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Abstract
In this paper we consider alignment of sparse graphs, for which we introduce the Neighborhood
Tree Matching Algorithm (NTMA). For correlated Erdős-Rényi random graphs, we prove that the
algorithm returns – in polynomial time – a positive fraction of correctly matched vertices, and a
vanishing fraction of mismatches. This result holds with average degree of the graphs in O(1) and
correlation parameter s that can be bounded away from 1, conditions under which random graph
alignment is particularly challenging. As a byproduct of the analysis we introduce a matching
metric between trees and characterize it for several models of correlated random trees. These
results may be of independent interest, yielding for instance efficient tests for determining whether
two random trees are correlated or independent.
Keywords: graph alignment, tree matching, Erdős-Rényi random graphs

Introduction

Graph alignment consists in finding an injective mapping (matching) S ⊂ V (G1)×V (G2) between
the vertex sets of two graphs G1 and G2 such that, for any two matched pairs (i, u), (j, v) ∈
S, then occurrence of edge {i, j} in G1 tends to correspond to occurrence of edge {u, v} in G2.
When this correspondence is exact for all pairs (i, u), (j, v) of matches, then the subgraphs of
G1, G2 induced by their nodes appearing in S are isomorphic. In this sense, graph alignment is
the search for approximate graph isomorphisms. It has many applications, among which: social
network de-anonymization (Narayanan and Shmatikov (2008), Narayanan and Shmatikov (2009)),
analysis of protein-protein interaction graphs (Kazemi et al. (2016), Feizi et al. (2019)), natural
language processing (Bayati et al. (2013)), medical image processing (Lombaert et al. (2013)).

A recent thread of research (Pedarsani and Grossglauser (2011), Dai et al. (2019b) Cullina
and Kiyavash (2016), Ding et al. (2018), Cullina et al. (2019), Fan et al. (2019a), Fan et al.
(2019b)) has investigated the fundamental limits to feasibility of graph alignment in the context
of a natural generative model of correlated graphs, namely the correlated Erdős-Rényi random
graph model ERC(n, p, s). Specifically, it consists of two random graphs G1 and G2 on node
set [n] = {1, . . . , n} obtained as follows. First generate two aligned graphs G1, G′2 with adjacency
matrices A1, A′2 such that for each node pair {i, j}, one has

P
(
A1(i, j) = A′2(i, j) = 1

)
= ps,

P
(
A1(i, j) = 1, A′2(i, j) = 0

)
= P

(
A1(i, j) = 0, A′2(i, j) = 1

)
= p(1− s),

P
(
A1(i, j) = A′2(i, j) = 0

)
= 1− p(2− s),
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and this independently over node pairs {i, j}. GraphG2’s adjacency matrix is thenA2 = MσA
′
2 (Mσ)>,

where Mσ is the matrix associated to a permutation σ chosen uniformly at random from Sn.
Researchers have strived to determine for which parameter values (p, s), assuming n � 1, one

can recover the unknown permutation σ, and therefore the alignment G′2 of G2 with G1. As in
other high-dimensional inference tasks such as community detection, one expects such goal to be
either poly-time achievable, achievable though not in poly-time, or impossible to achieve. The cor-
responding regions of parameter space are usually referred to as the “easy”, “hard” or “Information-
theoretically (IT) impossible” phases for the problem considered.

Cullina and Kiyavash (2016) have shown that it is possible to recover σ if and only if nps −
log(n) −→

n→∞
+∞ , thereby characterizing the “IT-impossible” phase. Ding et al. (2018) have pro-

posed a polynomial-time ’degree profile matching’ algorithm, and proven it to recover σ under the
conditions np ≥ logα(n), 1 − s ≤ log−β(n) for suitable constants α, β > 0, thereby identifying
a subset of the “easy” phase. More recently, Fan et al. (2019a), Fan et al. (2019b) have proposed a
spectral method, and proven it to recover σ under the same conditions.

The result of Cullina and Kiyavash (2016) shows that there is no hope of recovering σ, or in
other words, of perfectly re-aligning G1 and G2, in the case of sparse graphs, that is graphs with
average degree np of order 1. Nevertheless, their result does not rule out the possibility of partially
recovering the unknown permutation σ. For the applications mentioned earlier, it is at the same
time natural to assume that the graphs involved are sparse, and potentially useful to recover only a
fraction of the unknown matches (i, σ(i)).

Objectives and main result

This motivates the present work, whose goal is to show that partial alignment of sparse correlated
graphs is feasible, and to introduce a polynomial-time algorithm for producing such partial align-
ments. Our main result is the proposal of the so-called Neighborhood Tree Matching Algorithm
(NTMA hereafter) together with the following

Theorem I Consider the correlated Erdős-Rényi model ERC(n, p, s), where p = λ/n. For some
λ0 > 1, for all λ ∈ (1, λ0], there exists s∗(λ) < 1 such that, provided s ∈ (s∗(λ), 1], the NTMA
returns a matching S verifying the following properties with high probability:

|S ∩ {(i, σ(i)), i ∈ [n]}| = Ω(n), |S \ {(i, σ(i)), i ∈ [n]}| = o(n). (1)

In words, our algorithm returns a set of node alignments which contains a negligible fraction of
mismatches, and Ω(n) good matches. Our result covers values of λ arbitrarily close to 1, and
thus applies to very sparse graphs. For λ < 1, Erdős-Rényi graphs in our correlated model have
connected components of size at most logarithmic in n, so that there is no hope of recovering a
positive fraction of correct matches. This result can be interpreted as follows. For partial graph
alignment of sparse Erdős-Rényi correlated random graphs, there is an “easy phase” that includes
the parameter range {(λ, s) : λ ∈ (1, λ0], s ∈ (s∗(λ), 1]}.

Paper organization

Description of the Neighborhood Tree Matching Algorithm and the proof strategy for establishing
Theorem I are given in Section 2. Our algorithm relies essentially on a tree matching operation.
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To pave the way for Section 2, we therefore introduce in Section 1 a notion of matching weight
between trees that is key for our algorithm, and can be computed efficiently in a recursive manner.
We further obtain probabilistic guarantees on the matching weights between random trees drawn
according to some Galton-Watson branching processes. These are instrumental in the proof of
Theorem I. However these may be of independent interest. Indeed we introduce in Section 1 a
natural hypothesis testing problem on pairs of random trees, for which we obtain a successful test
based on computation of tree matching weights.

Related work

Most relevant to the present work are the papers Pedarsani and Grossglauser (2011), Dai et al.
(2019b) Cullina and Kiyavash (2016), Ding et al. (2018), Fan et al. (2019a), Fan et al. (2019b)
already mentioned, which also focus on graph alignment in the context of the correlated Erdős-
Rényi model. The main differences between the present paper and these is our focus on sparse
random graph models, with average degree λ = O(1), our treatment of correlation coefficients s
bounded away below 1, and our aim of partial rather than full alignment. Article Cullina et al. (2019)
addresses a notion of partial alignment stronger than ours, and hence requires conditions under
which graphs are not sparse. Makarychev et al. (2014) show that graph alignment is NP-hard to
solve, even approximately. This justifies the search for custom algorithms in a variety of scenarios.
The main methods proposed are: Percolation methods based on some initial seeds, i.e. matched
node pairs provided a priori (Kazemi et al. (2016)). We remark that the matchings returned by our
algorithm could be used as seeds, and then processed e.g. using percolation matching to eventually
obtain an improved matching. Spectral methods are considered in Feizi et al. (2019), Fan et al.
(2019b); Degree profile matching is introduced in Ding et al. (2018); Quadratic programming
approaches are proposed in Zaslavskiy et al. (2009). Message passing methods are introduced in
Bayati et al. (2013). These are structurally similar to our neighborhood tree alignment approach,
which is implemented in a recursive manner and can be seen as a message-passing method. Our
algorithm is however different, and comes with novel theoretical guarantees. Graph alignment is
a special case of the quadratic assignment problem, reviewed in Pardalos et al. (1993). Database
alignment is an important variant of graph alignment, studied in Dai et al. (2019a).

Notations

For a graph G, denote by V (G) its set of vertices, E(G) its set non-oriented edges, and
−→
E (G) :=

{(i, j), {i, j} ∈ E(G)} its set of oriented edges. We use the notations u ∼ v if {u, v} ∈ E(G)

and u → v if (u, v) ∈ −→E (G). The usual graph distance in G will be denoted δG. For v ∈ V (G),
let NG(v) denote the neighborhood of v in G, and degG(v) its degree. For d ≥ 1 we also define
BG(v, d) the set of vertices at (graph) distance at most d from v, and SG(v, d) := BG(v, d) \
BG(v, d − 1) the set of vertices at distance d from v. For a rooted tree T , we let ρ(T ) denote its
root node. For any i ∈ V (T ) \ {ρ(T )}, we let πT (i) denote the parent of node i in T . For d ≥ 1,
we note Bd(T ) = BT (ρ(T ), d) and Ld(T ) = ST (ρ(T ), d). We omit the dependencies in G or T
of these notations when there is no ambiguity.
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1. Tree matching

In this section, we introduce the matching weight between rooted trees and the related matching
rate. We then establish bounds on the matching rate for specific models of random trees. We also
give an application to a hypothesis testing problem on the independence between two trees.

