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UMR5251, F-33400 Talence, France
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Abstract. Affine registration of one or several brain image(s) onto a common

reference space is a necessary prerequisite for many image processing tasks, such as

brain segmentation or functional analysis. Manual assessment of registration quality is

a tedious and time-consuming task, especially in studies comprising a large amount of

data. An automated and reliable quality control (QC) becomes mandatory. Moreover,

the computation time of the QC must be also compatible with the processing of massive

datasets. Therefore, an automated deep neural network approaches appear as a method

of choice to automatically assess registration quality.

In the current study, a compact 3D convolutional neural network (CNN), referred

to as RegQCNET, is introduced to quantitatively predict the amplitude of an affine

registration mismatch between a registered image and a reference template. This

quantitative estimation of registration error is expressed using metric unit system.

Therefore, a meaningful task-specific threshold can be manually or automatically

defined in order to distinguish usable and non-usable images.

The robustness of the proposed RegQCNET is first analyzed on lifespan brain

images undergoing various simulated spatial transformations and intensity variations

between training and testing. Secondly, the potential of RegQCNET to classify images

as usable or non-usable is evaluated using both manual and automatic thresholds.

During our experiments, automatic thresholds are estimated using several computer-

assisted classification models (logistic regression, support vector machine, näıve bayes

and random forest) through cross-validation. To this end we used expert’s visual

quality control estimated on a lifespan cohort of 3953 brains. Finally, the RegQCNET

accuracy is compared to usual image features such as image correlation coefficient and

mutual information.

Results show that the proposed deep learning QC is robust, fast and accurate to

estimate affine registration error in processing pipeline.
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1. Introduction

A wide variety of processing pipelines have been proposed in the literature to make

automatic brain image analysis possible. Spatial and intensity normalizations are

usually necessary prerequisites for functional (Cook et al. 2006) (Song et al. 2011) or

structural studies (Wei et al. 2002) (Chaogan & Yufeng 2010). These are commonly

achieved using suitable algorithms designed for image-to-template registration (Tustison

et al. 2014) (Jenkinson et al. 2012) (Collins et al. 1994), inhomogeneity correction

(Tustison et al. 2010) (Sled et al. 1998), or intensity normalization (Nyúl et al. 2000)

(Friston et al. 1995). A visual human inspection of the data after each step of the

processing pipeline is commonly employed to detect possible problems in the outputs.

This visual quality control (QC) is unfortunately not feasible when a huge amount of

imaging data is involved (typically more than several thousands scans). Consequently,

with the rise of large-scale datasets, recent efforts are dedicated to the development

of reliable QC methods to detect pipeline failures (Alfaro-Almagro et al. 2018) (Kim

et al. 2019). Although out of the scope of the current study, an increasing interest in

registration QC is noticed in radiation therapy (Brock et al. 2017) (Paganelli et al. 2018).

Fig. 1 summarizes the context of the current paper. Our study focuses on the

image registration step, this step is a necessary prerequisite to co-register one or several

brain scans onto a common space defined by a template image. In practice, mis-

registered data are inherently encountered and thus a registration QC is needed (red

box in Fig. 1) (Avants et al. 2011). A manual assessment is generally employed for

QC and thus automatic methods have been developed to achieve this task. However,

such manual strategy is time consuming. Random forest (Hessam et al. 2019) and

convolutional neural network (CNN) (Eppenhof & Pluim 2018) have been proposed to

quantify registration accuracy for both parametric (i.e., rigid, affine) and deformable

registrations in chest CT scans. In the context of neuroimgaging, several methods have

been proposed for MRI brain registration to template space. In (Fonov et al. 2018)

a cross-entropy loss function is used as an objective function to train a deep neural

network on a serie of 2D control images. This method produces qualitative estimation

(i.e., good or not good) of rigid registration accuracy. In (Bannister et al. 2019) and

(Dubost et al. 2019), a DICE metric between transformed and original organ contours is

proposed as a surrogate of registration quality. The use of an indirect metric (i.e., DICE)

estimated on an auxiliary task (i.e., segmentation) does not provide direct quantitative

information on registration accuracy. Moreover, this information can be corrupted

by segmentation error that is a complex task by itself. Finally, these three methods

produce metrics (binary decision or auxiliary DICE) that cannot express registration

error in metric unit system. Consequently, no meaningful task-specific threshold on the

misalignment amplitude can be defined by a user.

