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Abstract

The estimation of wall thermal properties by in situ measurement enables to increase the
reliability of the model predictions for building energy efficiency. Nevertheless, retrieving the
unknown parameters has an important computational cost. Indeed, several computations
of the heat transfer problem are required to identify these thermal properties. To handle
this drawback, an innovative approach is investigated. The first step is to search the optimal
experiment design among the sequence of observation of several months. A reduced sequence
of observations of three days is identified which guarantees to estimate the parameter with
the maximum accuracy. Moreover, the inverse problem is only solved for this short sequence.
To decrease further the computational efforts, a reduced order model based on the modal
identification method is employed. This a posteriori model reduction method approximates
the solution with a lower degree of freedom. The whole methodology is illustrated to estimate
the thermal diffusivity of an historical building that has been monitored with temperature
sensors for several months. The computational efforts is cut by five. The estimated parameter
improves the reliability of the predictions of the wall thermal efficiency.

Key words: Parameter estimation problem; Model Calibration; Inverse Heat Conduc-
tion Problem; Modal Identification Method; Reduced Order Model

1 Introduction
Within the environmental context, requirements on building energy efficiency becomes more

and more important. In France, the building stock increases slowly [1] with an average around
1% . Thus, there is a crucial issue in retrofitting existing building. To this end, models such as
building simulation programs are employed to define the best actions. However, there are some
uncertainties on the input parameters of the model [2, 3].Particularly, for such old buildings,
the material properties may differ strongly from one site to another [4]. Indeed, due to the
vernacular traditional architecture, the material were generally taken from locals around the
building. Furthermore, the aging of materials may have changed the properties [5]. Parameter
such as the thermal properties of the walls require to be known precisely since they play a crucial
role on the assessment of the building energy efficiency [6, 7].

The unknown properties can be estimated by solving inverse problems or more precisely pa-
rameter estimation problem [8] to calibrate the model. This procedure aims at minimizing a
so-called cost function between the model numerical predictions and the experimental observa-
tions obtained by on-site measurements.Such approaches have been successfully applied for real
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walls and a detailed state-of-the-art is proposed in [9]. However, the determination of thermo-
physical properties using in situ dynamic measurements faces important challenge in terms of
computational effort. This challenge arises from two reasons. The first one is the duration of
the experimental observations. If long measurement duration are better for the accuracy of
the retrieved parameter, it implies important computational costs to solve the inverse problem.
Note that in situ measurement depends also on occupants’ acceptance and long period can be
constraining. The standard techniques ISO 9869 requires more than a month of measurement
periods [10]. Thus, various alternative techniques have been developed to reduced the moni-
toring time. In [11] an experiment of 7 days is carried. In [12], the accuracy of the parameter
estimation is investigated according to the measurement period. For their case study, the au-
thors suggest to carry at least three days of monitoring to have an accurate estimation. In
[9], a fast estimation method is proposed based excitation pulse method and less than 1 h of
measurement.

The second reason is the mathematical model to represent the physical phenomena. Indeed,
the computational efforts required to solve the inverse problem are directly proportional to the
so-called direct model (as well as the optimization algorithm). Thus, numbers of investigations
aimed at developing direct model with reduced computational cost. Lumped model such as
RC approaches have been proposed due to their very small computational cost. However, their
reliability to estimate accurately the thermal diffusivity is questioned in [13]. The model has
to be based on detailed heat diffusion process. In [14] an equivalent homogeneous model is
proposed for the description of multi-layer walls with the issue of reducing the cost of parameter
estimation as shown in [5]. When possible, analytical solution are also developed as for instance
in [15].

Thus, the objective of this article is to answer both issues in order to propose a fast and
accurate parameter estimation method. First, the length of the measurement observations is
determined with the optimal experiment design methodology [16, 17]. The optimal design is
searched according to the conditions of the experiment. Carrying the measurement for the
optimal experiment design ensure to estimate the unknown parameter with the highest accu-
racy. This approach has been used in [18, 19] to determine the optimal boundary conditions
of laboratory experiments to retrieve material properties of heat and mass transfer. In [20], an
optimal design is found to retrieve the thermal conductivity and volumetric heat capacity of a
material using laboratory experiments. This approach can be extended for in-situ measurement
to determine the optimum sequence of measurement observations.

Then, to decrease the computational effort of the direct numerical model, model reduction
techniques can be employed. Several methods are reported in the literature to model the phys-
ical phenomena in building walls [21]. Among all, the Modal Identification Method (MIM)
demonstrated successful applications for inverse problem. The primer works of Girault, Pe-
tit, and Videcoq introduced the MIM approach for direct simulations in [22, 23]. Then, it has
been applied for the identification of boundary fluxes through sequential procedure in [24–26]
or surface temperature as in [27]. To our best knowledge, it has never been employed for the
estimation of thermal diffusivity in building walls under climatic varying conditions.The MIM
ROM is employed since in the state-space representation of the MIM model, both the field and
its sensitivity to the unknown parameter are computed with a reduced computational cost. It
can be combined with a gradient-based algorithm to retrieve the thermal properties of the wall.

This article presents and evaluate the proposed methodology to estimate the thermal dif-
fusivity of a wall monitored in an old building. First the mathematical model is described in
Section 2. The MIM model reduction method is detailed in Section 3. Then, the search optimal
experiment design combined with the solution of the parameter estimation problem is presented
in Section 4. A brief synthesis of the whole methodology and the metrics to evaluate its effi-
ciency are given in Section 5. Subsequently, a first case study is introduced to validate the MIM
method for estimating the thermal diffusivity of a wall. Last, a real case study is investigated
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in Section 7.

2 Mathematical model
First, the mathematical model is presented. It is based on two equations. The first corre-

sponds to the diffusion one occurring in the wall. In addition, the sensitivity equation is also
described. It enables to compute the sensitivity coefficient which qualifies the sensitivity of
the field of temperature relative to change in the unknown diffusivity. This is required in the
algorithm to solve the inverse problem.