1.1. Matching weight of two rooted trees

Definition 1.1 For any d ≥ 0, let Ad denote the collection of rooted trees whose leaves are all of
depth d. Given two rooted trees T and T ′, let Md(T , T ′) denote the collection of trees t ∈ Ad
such that there exist injective embeddings f : V (t)→ V (T ), f ′ : V (t)→ V (T ′) that preserve the
rooted tree structure, i.e. such that

f(ρ(t)) = ρ(T ), f ′(ρ(t)) = ρ(T ′),
∀i ∈ V (t) \ {ρ(t)}, f(πt(i)) = πT (f(i)), f ′(πt(i)) = πT ′(f

′(i)).

The matching weight of T and T ′ at distance d is then defined as:

Wd(T , T ′) := sup
t∈Md(T ,T ′)

|Ld(t)| , (2)

i.e. the size, measured in number of leaves, of the largest tree inMd(T , T ′).

ρ(T ) ρ(T ′)

1

Figure 1: Example of two trees T , T ′ withW3(T , T ′) = 7, where an optimal t ∈ A3 is drawn in
red.

1.2. Recursive computation ofWd

We shall need the following notations and definitions. For a tree T , for i ∈ V (T ), and d ≥ 0, T (i)
d

is the sub-tree of T re-rooted at i, containing all vertices at distance less than d of i. For i, j ∈ V (T )

such that j → i, T (i←j)
d denotes the sub-tree of T re-rooted at i, containing all vertices at distance

less than d of i but where vertex j has been removed. By definition two vertices not connected by a
path are at distance∞. T (i←j)

d is thus the tree of depth at most d reached by oriented edge j → i.
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ρ(T )

j

i

1

Figure 2: We here show an example of a tree T and its corresponding T (i←j)
2 highlighted in blue.

Definition 1.2 For a given pair of trees T and T ′, for all pair of vertices (i, u) ∈ V (T )× V (T ′),
the matching weight of (i, u) at depth d is then defined as:

Wd(i, u) := sup
t∈Md

(
T (i)
d ,T ′(u)d

) |Ld(t)| . (3)

Moreover, for all pairs of vertices (i, u), (j, v) ∈ V (T ) × V (T ′) such that j → i and v → u, the
matching weight of edges j → i and v → u at distance d is then defined as:

Wd(i← j, u← v) := sup
t∈Md

(
T (i←j)
d ,T ′(u←v)d

) |Ld(t)| . (4)

Remark 1.1 This definition is compatible with the first one in the context of tree matching: one has
Wd(ρ(T ), ρ(T ′)) = Wd(T , T ′). Note that W0(i, u) = 1 and W1(i, u) = max (deg(i),deg(u)).
Similarly,W0(i← j, u← v) = 1 andW1(i← j, u← v) = max (deg(i),deg(u))− 1.

Now fix T and T ′. From these definitions, for all d ≥ 1, (i, u), (j, v) ∈ V (T )×V (T ′) such that
j → i and v → u, by doing a first step conditioning, we obtain the following recursion formulae:

Wd(i← j, u← v) = sup
m∈M(NT (i)\{j} ,NT ′ (u)\{v})

∑
(k,w)∈m

Wd−1(k ← i, w ← u), (5)

where M (E ,F) is the set of all maximal injective (or one-to-one) mappings m : E0 ⊆ E → F ,
where maximal means that they are not restrictions of another one-to-one mapping m̃ : E1 → F
with E1 such that E ⊇ E1 ⊃ E0. In the same way we have

Wd(i, u) = sup
m∈M(NT (i) ,NT ′ (u))

∑
(k,w)∈m

Wd−1(k ← i, w ← u). (6)

Thus matching weights at depth d can be obtained by computing weights at depth d−1 and solving a
linear assignment problem (LAP). Recursive formulae (5) and (6) yield simple recursive algorithms
(see Algorithms 3 and 2 in A) to compute all matching weights at depth d.
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Remark 1.2 The complexity of computing all matching weights at depth d can be obtained as
follows. We use dynamic programming and store the Wk(i ← j, u ← v) in a array of size the
number of pairs (e, e′) where e and e′ are two oriented edges in T ,T ′ (that is, 4×|T |× |T ′|). Each
time we increase k, we solve one LAP for each pair (e, e′). The size of the small matrix on which
the LAP is done does not exceed dmax, the maximal degree in T and T ′. The Hungarian algorithm
solves LAP with cubic time complexity. The time complexity is thus O

(
d× |T | × |T ′| × d3max

)
. As

dmax = O(log n) with high probability, the total complexity is O(dn2 log3 n) where n bounds the
number of nodes in T and T ′.

However for small values of n, the recursive algorithms 3 and 2 are faster, although of com-
plexity O

(
d2dmax

)
, which is not polynomial for d = Ω(log n).

1.3. Matching rate of random trees

Definition 1.3 Consider two random trees T , T ′. Their matching rate is defined as

γ(T , T ′) := inf
{
γ : ∃m, c, d0 > 0,∀x ≥ 0, ∀d ≥ d0,P

(
Wd(T , T ′) ≥ mxγd

)
≤ e−(x−c)+

}
.

(7)

This quantity captures the geometric rate of growth of matching weights with depth d. A sim-

pler alternative definition could be γ̃(T , T ′) := inf

{
γ : P

(
Wd(T , T ′) ≥ γd

)
−→
d→∞

0

}
. However

definition (7) better suits our purpose.

Remark 1.3 By definition, note that for any γ > γ(T , T ′), P
(
Wd(T , T ′) ≥ γd

)
converges to 0

very fast, like O
(
exp

(
−c(γ)d

))
with c(γ) > 1, so that γ̃(T , T ′) ≤ γ(T , T ′).

1.4. Models of random trees

We now describe three models of random trees that are relevant to sparse graph alignment.

GW (λ): We consider two independent Galton-Watson trees T and T ′ with offspring distribution
Poi(λ), λ > 0. We denote (T , T ′) ∼ GW (λ).

GW (λ, s, δ): For δ ≥ 1, consider a labeled tree T rooted at ρ and a tree T ′ rooted at ρ′. ρ′ is
also a node of T , at distance δ from its root ρ. The two trees are generated as follows. First, nodes
in T on the path from ρ to the parent of ρ′ in T have, besides their child leading to ρ′, Poi(λ)
children in T , themselves having offspring in T given by independent Galton-Watson trees with
offspring Poi(λ). Then, the intersection between T and T ′ is a Galton-Watson tree with offspring
Poi(λs), with λ > 0 and s ∈ [0, 1]. Then, to each node in the intersection tree, we attach children
in T \ T ′ and children in T ′ \ T , each number being independent Poi(λ(1 − s)) variables. These
children in turn have offspring in the corresponding tree given by independent Galton-Watson trees
with offspring Poi(λ). See figure 3 for an illustration. We denote (T , T ′) ∼ GW (λ, s, δ).

GW (λ, s): It is the previous model with δ = 0, so that the two correlated trees T and T ′ have
same root ρ. We denote (T , T ′) ∼ GW (λ, s).

6



FROM TREE MATCHING TO SPARSE GRAPH ALIGNMENT

ρ
ρ′

1

Figure 3: Random trees T (blue) and T ′ (red) from model GW (λ, s, δ) with δ = 3.

We now turn to the analysis of matching rates for these models.

Proposition 1.1 Let λ > 1 and s ∈ [0, 1] such that λs > 1. For (T , T ′) ∼ GW (λ, s), letting
γ(λ, s) := γ(T , T ′), we have:

γ(λ, s) ≥ λs.

Proof Let T∩ be the intersection tree between T and T ′. Branching process theory implies that
(λs)−d

∣∣Ld(T∩)
∣∣ converges almost surely to a random variable Z as d→∞, such that P (Z > 0) =

1− p, with p the extinction probability of the branching tree T∩. Since p < 1 when λs > 1, and for
every small enough ε > 0, limd→∞ P

(
Wd(T , T ′) ≥ (λs(1− ε))d

)
≥ 1−p , the result follows.