Our contribution is four-fold:

(i) A compact 3D CNN is introduced to quantitatively estimate the quality of an affine

alignment between a brain MRI and a template. The proposed QC network, referred
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to as RegQCNET, is quantitative and can be expressed using metric system units.

Moreover, an efficient and robust training procedure, based on simulated affine

transformations, is proposed. The inputs of the designed CNN are: the registered

image and the reference template. Besides, it is demonstrated that RegQCNET

meets computational requirements related to massive processing.

(ii) The robustness of the proposed RegQCNET is analyzed on lifespan brain images

undergoing various simulated spatial transformations and intensity variations

between training and testing.

(iii) The potential of RegQCNET to classify images as usable or non-usable is

evaluated using both manual and automatic thresholds. Automatic thresholding is

evaluated using several computer-assisted classification models (logistic regression,

support vector machine, näıve bayes and random forest) through a cross-validation

procedure. To this end we used expert’s visual quality control estimated on a

lifespan cohort of 3953 brains as a gold standard.

(iv) The RegQCNET accuracy is compared to usual image features such as image

correlation coefficient and mutual information.

Figure 1: General principle of the proposed Quality Control (QC) on image-to-template

registration. The current study aims at providing a QC module (red bock) designed

to detect misaligned images. Note that this module can potentially be fed into an

additional correction module (outside the scope of the current study).
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2. Materials and Methods

2.1. Datasets

Figure 2 details the processing sequence designed to generate the datasets involved in

our experiments. Throughout this study, we used 3 datasets — 1 for training and 2 for

testing — referred to as “Simulated training dataset”, “Simulated testing dataset” (these

last two were built using a lifespan dataset, for which synthetic affine transformations

were applied) and “Real testing dataset”. First, all the native images have been

downloaded from public databases. While considered as the native images, these images

may contain specific preprocessing (i.e. NDAR includes defacing). Afterwards, all these

images went through our preprocessing pipeline as described in the following.

Figure 2: Processing sequence designed to generate datasets involved in experiments.

Each generated dataset is displayed as a gray block. Image processing tasks are reported

with green blocks.

2.1.1. Preprocessing of input images. To ensure spatial and intensity normalization

between images, we used a preprocessing pipeline. Consequently, all the scans involved

in this study were first preprocessed beforehand using the volBrain pipeline (Manjón

& Coupé 2016). This pipeline is based on the following steps: i) denoising (Manjón

et al. 2010), ii) inhomogeneity correction (Tustison et al. 2010), iii) affine registration

into the template space (181×217×181 voxels at 1×1×1 mm3, the ICBM 152 Atlas

template was taken as reference for registration (Fonov et al. 2011)), iv) manual human

assessment of the registration as described in (Coupé et al. 2017) (Coupé et al. 2019), and
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v) tissue-based intensity normalization (Manjón et al. 2008). Finally, image intensities

were normalized using z-scoring using the mean and standard deviation from the

complete image field-of-view.

2.1.2. Simulated training and testing datasets. 360 T1-weighted MRI of cognitively

normal subjects were randomly selected under constraints from the dataset used in our

previous BigData study on normal aging (Coupé et al. 2017). This dataset was based

on 9 datasets publicly available (C-MIND, NDAR, ABIDE, ICBM, IXI, OASIS, AIBL,

ADNI1 and ADNI2). From 1 to 90 years we selected 2 females (F) and 2 males (M) for

each age (i.e., 2F and 2M of 1 year old, 2F and 2M of 2 years old and so on). Therefore,

we obtained a balanced group with 50% of each gender uniformly distributed from 1

to 90 years. This balanced selection is done to limit bias introduction in training and

testing datasets and to make our QC method robust to different age and gender.

All the 360 MRIs underwent a human quality control. Consequently, all these

images were considered as correctly aligned with negligible residual registration

mismatch. The RMSE was thus considered to be equal to 0. We are aware that these

images are not perfectly aligned and that negligible errors might remain. Considering

these remaining errors equal to epsilon or zero do not impact the rest of the study.

At this point, we have a set of 360 scans including spatial and intensity

normalizations. This set was split into two separate datasets (stratified/no redundant

data): 300 scans were used to build the “Simulated training dataset” and 60 scans were

used to build the “Simulated testing dataset”. This split was done under contraint to

ensure well-balance of age and gender between both.

