3€,r+6e},x) + h(ir[r—6e,r+6€],x)) 1{7‘265} dr
+ 8 f L o(T)(m(T) + &) + 12| f || (m(T) + €)e. (3.22)

where we used (3.5) for the last inequality. Using Fubini’s theorem, we get

/m(dx,dx’)/o (Tl —6e,r462),2) Lir>6e) AT
H(z)
_ / m(dz, da') / p(t: H(tAz) € [r— 66,7+ 66]) g dr
i >

H(x)
= /m(dx,dx’)/Tu(dt)/O L H(tre)elr—6er+6e)} Lir>6ey AT
< 12m(T)(m(T) + ¢)e. (3.23)

Moreover, since T is compact, it holds that for every x € T and every § > 0, there is a finite number
of subtrees with height larger than § attached to the branch [(), z]. Let r € (0, H(x)). Recall that
x, is the unique ancestor of x with height H(x,) = r. Assume that z, is not a branching point.
Then, for every § > 0 and for ¢ > 0 small enough (depending on ¢), there are no subtrees with
height larger than § attached to [x,_sc, Zr16:]. (To be precise, if y € [x,_3c, Zr16c] is a branching
point, the tree attached at y is T, 4 , with s = H(y)). Therefore, we have b(T}, s r16c,2) < 6 +9¢.
This proves that, for every r € (0, H(z)) such that x, is not a branching point,

ll_r)I(l) b(T[T’—i’)&,T—FGE},x) = 0 (324)

But since T is compact, there are (at most) countably many r € (0, H(x)) such that z, is a
branching point. It follows that (3.24) holds for every x € T and dr-a.e. r € [0, H(z)]. Notice
that b(T,—sc46e,2) < (1) and the measure 1jo<,<p ()} p(dx)dr is finite as its total mass is less
than b(7")m(7") which is finite. We get by the dominated convergence theorem that

, H()
}:1_{% TU(dz)/(] h(ﬂr—3e,r+6€],m)1{r26€} dr = 0.

Since

H(z)
/;1 (m o p_l(dx) - M(dz)) /(; b(T[r—3€,r+6e},m)]—{r26€} dr

it follows that

< 20(T)?dpy(mop™, p) < 26(T)%,

H(o)
lim [ m(de, de’) / B(Th—sers6,0) L rsoey dr = 0. (3.25)
0

e—0

Thus, by (3.17)—(3.19), (3.21)—(3.23) and (3.25), we deduce that
lim  sup  Up(f)=Vp(f)

€20 dup (T,T)<e
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for every Lipschitz function f € Cp(T x R4). This proves that U: T — M(T x R, ) is continuous
which concludes the proof. 0J

4. BIENAYME-GALTON-WATSON TREES AND STABLE LEVY TREES

Throughout this work, we fix a random variable ¢ whose distribution is critical and belongs to
the domain of attraction of a stable distribution with index v € (1,2]. More precisely, we assume
that & takes values in N = {0,1,2,...} and that it satisfies the following conditions:

(€1) & is critical, i.e. E[¢] = 1, and nondegenerate, i.e. P (£ =0) > 0,
(£€2) & belongs to the domain of attraction of a stable distribution with index v € (1,2], i.e.
E {le{ggn}} =n?"L(n), where L: R, — R, is a slowly varying function.

By [22, Theorem XVIL.5.2] or [28, Theorem 5.2], assumption (£2) is equivalent to the existence
of a positive sequence (b,, n > 1) such that, if (£,, n > 1) is a sequence of independent random
variables with the same distribution as &, then

RS @
b, <k2::1€k - n) — X, (4.1)
where (X;, t > 0) is a strictly stable spectrally positive Lévy process with Laplace transform
E [exp(—AX})] = exp(tkA?) where v € (1,2] and x > 0. Note that we have automatically b,/n — 0
as n — 00. In most of our results, we make the following stronger assumption on &:

(€2) E [521{5@}} =n?"7L(n) where L: R, — R, is a slowly varying function which is bounded
away from zero and infinity.

Assumption (£2) is equivalent to the normalizing sequence (b,, n > 1) which appears in (4.1)
satisfying
bn'/7 < b, <bn*7, Vn >1, (4.2)

for some constants 0 < b < b < oo. Indeed, if ¥ = 2, we have the convergence of nb;2L(b,) to some
positive constant by [28, Theorem 5.2 and Eq. (5.44)]. Similarly, if v € (1, 2), using [28, Theorem
5.3 and Eq. (5.7)], we have as n — oo that

nP (€ > by) ~ > ; b=V L(by).

On the other hand, [28, Eq. (5.10)] entails the convergence of nP (£ > b,) to some positive con-
stant. Therefore, for v € (1,2], the sequence n'/7b, 1 L(b,)*” converges to some positive constant.
Thus, if L is bounded away from 0 and infinity, then (4.2) follows. The proof of the converse
(which we shall not use) is left for the reader.

4.1. Results on conditioned Bienaymé-Galton-Watson trees. Recall that the span of the
integer-valued random variable ¢ is the largest integer Ay such that a.s. £ € a + A\gZ for some
a € 7. As we only consider £ with P (£ = 0) > 0, the span is the largest integer A\ such that a.s.
€ € NoZ, i.e. the greatest common divisor of {k > 1: P (£ = k) > 0}.
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Assume that £ satisfies (£1) and (£2) and denote by g the density of the random variable X
appearing in (4.1). Then the function g is continuous on R (in fact infinitely differentiable) and

satisfies
1

9(0) = :
YT IE(=1/7)]
where I' is Euler’s gamma function, see [22, Lemma XVII.6.1] or [28, Example 3.15 and Eq. (4.6)].

In particular, when v = 2, g is the density of a centered Gaussian distribution with variance 2x
and we have

(4.3)

1
0) = .
9(0) = 57—
Recall that (&,, n > 1) is a sequence of independent random variables with the same distribution

as ¢ and define S, = >_;_; &. The following result is a direct consequence of the local limit
theorem, see e.g. [26, Chapter 4, Theorem 4.2.1].

(4.4)

Lemma 4.1 (Local limit theorem). Assume that & satisfies (£1) and (£2) and denote its span by
Xo. We have

lim sup bn P(S, = Xk)—g <)\0/€7—n> =0,

n=0 k>0 | Ag b,

where g is the density of the random variable X, defined in (4.1). In particular, for any fized
k>0, we have as n — oo with n = k (mod \g),

)\og(O)
bn,

P(S,=n—k)~ : (4.5)

Let 7 be a BGW(§) tree, see e.g. Athreya and Ney [10]. By the well-known Otter-Dwass
formula, we have, for every n > 1,

P(\T|:n):%P(Sn:n—l). (4.6)

In particular, we get P(|7| =n) = 0if n # 1 (mod A¢) while P (|7| =n) > 0 for all large n with
n =1 (mod \g) by Lemma 4.1. We denote by A the support of the random variable |7| when 7
is not reduced to the root, that is

A={n>2: P(r|=n)>0}. (4.7)

In particular, the previous discussion implies that A C 1+ AoN and conversely, 1 + \gn € A for
all large n. In what follows, we only consider n € A and convergences should be understood along
the set A.

We will also need the following sub-exponential tail bounds for the height of conditioned BGW
trees, see [34, Theorem 2] and the discussion thereafter. For every n € A, 7" will denote a BGW(¢)
tree conditioned to have n vertices, that is 7" is distributed as 7 conditionally on {|7| = n}.

Lemma 4.2. Assume that & satisfies (£1) and (£2). For every a € (0,v/(y — 1)) and every
B € (0,7), there exist two finite constants Cy, co > 0 such that for everyy > 0 andn € A, we have

(207 <) < Coesp (e, (45)

n

P (%U(Tn) > y) < Cpexp (—Coyﬁ) : (4.9)
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Remark 4.3.
(i) If moreover ¢ satisfies (£2)’, then we can take @ = v/(y — 1) in (4.8), see Appendix B.
(ii) If £ has finite variance of € (0,00) (in which case (£2)’ is satisfied), we have v = 2 and we
can take b, = o¢y/n in (4.1) with k = 1/2 (this is just the central limit theorem). Then both
(4.8) and (4.9) hold with o = 3 = 2, see [5, Theorem 1.1 and Theorem 1.2].

An immediate consequence of Lemma 4.2 is the following estimate for the moments of h(7")
which extends [5, Corollary 1.3].

Lemma 4.4. Assume that & satisfies (1) and (£2). For every p € R, we have
b p
sup E [(—”}(7‘"))
neA n

Proof. Let p > 0. Fix 5 € (0,7). By Lemma 4.2, we have for every n € A

by, b o b, L
E K#ﬁ")) ] :p/o y' P (gb(f") > y) dy < Cop/O eV dy < oo,

Similarly, fix a € (0,7/(y — 1)) and apply Lemma 4.2 to get

() ool (e s s

This proves the result. [

< oQ.

E

We end this section with the following lemma used in the proof of Remark 1.2-(vi).

Lemma 4.5. Assume that £ has finite variance 05 € (0,00). Let o/, 3 € R such that 2/ + < 0
and set for 5(t) = [6]* b(t)’L{e>1y. Then we have

E(fuwp(r)] <00, lm E[fus(r)?| =0 and Y f”( >]<oo.

neA

Proof. We have
E [fas(1)] = X n* E [b(r")’| P (7| = n).

neA

Using (4.6) and (4.5), (4.4) with b, = ¢/, we have as n — oo that

A
P (|| = n) ~ —==n"*",
27ra§

Since E [h(T")B} = O(n?/?) as n — oo by Lemma 4.4, we get that

E[fws(r)] <C Z n=3/2+/+8/2 - o

neA
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Applying Lemma 4.4 again gives E [fo 5(7")%] = n**' E {b(’T")zB] 1y < Mn?*'+P for some finite
constant M > 0, and the last term converges to 0 as n — oo. Finally, we have

Efa/’ 7'”2
S [forp(T")’]

neA n

< VMY n 12 < oo,

neA

O

4.2. Stable Lévy trees. Let us briefly recall the definition of the height process and the associated
Lévy tree, see e.g. [15,16,33,35]. Recall that (X, t > 0) is a strictly stable Lévy process with
Laplace exponent ¥(A\) = rAY where v € (1,2] and x > 0. For v € (1,2), denote by 7 the
associated Lévy measure
ry(y—1) do

m(dz) = [(2—7) atty
Le Gall and Le Jan [35] proved that there exists a continuous process (H(t), t > 0) called the
1-height process such that for every ¢t > 0, we have the following convergence in probability

Lot
H(t) = ll—I}(l)g/O 1{Xs<1ts+€} dS,

(4.10)

where I} = inf;y X. In the Brownian case, H is a (scaled) reflected Brownian motion. Let IN be
the excursion measure of H above 0 and set

o=1inf{s>0: H(s) =0} and b =supH(s) (4.11)
s>0
for the duration of the excursion and its maximum. We choose to normalize the excursion measure
N such that the distribution of ¢ under N is 7, given by

dx

m(dz) =No € dz] = g(O)W, (4.12)
with g(0) given in (4.3). Furthermore, by [17, Eq. (14)], the distribution of  under N is given by
N> 2] = (k(y — Da) VO (4.13)

We have the following equality in “distribution” for the height process, see e.g. [18, Eq. (40)],

@

(H(zt), t >0) under 27N 2 7Y7H  under N .

Using this, one can make sense of the conditional probability measure N®)[e] = N[o|oc = z] such
that N®-a.s., o0 = 2 and
Nlo] = [ Nle]m. (o).
0

Informally, N® can be seen as the distribution of the excursion of H with duration z. Moreover,
the height process H has the following scaling property

(H(s), s € [0,2]) under N® @ (:Bl_l/”H(s/a:), s € [0, 1]) under N (4.14)

See also Lemma 6.11 for the scaling property of H and related processes.

We call the stable Lévy tree with branching mechanism ¥ (\) = kA7, the compact real tree
T coded by the v-height process H under N, See Remark 2.1 for the coding of real trees by
excursion paths.
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Remark 4.6. Notice that 0 = m(7y) and h = §(7y) are the mass and the height of the tree
Tu coded by the height process H under N. Furthermore, for s € [0, 0], the notation H(s) is

consistent with the one introduced in Section 2.3 since H(s) is the height of s in the tree coded
by H under N.

4.3. Convergence of continuous functionals. For every n € A, we let 7" be a BGW({) tree
conditioned to have n vertices, and let 7" = (b, /n)7" be the associated real tree rescaled so that all
edges have length b, /n. Duquesne [15] (see also [33]) showed that the convergence in distribution

RN (4.15)

n—oo

holds in the space T where 7 is the stable Lévy tree with branching mechanism () = k7.

The following result is an immediate consequence of Proposition 3.3. Recall from (3.1) and (3.2)
the definitions of the measures ¥y and WH'.

Corollary 4.7. Assume that & satisfies (1) and (£2). Let " be a BGW(E) tree conditioned to
have n vertices and let T™ = (b,/n)™™ be the associated real tree rescaled so that all edges have
length b, /n (where b, is the normalizing sequence in (4.1)). Then we have the convergence in

distribution Uyn 9, U in M(T xRy), where T is the stable Lévy tree with branching mechanism
P(N) = &NV, In particular, we have U3 2 W in M(R2).