1.5. Matching rate of independent Galton-Watson trees

Theorem 1.1 Let T , T ′ be two independent Galton-Watson trees from the model GW (λ). Let
γ(λ) := γ(T , T ′). There exists λ0 > 1 such that for all λ ∈ (1, λ0], we have

γ(λ) < λ. (8)

Evaluations of γ(λ) by simulations, confirming the Theorem, are provided in Appendix B.1.

Proof outline The full proof of Theorem 1.1 is detailed in the appendix (C.1), but we here give
the key steps.

We introduce some notations. First, for a tree t, let rd(t) denote the tree obtained by suppressing
nodes at depths greater than d, and then iteratively pruning leaves of depth strictly less than d. When
computing Wd(t, t

′), the only informative sub-trees are precisely rd(t) and in rd(t′), one of these
being empty if t or t′ doesn’t survive up to depth d. In the rest of the paper, we define Td the random
variable rd(T ) where T is conditioned to survive up to depth d.

7
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Consider (T , T ′) ∼ GW (λ). We let Ed (respectively, E ′d) denote the event that tree T (respec-
tively, T ′) becomes extinct before d generations, i.e. Ld(T ) = ∅ (respectively, Ld(T ′) = ∅). We
let pd = P(Ed) = P(E ′d). It is well known that it satisfies the recursion

p0 = 0, pd = e−λ(1−pd−1).

We now establish the following lemma on the structure of Td:

Lemma 1.1 For any λ > 1, Td can be constructed by first sampling the number of children D of
the root ρ(T ) according to distribution

P(D = k) = 1k>0
P(Poi(λ(1− pd−1)) = k)

P(Poi(λ(1− pd−1)) > 0)
=: qd,k,

and then attaching D independent copies of Td−1 to the D children of ρ(T ).

Assume ε = λ − 1 to be small enough . Fix r ∈ (0, 1), let γ = 1 + rε. We first show using
exponential moments that there exist m, c > 0 and d0 > 0 such that for all x > 0

P
(
Wd0

(
Td0 , T ′d0

)
≥ mx

)
≤ e−x+c.

Then we define the random variables

Xd := γ−(d−d0)m−1Wd

(
Td, T ′d

)
.

Then, considering the number D of children of the root in Td (resp. D′ in T ′d ), using the previous
lemma, one can establish, for all x > 0, a recursive formula of the following form

P (Xd ≥ x) ≤
∑
k,`≥1

qd,kqd,`P

∃m ∈M ([k], [`]) ,
∑

(i,u)∈m

Xd−1,i,u ≥ γx

 ,

where the Xd−1,i,u are i.i.d. copies of Xd−1. The union bound yields

P (Xd ≥ x) ≤
∑
k,`≥1

qd,kqd,` min

(
1, (k ∨ `)k∧` × P

(
k∧∑̀
i=1

Xd−1,i,u ≥ γx
))

,

where mp := m(m − 1) . . . (m − p + 1) = m!
(m−p)! . This inequality enables, with a few more

technical steps (see C.1), to propagate recursively the inequality

P (Xd ≥ x) ≤ e−(x−c)+ .

IMPLICATIONS FOR A HYPOTHESIS TESTING PROBLEM

Let a pair of trees (T , T ′) be distributed according to GW (λ) under the null hypothesis H0, and
according to GW (λ, s) under the alternative hypothesis H1. They are thus independent under H0,
and correlated underH1. Consider the following test:

DecideH0 ifWd(T , T ′) < γd, H1 otherwise.

8
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Assume that γ(λ) < γ < λs. Then in view of Remark 1.3 and Theorem 1.1 one has for some
c(γ) > 1:

P
(
decideH1

∣∣H0

)
= O

(
e−c(γ)

d
)
,

thus a super-exponential decay of the probability of false positive (first type error). Conversely, in
view of Proposition 1.1, noting T∩ the intersection tree underH1, one has

P
(
decideH0

∣∣H1, non-extinction of T∩
)

= od(1).

The false negative probability of this test thus also goes to zero, provided the intersection tree
survives. As we will see in the next section, this hypothesis testing problem on a pair of random
trees is related to our original graph alignment problem much as the so-called tree reconstruction
problem, reviewed in Mossel (2001), is related to community detection in sparse random graphs
(see e.g. Bordenave et al. (2015)).

1.6. Matching rate of intersecting trees

Theorem 1.2 Let (T , T ′) ∼ GW (λ, s, δ) with δ ≥ 1 and s ∈ [0, 1]. Let γ(λ, s, δ) := γ(T , T ′).
There exists λ0 > 1 such that for all λ ∈ (1, λ0] we have

sup
δ≥1

γ(λ, s, δ) < λ. (9)

Evaluations of γ(λ, s, δ) by simulations, confirming the Theorem, are provided in Appendix B.1.

Proof outline The full proof of Theorem 1.2 is detailed in the appendix (C.2), but we here give
the key steps. The proof will again be by induction on d, the initial step being established with the
same argument as in the proof of Theorem 1.1. ε = λ − 1 is assumed to be small enough. We fix
r ∈ (0, 1), and we let γ = 1 + rε′. We now work with the random variables

X ′d := γ−(d−d0)m−1Wd

(
Td, T ′d

)
,

conditionally on the event that the path from ρ to ρ′ survives down to depth d in T . Then, consid-
ering D the number of children of ρ in Td, D′ the number of children of ρ′ in T ′d that are in the
intersection tree Td ∩ T ′d , and D′′ the number of children of ρ′ in T ′d \ Td, we establish for all x > 0
a recursive formula of the following form

P
(
X ′d ≥ x

)
≤
∑
k,`≥1

P
(
D′ +D′′ = k,D = `

)
min

(
1, (k ∨ `)k∧` P

(
X ′d−1 +

k∧`−1∑
i=1

Xd−1,i,u ≥ γx
))

,

where the Xd−1,i,u are i.i.d. copies of Xd−1 as defined in the proof of Theorem 1.1. Again, with a
few more technical steps (see C.2), we are able to propagate recursively the inequality

P
(
X ′d ≥ x

)
≤ e−(x−c)+ .

2. Sparse graph alignment

We now describe our main algorithm and its theoretical guarantees. For simplicity we assume that
the underlying permutation σ is the identity.

9
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2.1. Neighborhood Tree Matching Algorithm (NTMA), main result

The main intuition for the NTMA algorithm is as follows. In order to distinguish matched pairs of
nodes (i, u), we consider their neighborhoods at a certain depth d, that are close to Galton-Watson
trees. In the case where the two vertices are actual matches, the largest common subtree measured
in terms of children at depth (exactly) d is w.h.p. of size ≥ (λs)d. However, when the two nodes i
and u are sufficiently distant, previous study of matching rates shows that the growth rate of largest
common subtree will be < λs. The natural idea is thus to apply the test comparingWd(i, u) to γd

for some well-chosen γ to decide whether i is matched to u.
But as the reader may have noticed, testing Wd(i, u) > γd is not enough, because two-hop

neighbors would dramatically increase the number of incorrectly matched pairs, making the per-
formance collapse. To fix this, we use the dangling trees trick: instead of just looking at their
neighborhoods, we look for the downstream trees from two distinct neighbors j 6= j′ of i, and
v 6= v′ of u. The trick is now to compare bothWd−1(j ← i, v ← u) andWd−1(j

′ ← i, v′ ← u)
to γd−1. This way, even if i 6= u and i and u are close by, the pairs of rooted trees that can be
considered will lead to one of the four cases considered and illustrated on Figure 10, that are settled
in the proof of Theorem 2.2.

Our algorithm is as follows, where matching tree weightsWd−1(j ← i, v ← u) are defined in
(4):

Algorithm 1 Neighborhood Tree Matching Algorithm for sparse graph alignment
Input: Two graphs G1 and G2 of size n, average degree λ, depth d, parameter γ.
Output: A set of pairs S ⊂ V (G1)× V (G2).
S ← ∅
for (i, u) ∈ V (G1)× V (G2) do

if BG1(i, d) and BG2(u, d) contain no cycle, and ∃j 6= j′ ∈ NG1(i),∃v 6= v′ ∈ NG2(u) such
thatWd−1(j ← i, v ← u) > γd−1 andWd−1(j

′ ← i, v′ ← u) > γd−1 then
S ← S ∪ {(i, u)}

end
end
return S

Remark 2.1 For d = bc log nc, in view of Remark 1.2, with high probability the complexity of
NTMA is

O
(
|V (G1)| |V (G2)| (log n)2n2c log λd2max

)
+O

(
|E(G1)| |E(G2)| (log n)d3max

)
,

where dmax is the maximum degree in G1 and G2. In the context of Theorems 2.1 and 2.2 the
complexity is then O

(
(log n)4n5/2

)
.

The two results to follow will readily imply Theorem I.