The “Simulated training dataset”. One can expect that the training set has to be

populated densely enough in terms of both anatomical inter-subject variability and

simulated spatial deformations. During our experiments, RegQCNET was trained

using N simulated scans (randomly selected with replacement from the 300 above-

mentioned scans). These scans were simulated using affine spatial transformations.

In order not to favor large or small transformations, we force the RMSE distribution

resulting from the simulated transformation to be uniform. We tested N -values in

the following set: {100, 1000, 10000}. Note that the obtained training set may include

several transformations for each patient when N > 300.

The “Simulated testing dataset”. This set was composed of 500 scans (randomly

selected with replacement from the 60 subjects selected to build the testing data). In

this way, several transformations were applied to each patient (≈ 8 in average).

Simulated spatial affine transformations. To train and test the proposed method, 3D

spatial transformations — composed by translation, rotation and scale variations —

were simulated. Ranges for X-, Y-, Z-translations, rotations around X-, Y-, Z-axis, X-,

Y-, Z-scaling factors are detailed in the experimental section below. The RMSE was
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calculated for each simulated transformation. Let MAX_RMSE be the upper limit of the

simulated RMSE. A set of spatial transformations with a uniform RMSE distribution

in the interval [0, MAX_RMSE ] voxels was built. To this end, 3D spatial transformations

composed by translation, rotation and scale variation, were simulated as follows:

• X-, Y-, Z-translations were randomly selected separately in the interval [−100, 100]

voxels,

• Rotations around X-, Y-, Z-axis were randomly selected in the interval [−45, 45]

degrees,

• X-, Y-, Z-scaling factors were randomly selected in the interval [0.5, 1.5] (a factor

of 1 being equivalent to no scaling),

These transformations were then applied using b-spline interpolation to the images

(see Fig. 4).

2.1.3. The “Real testing dataset”. The performance of the proposed RegQCNET was

evaluated on a massive database (N = 3953) including cognitively normal patients,

patients with Alzheimer’s Disease (AD) and Mild Cognitive Impairment (MCI). These

3953 MRIs were the remaining subjects from the large-scale cohort used in (Coupé

et al. 2019) after removal of the 360 cognitively normal subjects used to build the

simulated training and testing dataset. Consequently, the real testing dataset contained

pathological alterations unseen in the training dataset. A visual assessment was done by

checking screen shots of one sagittal, one coronal and one axial slice in middle of the 3D

volume using the volBrain reports (Manjón & Coupé 2016). Therefore, a human-based

QC was available for all the scans and was used as qualitative ground truth.

2.2. Proposed RegQCNET

2.2.1. Implemented quantitative metric. In this study, we aim at quantifying the

residual misalignment (noted T ) between two given images via the Root Mean Square

Error criterion (RMSE) computed as follows (Maurer et al. 1997):

RMSE =
1

|Ω|

∑

~r∈Ω

√

u(~r)2 + v(~r)2 + w(~r)2 (1)

~r = (x, y, z) being the voxel coordinates, Ω the image coordinates domain, |Ω| the

number of voxels in Ω (|Ω| = 181 × 217 × 181 in the current study) and T = (u, v, w)

the voxelwise 3D residual displacement vector field.

The proposed RegQCNET is thus designed to predict registration RMSE using two

given images: a reference template and a registered one.

2.2.2. Implemented deep neural network. Figure 3 describes the architecture of the

proposed quantitative CNN-based QC for image-to-template registration. Input images

were first down-sampled by a factor 4 (note that a down-sampling factor 2 was also tested
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and discussed). We used a convolutional encoder followed by a 3 regression layers per

resolution level using a basis of 24 filters of 3×3×3 (i.e., 24 filters for the first layer, 48

for the second and so on). Each block was composed of batch normalization, convolution

and ReLU activation. We employed the following parameters: batch size = 1, optimizer

= Adam with default parameters, epoch = 100, loss = Mean Square Error (MSE) and

dropout = 0.5 after each block. We used 2 input channels (the down-sampled T1w and

the template images).

Figure 3: Architecture of the proposed RegQCNET for image-to-template registration.

Each block is composed of batch normalization, convolution and ReLU activation. The

number of input channels (NC) as well as the number of 3× 3× 3 filters are indicated

on the top of each block.

