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1. Introduction

As the demand for cloud services has been growing over

ABSTRACT

As the power demand of datacenters is increasing sharply, a promising solution is to power datacenters locally by renewable
energies. However, one of the main challenges when operating such green datacenters is to conciliate the intermittent
power supply and the power demand. To deal with this problem, we view the green datacenter as two sub-systems, namely,
Information Technology (IT) sub-system which consumes energy, and electrical sub-system which supplies energy. The
objective is to find an efficient trade-off between the power demand and power supply, respecting the operational
requirements of both sub-systems (i.e., the requirements on utility, or monetary gain, which includes monetary revenue and
monetary cost). First, we analyze the problem by a black-box approach. In this approach, the models of the two sub-systems
are unknown to each other, and the two sub-systems negotiate by exchanging their power preferences. However, we found
that the black-box approach cannot guarantee stable solutions in term of execution time and generational distance (which is
the distance between a solution and the Pareto front). Then we introduce a semi black-box approach, in which the two sub-
systems are modeled as the buyer and the supplier in a buyer-supplier negotiation game. We propose an algorithm that
allows the buyer and supplier to negotiate, seeking for an efficient trade-off between the power demand and power
supply. The analytical results show thatthe semi black-box algorithm converges to equilibrium, and these results are then
confirmed by experimental results. We conduct the experiments by implementing a middleware of a datacenter powered by
renewable energies. The experimental results show that the semi black-box algorithm improves significantly the stability,
quality of service (QoS) and utility of the datacenter, compared to other algorithms. In term of stability, compared to the
black-box algorithm, the semi black-box algorithm reduces the standard deviation of execution time and generational
distance by 23 and 27 times, respectively. In term of QoS and utility, the semi black-box algorithm outperforms the
algorithms that do not consider joint IT-energy management, as well as the algorithms that do not utilize a semi black-box
design.

2030 if efficient control methods are not developed [3]. In the US,
the datacenters consumed 100 billion kWh of electric energy in
2015, and this consumption is expected to be 150 billion kWh in

recent years, the energy consumption of datacenters is increasing
rapidly. A number of studies have showed intensive data and
reports on this increase [1-4]. The consumed electricity of data-
centers worldwide can reach 8000 billion kilowatt hours (kWh) in
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2022 [2]. On the other hand, the traditional/brown energy sources
are becoming less preferable, due to economic and environmental
concerns. One promising solution is to use renewable energies to
locally power datacenters, avoiding both greenhouse gas emission
and electricity distribution loss. We consider a green datacenter
that is entirely supplied by renewable sources (namely, wind
turbines (WT) and photovoltaic panels (PV)), and storage devices
(namely, batteries (BT), electrolyzers (EZ) and fuel cells (FC)).
However, one of the main challenges of building this datacenter
is to conciliate the intermittent energy production and the con-
tinuous operation of the datacenter. The production of renewable



energies such as WT and PV highly depends on environmental
conditions, so we need to coordinate this intermittent energy
production with the energy demand, in order to guarantee a high
quality of service (QoS) for cloud users.

To deal with this problem, we model the datacenter with
one Negotiation Module (NM) connecting to two sub-modules,
namely Information Technology Decision-support Sub-module
(ITDM) and Power Decision-support Sub-module (PDM). The
ITDM manages the scheduling of datacenter workload, while the
PDM manages the scheduling of electrical sources. The scheduling
of both ITDM and PDM are considered jointly, with the support
of the NM. This NM manages the negotiation between the PDM'’s
power supply and the ITDM’s power demand. When the power
supply and power demand are mismatched, the NM aims to find
a compromise between them. We provide two generic models
for the ITDM scheduler and PDM scheduler; in this way, the
proposed negotiation algorithms can work with any scheduler
that is implemented based on these generic models.