The convergence in distribution obtained in Corollary 4.7 is unsatisfactory to study the asymp-
totics of additive functionals of large BGW trees as it involves the real tree 7™ instead of the
(discrete) BGW tree 7. To remedy this, we shall introduce a discrete version of the measure Wy
when T is associated with a discrete tree. Let t be a discrete tree and a > 0. Recall that at denotes
the real tree associated to t where the branches have length a, and that for v € t, av denotes the

corresponding vertex in at, see Section 2.3 for the definitions. We define two nonnegative measures
toand Ay, on T x Ry by, for every f € By (T x Ry),

ta |t| Z [tw|f (aty,aH(w))| and |[Agq(f

wet°®

Z|t |f (aty,aH(w))|, (4.16)

wet

el

where at,, is the subtree of at above aw. Note that the sum is over all internal vertices of t for
At o, while for At , the sum extends over all vertices including the leaves. In other words, the
measure A{ , ignores the subtrees rooted at a leaf of t (which are trivial trees consisting only of a
root equipped with a scaled Dirac measure). Let us take a moment to explain why we introduce
the measure Ag ,. While A; , seems more natural, the measure A , has the advantage of putting
no mass on the set
Tox Ry ={TeT: m(T)=0o0r h(T) =0} x R,.

This will be useful as we are interested in sums of the form (4.16) where the function f may blow
up on Ty x Ry. We now give estimates for the distances between the three measures A ,, A,
and W,, on T x R, which are associated with the discrete tree t and a > 0.

Lemma 4.8. Let t be a discrete tree and let a > 0. We have
3
ot (Vo Ava) < 0 (S A1) +1)), (4.17)

dT\/(At,a,A;a) < —a. (418)
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Proof. Let f € Cp(T x Ry) be Lipschitz. Recall that T = at is the real tree associated with t,
rescaled so that all edges have length a and equipped with the uniform probability measure on the
set of vertices whose height is an integer multiple of a. Recall also that for v € t, av denotes the
corresponding vertex in 7' = at. In particular, H(av) = aH (v), where H (av) is the height of av
in the real tree at and H(v) is the height of v in the discrete tree t. Thus, we have

H(av aH(v
Z/ rav> dr_‘t‘Z/ T’aw )d’f’

vet vet
H(v)

|t| Z Z / Ty, v, ar) dr.

vet k=1

el

On the other hand, note that for every 1 < k < H(v), we have Ty 0 = Ty where w € t is the
unique ancestor of v with height k. Thus, we have

zsz o 86) = 32 5 f (T 0H(0) = 3 80l (T, 0 (1) = ()~ e1f @0).
VEL 1 vet;}u;g w;ﬁ

Therefore, we deduce that

wr(f) - Am<f>|_|%|zz | 1f @ ar) =  (Tapawn 0] dr + £
vet k=1 -
%z > / 111, (deste (Taraos Tot o) + alk = 1)) dr + a £l . (4.19)
vet k=1

Since for k — 1 < r <k, the tree T}, 4, is obtained by grafting T, 4, on top of a branch of height
a(k — r) and no mass, it is straightforward to check that deup (Tur avs Lak,av) < a(k —7)/2. It
follows that

Vr(f) — Acalf mzz ||f||L+a||f||oo_ 1 21l Aea(D) + a

vet k=1

By definition of the distance dgr,, we deduce that

3
o (U7, Ava) < 0 (S A1) +1)).

Next, let f € By(T x Ry). We have

a

[t]

Taking the supremum over all f € B, (T xR, ) such that || || < 1yields drv (.At,a, Af ) <ila O

Aca(f) = A ()] = 0

Z tw|f (Tow, aH (w))| <

weLf(t)

ILEO) I flloe < @l fll

We now restate the convergence of Corollary 4.7 in terms of the discrete trees 7. To avoid
cumbersome notations, we write

o o
An = b, /n and A” = AT”J’n/n :
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Recall that for a discrete tree t, w € t and a > 0, we have that h(at,,) = ab(t,) and m(at,) =
|tw|/[t]. We shall also consider the following variant of the measure A} for functions depending
only on the mass and height: for every measurable function f belonging to B, ([0, 1] x R} ),

azve(r) =25 5 ety T o) | (4.20

weTmn:° n

We have the following upper bound of their total mass.

Lemma 4.9. We have:

(b(7") +1). (4.21)

Proof. The proof is elementary as

n n n bn n
A;<1>=n2 ;O|T"|—7 S XS e S ),
bn
ZnIT"I +—|Lf( = —(b(r") +1).

We have the following convergence of A7 as n goes to infinity.

Corollary 4.10. Assume that & satisfies (£1) and (£2) and let ™" be a BGW(E) tree conditioned
to have n vertices. Then for every f € Co(T X Ry), we have the convergence in distribution and of
all positive moments

o bn n bn n bn (d)+moments
An(f) =5 > Imlf <E7—w7 XH(U})> —— V7 (f), (4.22)
wWET™°

where T is the stable Lévy tree with branching mechanism (\) = kXY. In particular, for every
f€C([0,1] x Ry), we have

b s b moments
A =5 3 I "|f<|T| nhm) (armoments g 7). (1.23)

Remark 4.11. By (4.18), we have that a.s. and in L!
dTV (An, A?L) n—>—oo) 0.
In particular, the convergences of Corollary 4.10 still hold if we sum over 7" instead of 7"°

Remark 4.12. Another model of random trees is the class of Pélya trees which are random
uniform unordered trees. In [36], Panagiotou and Stufler show that the scaling limit of Pdlya trees
is the Brownian tree and that the sub-exponential tail bounds of Lemma 4.2 hold in this case
with a = § = 2. Let Q C N be such that 2N {0,1} # Q and let T" denote the uniform random
unordered tree with n vertices and vertex outdegree in ). Then there exists a finite constant
cq > 0 such that (cq/y/n)T™ converges in distribution to the Brownian tree 7 with branching
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mechanism 1(\) = 2A\%2. Thus, the result of Corollary 4.10 holds for T and the proof is exactly
the same as in the BGW case: for every f € C(T x R, ),

CQ CQ Cq (d)+moments
@S T (T, S () | et (),
n3/2 Wi | w|f <\/ﬁ w? \/ﬁ (’LU)) o0 T(f)

Proof of Corollary 4.10. Denote by T™ = (b,/n)7T" the real tree associated with 7" rescaled so
that all edges have length b, /n and equipped with the uniform probability measure on the set of
vertices whose height is an integer multiple of b, /n. By Lemma 4.8, we have

bn (3
o (U, A3) < dis (Do, An) + 2y (A, A3) < 2 (SA4a(1) +2)
Thanks to (4.21) and Lemma 4.4, we have that M = sup,,ca E [A,(1)] is finite. It follows that

b, (3M
limsup E [dpr, (¥7n, A;)] < lim — <T + 2) = 0.

n—o00 n—oo n,

Thus, using that Wn 9 Wrin M(T x Ry ) by Corollary 4.7, Slutsky’s lemma yields the conver-

gence in distribution A° % U7 in M(T x R.) which proves (4.22).

Let f € Co(T x Ry). Using Skorokhod’s representation theorem, we may assume that the
convergence (4.22) holds almost surely. To prove the convergence of positive moments, it suffices
to show that the family (A9 (f), n € A) is bounded in L? for every p € [1,00). This is the case
as by (4.21), we have A2 (f) < [|f|lo A5(1) < || fllo 22b(7™), and the family (22h(r"), n € A) is
bounded in L? for every p € [1,00) by Lemma 4.4. This completes the proof. O

The Gromov-Hausdorff-Prokhorov convergence (4.15) allowed us to derive an invariance principle
(4.22) for a certain class of additive functionals on BGW trees, namely those associated with real-
valued continuous bounded functions f defined on T x R, . In the sequel, we will be looking at a
similar invariance principle when f blows up on Ty x R,. It is not surprising that the Gromov-
Hausdorft-Prokhorov convergence alone does not allow us to say anything about the convergence
of U7 (f) in this case as the next remark illustrates.

Remark 4.13. Let 7" be a Catalan tree with n vertices, where n € A = 2N + 1. In other
words, 7" is uniformly distributed among the set of full binary ordered trees with n vertices, which
corresponds to a BGW(€) tree with P (£ = 0) = P (£ = 2) = 1/2 conditioned to have size n. Notice
that ¢ has finite variance 0f = 1. Take b, = y/n/2 so that by (4.15), T" = (1/2/n)7" converges
in distribution in T to the Brownian continuum random tree 7 with branching mechanism ¥ (\) =
2X\%. In fact, it is well known, see e.g. [37, Theorem 7.9], that there is a representation of 7™
such that the almost sure convergence holds. Denote by 7" the real tree obtained from 7™ by
stretching the leaves by a distance of € > 0 and equip it with the uniform probability measure on
the set of branching points and leaves. Fix 0 < a < 1/2 and set ¢, = n~®. It is clear from this
construction that 7" is a T-valued random variable and that a.s.

dgup (7?;, 7-”) < é&n.

So it follows that 7 converges to T a.s. in the sense of the Gromov-Hausdorff-Prokhorov distance.
We consider f(T,r) = m(7)~ and if v € M(T x Ry) we write v(z=%) for v(f). According to
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[14, Theorem 3.1], we have the following a.s. convergence A, (%) — Ur(z~*). In conjunction
with the identity Uy (z~%) = A, (z7%) — 1/(24/n) this proves the a.s. convergence

\Ian(ZIZ'_a) n—>—oo> \I/T(Z'_a).
On the other hand, we have
1 (2v/n) " H(w)+en n\ T 1
Uy () (@) = L Y (h |> dr = "=,
7] peLigeny / @V H(w) |77 2

since |7"| = n and | Lf(7")| = (n + 1)/2. Thus, we get

1
\117;77LL (x_a) — \IlTn(x_a) —_— =

n—oo 9

In conclusion, even though we have the a.s. convergence 7" towards T in T, Urn (z~%) does
not converge to Wy (x~*) for a € (0,1/2). This proves that the continuity of ¥r(f) in 7" when f
blows up on Ty, which has been observed in [14], is indeed specific to BGW trees.

5. TECHNICAL LEMMAS

In this section, we gather some technical results that will be used later. The next lemma, which
gives sufficient conditions for boundedness in L' of functionals of the mass and height on BGW
trees, will be a key ingredient in proving our convergence results. Recall that 7 is a BGW(¢)
tree and 7" is a BGW(&) conditioned to have n vertices. Recall from (4.20) the definition of the
measure AM° and notice that AT?°([0,1] x Ry \ (0,1] x R%) = 0. For this reason, we also see
AmD° as a measure on (0, 1] x R%. By convention, we write AM°(g(z)h(u)) for A™°(f) where
f(z,u) = g(x)h(u), and we see g as a function of the mass and h as a function of the height.

Lemma 5.1. Assume that § satisfies (£1) and (£2). Suppose that f € By ((0,1] x R*) satisfies
one of the following assumptions:

(i) f is of the form f(x,u) = g(x)u? or f(z,u) = x*h(u) where a, B € R and g, h are nonin-
creasing and

/f (2707 2)dz < oo. (5.1)

(ii) f(x,u) = g(i)eu”l[l o) (1) where n € (0, ) and g € B((0,1]) is nonincreasing and satisfies
Jog(z)e™ " dx < oo for some g € (0,7 —1).

Then, we have
sup E {Azh’o(f)} < 0.

neA

Proof of Lemma 5.1. Here ¢, C' and M denote positive finite constants that may vary from ex-
pression to expression (but are independent of n and z). Let n € A so that P(S, =n—1) > 0.
Observe that w € 7° if and only if |772] > 1 and that the root ) is the only vertex in 7 such that
|7| = n. Thus, for every f € B4 ([0,1] x R), we have the decomposition

elape(n] = 28| 3 i (22 o )

weTn°
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b, " b, bn bn
= —E[Z Lacimgl<nylTolf (D fJ(TZf)) +E lf <1,gb(7")>]~

n2 weTn n

By [29, Lemma 5.1], we have

br, 7| bn
M| Y Ll |f< )]

weTn n

_ ;jkzl P(S) =k (_Si)— Ezsi_i): n—k) o [f (E b )ﬂ Locienys (5.2)

where by convention the summand is zero for k ¢ A. Using Lemma 4.1 and (4.2), we get for every
neAandevery 1 <k<n

- L _ oy 2 2 1/~
anP’(Sk =k—1)P(S,r=n—k) <C b; <C n '
P (Sn =n — 1) bkbn—k k:(n - k‘)
We deduce that

me| 3 froir (1 2 )

weT°

> anlh) + 2|7 (1,200

:C/Olgn([nﬂ)d:ch%"E [f <1,%h(7n)>1, (5.3)

where we set

77,2 1/~ k bn .
and g, (k) =0 for k£ ¢ A. We will constantly make use of the following inequality
k 1-1/v bn k k 1-1/v
c <—> <2 —<C <—> forall 1 <k <mn, (5.5)
n n by, n

which follows easily from (4.2).