2.3. Experimental setup.

2.3.1. Assessment of RegQCNET on the “Simulated testing dataset”. For this dataset,

RegQCNET estimations were challenged against real RMSEs by evaluating R2, slope

and Y-intercept of a linear regression. While the R2 provides information about the

precision of the proposed QC, the slope and Y-intercept quantifies its accuracy. We

compared results obtained using different sizes for the training dataset (i.e., with

N=100, 1000 and 10000, respectively).

To assess the robustness of our method to inaccuracy in image normalization and

inhomogeneity correction we performed two experiments. First, we used a given uniform

intensity shift to simulate normalization inconsistencies between images. Second, we

used a non-uniform intensity bias to simulate inaccurate inhomogeneity correction

within images.

Robustness against uniform intensity shift. To evaluate the robustness of RegQCNET

to incorrect image normalization, RegQCNET was challenged against uniform intensity

variation applied on all scans included in the testing dataset. For this purpose,
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the test scans were identically disturbed as follows: Let MAX_INTENSITY be the

maximum intensity of an image I, and J be the image I after application of the

spatially homogeneous intensity bias. For all voxel location ~r, the intensity I(~r) was

multiplied by a factor 2, while being restricted in the interval original intensity range

[0, MAX_INTENSITY ]:

J(~r) =

{

I(~r)× 2 if I(~r)× 2 < MAX_INTENSITY

MAX_INTENSITY otherwise
(2)

Robustness against non-uniform intensity bias. To evaluate the robustness of

RegQCNET to error during inhomogenety correction, RegQCNET was challenged

against a non-uniform intensity bias applied on all scans included in the testing dataset.

For this purpose, the test scans were identically disturbed as follows: Let ~r0 = (x0, y0, z0)

be the voxel coordinates at the central position of an image I, and K be the image I

after application of the spatially heterogeneous intensity bias. For all voxel location ~r,

the intensity I(~r) was weighted by a voxel-wise exponential decay as follow:

K(~r) = I(~r)× exp

(

−
‖~r − ~r0‖

2
2

2σ2

)

(3)

Practically, intensities in voxels located close to the central position ~r0 were less

disturbed than those located further. In the scope of this study, we used σ = 60.

2.3.2. Assessment of RegQCNET on the “Real testing dataset”. First, the 3953 brain

images of the “Real testing dataset” were visually inspected to build a gold standard.

13 mis-registered brain images were detected and considered as a “negative case” for

the rest of the manuscript. The “Simulated training dataset” with N = 10000 was here

employed for training. The accuracies, area under the ROC curve (AUROC), sensitivity,

specificity, positive predictive values (PPVs) and negative predictive values (NPVs) were

recorded for the following experiments:

Manually defined threshold. RegQCNET was used to differentiate scans with RMSE

higher than a user-defined threshold noted δ (δ was expressed in millimeters). We tested

δ-values in the following set: {5, 10, 20, 50} mm. The AUROC was computed using the

method detailed in (Cantor & Kattan 2000).

Automatically defined threshold. A 10-fold-stratified cross-validation was used to

evaluated the performance of RegQCNET when using an threshold automatically tuned

by machine learning algorithm. The dataset of 3953 brains was randomly partitioned

into training (90%) and testing (10%) subsets (making sure that at least one positive

and one negative case were included in each subset). For this purpose, the following

classification algorithms were applied using the commercial software Matlab (©1994-

2020 The MathWorks, Inc.)/“Statistics and Machine Learning” toolbox: logistic
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regression (LR), support vector machine (SVM), näıve bayes (NB) and random forest

(RF). Default hyper-parameters in Matlab implementations were employed for RF and

SVM (RF: Classification method/100 bagged decision trees, SVM: supports sequential

minimal optimization/box constraint/linear kernel) (Kohavi 1995). The cross-validation

steps were repeated 1000 times with shuffling of the folds. Finally, average metrics,

standard deviations and confident intervals were calculated.

Comparison with usual image features. Our automatically defined threshold experi-

ment was also conducted using correlation coefficient (CC) and mutual information

(MI) for comparison.

2.4. Hardware and implementation details.

We evaluated the computational burden of our proposed method using an Intel Xeon

E5-2683 2.4 GHz (2 Hexadeca-core) with 256 GB of RAM equipped by a GPU Nvidia

Tesla V100 with 16 GB of memory. The computation time during the testing session

was evaluated without and with the use of the GPU. Our implementation was using

Tensorflow 1.4 and Keras 2.2.4.