As a straightforward approach toward a distributed design, we
first propose a black-box negotiation algorithm, named Schedul-
ing Based Negotiation (SAN). We define that a power profile is a
set of power values associated with a time interval. In this black-
box approach, each Decision-support Sub-module (DM) learns
about the other DM through exchanging power profiles. These
profiles, called hints, allow each DM to learn about the pre-
ferred power of the other DM. Each DM is expected to gradually
propose more relevant profiles based on the similarity to the
hints. However, we found that the black-box approach cannot
guarantee stable solutions in term of execution time and gen-
erational distance. In brief, generational distance is the distance
between a solution and the Pareto front, where Pareto front in
a multi-objective problem is the boundary defined by the set
of non-dominated solutions. Then, we show that a semi black-
box approach is more relevant to deal with this kind of problem.
We model the problem as a buyer-supplier negotiation game,
and based on this game, we propose a negotiation algorithm
named Game Theory Based Negotiation (GAN). In this game, the
ITDM and PDM are modeled to become two game players, named
IT-Player and PD-Player. These two players negotiate with each
other as an energy buyer and an energy supplier. Our goal is
to find an efficient compromise between the players, respecting
their operational requirements. The final solution is a mutually
acceptable profile for both players.

We use a buyer-supplier model because this model reflects
the buying-supplying relationship between the IT sub-system and
the electrical sub-system. Moreover, in a negotiation problem,
when two parties negotiate on a common resource, each party
should consider its willingness when compromising. This is be-
cause a same amount of resource may be beneficial differently to
each party. This property can be addressed by the pricing process
in a buyer-supplier partnership.

We utilize a semi black-box model in order to retain the
benefits of both black-box and non-black-box approach. In a semi
black-box approach, the IT-Player and PD-Player are modeled
independently, rather than integrally as in a centralized approach.
However, unlike the black-box approach, the players can ex-
change more specific information to learn about the direction to
negotiate. On the other hand, our problem is a large-timescale
problem, in which the decision can be made every several days.
However, we found that a semi black-box approach is more
beneficial than a centralized approach. Firstly, each player is not
required to gather a lot of information from the other player. The
independence between two players facilitates the design process
and reduces the involvement in case of modifying one player.
Secondly, we propose to run the negotiation algorithm regularly
in a smaller timescale, e.g., every 6 h, even when there is no

request from the players. In this way, the negotiation algorithm
can be run in an overlap manner, i.e., it is run every 6 h, to find a
negotiation solution for 3 days. Finally, a decentralized approach
facilitates the design of a multi-timescale negotiation, which is one
of our future works. In this multi-timescale negotiation, we first
find a long-term solution, then based on this solution, we find
multiple short-term solutions, within the long-term period.

The proposed game is a sequential and alternate-move game,
rather than a one-shot game. The players’ strategies (i.e., schedul-
ing solutions) do not belong to a deterministic space, so it is
highly complex to solve the game analytically using a one-shot
non-cooperative approach. Moreover, this sequential game has
perfect information, since each player knows the decision taken
by the other player. However, the game is neither a complete nor
incomplete information game, because even though the players
know the rules of the game (e.g., pricing information), the players’
payoffs are not common knowledge.

The contributions of this research are as follows.

e We model the problem of joint IT and energy management
for datacenters entirely powered by renewable energies,
then analyze that problem using a black-box and a semi
black-box approach. We propose two generic models for
the ITDM and PDM (section 3), then any scheduler that is
implemented based on this generic model can work with the
negotiation algorithms.

e After showing the instability of the black-box approach (sec-
tion 4.2), we propose a buyer-supplier negotiation game
for the problem (section 5), then introduce a negotiation
algorithm to solve the game (Sections 6 and 7). We show
that, analytically and experimentally, the proposed algo-
rithm converges to equilibrium.

e We set up a middleware to verify the proposed algorithms,
and to evaluate the performance of the whole system. We
show that the proposed negotiation algorithm can achieve
efficient trade-offs between the utilities (i.e., monetary
gains) of the IT and electrical sub-systems.