First case. Assume (i). First, we consider the case f(x,u) = g(z)u”. Since b,/n — 0, we deduce

from Lemma 4.4 that
B
(’; h(r")) } ~0. (5.6)

b b b,
lim - E 1, 2h(r" g(1) lim —E
lim [f(,nw >)] (1) Jim
For every 1/n <z < (n—1)/n, it holds that « < [nz]/n < 2z and n — [nz] > n(1 —z)/2. Thus,
for every x € (0, 1), using Lemma 4.4 for the last inequality, we have

b B
<gh(7_|—nm'|)> 1{1<nx§n—1}

b i)
<?h(7— )) 1{1<nm§n—1}

gul([nz]) < Ma=7(1 - 2)" Vg (Lﬁ) E

B
< Mz~ (1 — 2)"Vg(z) (b—" g”‘ﬂ> sup E
n [nz] keA

< MgBHIA=YD=11 _ )= g(x).
It follows that .
/ gu([nz]) dz < M / DAY= _ )17 gy, (5.7)
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where the right-hand side is finite by (5.1) as v > 1. Combining (5.6) and (5.7), it follows from
(5.3) that

supl [ A7) =sp 258 | 57 et (121, 2o ) < e

Y
neA WETMO n

Next, we consider the case f(z,u) = z*h(u). By Lemma 4.2 and (i) from Remark 4.3, we have,
for every k € A,

k

Denoting by Y a random variable whose cdf is given by the right-hand side and using (5.5), we
get, for every 2 < k < n,

P <b—kh(7'k) < y) <1A (C’o exp (—coy_“*/(“*_l))) . (5.8)

b, k B\
h(t") >4 —b—Y > ¢ (-) Y, (5.9)

n
where >4 denotes the usual stochastic order. In particular, since Y has density

y s Oy~ =D/ expy (_Coy—v/(v—l)) 10.4(y)
for some a > 0, the first inequality in (5.9) applied with & = n gives, for every n € A,

o (2o0)| <EpO <€ [Tae e a0

Note that the last integral is finite: indeed, since h is nonincreasing, we have

o0 gy~ /(=D dy /OO dy
/1 h(y)e y@=1D/(-1) < h(1) 1 y@=1/06-1) <,

and by (5.1)
e YW T e g 5.11
/0 ()e Yy SRR CRE oy Ry /0 W)y y<oo. (511

Then, applying (5.9) with £ = [nx] and using the fact that h is nonincreasing, we get for every
z e (0,1)

an(fnl) < 01— (B ) (220 ) | 2

< Mz V(1 —2) Y E {h (czl_l/”Y)}

01111 — )V [*h (ext= 1) emer 0 Y
< Mz (1—2) /0 h (Cl’ y) ¢ y@=1/(-1)
acx=1/7
ta=1/v(1 _ .\~ —rau1/(=D diu
< Mz (1—x) /0 h(u)e ur=1/(v=1)’

for some positive constant r > 0, where in the last inequality we made the change of variable
u = cx' Y7y, Therefore we have
aczt=1/7 du

1 1
1+a—1 -1 —rgu~Y/(v=1)
/Ogn((m})dng/o ZHe (1 - ) /'de/o h(u)e ey (5:12)

It remains to check that the last integral is finite. But, arguing as in (5.11) with r instead of ¢y,
we have
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1 1-‘,—0&-1/7 1 _1/_yd a,cq;lfl/"f h _Txuf’y/('y—l) du
12" (L—a)de | (u)e Gy ey
! ac /(v du
_ —1/v —ru Y/ 1)/2
<M 1/2(1 x) da:/o h(u)e /D < 00.

Let 6 = v/(y—1). Making the change of variable y = zu~% with u fixed, we have, thanks to (5.1),

1/2 acat =1/ s d
/0 l,l-i-a—l/’Y(]_ _ x)—l/’Y dx[) h(u)e—mcu s u1_:f6

< yirom /gy dy/o h(u)u1,5<1 /0y du

(ac)~

< (00 yltetremry dy/ h(u)u® du < oo.
ac)™ 0

The right-hand side of (5.10) and (5.12) being finite and (b,,/n, n > 1) being bounded, we deduce

from (5.3) that

< OQ.

supE [A7<(f)] =supb—’;E[ ONLAr; ('T"' Zh(m))

neA neA T WETMO

Second case. Assume (ii). Fix n € (0,7) and set h(u) = €“"1,>13. Choose 3 € (n,7) such that
B(1—1/7) > re. By (4.9) and (5.5), we have, for every k € A such that 2 < k < n,

1-1/~
b—”b(f’f) <at bk, <C <k> Z, (5.13)

n n by n

where Z has density z — Mzﬁ_le_c‘)zﬂl[a,oo)(z) for some a > 0. So, we get for x € (0, 1)

an(fnl) < M1 =) () o (S )

<Mz —2) Vg (2)E {h (C:El_l/”Z)}
< Mo I(1—a) g @) [

a

h (C:El_l/”z) Sl q,
S Mx—l/“/(l _ x)—l/“/g (,’L’)/ Zﬁ—leqz”_cozB1{Cx1,1/7221} dZ,

where we used (5.5) for the first and second inequalities, the monotonicity of g and h for the second
and the fact that (C’xl_l/ Vz)n < 12" for some finite constant ¢; > 0 for the last. Notice that if

r < cp, then the function z — 2"~ is hounded on R, as 8 > n. It follows that

1 1 00
/0 gn([nzx])dz < M/ eV (1 —2)"Yg(x) d:c/o zﬁ_le_mﬁl{cﬂq/yzzl} dz

< M/ U1 — ) Ve Pamr 1M)g(x) dz

< M/ z) Ve g(x) da < oo, (5.14)
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1/»yegfro —rC—Bgp—BQA-1/7)

where in the last inequality we used that the function x — z~ is bounded on

(0,1] as (1 —1/7) > 1. On the other hand, we have

b b b b 0 N_cozB

E|F (1200 )| < g ERZ) < M2 [T e 0 a: < m 1

m[r (12000)] < amEn@ < M [Tt s )
where we used the first inequality from (5.13) with & = n and the fact that A in nondecreasing
for the first inequality and that b, /n converges to 0 as n — oo for the last. Combining (5.14) and
(5.15), we deduce from (5.3) that

sup [ A7) =swp 258 | 5 ezl (12, B

)
neA ne WETMO n n

< OQ.

O

As a consequence of the following lemma, we get that (A™"°(z*u”), n € A) is bounded in L?
for some p > 1.

Lemma 5.2. Let o, € R such that v + (v — 1)(8+ 1) > 0. For every p > 1 such that
p(ya+ (y—1)8) >1—v and § € R, we have:

sup E

neA n

b 5
<—"f)(7‘")> Azh’o(xo‘uﬁ)p] < 00. (5.16)

Proof. Set M, = %”b(T") for n € A. Let pg,qo € (1,00) such that 1/py + 1/g0 = 1. By Holder’s
inequality and thanks to (4.21), we have

AmD0 (0 B)po < ffpo/a0 gmb.e (gpocypof), (5.17)

Assume that py > p satisfies po(ya+(y—1)3) > 1—~. Set r = py/p and s such that 1/r+1/s = 1.
We deduce that

E [MgASh’O(a:auﬁ)p} _F [Mngp/qoMgp/qu:h,O(xauﬁ)p}

1/r

IN

[MZ(Hp/qo)T/S E {Mn—po/quzhvo(xauﬁ)po}

E
1/r
E /a

IN

[MZ((S—HD/%)} 1s E {Ag"”o(:):poaup‘)ﬁ)}

where we used Holder’s inequality for the first inequality and (5.17) for the second. Since po(ya +
(v — 1)B) > 1 — ~, the function f(x,u) = zPouPoP satisfies assumption (i) of Lemma 5.1. We

deduce that sup,ca E [A;"%O(xpoaupoﬁ)} < 00. Then use Lemma 4.4 to get (5.16). O

6. FUNCTIONALS OF THE MASS AND HEIGHT ON THE STABLE LEVY TREE

In this section, our goal is to study the finiteness and compute the first moment of the random
variable \If?-h( f) where T is the stable Lévy tree and f is a measurable function. Recall from
Section 4.2 that H denotes the -height process under its excursion measure N, o is the duration
of an excursion and § is its height. Notice that ¢ and § are the mass and the height of the tree
Ty coded by H. Furthermore, the stable Lévy tree 7 (under P) is the real tree Ty coded by H,
see Remark 2.1, under NW[e] = N[o| o = 1].
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6.1. On the fragmentation (on the skeleton) of Lévy trees. In this section only we consider
a general continuous height process H under its excursion measure N associated with a branching
mechanism () = aX + B(A2/2) + [7(dr)(e” — 1 4+ \r) with a, 8 > 0, 7 a o-finite measure on
(0, 00) such that [7(dr) (r A7?) < oo and such that [*d)\/1¥()\) < co. We refer to [16, Section 1]
for a complete presentation of the subject.

We will present a decomposition of a general Lévy tree using Bismut’s decomposition. Define
the length and height of the excursion of H above level r that straddles s

Ops = / Lim(s,>r dt = T:S —T,, and b,,= sup H(t)—r, (6.1)
0 te[Ty, s, Ti ]
where m(s,t) = inf{sy ovg H is the minimum of H between times s, and T, = sup{t < s: H(t) =
r} and T/, = inf{t > s: H(t) = r} are the beginning and the end of the excursion of H above
level r that straddles time s, see Figure 1. Then, we consider Hf, = (H (t),t > 0) the excursion
of H above level r that straddles s defined as:

Hi(t)=H ((t +Tr) A T:S) — 7

and H, = (H_(t),t > 0) the excursion of H below defined as H_(t) = H(t) for t € [0, T, ] and
H (t+ 0,,) for t > T, . Notice that the duration and height of the excursion H[, are given by

a,ff s = 0.5 and H, ; that the duration of the excursion H_ is given by O =0 — Ops; and that

o=o0.,+0,. (6.2)
H{(t)
b1
br,s
r A\
Or.s v_/
TL S TLr o t

FIGURE 1. The duration o, , and the height b, ; of the excursion of H above level
r that straddles time s.

Recall notations from Remark 2.1. For s € [0,0] and r € [0, H(s)], the function H[, codes the
subtree 7. s := (Tu)rps) and H,, codes the subtree 7.7, := (Ty \ Ty,s) U {w,}, where z, is the
ancestor of p(s), the image of s on Ty, at distance r from the root of Ty. The next lemma says that
when s and r are chosen “uniformly” under N, then the random trees 7,, s and 7,7, are independent
and distributed as Ty under N[oe]. This result is a consequence of Bismut’s decomposition of the
excursion of the height process.
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Lemma 6.1. Let H be a continuous height process associated with a general branching mechanism
under its excursion measure N. Then for every nonnegative measurable functions f, and f_
defined on CL(Ry), we have:

N [ [ as [ po) £ () ar| = No () Niof_ ().

Remark 6.2. Lemma 6.1 allows to recover directly the distribution of the size of the two fragments
given by the fragmentation measure ¢**¢(ds,dr) = 280, Y10,1(s))(r) dsdr on the skeleton in [44,
Lemma 5.1]. The Brownian case (7 =0 and 5 > 0) appears already in [8] and then in [3].

Proof. We follow the proof of [17, Lemma 3.4] and use notations from [16] on the cad-lag Markov
process process (ps, ns; s € [0, 0]) under N, which is an M (R, )*-valued process. The process (p, n)
is a Markov process which allows to recover the (a priori non-Markovian) height process as a.s.
[0, H(t)] = Supp (p:) = Supp (). (The process p is called the exploration process associated with
H and is strong Markov.) Thanks to [16, Proposition 3.1.3], we have that:

N | [7ds Flpon)| = [ Midudv) F(u,v), (6.3)

where Ml = [§°dt e~ My 4 and, for any interval I, My is the law on M(R)? of the pair (ur, vr)
defined by:

wi(f) = / N (dr,dt,dz) 1,(r) 2 f(r) + /I dr f(r),

vi(f) = [ N(drdbde) 1, = ) () + 8 [ dr £,

with N (dr,d¢,dz) a Poisson point measure on (R, )? with intensity drw(dl) i (z)dz. We write
p = (p,n) and 7= (n, p). We recall that the process (ps; s € [0,0]) is strong Markov under N, see
[16, Proposition 1.2.3], and the time reversal property of (p,n), see [16, Corollary 3.1.6], that is

(ps; s € [0,0]) and (ﬁ(a_s)_; s €0, a]) have the same distribution under N.