2.1 Physical formulation

The field of interest is the temperature T evolving in a building wall materialaccording to
a diffusion process. The space domain is defined by x ∈

[
0 L

]
, where L is the length of the

wall. The time domain is defined by t ∈ Ω t with Ω t
def:=
[
0 , t f

]
. The temperature is computed

using the heat diffusion equation [28]:

∂T

∂t
= α · ∂

2T

∂x 2 , (1)

where α def:= k

c
is the heat diffusion, k is the heat conductivity and c is the volumetric heat ca-

pacity. At the interface between ambient air and the wall, Dirichlet type boundary conditions
are assumed.The temperature is prescribed by the one measured:

T = T∞ , L

(
t
)
, x = 0 ,

T = T∞ , R

(
t
)
, x = L ,

where T∞ are the temperatures measured by sensors and depending on time:

T∞ : t 7−→ T∞
(
t
)
.

At t = 0 , the temperature in the material is known:

T = T ini
(
x
)
, t = 0 .

with T ini a function of x corresponding to the initial field in the wall:

T ini : x 7−→ T ini
(
x
)
.

The so-called observable field T s is defined as follows:

T s : (x s , t ) 7−→ T
(
x s , t

)
, s ∈

{
1 , . . . , N s

}
,

where N s is the number of points of interests. In our case, it corresponds to the sensor loca-
tions.Thus, the observable fields correspond to the temperature computed with the model at
the sensor locations. It enables to compare the model predictions with the experimental obser-
vations. The direct problem is now transformed into a dimensionless formulation to be solved
by the numerical model.
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2.2 Dimensionless formulation

As discussed and thoroughly motivated in [29, 30], it is of capital importance to obtain a di-
mensionless problem before elaborating a numerical model.It allows to define scaling parameters
such as Fourier number that may decrease the number of unknown parameters in the inverse
problem. For this, dimensionless fields are defined:

u
def:= T − Tmin

T ref
, u∞ , L

def:= T∞ , L − Tmin
T ref

,

u∞ , R
def:= T∞ , R − Tmin

T ref
, u ini

def:= T ini − Tmin
T ref

,

where T ref and Tmin are user–defined reference temperature. The space and time coordinates
are also transformed into dimensionless variables:

t ?
def:= t

t ref
, x ?

def:= x

L
.

The Fourier dimensionless number is defined:

Fo def:= t ref · α
L 2 .

It corresponds to the thermal diffusivity in the dimensionless representation and quantifies the
magnitude of diffusion inside the material. A high number indicates a fast heat transfer process
inside the material. With these transformations, the dimensionless problem is written as:

∂u

∂t ?
= Fo · ∂

2u

∂ x ? 2 (2)

with the boundary condition:

u = u∞ , L

(
t
)
, x ? = 0 (3a)

u = u∞ , R

(
t
)
, x ? = 1 (3b)

and the initial condition:

u = u ini
(
x
)
, t ? = 0 . (4)

To have a well-posed problem, initial and boundary conditions must be compatible. The ob-
servable field is also transformed according to u s

def:= T s − Tmin
T ref

, s ∈
{

1 , . . . , N s
}
.

2.3 Sensitivity equation

The issue is to estimate the unknown thermal diffusivity α of the wall or its equivalent in
the dimensionless representation, the Fourier number Fo . The solution of the inverse problem
requires the so-called sensitivity function θ :

θ : ( Fo , x , t ) 7−→ ∂u

∂Fo .

It quantifies the sensitivity of the field of temperature according to the unknown parameter. A
small magnitude reveals that large change in the parameter induces small change in the field.
Thus, the parameter cannot be estimated with accuracy. Inversely, high magnitude of sensitivity
coefficient are favorable conditions to estimate the unknown parameter. One can obtain can
compute the sensitivity equations by differentiating Eq. (2) relatively to the parameter:

∂θ

∂t ?
= Fo · ∂

2θ

∂x ? 2 + ∂ 2u

∂x ? 2 , (5)
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with the following boundary conditions obtained by differentiating Eq. (3):

θ = 0 , x ? = 0 ,

θ = 0 , x ? = 1 ,

and the initial condition arising from Eq. (4):

θ = 0 , t ? = 0 .

Particularly, the sensitivity function at the location x s of the sensors are needed. It is computed
by:

θ s : (x s , t ) 7−→ θ
(
x s , t

)
, s ∈

{
1 , . . . , N s

}
.

3 MIM reduced order model of the field and its sensitivity
In this Section, the numerical models used to perform simulations are described starting first

with the large original model. Then the reduced MIM approach is detailed. A uniform discreti-
sation based on finite differences, is adopted for the space domain, with the discretisation param-
eter denoted by ∆x . The discrete value of u (x , t ) and θ (x , t ) becomes u j

def:= u (x j , t ) and
θ j

def:= θ (x j , t ) , respectively, with j ∈
{

1 , . . . , N
}
. Note that other discretisation methds

(finite volumes, finite elements, ...) could be used and will give the same MIM formulation.

3.1 The state space representation of the large original model

The straightforward semi-discretization of Eqs. (2) and (5) using central finite differences
yields for j ∈

{
2 , . . . , N − 1

}
to:

∂u

∂t
= Fo

∆x 2 ·
(
u j+1 − 2 · u j + u j−1

)
, (6a)

∂θ

∂t
= Fo

∆x 2 ·
(
θ j+1 − 2 · θ j + θ j−1

)
+ 1

∆x 2 ·
(
u j+1 − 2 · u j + u j−1

)
. (6b)

The problem is governed by Dirichlet boundary conditions for both fields u and θ :

u 1 = u∞ , L ( t ) , uN = u∞ , R ( t ) , θ 1 = 0 , θN = 0 .