3. Results

Fig. 4 shows typical images generated using synthetic affine transformations. Middle

transversal, coronal and sagittal slices are reported for several 3D volumes. The template

used as reference for affine image registration (see section 2.1.1) is displayed in the first

row. The second (scan #1) row shows 3D brain images from the original lifespan

dataset (RMSE considered equal to 0 mm). Lower rows (scan #[3− 5]) show examples

of 3D scans obtained after the application of simulated spatial transformations of various

amplitudes, as described in section 2.1.2. Note that several images underwent different

masking (see (f) on the second row) due to defacing (e.g., NDAR dataset).

3.1. Assessment of RegQCNET on the “Simulated testing dataset”.

Fig. 5 reports the precision and the accuracy of RegQCNET obtained on the “simulated

testing dataset” (as described in section 2.1.2) using a training dataset of 100 (5a), 1000

(5b) and 10000 (5c) scans. As one can expect, the precision (rated by the R2 of the linear

fit) improves when the size of the training dataset increased. The R2 converged slowly

toward 1 along with the size of the training dataset increased (R2 equal to 0.84, 0.95

and 0.99 were obtained using 100, 1000 and 10000 images, respectively). The accuracy

(rated by the slope and the Y-intercept of the linear regression) followed the same trend.

As long as N increased, the slope and the Y-intercept converged toward optimal values

(i.e., 1 and 0, respectively).

Fig. 6 shows the impact uniform intensity shift and spatially varying intensity bias

(as described in section 2.1.2) on the performance of the proposed RegQCNET. While
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Template

(a) (b) (c)

Scan #1

RMSE=0

(d) (e) (f)

Scan #2

RMSE=10

(g) (h) (i)

Scan #3

RMSE=21

(j) (k) (l)

Scan #4

RMSE=41

(m) (n) (o)

Scan #5

RMSE=99

(p) (q) (r)

Figure 4: Typical images generated using synthetic affine transformations. Transversal

(left column), coronal (middle column) and sagittal (right column) central slice are

reported for the template scan (a-c) and for different subjects/various RMSE values.

Each generated image is referred to as “Scan #[1− 5]”.
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a uniform intensity shift did not deteriorate the precision (R2=0.99) and the accuracy

(slope=0.98/Y-intercept=-1.08) (6c) this observation did not hold when a non-uniform

bias (6e): in this last case, both precision (R2=0.98) and accuracy (slope=0.89/Y-

intercept=7.54) were slightly worse.

3.2. Assessment of RegQCNET on the “Real testing dataset”.

Fig. 7 shows RMSE estimated by RegQCNET on the 3953 tested brain MRIs.

Transversal cross-section of mis-registered images, as detected by visual inspection, are

reported above and below the graph. These images can be visually compared to the

corresponding template cross-section reported in Fig. 4a. In two images (referred to as

case #9 and case #11 in Fig. 7) of patients with Alzeihmer’s Disease, very large lateral

ventricle slightly disturbed RegQCNET (estimated RMSE < 20 mm). In the 9 other

images, huge mis-registrations are observable, which have been detected by RegQCNET

(estimated RMSE > 50 mm).

3.2.1. Manually defined threshold. Table 1 reports classification scores of RegQCNET

using different manually defined thresholds. A classification threshold δ =

10 mm provided best scores: accuracy=99.6%, AUROC=1.0, sensitivity=99.6%,

specificity=100.0%, PPV=100.0%, and NPV=44.8% (note that NPV=44.8% means

here that 16 good-registered images were considered as mis-registered). Good- and mis-

registered images were thus correctly identified in 3924/3940 and 13/13 brain images,

respectively.

3.2.2. Automatically defined threshold. The RegQCNET output served as a metric

in all tested machine learning classifiers (see Table 2). In particular, using a logistic

regression classifier, QC scores were: accuracy=96.0%, AUROC=1.0, sensitivity=95.9%,

specificity=100.0%, PPV=97.5%, and NPV=93.7%.