For a measure 4 on R, and u > 0 we define the measure p*, the measure p erased up to level
u and shifted by u, by pl(f) = [ f(r — u)lysay p(dr) for f € By (Ry). We write g = (plvl, )
and similarly for 7. Let Ff, for e € {+, —} and i € {g,d}, be measurable nonnegative functionals
defined on the set of cad-lag M (R, )?-valued functions. We shall compute:

A=N[[Tas [Marmr (371t 0.7+ — s)) F* (77t efo.T-. —
0 S 0 T Lq \Ps+ts E[’ 7,8 S]) g n(s—t)—’ 6[7 s S]

by (ﬁTiert?t € 0,0 - Tzs]) by (ﬁ(Tf,s—t)—;t o, T;vs]) ]

We write 19,0 = (Lops Lo,n). Using the Markov property of p at time s, the time reversal
property, again the Markov property of p at time s, (6.3) and the transition kernel of p given in
[16, Proposition 3.1.2], we get that:

A=N [/OU ds /OH(S) dr G+ (ﬁg}) G~ (]—[OW]ﬁs)] )

for some measurable nonnegative functions G~ and G such that for ¢ € {4, —}

MG = N [/0 ds FE (fupet € (0,0 — 8) FE (5.t € [0, s])] . (6.4)
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Then using (6.3) and the definition of M, we get, with i = (p, v):

A= T dte /0 dr Mg (di) G* (i) G (10.07)

0

. t
:A dte_at/o dr M[(),t_r}[G—i—] M[O,T’}[G_]

_ ( [ e g, [Gﬂ) ( | e Mg, [G‘])
= M[GT]M[G],

where we used the independence property, that is M; « M[; = My ; when [ and J are disjoint, for
the second equality. We deduce from (6.4) and the monotone class theorem that for any measurable
nonnegative functionals F* and F~ defined on the set of cad-lag M(RR,)?*valued functions, we
have:

o H(s)
N [ [ ds [ dr PG 5t € 0,00 F (Bisoan, it € [o,a—ar,sD]
0 0 e ’

(e>1)
_N [/OadsFJ’(ﬁt;t € [o,a])] N UOstF—(ﬁt;t e [O,a])] .
=N {JFJ’(ﬁt;t € [0,0])} N [aF‘(,ﬁt;t € [O,a])] .

Then use that H is a measurable functional of the exploration process p to conclude. O]

6.2. First moment of V. We start with the main result of this section which gives the first
moment of functionals of the stable Lévy tree. Recall that Ty is the real tree coded by H, see
Remark 2.1.

Proposition 6.3. Let T be the stable Lévy tree with branching mechanism ¢(\) = kA7 where
k>0 andye (1,2]. Let f € B.(T), and set f(T,r) = f(T) for T € T and r € Ry. We have:

E[Ur(f)] =Nlo(1 =)™ f(Ti)lipe] (6.5)

Proof. Let f € B, (T) and set f(T,r) = f(T) for T € T and r € R,.. Using notations from Section
6.1, we have U (f) =[5 ds fOH(S) f(Ty+,)dr. Thus, on the one hand, we get for A > 0

N o, (7] =N | ["as [ e T ) e ]
=N [a e_’\"} N [a e N f(TH)}
= a0 [N (7)) S [T

= a0 e ar [N [f(Th)) oS (6:5)

where we used (6.2) for the first equality, Lemma 6.1 for the second, (4.12) for the third and the
change of variable r = u + y for the last. On the other hand, we consider the random variable
H" = (r'=""H(s/r),s € [0,r]) for r > 0. According to (4.14), H" under NW is distributed as H
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under N Then, we have for A > 0

N[ 0 (F)] = 00) [ e E W7, (7] S5 (6.7)

Comparing (6.6) and (6.7), we deduce that dr-a.e., for r > 0

- r (u) U
E [wr, ()] = rg(0) [ ST S8 s N (e o) f (T L] . (65)

o (r—uw) uwth

From now on, we assume that f € C,(T) is bounded and that there exists ¢ > 0 such that
f(T)=0ifm(T) >1—c. Asm(Ty) = o, themap r — N [a(r — U)_l/“*f(TH)l{Kr}} is continuous
at = 1 by dominated convergence. By definition of H" and the continuity of the height function,
we get that a.s. lim,, ||H" — H'||, = 0. Following [2, Proposition 2.10], we get that the T-
valued function r — Ty- is then a.s. continuous at r = 1. We deduce from Proposition 3.3 that
r i Uy, (f) is continuous at r = 1. We also have

Uiy (F) < (T )0(Tor) I fll o < 72770 (HY) || 1l

Since h(H?") is integrable, we deduce by dominated convergence that the map r + E [\IITHT (f )} is

continuous at r = 1. We deduce from (6.8) that for all f € C;(T) bounded and such that there
exists € > 0 for which f(T") =0 if m(7") > 1 — ¢, we have:

E[Ur,,(F)] = N[o(1 = o)™ f(Ti)Loery |

By monotone convergence, this equality holds if f € C,(T) is bounded. Then use that Tz is
distributed as 7 to get (6.5). O

The next result is a direct consequence of Proposition 6.3, using that 7, defined in (4.12), is the
distribution of o under N. Recall the notation W3 (g(z)h(u)) which means that g is a function of
the mass and h a function of the height.

Corollary 6.4. Let T be the stable Lévy tree with branching mechanism 1¥(\) = kAY where k > 0
and v € (1,2]. Then we have for every f € B.([0,1] x R})

B (U3 (7)] = o(0) [ (1~ ) B[ (0 0(T))] o, (69)

where g(0) is given in (4.3). In particular, we have for every g € By ([0,1])

E [U3"(g(2)] = 0(0) [ 2771 )V g(a) da.

0

Remark 6.5. An equivalent way to state (6.9) is the following equality of measures

E [\If;“-h(f)} =C(y,k)E {f (V7 Vl—l/“/f)(T))} with C(y,k) =B(1 —1/v,1—-1/7)g(0),

where V' is a random variable with distribution Beta(l —1/v,1—1/v), independent of h(7) and B
is the beta function. Using (3.4), this can be interpreted in the following way where we recall that ¢
denotes the length measure on a real tree: taking a stable Lévy tree 7 under P and simultaneously
choosing a vertex y € T uniformly according to the measure C(v, k) ' u(7,)¢(dy), then the mass
and height of the subtree 7T, are jointly distributed as V and V1=1/7h(T).
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While the measure E {\I@h(o)] is not known explicitly, its moments can be expressed in terms
of the moments of h(7T).

Corollary 6.6. Let T be the stable Lévy tree with branching mechanism (\) = kXY. For every
a, € C such that R(ya+ (y —1)(8+ 1)) > 0, we have

E[3* (a"u’)] = a(0)B(a + (8 + 1)(1 - 1/3),1 - /1) E[5(T)], (6.10)

where B is the beta function.

Observe that h(7) has finite moments of all order. This can be seen as a consequence of
the convergence in distribution 22h(7™) D b(T) together with the fact that (%”f)(r"), n e N) is

bounded in L? for every p € R by Lemma 4.4. The first moment of h(7) is given in [18, Proposition
3.4]. We shall discuss the other moments in a future work.

Note that taking § = 0, we recover [14, Lemma 4.6]. Heuristically, the condition R(ya + (v —
1)(8+1)) > 0 is due to the fact that under the excursion measure N, the height b scales as o' =1/7
(see also Lemma 6.11 below), implying that for o, 5 € R

H(x) H(x)
a B a+p(1-1/7)
[ ntax) [ (T ) (T ) ar J ) [ (T 0

Thus, the condition on «, § corresponds to the phase transition observed in [14, Lemma 4.6 and
Remark 4.8] for functionals depending only on the mass (that is 5 = 0).

E <<= E < 00.

In the Brownian case, h(7) is the maximum of the (scaled) Brownian excursion whose mo-
ments are known explicitly. Therefore we get an explicit formula for the moments of the measure
E[W5°(e)].

Corollary 6.7. Let T be the Brownian tree with branching mechanism (\) = kA2, For every
a, € C such that R(2a+ 5+ 1) > 0, we have

E [0 (2u?)] = \/;_H (%)Bmg(ﬁ)B@ + % %) : (6.11)

where & is the Riemann xi function defined by &(s) = 3s(s — 1)m=/?I'(s/2)((s) for every s € C
and ( is the Riemann zeta function.

Proof. The normalized excursion of the height process H is distributed as 1/2/k Bex where Bey is the

normalized Brownian excursion, see e.g. [16]. Therefore we get the identity h(7) 2 /2/k max Bex.
By [11, Proposition 2.1 and Eq. (4.10)], we have

™

B/2
2)ew), vsec
The result follows then from Corollary 6.6 and the value of g(0) given in (4.4) . O

E [(max BCX)B} =2 (

6.3. Finiteness of \If?-h (f). This section is devoted to the study of the finiteness of functionals
of the mass and height on the stable Lévy tree. Arguing as in the proof of Lemma 5.2 and using
Corollary 6.6 and the fact that h(7) has finite moments of all orders, we get the following result.
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Lemma 6.8. Let T be the stable Lévy tree with branching mechanism ¥(\) = kXY where K > 0
and v € (1,2]. Let a, 5 € R such that yao+ (v — 1)(5 + 1) > 0. For and every p > 1 such that
p(ya+ (y—1)8) >1—v and § € R, we have:

E [6(T) W5 (@u’)] < oo, (6.12)

We now state the main result of this section which gives an integral test for the finiteness of
functionals of the mass and height on the stable Lévy tree.

Proposition 6.9. Let T be the stable Lévy tree with branching mechanism 1¥(\) = &Y where
k>0 andvy € (1,2]. Let f € BL([0,1] x Ry) be of the form f(x,u) = g(x)u” or f(x,u) = x*h(u)
where o, B € R, and g, h nonincreasing. Then we have

m <00 a.s.,
v (f) {: o (6.13)
according as
/f(aﬂ/(v_l),x) dz {< > (6.14)
0 = 00.

Furthermore, if W3°(f) is a.s. finite then we have E [\I/?-h(f)} < 00.

Proof. We first prove that if [, f(z7/0~Y 2)dz is finite then E {\I@h(f)} is finite and thus W3"(f)
is a.s. finite.

Let 8 € R and g € B,([0,1]) be such that [, g(z?/0~V)2? dz < co. Recall that h(7) has finite
moments of all orders. Thus, by (6.9), we have

B [0 (g(e)u”)] = a(0) B [5(T)°] [ g(a)a®V01074 1~ 2) 7 i < oo,

Next, let @ € R and h € B, (R, ) be nonincreasing such that [, h(x)z*"/0~Y dz < co. Again by
(6.9), we have

E [0 (2 h(u))] = g(0) /01 w271 =) B [h (a1 70(T)) | da

Now, letting k& goes to infinity in (5.8) and using the continuity of the cdf of h(7T) (see [18]), we
get that

PH(T)<y) <1A (C’O exp (—coyﬂ/(”_l))) for all y > 0.

We deduce that h(T) > Y where the cdf of the random variable Y is given by the right-hand
side of the inequality above. Using that h is nonincreasing and repeating the same computations
as in the proof of Lemma 5.1 (cf. (5.12)), we deduce that

E (W5 (2°h(u))| < g(0) /0 't V(1 — o) E (b («7Y)] dz < oo

This finishes the proof of the finite case. The infinite case is more delicate and its proof is postponed
to Section 6.4. m
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We end this section with a complete description of the behavior of polynomial functionals of the
mass and height on the stable Lévy tree, which is a particular case of Proposition 6.9 (and Lemma
6.8 for « > 0 and 5 > 0).

Corollary 6.10. Let T be the stable Lévy tree with branching mechanism (\) = kXY with k > 0
and v € (1,2], and let a, B € R. Then we have

ya+(y=1)(B+1)>0 = UPa%*)<ocoas <<= E [@?h(xauﬁ)}

A
—
&
—
(S
~—

00
va+(y=1DB+1)<0 = V@) =00 as < E[\D?—h(mo‘uﬁ)}:oo

6.4. Proof of the infinite case in Proposition 6.9. Recall that H denotes the height process
under the excursion measure N. Recall that o, ; and b, ; are the length and height of the excursion
of H above level r that straddles s, see Section 6.1. Let f € B, ([0,1] x Ry). Set

Zf —/ dS/ f(0rs5,by,s) dr. (6.17)

Notice that under N the random variable Z; is distributed as W3"(f) under P. Using the
scaling property (4.14) of the height process, we have the following more general result which is
partially given in [14] (notice that there is a misprint in the first line of p.34 therein).

Lemma 6.11. Let () = kAY with k > 0 and v € (1,2] and let H be the ¢-height process. For
every x > 0, the random variable

((6(s), s € [0,2]), (05, Hysi 7 € [0, H(s)], 5 € [0,2]))

under N@) is distributed as the following random variable under N
<(:E1_1/7H(s/z), s € [O,:B]) , (xohxflJrl/'yT,’S/x,Il_l/va71+l/’yr7s/x; r e [O,:El_l/”H(s/z)], s € [O,:B]))

In particular, the random variable ((H(S), s €[0,x]), Zf) under N@) is distributed as the random
variable ((xl_l/VH(s/:c), s € [O,x]) ,x2_1/“/Zfz) under NO | where f, is defined by f,(y,u) =
f(zy, 2 =Y7) for z > 0.