Thus, the semi-discrete equations (6) can be written in the matrix form:

U̇ = Fo ·A ·U + Fo ·B ·Q ,

Θ̇ = Fo ·A ·Θ + A ·U + B ·Q ,

where A ∈ M
(
RN×N ) and B ∈ M

(
RN×2 ) are matrices defined to ensure a second order

accuracy in space:

A
def:= 1

∆x 2 ·



−2 1 0 . . . 0

1 −2 1 . . . 0

0 . . . . . . . . . 0
0 . . . 1 −2 1
0 . . . 0 1 −2


, B

def:=



1 0
0 0
...

...
0 0
0 1


, Q

def:=
[
u∞ , L u∞ , T

]ᵀ
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The computation of the observable fields u s and θ s can also be formulated in a matrix form:

Y u = C ·U , Y θ = C ·Θ .

where C ∈ M
(
RN s×N s

)
, so that Y u ∈ M

(
RN s×1 ) and Y θ ∈ M

(
RN s×1 ) are vectors.

In the end, the state space representation of the problem is formulated as:

U̇ = Fo ·A ·U + Fo ·B ·Q ,

Θ̇ = Fo ·A ·Θ + A ·U + B ·Q ,

Y u = C ·U ,

Y θ = C ·Θ .

(7)

The model is solved using a Runge–Kutta order 2 solver. It computes the field and its
sensitivity at the points of interests x s , corresponding to the sensor locations. It is denoted as
Large Original Model (LOM).

3.2 The MIM reduced order model

The MIM reduced order model enables to compute the field ũ s and θ̃ s , s ∈
{

1 , . . . , N s
}
.

They are gathered in the vectors Ỹ u and Ỹ θ. Both are computed from the unknown reduced
vectors X u ∈ M

(
RN r×1

)
and X θ ∈ M

(
RN r×1 ) . The reduced model equations is assumed

as: 

Ẋ u = Fo · F ·X u + Fo ·G ·Q ,

Ẋ θ = Fo · F ·X θ + F ·X u + G ·Q ,

Ỹ u = H u ·X u ,

Ỹ θ = H θ ·X θ ,

(8)

where the matrix F ∈ M
(
RN r×N r

)
is assumed as diagonal. And the matrices G ∈ M

(
RN r×2 ) ,

H u ∈ M
(
RN s×N r

)
and H θ ∈ M

(
RN s×N r

)
are fulled. Indeed the general formulation of

MIM (Eq. 8) is obtained by considering the transformation U = MX u applied to the LOM
equations (Eq. 7). It can be noted that the columns of the matrix M ∈ M

(
RN×N r

)
contains

the eigenvectors of A and the diagonal matrix F ∈ M
(
RN r×N r

)
the N s eigenvalues of A.

The reduced model will thus give at time t the reduced vectors X u and X θ . To come back
to the fields at the interest points, the operations Ỹ u = H u · X u and Ỹ θ = H θ · X θ

are performed. These observable fields are obtained by the reduced model and thus denoted
with the super script ∼ . It is interesting to remark that knowing matrices F , G, we have
straightforwardly the reduced model for the sensitivity X θ . Here, the MIM model is solved
using a Runge–Kutta order 2 method.

The construction of the MIM reduced model is performed by defining the differences between
the reduced model and the complete model as a square residues functional J rom :

J rom
(
N r , F ,G , H u , H θ

)
def:=

N s∑
i=1

∫ t f

0

(
ũ s ( t ) − u s ( t )

u s ( t )

) 2

+
(
θ̃ s ( t ) − θ s ( t )

θ s ( t )

) 2

dt .
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The functional J rom is minimized to determined the order of the reduced model N r and matrices
F , G , H u and H θ . The minimization procedure is carried out preliminary to the solution of
the parameter estimation problem, using any optimizer such as quasi-Newton,PSO or genetic
algorithm. This procedure is denoted as the learning step. Here the construction is performed
for several values of the unknown diffusivity α . The set of thermal diffusivity used for the
construction of the ROM is denoted Ωα .

4 Parameter estimation problem with reduced order model
The reduced order model is used in the framework of parameter estimation problem. For the

sake of clarity, the methodology is explained for the unknown parameter denoted by:

p = α .

It is also distinguished the solution of the parameter estimation problem p ◦ . It is different from
the exact solution of the problem, noted p r , when known. The so-called a priori parameter,
used as initial guess in the algorithm to solve the inverse problem, is denoted by p apr . The set
of searched parameter is denoted Ω p . The experimental observations of the field u are written
with the super-script m . Thus, the vector of observation is denoted Y m ∈ M

(
RN s×1 ) .

4.1 The optimal sequence of observations

To use the MIM ROM in the framework of parameter estimation problem, it requires a
learning step to build a posteriori the matrices. Since this step is time consuming, the optimal
experiment design (OED) methodology [19, 31] is used to select a reduced measurement sequence
of 3 days, denoted:

Ω oed
t

def:=
[
t ini , t ini + 3

]
,

where t ini
[
d
]
is the beginning of the reduced sequence. Note that the reduced sequence respects

the condition Ω oed
t ⊂ Ω t . The measurement plan Π is introduced:

Π =
{
t ini

}
,

The search of the optimal measurement plan Π ◦ is carried out through the maximization of the
D-criteria [16, 17]

Π ◦ = arg max
Π

Ψ ,

where Ψ is the determinant of the Fisher matrix F :

Ψ def:= detF( Π ) ,

and

F def:= 1
σ 2

N s∑
i = 1

∫
Ω oed
t

θ s
(
t
) 2 dt ,

with σ is the measurement uncertainty. This methodology is performed using the LOM and the
a priori value of the unknown parameter. It enables to determine the optimal reduced sequence
of measurement that maximize the parameter estimation accuracy. With this approach, the
learning step of the MIM and the solution of the inverse problem are performed over a reduced
sequence Ω oed

t ⊂ Ω t .
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4.2 Estimating the unknown parameter