3.2.3. Comparison with usual image metrics. Very poor scores were obtained using

CC (best classifier=näıve bayes) and MI (best classifier=logistic regression): a good

detection of correctly registered images was achievable by accepting a large amount of

false-negative cases, as shown in Fig. 8. Conversely, a perfect detection of mis-registered

images was only achievable by accepting a dramatic impact on the sensitivity (i.e., 1.7%

and 30.9% for CC and MI, respectively, as shown in Table 2).

4. Discussion

The proposed method aims at quantifying the amplitude of the spatial affine mismatch

between a brain MRI and a template. To this end, we used RMSE as criterion to

evaluate affine registration quality. Our experimental results demonstrate that the

proposed RegQCNET outperforms traditional intensity-based criteria. Moreover, using
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Figure 5: RMSE estimated by RegQCNET on the simulated dataset using training set

composed of 100 (a),1000 (b) and 10000 (c) scans. Estimated RMSEs are plotted against

real RMSEs and the R2, slope and Y-intercept of a linear regression are reported in the

insert of each graph.

automatic threshold, our approach delivers reproducible results and minimizes operator

dependency.

It can be observed that good scores were obtained thanks to the use of i) a

well-balanced training population covering the entire lifespan and ii) a well-balanced

distribution of the simulated transformations (i.e., uniform distribution of the resulting

RMSEs). It is interesting to highlight that comparable precision and accuracy were

obtained on simulated data (as described in section 2.1.2) using a subsampling factor 2

on the images (instead of the subsampling factor 4 used in the presented results).

One can distinguish two potential contributions on the apparent image-to-template
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Figure 6: Results obtained on the simulation experiment when an intensity perturbation

is applied on the testing dataset. A training dataset composed by 10000 scans (without

intensity bias) was used. The axial slice of a brain scan is reported before (a) and after

application of an uniform (b) and a non-uniform (d) intensity bias. Estimated RMSEs

are plotted against real RMSEs for the uniform (c) and the non-uniform (e) bias, and

the R2, slope and Y-intercept of a linear regression are reported.

mismatch: (i) the effective registration error that we aim to quantify and (ii) the

anatomical variability between the actual image and the template (in particular,

the size of the brain varies a lot along the lifespan). Any unobserved spatial

transformations/brain shapes/image artifacts during the training step may disturb in

turn the proposed quantitative CNN-based QC. This phenomenon can be observed

in Fig. 5a where an insufficiently populated training dataset was employed (100

images). In turn, a dramatic impact arise on both precision and accuracy. Note

that using correlation or mutual information as registration QC, any intensity variation

between a given brain MRI and the template is attributed to an image mismatch. The

tested machine learning classifiers thus provided very poor results in terms of accuracy,
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Figure 7: RMSEs estimated by RegQCNET on the 3953 brains of the data base. Mis-

registered images (transversal), as detected by visual inspection, are reported above and

below the graph. The corresponding template cross-section is shown in Fig. 4a.
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Figure 8: ROC curves obtained using the three tested indicators (RegQCNET (a), CC

(b) and MI (c)) as binary classifiers (LR (a), LR (b) and NB (c)) for the two image

populations (i.e., correctly registered vs. mis-registered) after 10-fold cross-validation.

sensitivity, PPV and NPV.

Another limitation arise when an intensity perturbation occurs between training

and testing. While a spatially homogeneous bias did not impact the performance

(Fig. 6c), an accurate correction of spatially heterogeneous intensity bias is a necessary

prerequisite to obtain good performance when using RegQCNET (Fig. 6e) (Tustison
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Classification scores: Manually defined threshold

Classification Accuracy AUROC Sensitivity Specificity PPV NPV

threshold (δ) [mm]

5 91.6 0.96 91.6 100.0 100.0 3.8

10 99.6 1.00 99.6 100.0 100.0 44.8

20 99.9 0.92 99.9 84.6 99.9 84.6

50 99.9 0.92 100.0 84.6 99.9 100.0

Table 1: Classification scores of the proposed RegQCNET on the “Real testing

dataset”. Quantitative scores (i.e., computer-assisted) are given, assuming the

qualitative inspection (i.e., visual) as a gold standard. AUROC: area under the ROC

curve; PPV: positive predictive value; NPV: negative predictive value. Accuracies,

sensitivities, specificities, PPVs, and NPVs are shown in percentages. Best performance

are reported in bold font.

et al. 2010) (Nyúl et al. 2000). It has to be noted that our framework was robust to

various degrees of masking due to defacing (e.g., NDAR dataset).