Conditionally on H, let U be uniformly distributed on [0,¢] under Nfoe]. Using Bismut’s
decomposition, see e.g. [17, Theorem 4.5] or [1, Theorem 2.1], we get that under NJoe], the
random variable H (U) has Lebesgue distribution on (0, c0) and, conditionally on { H(U) = t}, the
process ((0t—r v, hi—r), 0 <r < t) is distributed as ((S,,H,), 0 < r <t) where

S, => m(%T,) and H, = max (b(Ts) +r—3s), YO<r<t, (6.18)

s<r

where m(%;) (resp. h(%F;)) stands for the mass (resp. the height) of the real tree T, and T =
(Ts, s > 0) is a T-valued Poisson point process on [0,t] whose intensity is given below. If v = 2,
the Poisson point process T has intensity 2« N. To describe the intensity of ¥ for v € (1,2), we
introduce the probability distribution P, on T which is the law of a random tree obtained by gluing
a family of trees (7;,¢ € I) at their root, with Y ;c; d1,(dT’) a T-valued Poisson point measure with
intensity a N[dT, see also [1, Section 2.6] for more details on P,. If v € (1,2), the Poisson point
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process ¥ has intensity [;° am(da)P,(dT") where 7 is the Lévy measure associated with 1 given by
(4.10). In particular, we get the equality in law

/OH(U) floru,br) dr under Njoe|H(U) = t] 2 /Ot f(Sr H,) dr. (6.19)

In the proof of [14, Lemma 4.6], see Section 8.6 and more precisely (8.20) therein, it is proven that
S is a stable subordinator with Laplace transform E [exp(—\S;)] = exp(—yx/7A'=1/7). We shall
determine the intensity of the Poisson point process h(T) = (h(%T;), 0 < s < t). If v = 2, h(%) has
intensity 2x N[h € dz|. But, by [17, Eq. (14)], we have N[h > z] = 1/(kz). Differentiating with
respect to z, we get N[h € dz] = k7 271,20 dz, so that (T) has intensity 207?10 do. If
1 <7 <2, h(%) has intensity

/OOO ar(da) P,(h € dz).
Using (4.13) and the definition of P,, we have P, (h < z) = e oNb>zl — o=Car™/070 Gpeape
C = (k(y —1))"Y0=Y_ Differentiating with respect to x, we obtain
Caz=/0=1 —Caz-1/(—1
=1
Since m(da) = C'a™'77 da where C" = ky(y — 1)/T(2 — ), see (4.10), we deduce that for z > 0

Pa(f) S dSL’) = 1{m>0} dx.

o0 cc’ o0 —1/(v—
/0 ar(da) P,(h € dz) = po— (/0 al g/ (D) g=Caa™ /07D da) 1(p>0y do
OO (2 —7) dz
- ’y _ 1 {Z‘>0} 12
e B
- 7 . 1 {SC>0} 12

In all cases, for v € (1,2], we get that h(T) is a Poisson point process with intensity (v/(y —
1))27?1 401 dz. Intuitively, this implies that S, is of order r7/0=Y while H, is of order r as 7 — 0
which, together with (6.19), explains the form of the integral test (6.14).

Our goal now is to show that
/f(x“’/(“’_l),x) dr =00 = /f(St, H)) dt =00 a.s.
0 0

under the assumptions of Proposition 6.9. To do this, we adapt the proof of Theorem 1 in [19]
which gives a necessary and sufficient condition for the divergence of integrals of Lévy processes.
We first consider the case f(x,u) = z®h(u).

Lemma 6.12. Let a > —1+ 1/ and h € B (R,) be nonincreasing such that [, h(x)z*/0~Y dz
= 00. We have that a.s.

/th(Ht) dt = oo,
0

Proof. Define the first passage time for a > 0

T(a) =inf {t >0: H; > a}. (6.20)
Since t +— H; is right-continuous, we have
{T(a) >t} ={H;, < a}. (6.21)

Furthermore, since Hy = 0, it holds that a.s. T(a) > 0 for every a > 0.
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Set F(t) = [¢S¥ds. Clearly F(t) < oo a.s. if > 0. If =1 +1/y < a <0, we have

E[F() = [ "E[S%] ds = E[SY] / "1 g

where we used that S is stable with index 1 — 1/4. Now the last integral is finite because of the
condition on «, and

B[St = oo [ B[S A =

OO 1 yzl=1/y \ _1_
/ eI N Sla gy o
0

L) I(fel)
Thus, we get F(t) < oo a.s. for &« > —1 + 1/v. Furthermore, F' is nondecreasing and we have
1 1
/ SOh(H,) dt = / h(H,) dF(1). (6.22)
0 0

We shall need the first and second moment of F'(T(a)) for a > 0. Using (6.21), we have that

E[F(T(a))] = /0 TE[S)Lizwen] dt = /0 TE[S{Lpea] d.

On the other hand, notice that for every s € [0, 0], it holds that oo s = o is the total mass and
Hy s = b is the total height. Thus, using Bismut’s decomposition, we have

N [Ua+11{h<a}} = /(;OO N [UUaUl{Ho,U<a}

where we recall that conditionally on H, under Nfoe], U is uniformly distributed on [0, o] and
(000, Hou) conditionally on {H(U) = t} is then distributed as (S;, H;). We deduce that

E[F(T(a))] = N [0 Ly

H(U) = ] dt = /0 TE[S)Lin<a] dt, (6.23)

:g(O)/O g~/ N@ [Ua+11{h<a}] da
— 4(0) / 2 VYNO [ < o] da
0

_ % N [p-1-or/(r-D] glar/r-1), (6.24)
o v —

where we disintegrated with respect to o for the second equality and used the scaling property
(4.14) of the height process for the third. Recall that b has finite moments of all orders under
N, so that E[F(T(a))] is finite for all a > 0. Next, set

o H(s)
Z% = / ds / on dr.
0 0 ’

It follows from Lemma 6.11 that under N@ (b, Z™) is distributed as (z'~'/7h, 22+2~1/7Z™) under
N . Recall that o > —1 + 1/~. Thus, using Bismut’s decomposition as in (6.23), we have

E[F(T(a)?] = 2E UOOO S 1, a dt/ot 5 ds}

H(U)
=2N l0a+11{h<a} / oy d?“]
0 b
= 2N [0 1 {h<q) 27|

=2g(0) [ 2 NG [0y 2] o
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14 1 2-1
- 29(0)/0 e TVIND [0 g 2™ 2T da

g(0) (1) [—2(40a7/(v=1)) ym] , 2(1+av/(v—1)
=——N =z *VY 6.25
o N ma , (6.25)
where the last term is finite by (6.12). Combining (6.24) and (6.25) and using Cauchy-Schwartz
inequality, we deduce that there exists some finite constant C' > 0 such that for all a,b > 0

}1/2 }1/2

E [F(T(a)F(T(h))] <E|[F(T(a))’] "E[F(T())*] " < CE[F(T()|E[F(T®))].  (6.26)

For i € N, put T; = T(27%), h; = h(27) and Ah; = h;y1 — h;. Notice that the sequence
(T,, i € N) is nonincreasing and Ah; > 0. Set V,, = > | F(T;)Ah;_;. Notice that E[V},] is finite
as E[F(T(a))] is finite for all @ > 0. By (6.26), we have

E[V?] =Y E[F(T)’| (A1)’ +2 Y E[F(T)F(T))] Ah; 1 Ahy
i=1 1<i<j<n
< CY E[F(T)) (Ahia)* +2C > E[F(T)]E[F(T))] Ak Ahy
i=1 1<i<j<n
n 2
=C (ZE [F(Ty)] AhH) = CE[V,].
i=1

Therefore, we get that limsup, E[V,]* /E[V2] > 0. By [32], it follows that

P (limsup —2 > 1) >0 (6.27)
sup v 2 : :
Using (6.24), notice that for some finite constant C' > 0, we have
—i+1
/1 plter/(= |dh | < Z 9—itl 1+oc*y/(*y 1) /2 + |dh($)|
0 i=1 -

_C’ZE )] Ahiy = C lim E[V,]. (6.28)
Since [} '+*/0=1 |dh(x)| > —h(1) + (1 +ay/(y — 1)) f) h(x)2*/O0~"D dz = oo by assumption,
it follows from (6.28) that lim, ., E[ ] = oo. Thus, using (6.27) and the fact that V}, is nonde-

creasing, we deduce that lim,, ., V,, = oo with positive probability, that is
P <ZF AR = ) > 0. (6.29)

i=1

Since h is nonincreasing, we have

[ hH)AF@) = 3 by (F(T) - F(T). (630

A summation by parts gives

Zn: hioy (F(Tiz1) = F(T3)) = F(To)ho — F(Ty)hy + Z F(T;)Ah;_1. (6.31)
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But, notice that

To
F(T)hy = F(T </ h(H,) dF(t / h(H:) dF (1),
0
Together with (6.30) and (6.31), this yields
F(To)ho + 3 F(T Ahll<2/ H,) dF(t).
i=1

It follows from (6.29) that [y ° S*h(H,)dt = ["° h(H,) dF(t) diverges with positive probability.

Finally, since the event {[,S¢h(H;)dt = oo} is Foi-measurable where (F;);>o is the filtration
generated by the Poisson point process T, Blumenthal’s zero-one law entails that fol S¥h(H,) dt
diverges with probability 1. O

Lemma 6.13. Let 3 > —1 and g € B,([0,1]) be nonincreasing such that [, g(z?/0=1)2f dr = .
We have that a.s.

/Q(St)Ht’B dt = oo
0

Proof. The proof is similar to that of Lemma 6.12 and we only highlight the major differences.
Define the first passage time T(a) = inf{t > 0: S; > a} for every a > 0. Since S is a stable
subordinator, we have a.s. T(a) > 0 for every a > 0. Set F(t) = [y H? ds. Notice that F(t) < oo
a.s. if 8> 0. If =1 < B < 0, then using that H, > s, we have a.s. F(t) < [{s°ds < co. To
compute the first moment of F'(T(a)), use Bismut’s decomposition as in (6.23) to get

E[F(T(a))] = E [ /0 T H s, dt]
=N [O‘l{o<a}f)6}
— 4(0) / ¢ LB A=1/7)-1 N (1) %] de
0

- 9(0) +1)(1=1/5
N e o R U (0:32)

Setting
b o H(s) 8
Zs = / ds HY dr
0 0 ’

and using Bismut’s decomposition as in (6.23) and the fact that under N@, (h, Z 2) is distributed
as (z171/7h, 23D+ Z0) under N by Lemma 6.11, we have

oo L
E [F(T(a))ﬂ =2E [/0 Hfl{st<a} dt/(] HE ds]
H(U)
=2N [01{0<a}bﬁ/ HEU dT‘|
0 ;
— 2g(0) / VNG (00 78] de
0

= a(0) (1) [B 78] ,2B+1)(1-1/7)
S CESTTEVEA [07Z8] a0, (6.33)
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where N [hﬁZg} < 00 by (6.12). Combining (6.32) and (6.33), we see that the estimate (6.26)
holds. The rest of the proof is similar to that of Lemma 6.12 (with h; replaced by g; = ¢(27)). O

We can now finish the proof of Proposition 6.9. Let f € B,([0, 1] xR,) be of the form f(x,u) =
g(x)uP or f(z,u) = 2*h(u) with g, h nonincreasing and such that [, f(27/0~Y z)dz = co. By
Lemmas 6.12 and 6.13, we have that, in the cases « > —1 4+ 1/y and § > —1, a.s.

/of(st’ H;) dt = oo. (6.34)

Now suppose that a < —1+1/7. Since h is nonincreasing and satisfies f, ()20~ do = oo,
there exists a constant C' > 0 such that A > C on some interval (0,¢). Thus, we have

/Oth(Ht)dt > 0/053 dt,

where the last integral diverges a.s. by Lemma 6.13 as [, 2*7/0~Y dz = co. Similarly, if 8 < —1,
there exists a constant C” > 0 such that g > C” on (0, ¢). Thus, we have

/g(St)Hf dt > C'/Hf dt,
0 0

and the last integral diverges by Lemma 6.12 since [,2” dz = co. This proves that (6.34) holds
for all a, 8 € R.

Combining (6.19) and (6.34), we deduce that

H(U)
No; Zy <oo] =N la; O’/ flovy, Hyp) dr < oo
0

00 H(U)
= / N [a; a/ flowy, Hep)dr < oo|H(U) = t] dt
0 0

:/(]OOIP’<St/(]tf(ST,Hr)dr<oo> dt = 0.

It follows that N-a.e. Z; = oo. Disintegrating with respect to o and using the scaling property
from Lemma 6.11, we get

0=N[Z < 00| = /0 N@ [Z; < o0] m,(dz) = /0 NO [27177;, < 00| m(da).

Consequently, dz-a.e. on (0,00), we have NV [Z; < oc] = 0. Suppose that f(y,u) = g(y)u’ with
g nonincreasing. Then, under NV Z, is equal to 27~/ [} ds [ g(xo,s)HP dr and we get
that

1 H(s)
z— N [/ ds/ g(wo, ) HP dr < 0o
0 0 ’

vanishes dz-a.e. on (0,00). Moreover, this function is nonincreasing in x as g is nonincreasing.
Hence it is identically zero. In particular, taking z = 1 yields N® [Z < oo] = 0, and thus
T (f) = 400 as. as Z; under NW is distributed as W3"(f). The same argument applies if we
suppose that f(y,u) = y*h(u) instead. This completes the proof.
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7. PHASE TRANSITION FOR FUNCTIONALS OF THE MASS AND HEIGHT

Recall that 7" is a BGW(&) conditioned to have n vertices (with n € A) and ¢ satisfies (£1)
and (£2)’, with the sequence (b,,n € N*) in (4.1), and that 7 is a stable Lévy tree with branching
mechanism () = kA\?. In this section, we study the limit of

ug;|Wf(""—H<Q

for functions f € B(T x R, ) continuous on (T\ Ty) x Ry but that may blow up as either the mass
or the height goes to 0.