The parameter estimation problem is solved over the reduced sequence Ω oed
t to cut the

computational efforts. It aims at determining the unknown parameter p verifying:

p ? = min
Ω p

J ( p ) ,

where J is the cost function defined using the least square estimator and the reduced model:

J : p 7−→
N s∑
i=1

∫ t f

0

(
ũ s ( p , t ) − ums ( t )

) 2
dt . (9)

The minimisation of the cost function is realized using the Gauß algorithm [17, 28]. It assumes
the following condition on J :

∇ p J = 0 . (10)

Thus, Eq. (10) is equivalent to:

N s∑
i=1

∫ t f

0
θ̃ s ( p , t ) ·

(
ũ s ( p , t ) − ums ( t )

)
= 0 . (11)

Using the Taylor expansion of ũ around a parameter p k , equation (11) gives a system of N s

equations: (
ũ s ( p k , t ) + θ̃ s ( p k , t ) ·

(
p − p k

)
− ums

)
= 0 .

It enables to compute the next candidate p = p k+1 better than p k in an iterative procedure,
written with the matrix formulation:

p k+1 = p k +
(
Y ᵀ
θ ( p k ) · Y θ ( p k )

)−1
· Y θ ( p k ) ·

(
Y m − Ỹ u ( p k )

)
. (12)

In terms of computational time, the cost to compute the new candidate p k+1 is strongly reduced
due to the use of MIM reduced order model. Indeed, it only manipulates the reduced vectors
X u and X θ of size N r � N s . Moreover, the MIM model provides straightforwardly the
sensitivity functions of the observable fields.

The Algorithm 1 describes the main steps to solve the inverse problem. At the iteration
k , the field and its sensitivity are computed using the MIM ROM and a candidate p k for the
unknown parameter. With these results, the cost function between measurement and model
predictions is evaluated. Moreover, using the sensitivity Y θ , the candidate p k+1for the next
iteration is computed. The algorithm runs until a maximum number of iterations N k is reached
or one of the two following criteria is satisfied:

γ 1 > η 1 & γ 2 > η 2 ,

where η 1 and η 2 are user defined values. The criteria γ 1 and γ 2 evaluates the relative magnitude
changes of the cost function and candidate parameter, respectively:

γ 1
def:=

∥∥∥ J( p k+1 ) − J( p k )
∥∥∥

2∥∥∥ J( p k )
∥∥∥

2

, γ 2
def:=

∥∥∥ p k+1 − p k
∥∥∥

2∥∥∥ p k ∥∥∥
2

.
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Algorithm 1 Gauß algorithm using the MIM ROM.
1: Build matrices F , G , H u and H θ according to MIM learning step
2: Set iteration indicator k = 1
3: Set a priori parameter p k = p apr

4: while k 6 N k & γ 1 > η 1 & γ 2 > η 2 do
5: Compute the direct problem Y u and Y θ using reduced order model with Eq. (8) and a

candidate p k
6: Evaluate the cost function J using Eq. (9)
7: Compute the next candidate for the unknown parameter p k+1 using Eq. (12)
8: Increment: k = k + 1 , p k ← p k+1
9: Compute stopping criteria γ 1 and γ 2 with Eqs.

10: end

5 Synthesis of the methodology and metrics of its efficiency
The global methodology to solve the parameter estimation problem of heat transfer using

MIM ROM is synthesized in Fig. 1. First, the OED methodology is used to define an optimal
reduced sequence Ω oed

t of the observations of the field. This results have two advantages no-
ticeable at steps two and three. At step two, the learning step of the MIM is carried only for
3 days and not for the whole signal. It saves important computational efforts to determine the
matrices of the ROM MIM. Then, at step three, the inverse problem is solved for a reduced
sequence. Moreover, the sequence is optimal since it ensures the maximum accuracy of the
retrieved parameters. Last, when the unknown parameter is estimated, the MIM ROM is com-
puted considering the whole signal. The error between the numerical predictions and the whole
sequence of experimental observations is computed to evaluate the reliability of the model.

1. OED

using LOM

2. MIM learning

step

Matrices MIM ROM3. Inverse problem

using MIM ROM

4. Direct problem

using MIM ROM

reliability ?

Figure 1. illustration of the methodology.

Several metrics are defined to evaluate the efficiency of the proposed method. The L 2 and
L∞ errors are denoted by ε 2 and ε∞ , respectively. They are computed to evaluate the accuracy
of the predictions of the numerical models:

ε 2
def:=

√√√√ 1
N s N t

N t∑
n= 1

N s∑
s= 1

(
u (x s , tn ) − u ref (x s , tn

) 2
,

ε∞
def:= max

x s , tn

∣∣∣u (x s , tn ) − u ref (x s , tn
)∣∣∣ ,
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where u ref is a so-called reference solution, obtained generally by the LOM model, and N t the
number of time step. In addition, the relative error ε r is calculated to evaluate the accuracy of
the retrieved parameter:

ε r
def:= p ◦ − p r

p r
.

Another important criteria is the computational efforts evaluated in the MatlabTM environ-
ment with a computer equipped with Intel i7 CPU and 32 GB of RAM. The measured com-
putational time is denoted by t cpu

[
s
]
. A dimensionless version is also computed:

t ?cpu
def:= t cpu

t cpu , ref
,

where t cpu , ref corresponds to the computational time required using the LOM.

6 Validation of the MIM model for parameter estimation prob-
lem

The construction of the MIM ROM and its use to solve parameter estimation problem is first
explained on a simple case with simulated experimental data. Since the computational costs
are reduced, step one of the methodology illustrated in Figure 1 is not carried out. Thus, next
section presents the learning step to build the MIM ROM for the field and its sensitivity to the
unknown parameter. Then, the model is used for parameter estimation problem.