As one can expect, the range of spatial transformations during training has to be

carefully determined. That brings us to an inherent limit of the proposed technique.

Indeed, a RMSE extrapolation outside training limits is intrinsically not possible using

our CNN-based approach and thus a large training range is mandatory. This limitation

could be limited by training RegQCNET on a larger range of RMSE.

Using the proposed CNN-based QC, a few tenth of a seconds (700 ms and 200

ms without and with the use of GPU acceleration, respectively) is needed to provide

a quantitative prediction of the image-to-template alignment accuracy. This perfectly

meets our computational requirements related to the inclusion of this QC step in massive

processing.

While our experimental results demonstrate that a compact network is an efficient

solution to estimate the quality of affine registration between a T1-MRI and a template,

the direct translation of our approach to radiation therapies is not straightforward. In

the context of radiation therapies, several performance indicators and registration QC

solutions have been proposed (see (Paganelli et al. 2012) and (Brock et al. 2017)).

Concerning abdominal organs, it must be underlined that deformations are non-rigid

and thus extension of our framework to non-rigid registration would be required. For

instance, recent works conducted in the abdomen used biomechanical criteria to assess

image registration accuracy (Zachiu et al. 2018) (Zachiu et al. 2020). Such approaches

involve the estimation of mechanical stress, which would occur within the observed

tissues. The calculated stress can then be compared to plausible physiological limits.

We believe that a combination of these two complementary approaches (i.e., the network

and the biomechanical strategies) should be investigated in future studies.
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Classification scores: Automatically defined threshold

Classifier Accuracy AUROC Sensitivity Specificity PPV NPV

RegQCNET

LR 96.0±17.3 1.00±0.06 95.9±17.4 100.0±0.0 97.5±15.7 93.7±24.2

(94.7-97.2) (0.99-1.00) (94.7-97.2) (100.0-100.0) (96.4-98.6) (92.0-95.4)

SVM 94.8±18.8 1.00±0.04 94.8±18.9 100.0±0.0 97.3±16.2 91.3±28.1

(93.4-96.1) (1.00-1.00) (93.4-96.1) (100.0-100.0) (96.1-98.5) (89.3-93.3)

NB 85.7±34.1 1.00±0.04 85.6±34.2 100.0±0.0 86.8±33.9 84.0±36.6

(83.3-88.1) (1.00-1.00) (83.2-88.1) (100.0-100.0) (84.4-89.2) (81.4-86.6)

RF 84.8±30.7 0.94±0.18 84.8±30.8 100.0±0.0 91.3±28.5 76.2±42.9

(75.7-93.9) (0.89-1.00) (75.6-93.9) (100.0-100.0) (82.8-99.8) (63.5-89.0)

CC

LR 0.8±6.0 0.92±0.05 1.7±12.4 100.0±0.0 0.7±8.4 0.6±5.2

(0.4-1.2) (0.92-0.92) (0.8-2.5) (100.0-100.0) (0.1-1.3) (0.2-1.0)

SVM 0.6±3.9 0.76±0.32 0.7±7.4 100.0±0.0 0.9±9.3 0.3±0.0

(0.4-0.9) (0.74-0.79) (0.2-1.3) (100.0-100.0) (0.1-1.7) (0.3-0.3)

NB 0.6±3.2 0.92±0.05 1.1±9.4 100.0±0.0 1.0±9.9 0.3±0.0

(0.4-0.9) (0.91-0.92) (0.4-1.8) (100.0-100.0) (0.3-1.7) (0.3-0.3)

RF 0.3±0.0 0.48±0.06 0.0±0.0 100.0±0.0 0.0±0.0 0.3±0.0

(0.3-0.3) (0.47-0.50) (0.0-0.0) (100.0-100.0) (0.0-0.0) (0.3-0.3)

MI

LR 30.3±40.8 0.97±0.06 30.1±41.0 100.0±0.0 38.9±48.8 20.8±40.2

(27.4-33.2) (0.96-0.97) (27.2-33.0) (100.0-100.0) (35.4-42.4) (18.0-23.7)

SVM 8.9±24.9 0.54±0.44 8.6±24.9 100.0±0.0 12.6±33.2 5.3±21.7

(7.2-10.7) (0.50-0.57) (6.9-10.4) (100.0-100.0) (10.2-15.0) (3.8-6.9)

NB 30.9±41.0 0.97±0.07 30.9±41.3 100.0±0.0 39.8±49.0 21.0±40.4

(28.0-33.8) (0.96-0.97) (28.0-33.8) (100.0-100.0) (36.3-43.4) (18.1-23.9)

RF 27.9±40.2 0.75±0.23 27.6±40.4 100.0±0.0 36.7±48.5 20.6±40.3

(18.9-36.9) (0.70-0.80) (18.6-36.7) (100.0-100.0) (25.8-47.6) (11.5-29.6)

Table 2: Classification scores of the various classifiers on the “Real testing dataset”.