7.1. A general convergence result. We now give a first convergence result for general func-
tionals that may blow up. Recall from (2.5) the definition of Ty. Notice that A9 (Ty x Ry) =0
and U (Ty x R, ) = 0.

Proposition 7.1. Assume that £ satisfies (£1) and (€2). Let f € B(T x Ry) be continuous on
(T\ To) x Ry and a, B € R with yo + (v — 1)(6 + 1) > 0 be such that

|£(T,7)| < Cm(T)*H(T)?, for allT € T\ Ty and r > 0, (7.1)

for some finite constant C' > 0. Then Vr(|f|) is a.s. finite and we have the convergence in
distribution

A =2 3 Jrals (2 B w)) S ). (72)

wET” °

We also have the convergence of all moments of order p > 1 such that p(ya+ (y — 1)5) > 1 — 7.

Proof. By Corollary 4.10, we know that A, 9y W+ in the space M(T x Ry). In particular, the
sequence (A9, n € A) is tight (in distribution) in M(T x R,), and applying [30, Theorem 4.10],
we have

1nf supE[1 A A (K€)] =0, (7.3)
Keknen
where K is the set of all compact subsets of T x R,. We start by showing that
[1(:%% :lé_EE [AS (K°)] = 0. (7.4)

Let K € K. Using the inequality + < 1 Az 4+ 2v1 Az with z = A5 (K¢) > 0 and the Cauchy—
Schwartz inequality, we get that

E [A; (K9] < E[1A A (K] + /E [A3(1)2] E[1 A A (K°)]. (7.5)
Since A (1) < 22p(r) by (4.21), Lemma 4.4 implies that

1/2

(%U(T")>2] < 0.

This, in conjunction with (7.3) and (7.5), proves (7.4).

sup E {AZ(I)QF/Q <supE

neA neA

Let «, 8 € R such that ya + (v — 1)(8 + 1) > 0. We consider the space S =T x R, with the
metric p((T,7), (T",7")) = daup(T,T") + |r —r'| and Sy = Ty x R4, so that (S, p) is a Polish metric
space and Sy is a closed subset of S. We shall consider 05 = ({0},0) € Sy as a distinguished point.
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We shall construct a family of functions § on S satisfying assumptions (H1)-(H4) of Appendix A
in order to apply Proposition A.10. Let (Jx, & € N) be a positive increasing sequence such that
2y =10 < (y—1)+ (ya+ (y —1)B) A0 for all k& € N. Define for every k € N

fu(Tr) = (m(T)% va(T)7%) (B(T)% v §(T)™ ) and  gu(T,r) = m(T)*B(T)° fu(T,7),

forall T € T\ Ty and r > 0 and fr = gx = +00 on Ty x R,. The functions f; and g, are positive
and continuous on (T \ Ty) x Ry. We define § = {1} U {fk, gx: k € N}. Therefore assumptions
(H1) and (H2) are satisfied. Notice that p((T,7),Sy) = daup(T,Ty). Let € > 0 and M > 0. By
(2.4), deup(T,{0}) < M implies that h(T) < 2M and m(7) < M. Similarly, by Lemma 2.2,
dcup (T, Ty) > € implies that h(T") > ¢ and m(7T") > €. Therefore, we have the inclusion

{(T,r) € S: p(T,7), S0) > e, p((T,r),05) < M} C {T € T: h(T) € [e,2M], m(T) € [e, M]} xR,

Since fr and gy are clearly bounded away from zero and infinity on the latter set, assumption (H3)
is satisfied. Moreover, fi/fr+1 and gx/gr41 are continuous and bounded on S§ = (T \ Tp) x R,
for every k € N. Recall that p((T,r),Sy) = dgup (T, To). Therefore, as p((7',7),Sp) — 0, we have
h(T)Am(T) — 0 by Lemma 2.2. It follows that fi.(T,7)/ fx+1(T,7) = 0and gx(T,r)/gr41(T,7) — 0
as p((T,r),Sy) — 0+. Recall the notation F*(f) from (H4). We deduce that fri1 € §*(fx) and
Gr+1 € §(gr) for k € N*. We also have that 1/f; is continuous and bounded on S§ and that
1/fi(T,r) = 0 as p((T,r),Sy) — 0+. This implies that f; € F*(1). Therefore, assumption (H4)
is satisfied.

In order to apply Proposition A.10 to the sequence of measures (A?, n € A) and the family
§, we shall check that the sequence (A7, n € A) is tight (in distribution) in the space Mz (see
Appendix A for the definition of Mg). Thanks to Proposition A.4, the sequence (A9, n € A) is
tight in the space My if and only if (f A2, n € A) is tight in M(S) for all f € §. Let f € §. Notice
that for every T'€ T \ Ty and r > 0, we have

f(T,r) < > m(T)*n(T)
1<ij<2

for aq, as, B1, B2 € R such that va; + (v — 1)(5; + 1) > 0 holds for every 4, j € {1,2}. Therefore,
by Lemma 5.2, we have for some p > 1 small enough

supE[A; (f)P] < oo and supE[A; (fP)] < oo. (7.6)
neA

neA

The first bound gives that (A.3) holds for all f € § by the Markov inequality. Recall that K
denotes the set of compact subsets of T x R,. Moreover, with ¢ such that 1/p + 1/¢ = 1 and
K € IC, using Holder’s inequality, we get
E A7 (f1xe)] < E [A7 (L) E LA ()]
Using the second bound in (7.6) and (7.4), we deduce that
Il{lgcilelgﬂi [A° (f1ke)] = 0.

Thus (A.4) holds for all f € §. According to Proposition A.4-(i), we get that the sequence
(A, n € A)istight (in distribution) in Mz(T xR, ). Now apply Proposition A.10 and Proposition
A.9 to get that

A (th) 5 W (ih)

for every h € Cp(T x R;) and every f € §. Let f € B(T x R, ) satisfying the assumptions of
Proposition 7.1. Consider f = g; and h = f/g;. Notice that (7.1) implies that A is continuous on
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T x R,. Since fh = ¢g1h = f except possibly on Sy = Ty x Ry and A9 (Sy) = U(Sy) = 0, we
deduce that the convergence in distribution (7.2) holds.

Let p > 1 such that p(ya+ (v —1)8) > 1 —+. There exists ¢ > p satisfying the same inequality.
Since |f(T,7)| < Cm(T)*h(T)?, we get that

bl—l—ﬁ q
supE[|A2 ()9 < CYsupE | 7.7
R4 < Crsw | (2 X ) | &
where the right-hand side is finite by Lemma 5.2. Thus, the sequence (|A5(f)[P,n € A) is
uniformly integrable and the convergence of the moment of order p of A (f) towards the moment
of order p of W (f) readily follows from (7.2). O

7.2. Phase transition for functionals of the mass and height. We refine the convergence
result given in Proposition 7.1 for functionals depending only on the mass and height and describe
a phase transition in that case.

We start with a technical lemma which is a consequence of the well-known de La Vallée Poussin
criterion for uniform integrability.

Lemma 7.2. Let v be a nonnegative finite measure on (0,1] and f € C.((0,1]) be nonincreasing,
belonging to L*(v) and such that lim, o, f(x) = +o0o. Then there exists a positive function f* €
C+((0,1]) which belongs to L*(v), such that f/f" is bounded on (0,1] and lim, o, f(x)/f(x) = 0.

Proof. We may assume without loss of generality that f does not vanish anywhere in (0, 1] and
that v is a probability measure. By the de La Vallée Poussin criterion (see [13, §22]), there exists
a convex nondecreasing function F': R, — R, such that lim;_,, F'(t)/t = co and F o f € L'(v).
In fact, up to considering F'+ 1 instead, we can and will assume that F' does not vanish anywhere.
Since F' is convex on R, it is continuous on (0,00) and it follows that F o f is continuous on
(0,1]. Moreover, F o f is clearly nonincreasing by composition. Further, since lim, o f(z) = o0
and lim;_ ., t/F(t) = 0, we get lim,_,o f(z)/F o f(x) = 0. The function f/F o f being continuous
on (0, 1] with a finite limit at 0, it is bounded on (0, 1]. Setting f* = F o f, the conclusion readily
follows. U

We now give the main result of this section. Recall that the notation W3 (g(z)h(u)) stands for
U (f) where f(z,u) = g(z)h(u). For g € B(R,), define

g*(x) = sup |g(y)| forall x € (0,1]. (7.8)
z<y<1
Theorem 7.3. Assume that £ satisfies (£1) and (£2).

(i) Let B € R and g € B([0,1]) be such that g is continuous on (0,1] and satisfies
/g (70" DaP d < oo. (7.9)

Then we have the convergence in distribution and of the first moment

b1+’8 mean m
e D RN AL G <‘ ‘) ArEmean, pm (g (z)u’) (7.10)

weTn°
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where W3 (|g(x)[u?) is a.s. finite and integrable.
(ii) Let a € R and h € B(R,) be such that h is continuous on (0,00) and satisfies h(u) = O(e*")
as u — oo for somen € (0,7) and

/ 2OV () dz < oo. (7.11)
0
Then we have the convergence in distribution and of the first moment

bn n|l4+a bn n (d)+mean m o

X (Geatad) ) I w ) (712

where U3 (2% |h(u)|) is a.s. finite and integrable.
(iii) Let f € B4([0,1] x Ry) be such that

/f (707 ) de = (7.13)

Suppose that f is of the form f(z,u) = g(x)u? or f(z,u) = 2®h(u) where o, 3 € R and g, h
are nonincreasing and continuous on (0, 1] and on (0, 00) respectively. Then we have

bn | " | n n (d)+mean
ﬁw; Tulf <—,g (%)) —— (7.14)

Proof. To prove (i), we proceed in three steps.

Step 1 in the proof of (i). Let g € C; ([0, 1]) be nonincreasing and nonzero. Let (G, k € N)
be a decreasing sequence of nonpositive real numbers such that Sy = 0 and limy_.,, 6 = —1. We
define a set of functions § = {hs: k € N} where hy(u) = v’ vV u* for u > 0 and k € N, and
ho(0) = 1 and hy(0) = 400 for £ € N. We shall prove that § satisfies assumptions (H1)—-(H5) of
Appendix A with § = R, equipped with the Euclidean distance and Sy = {0}. Notice that hy = 1
and hy, is continuous on S for every k € N, so (H1) and (H2) are satisfied. Moreover, for every
k € N, the function hy/hjy is continuous on (0, c0) and we have

lim = lim v %+ =0 and lim = lim — =0,
u—0+ hk-}-l(“) u—0+ U—+00 hk+1(u) u—+00 1,

so that (H4) and (H5) are satisfied. Finally, since the set {x € S: p(z,S) > ¢, p(x,0) < M} =
[e, M] is compact and hy, is continuous, it is bounded there and (H3) is satisfied. Define a (random)
measure on R, by setting

by, |72 by,
b n Onp 1
=2 3 frzla () (Soote) (7.15
for every h € B.(Ry). By (4.23), ¢, converges to ¢ in distribution in M(R,) and E [(,(e)]
converges to E[((e)] in M(R,) where ¢ is defined by ¢(h) = U3 (g(2)h(u)). But, since we have
Jo g(2)zPe+DU=10=1 dy < 0o for every k € N, Lemma 5.1-(i) gives

sup E (G (hy)] < sup E [, (u™)] + sup B |G (u¥)| < 00 for all k € N.

neA neA neA

Thus, Corollary A.11 yields the convergence in distribution ¢, 9, ¢ in M5 as well as the conver-
gence of the first moment E [(,(e)] — E[((e)] in Mz. By Proposition A.9, this implies that for
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every g € C4([0,1]) nonincreasing and every 3 > —1, we have

b1+5 mean
e BN CALICH <‘ ‘) (Drmean, gmd (g (). (7.16)

n—oo
weTm°

Step 2 in the proof of (i). Now fix 5 > —1 and define the (random) measure &, on [0, 1] by

b1+5 n
60) = s 3 Iy (), (717

weTm° n

for every g € B, ([0, 1]). Notice that (7.16) can be rewritten as
(d)+mean
&nl9) == €(9) (7.18)

n—oo

for every g € C4([0,1]) nonincreasing, where the measure ¢ is defined by &£(g) = \If$h (g(z)u?).
Moreover, Lemma 5.1-(i) applied with g = 1 gives sup,ca E [£,(1)] < co. As a consequence, by
the Markov inequality, we have lim,_ . sup,ca P (£,(1) > 7) = 0. Since [0,1] is compact, this
means that the sequence of random measures (£,, n € A) is tight in distribution in M([0, 1]), see
[30, Theorem 4.10]. Hence, it is relatively compact by Prokhorov’s theorem as the space M([0, 1])

is Polish for the weak topology. Let & be a limit point Then we have {(g) = @ ¢ (g) for every

g € C,(]0,1]) nonincreasing. Therefore, we get that £ 2 £ and the sequence (£,, n € A) has only
one limit point . Since it is relatively compact, we deduce that &, converges to £ in distribution in
M([0,1]). A similar deterministic argument shows that E [¢,,(e)] converges to E [£(e)] in M(]0, 1]).