6.1 Construction of the MIM ROM

The MIM ROM is built during the so-called learning step. For this, Eq. (1) is solved for a
wall of length L = 0.5 m , an horizon of simulation t f = 24 h and the following initial and
right boundary condition:

T ini = T∞ , R = 20 ◦C .

The solution is generated for four cases at five points of interests defined as:

x s =
{

0.1 , 0.15 , 0.25 , 0.3 , 0.45
}
. (13)

Three cases corresponds to the following diffusivity Ωα =
{

2.03 , 5.21 , 5.81
}
· 10−7 m 2 . s−1 ,

corresponding to the ones of concrete, gypsum and mineral wool, combined with the left bound-
ary condition:

T 1
∞ , L = T ini + 5 sin

( 2π
24 · 3600 t

)
. (14)

The last case is carried out for the diffusivity of concrete α = 5.21 ·10−7 m 2 . s−1 and a slightly
modified left boundary condition:

T 2
∞ , L = T ini + 20 sin

( 6π
24 · 3600 t

)
. (15)

To obtain each order of the MIM, PSO is used to perform the learning step with 100 iterations
and a size of 50 populations. It can be noted that taking 100 iterations is more than sufficient
to ensure the convergence.

Figures 2(a) and 2(b) show the error of the reduced order model with the order N . After
the order 10 , the accuracy of the model becomes stable. Thus, a MIM ROM with an order N
scaling with O( 5 ) enables to cut the computational complexity as well as ensure a sufficient
accuracy of the predictions.
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Figure 2. Evolution of the error of the MIM ROM model according to the order N .

6.2 Accuracy for direct simulations

To evaluate the accuracy of the built model, the solutions yu and y θ are computed with the
MIM ROM and the LOM for 50 values of α in the interval

[
2.03 , 6.37

]
· 10−7 m 2 . s−1. The

following initial and boundary conditions are defined:

T ini = T∞ , R = 20 ◦C , T∞ , L = T ini + 5 sin
( 2π

24 · 3600 t

)
.

The final time is t f = 24 h and the wall of length L = 0.5 m . The points of interest are the
same as defined in Eq. (13). The discretisation parameters is ∆t = 30 s for both models. For
the LOM, 75 points of space discretisation are used.

The time evolution of the fields and the sensitivity at the five points of interests is shown in
Figures 3(a) and 3(b) for two values of diffusivity, obtained with the MIM order 5 . It highlights
that the model enables to simulate the whole dynamic of the observable outputs for thermal
diffusivity different from the one used in the learning step.

Figure 4 shows the variation of the error according to the values of the diffusivity and for
two different orders. The ROM of order 5 has a satisfactory error, lower than 10−1 for both the
field and its sensitivity. Moreover, the error is stable for the whole range of thermal diffusivity
remaining inside the domain used during the learning step. As noted for α > 6 · 10−7 m 2 . s−1 ,
the accuracy of the model is not satisfying anymore. Indeed, this diffusivity is out of the range
used during the learning step.

Table 1 provides a synthesis of the effiency of the MIM ROM for a direct simulation. The
accuracy of the model is almost similar between order 5 and 17 . In terms of computational
time, the MIM ROM of order 5 enables to cut the computational cost by 87% compared to the
LOM. Since the model reduction method is a posteriori, there is an inherent computational cost
to build the MIM model. As a synthesis, a learning step composed of 4 signals is sufficient to
build a model of low order and reliable for a wide range of parameter α.

6.3 Parameter estimation problem

The reliability of the MIM ROM is now evaluated for solving parameter estimation problem.
For this, experimental observations are numerically generated using the LOM for a diffusivity
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Figure 3. Evolution of the field and the sensitivity at the points of interest for two values of
diffusivity.

Table 1. Efficiency of the MIM ROM.

Model Order ε∞ t cpu
[

s
]

t ?cpu
[
−
]

u s θ s Learning step Direct simulation Learning step Direct simulation

LOM 75 - - - 0.60 - 1

ROM 17 0.08 0.06 2.4 0.10 4 0.16

ROM 5 0.07 0.06 2.4 0.08 4 0.13

α r = 5.21 · 10−7 m 2 . s−1 . The initial and boundary conditions are the following:

T ini = T∞ , R = 20 ◦C , T∞ , L = T ini + 3 ·
(

1 − cos
( 2π

12 · 3600 t

))
.

It can be remarked that the boundary condition at T∞ , L is very different from the one used
during the learning step of the MIM ROM (14) and (15). The LOM is computed using ∆t = 30 s
and ∆x = 6.8 mm . Then, the observations are projected at the points of interest considering
a time step of 1 hour and adding a random normally distributed error. The standard deviation
of the measurement is reported in Table 2.

Both the LOM and the MIM ROM of order 5 are used to solve the parameter estimation
problem. The initialguess is α apr = 2.1 · 10−7 m 2 . s−1 , corresponding to a different value
from those used during the learning step. The stopping criteria are set as η 1 = η 2 = 10−14

and N k = 100 . The convergence of the algorithm to solve the parameter estimation problem
is illustrated in Figures 5(a) and 5(b). The algorithm searches the unknown parameter until
the criteria γ 2 on the cost function is lower than 10−14 . It requires 8 and 10 iterations when
using the LOM and the ROM, respectively. A comparison of the model prediction with the
estimated parameters against the measurement is shown in Figures 6(a) and 6(b). A satisfying
accuracy is observed for both models. The residuals have no specific signature as illustrated in
Figures 6(c) and 6(d). Table 2 provides a synthesis of the results. The MIM ROM enables to
cut the computational time to solve the inverse problem with a satisfying relative error of 4%
on the estimated parameter.