Theorem 2.1 Let (G1, G2) ∼ ERC(n, λ/n, s) be two s−correlated Erdős-Rényi graphs such that
λs > 1. Let d = bc log nc with c log (λ (2− s)) < 1/2. Then for γ ∈ (1, λs), with high probability,

1

n

n∑
i=1

1{(i,i)∈S} = Ω(1). (10)

In other words, a non vanishing fraction of nodes is correctly recovered by NTMA (1).

10
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Theorem 2.2 Let (G1, G2) ∼ ERC(n, λ/n, s) be two s−correlated Erdős-Rényi graphs. Assume
that γ0(λ) := max

(
γ(λ), supδ≥1 γ(λ, s, δ)

)
< λs, and that d = bc log nc with c log λ < 1/4.

Then for γ ∈ (γ0(λ), λs), with high probability,

err(n) :=
1

n

n∑
i=1

1{∃u6=i, (i,u)∈S} = o(1), (11)

i.e. only at most a vanishing fraction of nodes are incorrectly matched by NTMA (1).

Remark 2.2 The set S returned by the NTMA is not necessarily a matching. Let S ′ be obtained
by removing all pairs (i, u) of S such that i or u appears at least twice. Theorems 2.1 and 2.2
guarantee that S ′ still contains a non-vanishing number of correct matches and a vanishing number
of incorrect matches. Theorem I easily follows. Simulations of NTMA–2, a simple variant of of
NTMA, are reported in Appendix B.2. These confirm our theory, as the algorithm returns many
good matches and few mismatches.

2.2. Proof strategy

We start by stating Lemmas, adapted from Massoulié (2013) and Bordenave et al. (2015) and proven
in Appendix D, that are instrumental in the proofs of Theorems 2.1 and 2.2.

Lemma 2.1 (Control of the sizes of the neighborhoods) Let G ∼ ER(n, λ/n), d = bc log nc
with c log λ < 1. For all γ > 0, there is a constant C = C(γ) > 0 such that with probability
1−O (n−γ), for all i ∈ [n], t ∈ [d]:

|SG(i, t)| ≤ C(log n)λt. (12)

Lemma 2.2 (Cycles in the neighborhoods in an ER graph) LetG ∼ ER(n, λ/n), d = bc log nc
with c log λ < 1/2. There exists ε > 0 such that for any vertex i ∈ [n], one has

P (BG(i, d) contains a cycle) = O
(
n−ε

)
. (13)

Lemma 2.3 (Two logarithmic neighborhoods are typically size-independent) LetG ∼ ER(n, λ/n)
with λ > 1, d = bc log nc with c log λ < 1/2. Then there exists ε > 0 such that for any fixed nodes
i 6= j, the variation distance between the joint law of the neighborhoodsL

(
(SG(i, t),SG(j, t))t≤d

)
and the product law L

(
(SG(i, t))t≤d

)
⊗ L

(
(SG(j, t))t≤d

)
tends to 0 as O (n−ε) for some ε > 0

when n→∞.

Lemma 2.4 (Coupling the |SG (i, t)| with a Galton-Watson process) LetG ∼ ER(n, λ/n), d =
bc log nc with c log λ < 1/2. For a fixed i ∈ [n], the variation distance between the law of
(|SG(i, t)|)t≤d and the law of (Zt)t≤d where (Zt)t is a Galton-Watson process of offspring dis-
tribution Poi(λ) tends to 0 as O (n−ε) when n→∞.

11



FROM TREE MATCHING TO SPARSE GRAPH ALIGNMENT

PROOF OF THEOREMS 2.1 AND 2.2

Proof [Proof of Theorem 2.1] Define the joint graph G∪ = G1 ∪ G2. For i ∈ [n], let Mi denote
the event that the algorithm matches i in G1 with i in G2, i.e. on which BG1(i, d) and BG2(i, d)
contain no cycle, and ∃j 6= j′ ∈ NG1(i),∃v 6= v′ ∈ NG2(i) such thatWd−1((j, v), (i, u)) > γd−1

andWd−1((j
′, v′), (i, u)) > γd−1. Denote by C∪,i,d the event that there is no cycle in BG∪(i, d).

Arguing as in the proof of Lemma 2.4, the two neighborhoods BG1(i, d) and BG2(i, d) can be
coupled with trees distributed as GW (λ, s) of Section 1. However, we will instead consider the
intersection graph G∩ = G1 ∩ G2. Obviously, G∩ ∼ ER(n, λs/n). By Lemma 2.4, the ran-
dom variables |SG∩(i, t)| can be coupled with a Galton-Watson process with offspring distribution
Poi(λs) up to depth t = d. Let Pi denote the event that this coupling succeeds. Since λs > 1,
there is a probability 2α > 0 that this process survives up to depth d and that the first generation
has at least two children. Note S this event. On event S, the matching given by the identity on the
intersection tree implies the existence of two neighbors j 6= j′ ∈ NG1(i) and v 6= v′ ∈ NG2(i) such
that with high probabilityWd−1(j ← i, v ← u) > γd−1 andWd−1(j

′ ← i, v′ ← u) > γd−1, by
standard martingale arguments, as in Proposition 1.1. This gives the lower bound for P(Mi):

P(Mi) ≥ P (C∪,i,d ∩ Pi ∩ S) ≥ 2α− o(1) > α > 0.

It is easy to see that G∪ ∼ ER(n, λ(2− s)/n). For i 6= j ∈ [n], define Ii,j the event on which the
two neighborhoods of i and j in G∪ coincide with their independent couplings up to depth d. By
lemma 2.3, P(Ii,j) = 1− o(1). Then for 0 < ε < α Markov’s inequality yields

P

(
1

n

n∑
i=1

1{(i,i)∈S} < α− ε
)
≤ P

(
n∑
i=1

(P(Mi)− 1Mi) > εn

)
(14)

≤ 1

n2ε2
(nVar (1M1) + n(n− 1)Cov (1M1 ,1M2)) (15)

≤ Var (1M1)

nε2
+

1− P (I1,2)

ε2
→ 0. (16)

Proof strategy for Theorem 2.2. Consider two distinct nodes i and u. We place ourselves on
the event of high probability that BG∪(i, 2d) has no cycle. On this event, the two neighborhoods
BG1(i, d) and BG2(u, d) can be coupled with two trees rooted at i, u respectively. We then distin-
guish several cases that are shown on Figure 10, that require detailed analysis, and which all show
that for i fixed, one has

P (∃u 6= i, (i, u) ∈ S) = o(1).

The full proof is deferred to Appendix D.5.

3. Conclusion

We have introduced NTMA, an algorithm we proved to succeed at partial alignment of sparse cor-
related random graphs. While our Theorem applies to a limited range of average degrees λ, we
conjecture that rates γ(λ) and γ(λ, s, δ) are strictly less than λ for all λ > 1 and s < 1 and thus
NTMA in fact succeeds for a much broader parameter range. This will be the object of future work.

12



FROM TREE MATCHING TO SPARSE GRAPH ALIGNMENT

Acknowledgments

This work was partially supported by the French government under management of Agence Na-
tionale de la Recherche as part of the “Investissements d’avenir” program, reference ANR19-P3IA-
0001 (PRAIRIE 3IA Institute).

References

A. D. Barbour and Louis H. Y. Chen. An Introduction to Stein’s Method. co-published with Singa-
pore University, 2005. doi: 10.1142/5792. URL https://www.worldscientific.com/
doi/abs/10.1142/5792.

Mohsen Bayati, David F. Gleich, Amin Saberi, and Ying Wang. Message-passing algorithms for
sparse network alignment. TKDD, 7(1):3:1–3:31, 2013. doi: 10.1145/2435209.2435212. URL
https://doi.org/10.1145/2435209.2435212.

Charles Bordenave, Marc Lelarge, and Laurent Massoulié. Non-backtracking spectrum of ran-
dom graphs: Community detection and non-regular ramanujan graphs. In IEEE 56th An-
nual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-
20 October, 2015, pages 1347–1357, 2015. doi: 10.1109/FOCS.2015.86. URL https:
//doi.org/10.1109/FOCS.2015.86.

Daniel Cullina and Negar Kiyavash. Improved achievability and converse bounds for Erdős-Rényi
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Appendix A. Algorithms for matching weights

We here describe algorithms to compute recursively matching weights Wd(i ← j, u ← v) and
Wd(i, u).