Step 3 in the proof of (i). Let 5 > —1 and g € B([0,1]) be continuous on (0, 1], nonzero
and such that [, g*(z)z@FVA"YM)"1dy < co. Set gy = 1. If lim, ,0g*(x) = oo, set g, =
g*+ 1. If ¢g* has a finite limit at 0 (which is then positive), then there exists ¢ > 0 such
that [, z75¢*(2)aP+V0-1/9=1dz < co. We also have lim, o, 27°¢*(x) = oo and the function
x +— x °g*(x) is continuous and nonincreasing. In that case, we set gi(x) = z7°¢*(x) + 1 for
x € [0,1].

Define a set of functions § = {gr: k € N} as follows: for every k > 1, set gry1 = gy which is
given by Lemma 7.2 applied with the finite measure v(dz) = 2#*V1=1/)=1qz By construction,
the sequence § satisfies assumptions (H1)-(H4) of Appendix A with S = [0,1], So = {0} and
§ (gx) ={gj: 7 > k} (notice (H3) is automatically satisfied as [0, 1] is compact). Notice that, by
Lemma 7.2, for every k € N, the function g is continuous and nonincreasing on (0, 1] and satisfies
Jo gr(2)2BHDA=1M=1 4z < 00. So, by Lemma 5.1, we get that

supE [€,.(gr)] < oo forall k € N.
neA

Now, Corollary A.11 applies and yields, in conjunction with Proposition A.9, the convergence in
distribution and of the first moment

En(grl £(grl)

for every k € N and ¢ € C([0,1]). Now apply thls with £ = 1 and ¢ = g/g;. Notice that ¢g1¢ = ¢
except possibly on Sy = {0}. Since &,(Sy) = £(Sy) = 0, we deduce that

Eulg) L ¢ (g).

n—oo

) (d +mean

This, together with Proposition 6.9, proves (i).
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The proof of (ii) is quite similar so we only indicate the changes compared with (i).
Step 1 in the proof of (ii). Let h € C.(R") be nonincreasing and nonzero.

Taking a decreasing sequence (g, k € N) of nonpositive real numbers such that ag = 0 and
limg o ap = —1 4+ 1/ and defining a set of functions § = {gx: k& € N} by gi(x) = 2%, we can
show that for every h € C, (R, ) nonincreasing and every o > —1 + 1/, we have

bn o b n (d)+mean m a

Step 2 in the proof of (ii). Fix @ > —1 + 1/ and define the (random) measure &, on R, by

I T (7.20)

24«
n weTmn°

for every h € BL(R;). Notice that (7.19) can be rewritten as
d)+mean
u(h) 55 €(h) (7:21)

n—oo

for every h € C,(R,) nonincreasing, where the measure ¢ is defined by &(h) = U (z%h(u)).
Moreover, Lemma 5.1-(ii) applied with A = 1 gives sup,,ca E [£,(1)] < co. As a consequence, by
the Markov inequality, we have lim,_,o sup,ca P (§,(1) > 7) = 0. Fix 8 > 0 and let » > 0. Then,
using the inequality 1j ) (u) < (u/r)? for every u > 0, we get

1
sup B [€,([r, 00))] < — sup E [ AT (2u”)] .
neA " neA
Notice that the right-hand side is finite by Lemma 5.2 since ya + (y — 1)(8 + 1) > 0. We deduce
that

inf supE[£,(K°)] =0,

CR+ peA
where the infimum is taken over all compact subsets K C Ry. By [30, Theorem 4.10], this means
that the sequence of random measures (&,, n € A) is tight in distribution in M(R; ). Following
the end of step 2 for property (i), we are then able to show that &, converges to £ in distribution
in M([0,00)) and E [¢,,(e)] converges to E [(e)] in M ([0, 00)).

Step 3 in the proof of (ii). Let h € B(R.) be continuous on (0,00) such that h* is non-
zero, [y h*(u)u®/0=Ydu < oo and h(u) = O(e*") as u — oo for some n € (0,7). Set hy = 1
and define a positive function hy € B, ((0,00)) in the following way. If lim, ,oh*(u) = oo, set
hy = h* 4+ 1 on (0,1]. If h* has a finite limit at 0 (which is positive as h* is non-zero), then
a > —1+ 1/v, and thus there exists ¢ > 0 such that [, u=*h*(u)u®’/0~Y du < co. Moreover, we
have lim,_,ou"°h*(u) = oo and the function u — uw=°h*(u) is continuous and nonincreasing. In
that case, we set hy(u) = uh*(u) + 1 for u € (0,1]. Now extend hy to a continuous function
n (0,00) such that hy(u) = exp(u™) for u > 2 for some 7, € (n,7). Define a set of functions
§ = {hx: k € N} as follows. Let (n, & > 2) be an increasing sequence in (71,7). Recall that
a > —1 4 1/ so that the measure v(du) = 1y (u)u®/0~Vdu is finite. For every k > 1,
define hyy1 € B4 ([0,00)) continuous and positive on (0,00) and such that hyy1 = hY on (0, 1],
with A} defined in Lemma 7.2, and hyyi(u) = exp(u™+1) for w > 2. In particular, we have
limg o4 hy(x)/hiy1(x) = limg_ o0 h(x)/hys1 () = 0. Then, it is easy to check that the sequence §
satisfies assumptions (H1)-(H5) of Appendix A with S =R, Sy = {0} and §*(hy) = {h;: j > k}
for k € N. Notice that, by Lemma 7.2, for every £ € N, the function hj is continuous and
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nonincreasing on (0, 1] and satisfies [, hy(u)u®/0~Y du < co. So, by Lemma 5.1 (i) and (ii), we
get that for all k£ € N, there exists a finite constant C} > 0 such that

SUE [€0(h1)] < sup E €0 (ko) + CuSUDE [ (exp(u) 1z < o0

neA neA

Now, Corollary A.11 applies and yields, in conjunction with Proposition A.9, the convergence in
distribution and of the first moment

Enlhnf) ———= §(hif)

for every k € N and every f € C(R,). Taking k =1and f = h/hy proves (7.12) as &,(Sy) =
£(So) = 0. This, together with Proposition 6.9, proves (ii).

(d +mean

To prove (iii), notice that by (4.23) we have the convergence in distribution 4™ % U in
the space M([0,1] x Ry). Thanks to Skorokhod’s representation theorem, we may assume that
we have a.s. convergence. Thus, we get that a.s. for every k € N,

. by |7‘| b "
Therefore, we have for k € N
.. by |77 np mb
1 f— —Zh(r") | > k). .22
minfTs 2, I |f< n(w>>_ 7 (f A K) (7.22)

But by the monotone convergence theorem and Proposition 6.9, we have that a.s. limy_, \Ifgl-h (fA
k) = URO(f) = co. Thus, (7.14) follows from (7.22) by letting k go to infinity. O

Recall from (4.16) that we excluded the leaves to be able to consider functions taking infinite
values on trees whose height vanishes. In the particular case where the function only blows up as
the mass goes to zero, one can get rid of this restriction.

Remark 7.4. Recall the definition of the random measure A™"° € M([0,1] x R, ):

azvetn) =2 3 Jazls (18, o).

weTm° n

Similarly to the measure A™"° we define the measure A™ € M([0,1] x R,), where the sum is
over all the vertices (the internal vertices and the leaves): for f € B, ([0,1] x R, )

azvn =2 5 i (2, o)

weTm

Let 3 > 0 and g € B([0,1]) such that g is continuous on (0, 1] and f, g*(27/0~V)2# dz < co. By
Theorem 7.3-(i), we have
A (gla)u?) SIS U (g(a)u?). (7.23)

n—oo

Now note that

A o) = s 3 freiviezy’a (4)

weTn
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makes sense when the function g blows up at 0. If 3 > 0, we have A™(g(x)u”) = A™°(g(x)u?)
since h(77) = 0 for every leaf w € Lf(7"). Thus we only need to consider the case f = 0. Then,
using (4.2) and the fact that | Lf(7")| < n and that |7| = 1 for every w € Lf(7"), we have

- 1
> Il <‘ “") <bn~ g (—)
weLf(rm)

n
Since ¢g* is nonincreasing and satisfies [, g*(27/0~Y)dz < oo, it is stralghtforward to check that
g*(x) = o(x*771) as & — 0. Thus, we deduce that lim,,_, AS“( (z)uP) — A™°(g(z)u’) = 0 as.
and in L'(P). As a consequence, the convergence (7.23) still holds if we replace A™°(g(x)u?) by
AT (g(x)u).

AT (g(2)) — ATD=(g())] = -

Similarly, let o > —1+1/~ and h € C(R,) such that h(u) = O(e"") as u — oo for some n € (0, 7).
Then h* is bounded near 0 and necessarily [, 2*7/0~Yh*(z)dxr < co. Thus, by Theorem 7.3, we
have

AT (g0 (1y)) LA pmb (o () (7.24)

n—oo

Furthermore, using (4.2) we have

AR (2h(w)) — AT (@h(u))| =

(T 1A(0)] < b= 47 |1 (0)].

Thus, we deduce that lim, o A (z%h(u)) — A™°(z*h(u)) = 0 a.s. and in L'(P) and the
convergence (7.24) holds for A™ (xh(u)).

Example 7.5. Fix a > —1+1/v and set g(z) = | log(z)|z®. It is clear that [, g(z?/0~Y)dz < oo,
so by Theorem 7.3 we have the convergence in distribution

AR (g(2) = UFO (g()).

n—>oo

But notice that

mb.o b, log(n o by, nilta n
AT (g(a)) = 2loB) s~ ppra b~ ya g

24+« 24+«
n weTn° n weT°

b 1
S > g .

weTm°

= log(n) A7 (2%) —

Again Theorem 7.3 gives the convergence in distribution A™0°(z) 2 U (2%). Therefore, we
get the following asymptotic expansion in distribution

b" n «@ n m [ m (o7
S rl " log | rl 2 log(n) W (2) — W (|log(x)|2) + o(1).

n2+a weTm°

Furthermore, since

lim E [AM(g(x))] = E[07(g(x)] and  lim E [AM°(2)] = E [¢57"(2")],

n—oo n—oo

we get the corresponding asymptotic expansion for the first moment

" E [ >l logwﬂ = log(n) E [5°(2*)| — E [W7"(|log(x)[+*)| + o(1).

24«
n weTn°
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APPENDIX A. A SPACE OF MEASURES

Let (S, p) be a Polish metric space, Sy C S be a closed set in .S and 0 € Sy be a distinguished
point. Denote by K the class of compact sets K C S. For any x € S and A C 9, the distance
from z to A is defined by p(z, A) = inf{p(z,y): y € A}. Let § be a countable set of measurable
[0, +o0]-valued functions on S satisfying the following assumptions:

(H1) The constant function 1 belongs to §.

(H2) All f € § are continuous on S§.

(H3) All f € § are bounded away from zero and infinity on {x € S: p(z,Sy) > ¢, p(x,0) < M}
for every 0 < e < M < 4o00.

(H4) For all f € §, the set *(f) C § of functions f* € § such that f/f* is bounded on S§ and
lim,z 50)—0+ f(2)/ f*(x) = 0 is non-empty.

Note that assumption (H3) is automatically satisfied when S is compact and every f € § is positive
on S§. Notice that (H4) implies that §*(f) is infinitely countable for any f € §. We shall write f*
for any element of §*(f). By (H1) and (H4), we have lim, s,)—0+ 1*(z) = 4+00. By convention,
we take 1* = 400 on Sy and f/f* = 0 on Sy for every f € F. We will occasionally need the
following additional assumption:

(H5) S is compact or infgex sup,c e f(z)/f*(z) =0 for every f € § (and some f* € F*(f)).

Denote by M = M(S) the space of nonnegative finite measures on S endowed with the weak
topology. Recall that (M, dpgy,), with dpy, the bounded Lipschitz distance is a Polish metric space.
If € Mand f € B,(S), we write fu for the measure f(z)u(dz). Set

Mz =M5z(S) ={peM: u(f) <oo forall feF}. (A.1)

For p € Mg, we have u(Sp) =0 (as 1* = 400 on Sy) and fu € M for every f € §. In particular,
since (f/f*)f* = f on S§, we have (f/f*)f*u = fu for every f € §F (and f* € F*(f)). We say
a sequence (i,, n € N) of elements of Mz converges to u € My if and only if (fu,, n € N)
converges to fu in M for every f € §. We consider the following distance dz on Mg which defines
the same topology:

1
dz(p,v) =" o (I Adpr (frp, frv))  for p,v e Mg, (A.2)
keN

where {fx: k € N} is an enumeration of §. (The choice of the enumeration is unimportant, as the
corresponding distances all define the same topology on Mgj.) Notice that the mapping p — fpu is
continuous from My to M. In particular, taking f = 1 gives that every sequence which converges
in Mz also converges in M to the same limit.

