Spectral alignment of correlated Gaussian random matrices - Archive ouverte HAL
Article Dans Une Revue Advances in Applied Probability Année : 2022

Spectral alignment of correlated Gaussian random matrices

Résumé

In this paper we analyze a simple method ($EIG1$) for the problem of matrix alignment, consisting in aligning their leading eigenvectors: given $A$ and $B$, we compute $v_1$ and $v'_1$ two leading eigenvectors of $A$ and $B$. The algorithm returns a permutation $\hat{\Pi}$ such that the rank of the coordinate $\hat{\Pi}(i)$ in $v_1$ is the rank of the coordinate $i$ in $v'_1$ (up to the sign of $v'_1$). We consider a model where $A$ belongs to the Gaussian Orthogonal Ensemble (GOE), and $B= \Pi^T (A+\sigma H) \Pi $, where $\Pi$ is a permutation matrix and $H$ is an independent copy of $A$. We show the following 0-1 law: under the condition $\sigma N^{7/6+\epsilon} \to 0$, the $EIG1$ method recovers all but a vanishing part of the underlying permutation $\Pi$. When $\sigma N^{7/6-\epsilon} \to \infty$, this algorithm cannot recover more than $o(N)$ correct matches. This result gives an understanding of the simplest and fastest spectral method for matrix alignment (or complete weighted graph alignment), and involves proof methods and techniques which could be of independent interest.
Fichier principal
Vignette du fichier
Spectral_alignment_of_correlated_Gaussian_matrices.pdf (562.12 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02941069 , version 1 (16-09-2020)

Identifiants

Citer

Luca Ganassali, Marc Lelarge, Laurent Massoulié. Spectral alignment of correlated Gaussian random matrices. Advances in Applied Probability, 2022, 54, Issue 1, 54 (Issue 1), pp.279 - 310. ⟨hal-02941069⟩
90 Consultations
122 Téléchargements

Altmetric

Partager

More