Algorithm 2Wd(i, u)

if d = 0 then
return 1

else
E ← NT (i)
F ← NT ′(i) for (k,w) ∈ E × F do

ComputeWd−1(k ← i, w ← u)
end
Solve the LAP problem w∗ := supm∈M(E,F)

∑
(k,w)∈mWd−1(k ← i, w ← u)

return w∗
end

Algorithm 3Wd(i← j, u← v)

if d = 0 then
return 1

else
E ← NT (i) \ {j}
F ← NT ′(i) \ {v} for (k,w) ∈ E × F do

ComputeWd−1(k ← i, w ← u)
end
Solve the LAP problem w∗ := supm∈M(E,F)

∑
(k,w)∈mWd−1(k ← i, w ← u)

return w∗
end

Appendix B. Simulations

B.1. Simulations for tree matching

We here present some simulations of matching rates γ(λ) (figure 4) and γ(λ, s, δ) for s = 1 (figure
5) in order to illustrate Theorems 1.1 and 1.2 and the final conjecture. For these simulations, error
bars correspond to one standard deviation.
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(a) λ = 1.2, log λ ∼ 0.18. Red dashed slope ∼ 0.12.

(b) λ = 2.2, log λ ∼ 0.79. Red dashed slope ∼ 0.65.

(c) λ = 3.2, log λ ∼ 1.16. Red dashed slope ∼ 1.03.

Figure 4: Comparison of d log λ (blue) and logWd(T , T ′) (red) forWd(T , T ′) ∼ GW (λ) condi-
tioned to survive (100 iterations).
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(a) λ = 2.1, log λ ∼ 0.74, δ = 1. Red dashed slope ∼ 0.63.

(b) λ = 2.1, log λ ∼ 0.74, δ = 2. Red dashed slope ∼ 0.63.

(c) λ = 2.1, log λ ∼ 0.74, δ = 5. Red dashed slope ∼ 0.62.

Figure 5: Comparison of d log λ (blue) and logWd(T , T ′) (red) for Wd(T , T ′) ∼ GW (λ, s, δ)
with s = 1, conditioned to survive (50 iterations).
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B.2. Simulations for a simple variant algorithm of NTMA

We here present some simulations of simple variant algorithm of NTMA, NTMA–2, which happens
to be more efficient in practice. The Algorithm NTMA–2 is as follows.

Algorithm 4 NTMA–2
Input: Two graphs G1 and G2 of size n, average degree λ, depth d, parameter γ.
Output: A set of pairs S ⊂ V (G1)× V (G2).
S ← ∅
for (i, u) ∈ V (G1)× V (G2) do

ifWd(i, u) > γd,Wd(i, u) = maxjWd(j, u) andWd(i, u) = maxvWd(i, v) then
S ← S ∪ {(i, u)}

end
end
for (i, u) 6= (j, v) ∈ S do

if i = j then
S ← S \ {(i, y), y ∈ V (G2)}

end
if u = v then
S ← S \ {(x, u), x ∈ V (G1)}

end
end
return S

This algorithm only selects rows and columns weight maximums and match the corresponding
pairs. The last part ensures that S is a matching. For these simulations, error bars correspond to
a confidence interval for the mean value of scores. In figures 6 and 7 we compare the scores of
NTMA–2 for s = 0.95 with the isomorphism case s = 1.0, for different values of n. We illustrate
the fact that nearly no vertex is mismatched, whereas a non-negligible fraction of nodes is indeed
recovered. In figure 8, we compare the scores of NTMA–2 for fixed n but varying s, illustrating the
existence of a ’critical’ parameter s∗(λ).

Appendix C. Detailed proofs for Section 1

C.1. Proof of Theorem 1.1

Proof [Proof of Theorem 1.1] We first state an easy corollary:

Corollary C.1 For any d ≥ 1, the random variable X = |Ld (Td)| is such that E
[
eθX

]
< ∞ for

all θ > 0.

Proof This is easily seen by induction, based on the structure of Td given in Lemma 1.1.

Recall that we let Ed (respectively, E ′d) denote the event that tree T (respectively, T ′) becomes
extinct before d generations, i.e. Ld(T ) = ∅ (respectively, Ld(T ′) = ∅). We let pd = P(Ed). It is
well known that it satisfies the recursion

p0 = 0, pd = e−λ(1−pd−1),
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(a) s = 0.95.

(b) Isomorphism case , s = 1.0.

Figure 6: Mean score of NTMA–2 for λ = 2.1, d = 5 (25 iterations per value of n).
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(a) s = 0.95.

(b) Isomorphism case , s = 1.0.

Figure 7: Mean score of NTMA–2 for λ = 3.1, d = 4 (25 iterations per value of n).
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(a) n = 150, λ = 1.4, d = 5.

(b) n = 50, λ = 2.2, d = 3.

Figure 8: Mean score of NTMA–2 with different values of s (25 iterations per value of n).
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and converges monotonically to the smallest root in [0, 1] of x = e−λ(1−x). This root, that we denote
pe, is the probability of ultimate extinction. For small enough ε = λ− 1, it holds that

pe = 1− 2ε+O(ε2),

as can be seen by analysis of the fixed point equation satisfied by pe. Let then d0 be such that for
all d ≥ d0, pd = 1 − 2ε + O(ε2). Clearly, on the event Ed ∪ E ′d, the set of matchingsMd(T , T ′)
is empty, so thatWd(T , T ′) = 0. Recall that we define Td the random variable rd(T ) where T is
conditioned to survive up to depth d.
Now fix r ∈ (0, 1). We shall prove that for sufficiently small ε > 0, letting γ = 1 + rε, there exists
some constants c,m, d0 > 0 such that for all x > 0, all d ≥ d0, one has

P
(
Wd(Td, T ′d) ≥ γd−d0mx

)
≤ e−(x−c)+ . (17)

We proceed by induction over d − d0. To initialize the induction, notice that one obviously has
Wd0(Td0 , T ′d0) ≤ |Ld0(Td0)| =: X . By Corollary C.1, for all m,x, θ > 0, one has:

P
(
Wd0(Td0 , T ′d0) > mx

)
≤ P(X > mx) ≤ EeθXe−θmx.

Let now θ = 1/m. By taking m sufficiently large, from dominated convergence we can make
Ee(1/m)X as close to 1 as we like. Choose for instance m such that Ee(1/m)X ≤ 2. Then

P(Wd0(Td0 , T ′d0) > mx) ≤ 2e−x ≤ e−x+c.

for any c ≥ ln(2). Hence, for sufficiently large m, we can initialize the induction at d = d0 with
any c ≥ ln(2).

Recall we set γ = 1 + rε. Define the random variables

Xd := γ−(d−d0)m−1Wd

(
Td, T ′d

)
.

Let D (resp. D′) denote the number of children of the root in Td (resp. D′ in T ′d ). Given D and D′,

noting Td = (Td−1,1, . . . , Td−1,D) and T ′d =
(
T ′d−1,1, . . . , T ′d−1,D′

)
, we have that

Wd(Td, T ′d) = sup
m∈M([D],[D′])

∑
(i,u)∈m

Wd−1(Td−1,i, T ′d−1,u),

where M([D], [D′]) denotes the set of all (D ∨ D′)D∧D′ maximal injective mappings between
E0 ⊆ [D] and [D′]. Let

Xd−1,i,u := γ−(d−1−d0)m−1Wd−1(Td−1,i, T ′d−1,u).

Note that conditional onD andD′, for each matching m ∈M([D], [D′]), the variables (Xd−1,i,u)(i,u)∈m
are i.i.d. with the same distribution as Xd−1. The induction hypothesis states that each Xd−1,i,u is
less, for the strong stochastic ordering of comparison of cumulative distribution functions, than c
plus an exponential random variable with parameter 1. With an easy union bound, we can derive
the following bounds:
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P (Xd > x) ≤
∑

1≤k≤`<∞
P
(
D ∧D′ = k,D ∨D′ = `

)
min

(
1, `k P (E1 + . . .+ Ek > γx− kc)

)
,

(18)
where E1, . . . , Ek are independent exponential random variables of parameter 1. Lemma 1.1 states
that

P(D = k) = e−λ(1−pd−1)
λk(1− pd−1)k
k! (1− pd)

=: qd,k.

We can increase d0 such that for some constant κ > 0, for all d ≥ d0:

qd,1 ≤ 1− ε+ κε2, qd,k ≤
(3ε)k−1

k!
, k ≥ 2.

Note that for x ≤ c, there is nothing to prove in (17), since a probability is always upper-bounded
by 1. We thus only need to consider the case x > c. We conclude the proof of this Theorem by
appealing to the following

Lemma C.1 Let κ,C > 0 and r ∈ (0, 1) be given constants. Then there exists c > 0 large enough
and ε0 > 0 such that, for all ε ∈ (0, ε0), letting γ = 1 + rε, q1 = 1 − ε + κε2, qk = (Cε)k−1/k!
for k ≥ 2, one has

∀x > c,
∑
k,`≥1

qkql min
(

1, (k ∨ `)k∧` P (E1 + . . .+ Ek∧` > γx− (k ∧ `)c)
)
≤ e−(x−c), (19)

where the Ei are independent exponential random variables of parameter 1.