Further numerical tests are carried for 50 values of thermal diffusivity. Figure 7(a) shows
the evolution of the estimated parameter using the MIM ROM of order 5 . The algorithm
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Figure 4. Variation of the error of the MIM ROM, Orders 5 (a,b) and 17 (c,d), for the whole
interval of thermal diffusivity, for the field (a,c) and its sensitivity (b,d).

requires around 5 iterations to estimate the unknown parameters with an relative accuracy of
4% . Figure 7(b) gives the variation of the computational time ratio between the algorithm
using the LOM and the MIM ROM. The use of the reduced order model enables to reduce the
computational effort by 60% .

7 Solving the parameter estimation problem for a real case
study

Now the methodology illustrated in Figure 1 is applied to a realistic case study presented
in the next section. Then, the reduced sequence of three days is determined using the OED
methodology.

7.1 Description of the case study

The studied building is an old house, built at the end of the XIX th century and located in
Saint Julien de Crempse, France. Further information on the architectural aspect of the building
can be found in [32]. The investigated wall is oriented East and has a length of L = 43 cm .The
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Figure 5. Evolution of the estimated parameter (a) and of the convergence criteria γ 2
according to the iteration.

Table 2. Results of the parameter estimation problem.

Point of observation x s
[

m
]

Error ε r
[
−
]
on

0.1 0.15 0.25 0.3 0.45 Computational time parameter estimation

Model Error ε 2 Order t cpu
[

s
]

t ?cpu
[
−
]

α apr α ◦

LOM 0.059 0.092 0.073 0.10 0.073 75 4 1 −0.59 −0.01

ROM 0.068 0.11 0.083 0.10 0.074 5 0.9 0.23 −0.59 −0.04

Measurement uncertainty
[ ◦C ]

0.94 0.70 0.46 0.30 0.13

wall is composed of a mixture of lime stones and clay mortar as shown in the picture Figure 8(c).
Due to the vernacular traditional architecture, the stones arises from local around the house.
There is no information on the exact position of the stones.The issue is to estimate the global
thermal diffusivity α of the wall by assuming an equivalent homogenous model [14]. Note that
the structural identifiability of this parameter has been demonstrated in [13]. For this aim,
the wall are monitored using five intrusive calibrated sensors HOBO TMC-6-HA as shown in
Figures 8(a) to 8(c). Three sensors are installed inside the wall by obliquely drilling a whole of
13 mm. In the hole, the contact between the material and the sensor is ensured by a thermal
conductive paste. The hole is then filled using an insulation material. The sensor located at the
inside and outside surfaces are protected by insulation materials from incident radiation. The
location of the sensor is set to assume that the heat transfer occurs mainly from the outside to
the inside. An illustration of the experimental design is given in Figure 8(d).

The monitoring is carried out from January until April 2009. Experimental measures of
temperature are available at x =

{
5 , 23 , 40

}
cm , as illustrated in Figure 9(b). Thus, N s =

3 are hold. It is not known if the sensors are located in the stone or in the mortar. The
temperature T∞ , L and T∞ , R are also measured and given in Figure 9(a). Measures are available
for Ω t =

[
0 , 2670

]
h , corresponding to four months. The measurement time step is 1 h . The

experimental uncertainties σis computed using [33]:

σ =
√
σ 2
m + σ 2

x ,
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Figure 6. Comparison of the (simulated) measurement and the model prediction using the
estimated parameter for the LOM (a,c) and the MIM ROM Order 5 (b,d).

where σm = 0.1 ◦C is the sensor measurement uncertainty and σx is the sensor position uncer-
tainty. Due to experimental design based on drilling a large wall, the latter can be important.
It is computed according to:

σx = ∂T

∂x

∣∣∣∣
x = x s

δx ,

where δx = 2 cm is the uncertainty on the sensor position. The partial derivative ∂T
∂x is

computed using the numerical model. Figure 10(a) shows the probability of the measurement
uncertainty at the three points of observation. The uncertainty increases for the sensor located
near the outside air conditions. For the initial conditions, a first order polynomial is fitted using
the experiment:

T ini : x 7−→ T 0 ·
(

1 + x

` 1

)
,

where T 0 = 11.75 ◦C and ` 1 = −0.406 m . As shown in Figure 10(b), the error fitting
is satisfactory with ε 2 = 0.09 ◦C 2 . The a priori knowledge from standards gives α apr =
2.8 · 10−7 m 2 . s−1 .In addition, Table 3 gives the diffusivity of the different elements composing
the wall.
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Figure 7. Evolution of the estimated parameter according to the iteration (a) and of the
computational time ratio of the algorithm using the MIM ROM Order 5 (b) for 50 values of
initial diffusivity.

Table 3. Wall stratigraphy.

Layer Thermal diffusivity
[
,m−2 . s−1 ] Thickness

[
cm
]

Lime stones 2.7 · 10−7 O( 20 )

Mortar 5.5 · 10−7 O( 4 )

Equivalent homogeneous wall 2.8 · 10−7 43

7.2 Determining the reduced sequence of observations using the OEDmethod-
ology

The OED methodology is now carried out to determine the optimal reduced sequence of
three days Ω oed

t of observations. The sensitivity function at the point of observations x s , s ∈{
1 , 2 , 3

}
are computed and shown in Figure 11(a). Then, the criteria Ψ is evaluated for each

sequence of three days in Ω t . Figure 11(b) shows the variation of the dimensionless criteria
according to the choice of t ini . By comparing Figure 11(a) and 11(b), it can be remarked that
the optimal sequences occurs when the sensitivity of the parameter have high magnitudes of
variations. The criteria verifies Ψ > 0.98 for three initial days. According to these results,
the following reduced sequence is adopted for the construction of the MIM ROM and then the
estimation of the unknown parameters:

Ω oed
t =

[
72 , 75

]
d .