We shall see that the space (Mg, dgz) is complete and separable (Proposition A.1) and give
a complete description of its compact subsets (Proposition A.2). The main goal of this section
is to give conditions which allow to strengthen a convergence in M to a convergence in Mj
for deterministic measures (Corollary A.3) and then to extend this result to random measures
(Proposition A.10 and Corollary A.11).

Proposition A.1. The space (Mg, dg) is complete and separable.
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Proof. Let (pun, n € N) be a Cauchy sequence in Mgz. Then, by definition of dz, the sequence
(ftin, n € N) is Cauchy in M for every f € §. By completeness of M, for every f € §, there
exists a measure vy € M such that lim,_,o fp, = vy in M. We claim that v¢(S;) = 0 for every
f € 8. Indeed, fix f € § and f* € §F*(f). As f* € §, we have lim,, o f*i, = vy~ in M. By
(H4), the function f/f* is continuous and bounded on S, so that the mapping © — (f/f*)7 is
continuous on M. In particular, we have lim,_,o fu, = (f/f*)vs in M. On the other hand, we
have lim,, o fun, = vy in M. We deduce that vy = (f/f*)vs. It follows that v¢(Sy) = 0 since

f/f*=0on S.

We set p1 = 14 so that lim, o 1, = ptin M. Let f € §. We shall prove that fu = vy. Consider
the closed set Fy, = {f > 1/k} for k € N*. Notice that F) C int(Fy;1). Therefore, by Urysohn’s
lemma, there exists, for k& € N*, a continuous function x: S — [0, 1] such that yx = 1 on Fj, and
supp(xx) C int(Fgi1). Notice that (xf/f)pn = Xrttn since (f/f) =1 on S§ and p,(Sp) = 0. Since
Xk and xx/f are continuous and bounded, the mappings v +— x;v and v — (xx/f)v are continuous
from M to itself. We deduce that yppu = lim, oo Xepin = imy oo O/ f) fren = (x/f)ve in M.
Letting k go to infinity, as xx T 1 on S§ since f is positive on S, and u(Sy) = v¢(Sy) = 0, we
deduce (using the monotone convergence theorem) that p = (1/f)v; and thus fu = vy. Since this
holds for all f € §, this proves that u € Mz and that lim, o fu, = fur in M for every f € §.
Thus M3 is complete.

Next, define F) = {x € S: p(x,Sp) > 1/n, p(x,0) < n}. We will identify the space M(F)) with
the subset of M consisting of the measures whose support lies in F,. Notice that F) is a Polish
space (when endowed with the topology induced by p) as a closed subset of the Polish space S.
In particular, the set M(F!) endowed with the bounded Lipschitz distance is a Polish space. Let
f € §. By (H3), the functions f and 1/f are both continuous and bounded on F, so it is easy to
check that the topology induced by dz on M(F)) coincides with the topology of weak convergence,
i.e. the one induced by dgr. Therefore, the space (M(F)),dz) is separable. To prove that M3z
is separable, it suffices to show that Mg is equal to the completion of U,>; M(F,) with respect
to dpr. Notice that F, C int(F),,). Therefore, by Urysohn’s lemma, there exists a continuous
function x,,: S — [0,1] such that x/, = 1 on F, and supp(x,,) C int(F),. ;). Let u € Mgz and set
pn = Xoit.- Then it is clear that u, has support in F) ., and thus p € M(F),, ;). Moreover, for
every f € § and every nonnegative h € Cy(S), we have

pn(hf) = p(hfxn) —— w(hf)

by the monotone convergence theorem, since x;, T 15 and ju(Sp) = 0. This proves that (fi,,n € N)
converges to fu in M for every f € §, thus dg(u,, #) — 0. This concludes the proof. O

A set of measures A C M is said to be bounded if sup ¢ 4 (1) < 0o. We now give a character-
ization of compactness in M.

Proposition A.2. Let A C Mj5.

(i) A is relatively compact if and only if for every f € §, the family {fu: p € A} of finite
measures is bounded and tight.

(i) If (H5) holds, then A is relatively compact if and only if for every f € §, the family {fu: p €
A} is bounded.
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Proof. To prove (i), start by assuming that A is relatively compact. For every p € Mz and every
f €3, set F(p) = fp. This defines a continuous mapping Fy: Mg — M. It follows that the set

Fy(A) ={fp: pe€ A}
is relatively compact in M, i.e. it is bounded and tight by Prokhorov’s theorem.

Conversely, let us assume that {fu: p € A} is bounded and tight in M for all f € F. Let
(tn, n € N) be a sequence in A. Since the sequence of measures (fu,, n € N) is bounded and
tight, it is relatively compact in M for every f € §. Therefore, by diagonal extraction, there exists
a subsequence still denoted by (fpu,, n € N) which converges in M for every f € §. By the same
argument as in the proof of Proposition A.1, it follows that (p,, n € N) converges in Mz. This
proves that A is relatively compact.

To prove (ii), assume that (H5) holds. The statement for a compact S follows immediately since
a family of finite measures on a compact space is always tight. Now assume that .S is not compact
and let A C Mz such that the family {fu: p € A} is bounded for every f € §. To prove that
A C Mj is relatively compact, it is enough to show that {fu: u € A} is tight and to apply the
first point. Let f* € §*(f), which appears in (H5), and K C S be a compact subset. For every
w € A, since u(Sp) = 0, we have

J @ ) = [ f@)1s(@) pld)

@ e e
= [ F s ) )
/

< u(f) Sup -

It follows that

sup [ f(e) pldde) < sup u(f*) sup -,
neAJKe HEA Ke f
and taking the infimum over all compact subsets K € K yields, thanks to (H5)
inf sup [ f(z)p(dx) =0,

KeK }LEA K¢

i.e. the family {fu: p € A} is tight. This completes the proof. O

The next result gives sufficient conditions allowing to strengthen convergence in M to conver-
gence in Ms.

Corollary A.3. Let (u,, n € N) be a sequence of elements of Mz converging in M to some
we M. Then p € Mgz and lim, o pt, = i in Mg under either of the following conditions:

(i) (fpn, n € N) is bounded and tight for every f € §.
(ii) (H5) holds and (f ., n € N) is bounded for every f € §.

Proof. Either condition guarantees that the sequence (p,, n € N) is relatively compact in Mz by
Proposition A.2. Let i € Mz be a limit point of (j,, n € N). Then there exists a subsequence, still
denoted by (i, n € N) such that lim,, o i, = f1 in Mgz. In particular, we have lim,,_, p, = fi in
M. Since lim,, o pt, = p in M by assumption, it follows that i = p. This proves that p € Mg
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and that lim,, . i, = p in Mg since the sequence (u,, n € N) is relatively compact in Mz and
has only one limit point . 0J

The compactness criterion of Proposition A.2 yields a tightness criterion for random measures
in Mg

Proposition A.4. Let = be a family of Mz-valued random variables.

(i) The family = is tight (in distribution) in Mg if and only if for every f € §, the family
{f&: & € =} is tight (in distribution) in M, i.e. if and only if
lim supP ({(f) >r) =0 (A.3)
T—00 565

and

(A4)

1nf supE[l/\/ f(zx

K eez
(ii) If (H5) holds, then = is tight (in distribution) in Mg if and only if (A.3) holds for every
fes.

Proof. To prove (i), assume that = is tight in M. Since the mapping Fy: o — fp is continuous
from Mz to M for every f € § and since tightness is preserved by continuous mappings, it follows
that the family F;(Z) = {f¢: £ € E} is tight in M for every f € §. The result now follows from
Theorem 4.10 in [30].

Conversely, assume that (A.3) and (A.4) hold for all f € § and let ¢ > 0. Let {fx: k € N*} be
an enumeration of §. We set for k € N*:

Cp=k <1 +  sup ||fj/fk||oo> ;
J<k, €T (f5)

with the convention that sup() = 0. For every k € N*, there exists r, > 0 and a compact set
K} € K such that

supB (6(fi) > 1) < o and supE[m / fk<x>§<dx>]g
K

¢ex ¢ex

15
Cr2F
Set

A=) {M € Mg: u(fi) <y and /K fr(z)p(dz) < C’ik}

keN*
Then for every £ € =, we have

PeA)=F <E|k e N*, &(fy) > ry or /Kc fr(x)é(dx) > i)

k
1

Z]P) fk >Tk+zp</ fk >F>§2€,
keN* keN* k

where in the last inequality we used that

P([ S > &) =P (1 [ a0 > 5 ) <GB fia [
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Thus, to prove that = is tight in M3, it remains to show that A. C My is relatively compact.
We have sup,,c 4. pt(fr) < rx < 0o so that the family {fyu: p € A.} is bounded for every k € N*.
Moreover, for every ¢ > k such that f; € §*(fi), we have

1
sup [ fu(e)nlde) < i/ flle sup [ fi)p(de) < -
] peAe i

ueAs J K5 ?
This implies that inf e sup,ea. [xe fr(z)p(dr) < 1/ifor i > k such that f; € §*(fr). Since there
are infinitely many such i, we deduce that
Jnf s fr(z)p(dz) = 0,
i.e. the family {fru: p € Ac} is tight. As this holds for all £ € N*, we get by Proposition A.2
that A. is relatively compact in My (in fact, A. is compact as it is closed). This proves (i). The
proof of (ii) is similar. O

We now give a sufficient condition for tightness in the space Mj.

Corollary A.5. Assume that (H5) holds. Let Z be a family of Mgz-valued random variables such
that for every f € §,
sup B [£(f)] < oo. (A.5)

¢es
Then Z is tight (in distribution) in Msz.

Proof. By the Markov inequality, we have for every f € §,

supP(E(f) > 1) < %s;;gl@ (/)] — 0.

ce= r—00

This proves that Z is tight in Mg by Proposition A.4-(ii). O

We denote by B (resp. Bz) the Borel o-field on (M, dpy,) (resp. on (Mg, ds)). We also denote
by B, = {ANMjz: A€ B} the trace o-field of B on M.

Lemma A.6. We have By = By,.

Proof. Step 1. We first prove that Mz is a Borel subset in M. For g € B, (S), we consider
the function ©, defined on M by ©4(u) = gu. Denote By = B,(S) N BL(S) the set of bounded
nonnegative measurable functions defined on S. We follow the proof of [9, Theorem 15.13] to
prove that, for every g € By:, O, is a measurable function from M to M. Denote by F = {g €
Byt ©g4 is measurable}. The function ©, is continuous for g belonging to Cpy = Cp(S) N C(5).
Furthermore, the set F is closed under bounded pointwise convergence: if g, — ¢ pointwise,
with g € By and (g,, n € N) a bounded sequence of elements of F (i.e. sup,cy ||gnll,, < 00),
then O©,(p) = lim,,_,» Oy, (1) by dominated convergence and thus g belongs to F. An immediate
extension of [9, Theorem 4.33] gives that By, C F.

We then deduce that the function 6,: M — [0,4+o00] defined by 6,(p) = gu(1l) = p(g) is
measurable for every g € B,y, and as g € B, (S) is the limit of g An € B,y as n goes to infinity,
we deduce by monotone convergence that 6, = lim,_, 0yr,, and thus 6, is measurable for every
g € B(S). By definition of Mg, we have that Mg = Nz 07" (Ry), and thus My is a Borel
subset in M.
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Step 2. We prove that for every u € Mg, the mapping v — dgz(u,v) defined on Mgz is By~
measurable. Let g € B,y. Since the function ©, is measurable from M to itself by step 1, it is
B/B-measurable. By definition of the trace o-field, it follows that the mapping ©, from Mg to
M is B, /B-measurable. Let f € §. By monotone convergence we get that Oy = lim,,_,o O an,
and thus Oy is By, /B-measurable.

Since u € Mg, we have fu € M and the mapping 7 +— dpr(fu, 7) from M to R is continuous
hence B-measurable. Thus, by composition we get that the mapping v +— dpr(fu, fv) from Mz
to R is By-measurable. Finally, the mapping v — dz(u, v) from Mgz to R is By, -measurable as a
sum of Bi-measurable mappings.

Step 3. We conclude the proof of the lemma. For every 1 € Mz and every € > 0, we have
B(p,e) ={v e Mz: dz(n,v) <e} € By,

by Step 2. Since M5 is a Polish space, every open set is the countable union of open balls and it
follows that every open set lies in By,. Hence we get By C Bi,.

Conversely, notice that the identity mapping from (M3, dz) to (Mg, dpL) is continuous. There-
fore, if V' C M is an open set, V N M5z is open in (M3, dgy,) hence also in (M3, dg). In particular,
we have VN My € Bz. Since this is true for every open set V' C M, we deduce that By, C Bz. U

The following two results are a direct consequence of Lemma A.6.

Corollary A.7. Let & be a M-valued random variable such that a.s. £(f) < oo for every f € §.
Then & is a Mg-valued random variable. Conversely, if £ is a Mg-valued random variable then &
s also a M-valued random variable.

Corollary A.8. Let £ and ¢ be Mgz-valued random variables. Then the following conditions are
equivalent:

(i) €2 ¢ when viewed as Mgz-valued random variables.
(ii) € 2 ¢ when viewed as M-valued random variables.
(iii) €(h) 2 C(h) for every h € Cy(S).

(iv) E(fh) 2 C(fh) for every h € Co(S) and f € §.

We now characterize convergence in distribution of random measures