Its assumptions are indeed verified here withC = 3, so (17) can be propagated by using this Lemma
in (18), and the conclusion of Theorem 1.1 follows.

C.2. Proof of Theorem 1.2

Proof [Proof of Theorem 1.2] We assume that λ = 1 + ε. We fix r ∈ (0, 1), and we let γ = 1 + rε
for some fixed r ∈ (0, 1). . We work with trees such that (T , T ′) ∼ GW (λ, s, δ). If we assume
that the path from ρ to ρ′ does not survive down to depth d in T , then this path is no more present in
Td, and the two trees Td and T ′d can be coupled with two trees T̃d and T̃ ′d where (T̃ , T̃ ′) ∼ GW (λ),
and we are in the case of Theorem 1.1.

In the following proof, we will thus condition to the event Sρ,d that the path from ρ to ρ′ survives
down to depth d in T . Recall that the tree Td (resp. Td) is obtained, conditionally on the fact that T
(resp. in T ′) survives down to depth d, by suppressing nodes at depth greater than d in T (resp. in
T ′), and then pruning alternatively leaves of depth strictly less than d. As in the proof of Theorem
1.1, we shall establish that for sufficiently small ε > 0, there exist constants c,m, d0 > 0 such that
for all x > 0, all d ≥ d0, one has

P
(
Wd(Td, T ′d) ≥ γd−d0mx

∣∣Sρ,d) ≤ e−(x−c)+ . (20)
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Define the random variables

X ′d := γ−(d−d0)m−1Wd

(
Td+δ, T ′d

)
,

conditional on Sρ,d. The proof will again be by induction on d, the initial step being established
with the same argument as in the proof of Theorem 1.1. Note that this argument does not depend
on δ.

Denote by D the number of children of ρ in Td, D′ the number of children of ρ′ in T ′d that are in
the intersection tree Td∩T ′d , andD′′ the number of children of ρ′ in T ′d \Td. By branching property,
note that these three variables are independent.

Recall that pd denotes the probability that a Galton-Watson tree with offspring Poi(λ) becomes
extinct before d generations. Then, conditionally on Sρ,d, the random variables D,D′ and D′′ have
the following distributions:

D ∼ 1 + Poi (λ (1− pd−1)) ,
D′ ∼ Poi (λs (1− pd−1))
D′′ ∼ Poi (λ(1− s) (1− pd−1)) , conditional on D′ +D′′ > 0.

We show an illustration on Figure 9.

ρ
ρ′

ρ
ρ′

1

Figure 9: Random trees T (blue) and T ′ (red) from Figure 3 (left), and the results Td and T ′d after
applying rd (right). In this example, δ = 3 and d = 6, D = 2, D′ = 2 and D′′ = 1.

We condition on the values `, k′, k′′ taken by D,D′, D′′. The number of maximal one-to-one
mappings between the children of ρ in Td and those of ρ′ in T ′d is given by [(k′ + k′′) ∨ `](k′+k′′)∧`,
and each of them is of size ` ∧ (k′ + k′′). Note here again that for a fixed matching between the
children of ρ and ρ′, the weights of the matched sub-trees are independent. We distinguish between
several cases (to help understand these cases, the reader could keep figure 9 in mind):
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• For a child i of ρ that is not on the path to ρ′, the corresponding sub-trees are independent
so that the corresponding weight is distributed asWd−1(T̃d−1, T̃ ′d−1) in the independent-tree
model GW (λ).

• If the child of ρ on the path to ρ′ is matched with a child of ρ′ that is not in the intersection
tree, again the corresponding weight is similarly distributed.

• Finally, if the child i of ρ leading to ρ′ is matched to a child u of ρ′ in the intersection tree,
setting the new root at ρ̃ := i in T and at ρ̃′ := u in T ′, the corresponding weight has the
same distribution asWd−1(Td−1, T ′d−1) in the modelGW (λ, s, δ), still conditioned to Sρ̃,d−1.
Indeed, there is a path from ρ̃ to ρ̃′, and the corresponding Poisson distributions are conserved.

The induction hypothesis for case 3, together with Theorem 1.1 for cases 1 and 2, therefore give us:

P
(
X ′d ≥ x

)
≤
∑
k,`

P
(
D′ +D′′ = k,D = `

)
min

(
1, (k ∨ `)k∧` P (E1 + . . .+ Ek∧` > γx− (k ∧ `)c)

)
,

where the Ei are independent exponential random variables of parameter 1. Assume, as in the proof
of Theorem 1.1, that d0 is chosen such that for all d ≥ d0,

pλd = 1− 2ε+O(ε2).

With simple computations, we can then ensure that for some κ > 0, noting qd,· the distribution of
D, one has

qd,1 ≤ 1− ε+ κε2, qd,k ≤
(3ε)k−1

(k − 1)!
≤ (6ε)k−1

k!
, k ≥ 2,

where we used k ≤ 2k−1 in the last step. By independence of D′ and D′′, D′ + D′′ follows a
Poi(λ(1− pd−1)) distribution, conditional on being positive. Noting q′d,· this distribution, we have,
as in the previous proof,

q′d,1 ≤ 1− ε+ κε2, q′d,k ≤
(3ε)k−1

k!
, k ≥ 2.

We can then invoke Lemma C.1 to conclude. Note that every control in the proof is made uniformly
on δ ≥ 1 .

C.3. Proof of lemma C.1

Proof [Proof of Lemma C.1]. Let

S1 := ex−cq21e
−(γx−c)+ + 4q1q2e

−(γx−c)+ ,

S2 := 2ex−cq1
∑
`≥3

q` min
(

1, `e−(γx−c)+
)
,

S3 := 2ex−c
∑

2≤k≤`
qkq` min

(
1, `k P (E1 + . . .+ Ek > γx− kc)

)
.
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Our goal is to show that for a suitable choice of c, for all x > c, S1 + S2 + S3 ≤ 1. One has

S1 ≤ e−rεx
(
(1− ε+ κε2)2 + 2Cε

)
≤ e−rεx(1 + 2Cε), (21)

and

S2 ≤ 2e−rεx(1− ε+ κε2)
∑
`≥3

(Cε)`−1

(`− 1)!
≤ 2e−rεx

(
eCε − 1− (Cε)

)
≤ 2e−rεxC2ε2. (22)

We let k0 be such that γx ∈ [k0c, (k0 + 1)c). We then upper-bound S3 by A+B where

A = 2ex−c
k0∑
k=2

qk
∑
`≥k

q`
`!

(`− k)!
P (E1 + . . .+ Ek > γx− kc) , (23)

B = 2ex−c
∑

k≥(k0+1)∨2

∑
`≥k

qkq`. (24)

One readily has

B ≤ 2e−rεxeγx−c
∑

k≥(k0+1)∨2

(Cε)k−1

k!

∑
`≥k

(Cε)`−1

`!
(25)

≤ 2e−rεxeγx−c
∑

k≥(k0+1)∨2

(Cε)2(k−1)

k!
(26)

≤ 2e−rεxek0c(Cε)2((k0+1)∨2−1) (27)

≤ 2e−rεx (Cεec)2 , (28)

where in the last steps we assumed that Cεec < 1, so that

ek0c(Cε)2((k0+1)∨2−1) ≤ (Cεec)2((k0+1)∨2−1) ≤ (Cεec)2 .

Note that for y ≥ 0, P (E1 + . . .+ Ek > y) = P(Poi(y) < k) = e−y
∑k−1

j=0 y
j/j!. Write then

A ≤ 2ex−c
∑k0

k=2
(Cε)2(k−1)

k!

∑k−1
j=0 e

−γx+kc (γx)j
j!

≤ 2e−rεx
∑k0

k=2
(C2ec)k

k!

∑k−1
j=0

(γxε2)
j

j! ε2(k−1−j)

≤ 2e−rεx
∑k0

k=2
(C2ec)k

k!

[
ε2(k−1) + eγxε

2 − 1
]

≤ 2e−rεx
[
ε−2

(
eε

2C2ec − 1− ε2C2ec
)

+ eC
2ec
(
eγxε

2 − 1
)] (29)

Summing the upper bounds (21)-(29), the desired property will then hold if for all x > c, one has:

e−rεx
[
1 + 2Cε+ 2C2ε2 + 2[Cεec]2 + 2ε−2

(
eε

2C2ec − 1− ε2C2ec
)]

+ 2e−rεxeC
2ec
(
eγxε

2 − 1
)
≤ 1.