The chosen monitoring time of 3 days arises from a compromise among several opposite
criteria. Indeed, it could be reduced compared to traditional methods. From an pure inverse
problem point of view, the longest is the measurement period, the highest is the accuracy
of the parameter estimation. This can be proven by looking at the variation of the OED
criteria Ψ according to the length of the sequence in Figure 12. The criteria is monotonously
increasing according to Ω oed

t . However, one has to deal with experimental constraints such as the
acceptation of the building occupants. Furthermore, the longer is the measurement period, the
higher is the computational time of the direct model and as a consequence the inverse problem
algorithm. Figure 12 shows the variation the criteria Ψ added to the inverse of the computational
cost of the algorithm. For this case, a good compromise is in three days of monitoring. Note
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Figure 8. Illustration of the experimental design with picture of the inside sensors (a,b), the
outside sensors (c) and the experimental design (d).

that the influence of the length of the measurement period is investigated empirically in [12].
For their case study, the authors suggest to carry at least three days of monitoring to have an
accurate estimation.

7.3 Building the MIM ROM

For the reduced sequence Ω oed
t , the boundary conditions are given in Figure 13(a). The

initial condition is the following:

T ini : x 7−→ T 0 ·
(

1 + x

` 1
−
(
x

` 2

) 2)
,

where T 0 = 16.87 ◦C , ` 1 = 1.764 m and ` 2 = 0.5 m . The error fitting of the initial
condition is satisfactory (ε 2 = 0.24 ◦C 2) as shown in Figure 13(b). The learning step is
carrying considering four values of diffusivity Ωα =

{
1 , 5 , 10 , 70

}
· 10−7 m 2 . s−1 . The

training is carried until the order N = 20 taking around t cpu = 3 d . Figures 14(a) and 14(b)
shows the evolution of the error according to the order of the model. It can be remarked that a
model of order N = 10 provides a satisfactory accuracy.
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Figure 9. Time variations of the boundary conditions (a) and the measured observation data
(b). For the sake of clarity, the measurement uncertainty is not presented.
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Figure 10. Probability density function of the uncertainty measurement of the observations (a)
and initial condition of the problem (b).

7.4 Parameter estimation

After the learning step the MIM ROM matrices are known. Thus, the model is now used to
estimate the thermal diffusivity of the material. Figure 13(d) shows the variation of the sensi-
tivity functions using the a priori value of the diffusivity. The functions have high magnitude of
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Figure 11. Time variations of the sensitivity functions of the problem (a) and variation of the
OED criteria according to the choice of the initial time of the reduced sequence Ω oed

t (b).
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Figure 12. Variation of the OED criteria according to the length of the reduced sequence Ω oed
t

and the computational time of the MIM ROM.

variations ensuring the practical identifiablity of the unknown parameter. The Gauß algorithm
can be employed for the parameter estimation. It uses the MIM ROM of order N = 10 over
the reduced sequence Ω oed

t . The observations are shown in Figures 13(c). Figure 15(a) shows
the evolution of the estimated parameter. The algorithm requires 24 iterations to satisfy the
convergence criteria, which evolution is illustrated in Figure 15(b). In approximately 10 iter-
ations, the algorithm already founds a trusting value of the thermal diffusivity. Note that the
stability of the estimation have been verified by providing several values of initial guess in the
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Figure 13. Time variations of the boundary conditions (a) and and initial condition of the
problem (b) for the reduced sequence Ω oed

t . Time variation of the measured observation data
(c) and the sensitivity functions (d). The grey shadow corresponds to the measurement
uncertainty.

algorithm. As presented in Table 4, the value of the estimated parameter α ◦ remains stable
from N = 7 . The computational time to solve the inverse problem is cut by 5 compared to
the LOM. Slightly differences in the computational time are remarked for the MIM ROM due
to the number of iterations to converge. The model of order 20 is more accurate and requires
less iterations to retrieve the unknown parameter.It is important to note that the experimental
design relies on embedded sensors inside the wall to obtain the experimental observations. This
may be a restriction of the methodology for other case study. Other experimental devices could
be used such as heat flux sensor or infrared camera. The methodology to search the optimal
experimental design could be extended for such approaches. Furthermore, a MIM ROM needs
to be constructed according to the new type of observable field.

7.5 Reliability of the model

To evaluate the reliability of the model with the estimated thermal diffusivity α ◦ = 1.06 ·
10−6 m 2 . s−1 , the numerical predictions computed with the MIM ROM N = 10 are com-
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Figure 14. Evolution of the error of the MIM ROM model according to the order N trained
over the reduced sequence Ω oed

t .
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Figure 15. Evolution of the estimated parameter α (a) and of the convergence criteria (b)
according to the iteration number of the algorithm.

pared to the experimental observations at each point x s , for the whole sequence Ω t . Fig-
ures 16(a),16(c) and 16(e) show this juxtaposition for the last week of the measurement. The
model using a priori parameter lacks of accuracy to represent the physical phenomena. The
model with the estimated parameter has a better reliability. However, for the point x 3 , both
models faces some discrepancy with the experimental observations. It can be noted a certain
delay between the prediction and the observation at the point x 2 . Figures 16(b),16(d) and 16(f)
give the probability of the error with observation over the whole sequence of measurement. The
error is compared with the probability of the measurement. The prediction of the model are
more precised using the estimated parameter. Indeed the probability has a smaller standard
deviation. However, at the point x 3 , errors of larger magnitude occur for probabilities of both
models. It reveals that some phenomena are not considered in the model and the mathematical
formulation should be improved by considering for instance heterogeneous diffusivity in the wall.
To verify the reliability of the proposed model, the inside heat flux j and the thermal loads E
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Table 4. Results of the parameter estimation problem, noting that α apr = 2.8 · 10−6 m 2 . s−1.