Quantitative scores were derived via evaluation of RegQCNET, correlation coefficient

(CC), and mutual information (MI) (after 10-fold cross-validation) by various machine-

learning algorithms (LR: logistic regression, SVM: support machine vector, NB: näıve

bayes, RF: random forest). Quantitative indicators are shown with standard deviations

and 95% confidence intervals in parentheses. Best performance are reported in bold font

for each indicator.
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5. Conclusion

This study demonstrates that quantitative estimation of registration mismatch between

a brain image and a template can be achieved using 3D CNNs. However, to ensure

the quality of the estimation, the training dataset have to be carefully designed. To

this end, in this study we used: i) a gender and age well-balanced lifespan dataset

covering the entire lifespan, ii) an uniformly distributed amplitudes of random spatial

transformations to cover registration error from 0 to 100 millimeters, and iii) a sufficient

amplitude range of simulated spatial transformations. The proposed tool can be used as

quality control for automated image registration of T1-weigthed brain onto a reference

template.

Future studies will include the extension of the proposed RegQCNET to complex

elastics image deformations, the estimation of 3D RMSEmaps, the impact of incomplete,

noisy and corrupted brains, as well as the extension of the method to cross-contrast and

multi-modal images.
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Coupé, P., Manjón, J. V., Lanuza, E. & Catheline, G. (2019). Lifespan changes of the human brain in

alzheimer’s disease, Scientific Reports 9(1): 3998.

Dubost, F., de Bruijne, M., Nardin, M., Dalca, A., Donahue, K., Giese, A.K. aband Etherton, M., Wu,

O., de Groot, M., Niessen, W. & Vernooij, M. (2019). Automated image registration quality

assessment utilizing deep-learning based ventricle extraction in clinical data, arXiv preprint

arXiv:1907.00695.

Eppenhof, K. A. J. & Pluim, J. P. W. (2018). Error estimation of deformable image registration of

pulmonary ct scans using convolutional neural networks, Journal of Medical Imaging 5(2).

Fonov, V., Evans, A. C., Botteron, K., Almli, C. R., McKinstry, R. C. & Collins, D. L. (2011). Unbiased

average age-appropriate atlases for pediatric studies, NeuroImage 54(1): 313–327.

Fonov, V. S., Dadar, M. & Collins, D. L. (2018). Deep learning of quality control for stereotaxic

registration of human brain MRI, bioRxiv .

Friston, K. J., Ashburner, J., Frith, C. D., Poline, J. B., Heather, J. D. & Frackowiak, R. S. J. (1995).

Spatial registration and normalization of images, Human Brain Mapping 3(3): 165–189.

Hessam, S., Saygili, G., Glocker, B., Lelieveldt, B. P. F. & Staring, M. (2019). Quantitative error

prediction of medical image registration using regression forests, abs/1905.07624.

Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W. & Smith, S. M. (2012). FSL,

NeuroImage 62(2): 782–790.

Kim, H., Irimia, A., Hobel, S. M., Pogosyan, M., Tang, H., Petrosyan, P., Blanco, R. E. C., Duffy,

B. A., Zhao, L., Crawford, K. L., Liew, S. L., Clark, K., Law, M., Mukherjee, P., Manley, G. T.,

Van Horn, J. D. & Toga, A. W. (2019). The LONI QC system: A semi-automated, web-based

and freely-available environment for the comprehensive quality control of neuroimaging data,

Frontiers in Neuroinformatics 13: 60.

Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model

selection, pp. 1137–1143.

Manjón et al., J. V. (2008). Robust MRI brain tissue parameter estimation by multistage outlier

rejection, Magnetic Resonance in Medicine: An Official Journal of the International Society for

Magnetic Resonance in Medicine 59(4): 866–873.
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