(30)

The first term is, for any fixed c, and for sufficiently small ε, upper bounded e−rεx (1 + (2C + 1)ε).
We now distinguish three cases for x.
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• Case 1: x ∈ [c, 1/
√
ε]. The second term is then O(ε

√
ε). Provided rc > 2C + 1, since

e−rεx ≤ e−rεc = 1 − rεc + O(ε2), the left-hand side of (30) is then upper-bounded by
1− (rc− 2C − 1)ε+O(ε

√
ε), and is thus less than 1.

• Case 2: x ∈ [1/
√
ε, 1/ε]. Since e−rεx ≤ e−r

√
ε = 1 − Ω(

√
ε), and eγxε

2 − 1 ≤ eγε − 1 =
O(ε), the left-hand side of (30) is upper-bounded by 1− Ω(

√
ε) and is thus less than 1.

• Case 3: x ≥ 1/ε. The first term is then bounded by e−r(1 + (2C + 1)ε), which is less than
1− Ω(1) for ε small enough. Letting y = εx, the second term reads

e−ry[eεγy − 1](2eC
2ec).

For small ε, this function is maximized for y = 1/r + O(ε), at which point it evaluates to
O(ε). Thus the left-hand side of (30) is upper-bounded by 1− Ω(1) in that range.

We have thus shown that for any r > 0, provided c > (2C + 1)/r, then for all sufficiently small ε,
the desired property holds with γ = 1 + rε.

C.4. Proof of lemma 1.1

Proof [Proof of Lemma 1.1] For a tree t, we write t = (t1, . . . , tk) to represent the fact that its root
has k children, whose offsprings are given by trees t1, . . . , tk. Write, noting by D the number of
children of ρ(T ), fixing k ≥ 1, t1, . . . , tk ∈ Ad−1, and letting S = i1 < · · · < ik run over all k
subsets of [`]:

P(Td = (t1, . . . , tk)) =
∑
`≥0

P(Td = (t1, . . . , tk), D = `)

=
∑
`≥k

∑
S

P
(
D = `, rd(T ij ) = tj , j ∈ [k], rd(T v) = ∅, v /∈ S

∣∣∣∣Ed)

=
1

1− pd
∑
`≥k

(
`

k

)
e−λ

λ`

`!
p`−kd−1

k∏
j=1

P(Td−1 = tj)(1− pd−1)

=
1

1− pd
(λ(1− pd−1))k

k!

k∏
j=1

P(Td−1 = tj)
∑
`≥k

e−λ
(λpd−1)

`−k

(`− k)!

=
e−λ(1−pd−1)

1− pd
(λ(1− pd−1))k

k!

k∏
j=1

P(Td−1 = tj)

The conclusion follows by noting that 1− pd = 1− e−λ(1−pd−1).

Appendix D. Detailed proofs for Section 2

The following proofs are adapted from the previous work of Massoulié (2013) and Bordenave et al.
(2015).
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D.1. Proof of Lemma 2.1

Proof [Proof of Lemma 2.1] Fix K > 0 to be specified later and γ > 0. Fix i ∈ [n], and define

T := inf {t ≤ d, |SG(i, t)| ≥ K log n} .

If T =∞, there is nothing to prove. Given |SG(i, T − 1)|,

|SG(i, T )| ∼ Bin

(
n− |SG(i, 0)| − . . .− |SG(i, T − 1)| , 1−

(
1− λ

n

)|SG(i,T−1)|)
.

Thus

|SG(i, T )|
sto.
≤ Bin

(
n, λK

log n

n

)
.

Using Bennett’s inequality, for K ′ > λK:

P
(
|SG(i, T )| ≥ K ′ log n

)
≤ e−λKh

(
K′−λK
λK

)
logn

,

with h(u) = (1 + u) log(1 + u) − u. This probability is ≤ n−2−γ if K ′ is large enough to ver-
ify λKh

(
K′−λK
λK

)
> γ + 2. With a simple use of the union bound, one gets that |SG(i, T )| ∈

[K log n,K ′ log n] for all i ∈ [n] with probability 1−O(n−1−γ).

Take ε > 0 to be specified later. We then check by induction that with high probability, for all
T ≤ t ≤ d,

|SG(i, t)| ∈
[
K

(
λ

2

)t−T
(log n)

t∏
s=T

(
1− ε

(
λ

2

)− s−T
2

)
,K ′λt−T (log n)

t∏
s=T

(
1 + ελ−

s−T
2

)]
.

(31)
The case t = T is proved here above. We will next use the inequality

λu/(2n) ≤ λu/n− λ2u2/(2n2) ≤ 1− (1− λ/n)u ≤ λu/n. (32)

that holds as soon as λu/n < 1.

Assuming (31) holds up to t, inequality (32) holds for u = |SG(i, t)| for n large enough, since
|SG(i, t)| < n/λ for c log λ < 1. Thus for n large enough E |SG(i, t+ 1)| lies in the interval

K

2
λ

(
λ

2

)t−T
(log n)

t∏
s=T

(
1− ε

(
λ

2

)− s−T
2

)
︸ ︷︷ ︸

=1−O(ε)

, λK ′λt−T (log n)
t∏

s=T

(
1 + ελ−

s−T
2

)


With ε̂ > 0 to be specified later, Bennett’s inequality writes

P
(∣∣∣∣ |SG(i, t+ 1)| − E |SG(i, t+ 1)|

∣∣∣∣ ≥ ε̂E |SG(i, t+ 1)|
)
≤ 2e−

1
2
λ(λ2 )

t−T
logn(1−O(ε))h(ε̂),
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which is ≤ n−2−γ if K
(
λ
2

)t+1−T
h(ε̂) > 2 + γ. Since for u→ 0, h(u) = u2/2 + o(u2), it suffices

to take ε̂ = ε
(
λ
2

)− t+1−T
2 with ε small enough and K large enough such that Kε > 2 + γ. Thus

(31) holds for t+ 1 with probability 1−O(n−2−γ).

All this ensures that the desired inequality (12) holds for all i ∈ [n], t ∈ [d] with probability
1−O(n−γ).

D.2. Proof of Lemma 2.2

Proof [Proof of Lemma 2.2] Fix i ∈ [n]. Define

k∗ := inf{t ≤ d, BG(i, t) contains a cycle}.

Note that k∗ ≥ 2, and that if k∗ = ∞ then BG(i, d) does not contain any cycle. Now assume that
k∗ < ∞. For any k ≥ 2, k∗ = k if and only if there are two vertices of SG(i, k − 1) that are
connected, or if there is a vertex of SG(i, k) connected to two vertices of SG(i, k− 1). On the event

A :=
⋂
t≤d

{
|SG(i, t)| < C(log n)λt

}
,

this happens with probability at most

|SG(i, k − 1)|2 × λ

n
+ |SG(i, k)| × |SG(i, k − 1)|2 × λ2

n2
≤ C2 (log n)2λ2k

n
+ C3 (log n)3λ3k

n2
.

Taking ε > 0 such that c log λ ≤ 1/2 − ε, choosing C such that P (A) = 1 − O
(
n−2ε

)
with

Lemma 2.1, the probability that BG(i, d) contains a cycle is less than

P (k∗ <∞) ≤ P
(
Ā
)

+
d∑

k=2

P (k∗ = k | A)

≤ O
(
n−2ε

)
+O

(
(log n)2λ2d

n

)
+O

(
(log n)3λ3d

n2

)
≤ O

(
n−2ε

)
+O

(
(log n)2n−2ε

)
+O

(
(log n)3n−3ε

)
≤ O(n−ε).

D.3. Proof of Lemma 2.3

Proof [Proof of lemma 2.3] For fixed i 6= j ∈ [n], let
(
S̃(i, t)

)
t≤d

and
(
S̃(j, t)

)
t≤d

denote two in-

dependent realizations of the neighborhoods (i.e. with independent underlying Bernoulli variables).
We then construct recursively a coupling (S(i, t),S(j, t))t≤k:

• For k = 1, take S(i, t) to be a set of vertices uniformly chosen among sets of [n] of size∣∣∣S̃(i, 0)
∣∣∣. Independently, take S(j, t) to be a set of vertices uniformly chosen among sets of

[n] of size
∣∣∣S̃(j, 0)

∣∣∣.
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• Now if k > 1, construct S(i, k) as follows: select a subset of [n] \
( ⋃
s≤k−1

S(i, s)

)
of size∣∣∣S̃(i, k)

∣∣∣ uniformly at random. Then we construct independently S(j, k) taking a uniform

subset of [n] \
( ⋃
s≤k−1

S(j, s)

)
of size

∣∣∣S̃(j, k)
∣∣∣.