Estimated parameter Computational time Iterations to

Model Order α ◦ · 10 7 [m 2 . s−1 ] t cpu
[

s
]

t ?cpu
[
−
]

to converged

LOM 100 1.064 572 1 19

ROM 5 1.097 114 0.2 24

ROM 7 1.064 112 0.19 23

ROM 10 1.062 101 0.17 21

ROM 15 1.065 102 0.18 21

ROM 20 1.067 94 0.16 19

are computed according to:

j
def:= −k ∂T

∂x

∣∣∣∣
x = L

, E
def:=

∫
Ω t

j q dτ .

Figure 17(a) shows the variation of the thermal flux. It has important magnitude inducing high
thermal loads as noted in Figure 17(b). The thermal loads are computed for perturbations of
20% of the estimated diffusivity. It can be noted that the relative error on the loads remains
stable around 5% . It confirms that the approximations introduced from the whole methodology
(uncertainty measurement, reduced order model or estimation on a reduced sequence) are minor
compared to the ones in the mathematical model itself.

8 Conclusion
The uncertain thermal properties of existing building walls can be determined by solving

parameter estimation problems. However, such problems have important computational cost for
at least two reasons. The inverse problem algorithm requires to solve the direct problem several
times. In addition, the experimental measurement are carried on-site implying simulations
over several month under climatic variations. These complexities increase the computational
requirements.

To answer this issue, an innovative methodology is proposed based on two concepts. First,
a reduced order model based on MIM method is used to reduce significantly the computational
time of the direct problem without loosing accuracy. The methodology is presented in Section 3.
The reduced model is based on a state space representation where the matrices are built during
a learning step. The latter is based on a minimization procedure between the predictions of
the reduced and complete models. An interesting point is that the model is built to compute
the field of interest and its sensitivity to the unknown parameter. The sensitivity is known
straightforwardly using the matrices of the reduced model.

The second concept is the optimal experiment design methodology, described in Section 4.
It is employed to determine a reduced sequence of observations. Three advantages are enhanced
with this approach. First, it reduces the inherent computational cost of a posteriori model
reduction methods since the learning step is carried for a reduced sequence. Then, the chosen
sequence is optimal to estimate the parameter with accuracy. In addition, the inverse problem is
solved only for a few days of observations. It reduced again the computational effort to retrieve
the parameter. The solution of the inverse problem is obtained with the Gauß algorithm since
the reduced order model computes the field and its sensitivity.

A first case study is proposed in Section 6 to validate the MIM model reduction method. This
step is important to evaluate the efficiency in terms of accuracy and computational cuts. The
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Figure 16. Comparison of the numerical predictions for the last week (a,c,e) and probability of
the error between the predictions and the experimental observations for the whole period Ω t

(b,d,f).

MIM model is built with a signal based on 4 values of thermal diffusivity. Then, the MIM model
shows a very satisfying accuracy to simulate the direct problem over a wide range of diffusivity.
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Figure 17. Time evolution of the inside heat flux (a) and variation of the thermal loads
according to small perturbation of α ◦ (b).

Regardless the inherent cost of the learning step, the model cut by 5 the computational cost
of the direct problem. The model is also evaluated in the framework of inverse problem with
simulated experimental observations. The unknown parameter is estimated with an error lower
than the measurement uncertainty and a reduced computational time.

After this simple validation case, the whole methodology is applied to a more realistic one.
The issue is to estimate the thermal diffusivity of an old building wall. The latter is monitored
during four months with three sensors drilled inside. With the OED methodology, a sequence of
three days is identified as optimal. Then, the MIM ROM is built for the reduced sequence and a
signal composed of 4 values of thermal diffusivity. Then, a model of order 10 is chosen to solve
the inverse problem. The estimated diffusivity is three times higher than the one provided by
standards. In terms of computational efficiency, the parameter is estimated with an algorithm 5
times faster. Eventually, the reliability of the model is evaluated by comparing the predictions
of the MIM model with the experimental observations of the complete period. It highlights that
the global methodology is efficient to calibrate the model with a reduced computational effort.

Future works should focus on improving the definition of the mathematical model by deal-
ing with anisotropic thermal diffusivity in the building wall. In addition, to evaluate the real
efficiency of the methodology, the Gauß algorithm combined with the MIM ROM should be
installed in embedded system for fast estimation of building material properties.
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Nomenclature and symbols

Physical parameters

Latin letters

c volumetric heat capacity
[

J .m−3 .K−1 ]
E thermal loads

[
J
]

j heat flux
[

W .m−2 ]
k thermal conductivity

[
W .m−1 .K−1 ]

L length
[

m
]

t time
[

s
]

x position
[

m
]

T temperature
[

K
]

Greek letters

α thermal diffusivity
[

m 2 . s−1 ]
δ sensor position uncertainty

[
m
]

σ measurement uncertainty
[

K
]

Ωα thermal diffusivity interval
[

m 2 . s−1 ]
Ω t time interval

[
s
]

Ω oed
t optimal time interval

[
s
]

ε , ε 2 error
[

K
]

ε r relative error
[
−
]
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Mathematical notations

Latin letters

A , B , C , F , G , matrices
H , Q , U , X , Y

F Fisher matrix

Fo Fourier number

J cost function

p unknown parameter

u dimensionless temperature

N r order of the reduced model

N s number of sensors

Greek letters

∆x space mesh

∆t time step

η 1 , η 2 tolerance value

γ 1 , γ 2 convergence criteria

Π measurement plan

Ψ D-optimum criteria

θ dimensionless sensitivity

ε , ε 2 , ε r error

Subscripts and superscripts

apr a priori parameter

cpu computational cost

f final

ini initial

m measurement

min minimal value

ref reference value

rom reduced order model

r real value

s sensor

x position

◦ estimated parameter

? dimensionless value

∞ boundary
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