This coupling is well defined, and coincides with the independent setting up to step k as long as
the sets

⋃
s≤k
S(i, s) and

⋃
s≤k
S(j, s) do not intersect. On the event

A :=
⋂
t≤d

{
|S(i, t)| , |S(j, t)| < C(log n)λt

}
,

one has

E

∣∣∣∣∣∣
⋃
k≤d
S(i, s) ∩

⋃
k≤d
S(j, s)

∣∣∣∣∣∣
 ≤ E

[
d∑

k=1

Bin

(
C(log n)λk,

∑k
t=1C(log n)λt

n−∑k
t=1C(log n)λt

)]

≤ C2(log n)2
(

λ

λ− 1

) d∑
k=1

λ2k

n− λ
λ−1C(log n)λk

≤ O
(

(log n)2λ2d/n
)

if (log n)λd = o(n), which is the case if c log λ < 1. The expectation is upper-bounded by
O
(
(log n)2λ2d/n

)
= O

(
(log n)2n−2ε

)
if c log λ ≤ 1/2− ε.

With Lemma 2.1, choosing C such that P (A) = 1−O
(
n−2ε

)
, we get

dTV

(
L
(

(SG(i, t),SG(j, t))t≤d

)
,L
(

(SG(i, t))t≤d

)
⊗ L

(
(SG(j, t))t≤d

))
≤ O((log n)2n−2ε) + P

(
Ā
)

≤ O(n−ε).

D.4. Proof of Lemma 2.4

We work here conditionally on

A :=
⋂
t≤d

{
|SG(i, t)| < C(log n)λt

}
.

Let’s define a Galton-Watson process as follows: set Z0 = 1, and for t > 0, L (Zt|Gt−1) =
Poi (λZt−1), where Gt = σ (Zs, s ≤ t). Fix t > 0. Conditionally onFt−1 := σ (|SG(i, s)| , s ≤ t− 1),
define a random variable Wt with distribution Poi (λ |SG(i, t− 1)|). Note that

L
(
|SG(i, t)|

∣∣∣∣Ft−1) = Bin

(
n− |SG(i, 0)| − . . .− |SG(i, t− 1)| , 1−

(
1− λ

n

)|SG(i,t−1)|)
.
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The Stein-Chen method (see e.g. Barbour and Chen (2005)) enables to bound dTV (Bin(n, λ/n),Poi(λ))
by min(1, λ−1)λ2/n ≤ λ/n. We also use the classical bound dTV (Poi(λ),Poi(λ′)) ≤ |λ− λ′|
together with inequality (32) (which holds for n large enough since c log λ < 1) to obtain that
conditionally on Ft−1:

dTV (|SG(i, t)| ,Wt) ≤ n−1 (n− |SG(i, 0)| − . . .− |SG(i, t− 1)|) λ |SG(i, t− 1)|
n

+

∣∣∣∣∣(n− |SG(i, 0)| − . . .− |SG(i, t− 1)|)
(

1−
(

1− λ

n

)|SG(i,t−1)|)
− λ |SG(i, t− 1)|

∣∣∣∣∣
≤ λ |SG(i, t− 1)|

n
+ λ |SG(i, t− 1)|

− (n− |SG(i, 0)| − . . .− |SG(i, t− 1)|) λ |SG(i, t− 1)|
n

+
λ2 |SG(i, t− 1)|2

2n
.

Now, for ε > 0 such that c log λ ≤ 1/2− ε, on the event A, all variables |SG(i, s)| are bounded by
C(log n)n1/2−ε. This leads to

dTV (|SG(i, t)| ,Wt) ≤ O
(

(log n)n−1/2−ε
)

+O
(
(log n)3n−2ε

)
+O

(
(log n)2n−2ε

)
= O

(
(log n)3n−2ε

)
.

This proves by induction that the total variation distance between (|SG(i, t)|)t≤d and (Zt)t≤d is
bounded by O

(
(log n)4n−2ε

)
= O (n−ε), taking C large enough in Lemma 2.1 so that P (A) ≥

1−O
(
n−2ε

)
.

D.5. Proof of Theorem 2.2

Proof [Proof of Theorem 2.2] Define

dmax := max

(
max
i

degG1
(i),max

u
degG2

(u)

)
.

We use the same notations as in the former proof: G∪ = G1 ∪G2 and G∩ = G1 ∩G2. Fix i ∈ [n].
In the rest of the proof we work conditionally to the event C∪,i,2d that BG∪(i, 2d) has no cycle.
Since c log λ < 1/4, P (C∪,i,2d) = 1− o(1) by Lemma 2.2.
Fix another vertex u 6= i. The d−neighborhoodsBG1(i, d) andBG2(u, d) have offspring distribution
stochastically dominated by Bin(n, λ/n), which is also dominated by Poi(λ′) as soon as λ′ =
λ + O(1/n) (see e.g. Klenke and Mattner (2009)). We can choose λ′ such that γ > γ(λ′, 0) still
holds: indeed, by a standard coupling argument, one can see that γ : λ 7→ γ(λ) is increasing. We
now build two dominating (in the usual edge presence sense) tree-like d−neighborhoods of i and u
with the following construction.

• First, if the two neighborhoods don’t intersect, just sample two independent trees from model
GW (λ′) rooted in i and in u.

• If the two neighborhoods intersect, condition to the event that α is the contact point in the
path p∪ (unique by conditioning on C∪,i,2d) from i to u in the joint graph. Then there is a
path of edges of G1 (say, blue) from i to α, then a path of edges of G2 (say, red) from α
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to u. Next, complete this construction: along p∪, propagate the blue path from α towards u
with probability s on each edge, stopping at the first time when one red edge is not selected.
Do the symmetrical construction to propagate the red path from α towards i. Finally, to
each double-colored vertex, attach independent realizations of model GW (λ′, s), and to each
single-colored vertex, attach independent realizations of model GW (λ′).

Note that these constructions lead to at most one path p∪ between i and u in BG1(i, d)∪BG2(u, d),
so a fortiori in BG1(i, d) ∩ BG2(u, d). Denote by p∩ this hypothetical path (cf. figure 10). We then
distinguish between several cases.

j′
i

j

v′ u

v

j
i

j′
v′ u

v

i

j′

j

v′ u

v

j
i

j′
v′ u

v

1

Figure 10: Possible realizations of BG1(i, d) (blue) and BG2(u, d) (red), with distinct cases (i) (top
left), (ii) (top right), (iii.a) (bottom left) and (iii.b) (bottom right).

Case (i): δG∪(i, u) > 2d (figure 10, top left), i.e. BG1(i, d)∩BG2(u, d) = ∅. The construction
gives a coupling with two independent trees from model GW (λ). By assumption γ(λ) < λs, the
probability that there exist j in NG1(i) and v in NG2(u) such thatWd−1(j ← i, v ← u) > γd−1

is upper bounded by O
(
d2max exp (−nε)

)
, following Remark 1.3. Hence i is matched to u with at

most this probability.

Case (ii): δG∪(i, u) ≤ 2d but p∩ does not exist (see figure 10, top right). Take v 6= v′ two
neighbors of u and j 6= j′ two neighbors of i. Then (at least) one of these vertices is not on p∪
(e.g. vertex j on figure 10): the downstream tree from this vertex is independent from every other
neighborhood in the other graph. They can be coupled with model GW (λ), and the same bound as
in case (i) holds.
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Now assume that p∩ exists, and let v 6= v′ two neighbors of u and j 6= j′ two neighbors of i.
Case (iii.a): At least one of the edges (i, j), (i, j′), (u, v), (u, v′) is not in G∩ (e.g. edge (i, j) on
figure 10, bottom left): again, the same argument applies. Case (iii.b): Edges (i, j), (i, j′), (u, v), (u, v′)
are all in G∩ (see figure 10, bottom right). Then one pair of vertices (say (j′, v′) as on figure 10)
can be on p∩ and bring a highWd−1(j

′ ← i, v′ ← u) > γd−1 matching weight, if their descendants
spread over a great part of the intersection. In that case, since j and v can’t be on p∩, the associated
downstream trees are independent, and againWd−1(j ← i, v ← u) < γd−1 with high probability.
The remaining case to be considered is that of matches (j, v′) and (j′, v), with j′, v′ on p∩. All trees
involved are then correlated. However, the coupling construction induces a coupling of the two pairs
of (d− 1)−neighborhoods (from (j, v′) and from (j′, v), see figure 10) with two pairs of trees from
model GW (λ′, s, δ) where δ = |p∩|. The Theorem assumes γ(λ, s, δ) < λs so that, by Theorem
1.2, the probability thatWd−1(j ← i, v′ ← u) > γd−1 andWd−1(j

′ ← i, v ← u) > γd−1 is upper
bounded by O (exp (−nε)).

Thus, for i fixed, one has

P (∃u 6= i, (i, u) ∈ S) ≤ 1− P (C∪,i,2d) + n× P (C∪,i,2d)× d2max ×O (exp (−nε)) = o(1).

The Theorem then follows by appealing to Markov’s inequality.
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