2. Related works

Recently there are a number of studies about datacenters
partially or entirely powered by renewable energy. Some of
them consider only energy management, some others consider
only IT management, and some others jointly consider IT and
energy management. Some methodologies of the energy manage-
ment problem are power source coordination [5], [6], and power
provisioning [7]. Some methodologies of the IT management
problem are IT job scheduling [8-10], virtual machine migra-
tion [11], shifting demand in time/demand response manage-
ment [12,13], assigning IT jobs to computational resources, [14,
15], and Dynamic Voltage and Frequency Scaling (DVES) [16].
There is also some literature that proposes to combine multiple
methodologies, e.g., scheduling IT jobs over time, assigning IT
jobs to servers/VMs, controlling the states of servers/VMs, and
assigning VMs to hosts [17,18]. From the perspective of demand
response, we can also categorize those studies by temporal load
balancing (e.g., shifting demand in time), spatial load balanc-
ing (e.g., assigning IT jobs to multiple computational resources),
equipment state management (e.g., DVFS), and additional storage
management.

However, there are not many studies that provide a detailed
consideration of joint IT and energy management in green data-
centers. Some studies that have certain levels of that considera-
tion are [19-25]. Among them, the articles [19] and [20] are from
a same research work; also, the articles [23,24], and [25] are from
a same research work.



Some studies of Goiri et al. focus on IT scheduling with re-
spect to predicted renewable sources [26], or focus on developing
a research platform for green datacenters [19,20]. The authors
proposed Parasol, which is a prototype of datacenter powered
by solar energy, batteries, and net metering. The authors also
introduced GreenSwitch, a scheduler for workload and energy
sources. That research provides two main contributions: (1) the
analysis of main trade-offs in the datacenters that are pow-
ered by solar and/or wind energy, and (2) the design of Parasol
and GreenSwitch. The authors analyze three trade-offs, namely
grid-centric approach and self-generation approach, space and cost
of solar energy, and space and cost of wind energy. In [20], the
GreenSwitch tries to minimize the cost of grid energy, with
respect to the workload and the battery lifetime. The experiments
of Parasol and GreenSwitch prove that an intelligent manage-
ment of IT workload and energy source can reduce operation
cost significantly. However, only solar panel is considered in [19]
and [20]. Moreover, the IT scheduling in that research is lim-
ited. At each time period, the scheduling algorithm selects which
energy source (i.e., renewable, battery, and/or grid) and which
storage medium (i.e., battery or grid) to use.

The research in [21,22,27] and [28] also considers joint IT and
energy management, though the energy management is limited.
Li et al. [22] presented two methods to maximize the utilization
of renewable energy in a small/medium-sized datacenter. The
first method is an opportunistic scheduling, which suggests to
run more jobs when renewable energy is available. The second
method is to store renewable energy surplus to use later when
the renewable energy supply is low. The experiments are set up
with real-world job workload and solar energy traces. The authors
also show that the proposed methods can reduce the demand for
energy storage. However, the proposed methods have simplified
the management of power sources. This management focuses
on controlling the storage devices with respect to their charac-
teristics, e.g., battery depth-of-discharge, battery charging rate
limit. In [21], the authors introduced a priority-based scheduling,
considering the battery state and the renewable energy forecast.
The scheduling uses genetic algorithm to allocate jobs, taking
into account the storage capacity and the available solar energy.
In general, that research focuses on virtual machine scheduling,
taking into consideration the solar panel production. In [27], the
authors also introduce an adaptive job scheduler with respect
to the energy production forecast but of both solar and wind
sources. The objective is to decrease the number of canceled
or violated jobs, and increase the efficient usage of the green
energy. Similar to [21], the research in [27] focuses on jobs
scheduling with regard to renewable energy production. The jobs
are either web services or batch jobs; and the authors assume
that each server has one web services request queue, and one
or more batch jobs slots. Web services are executed when there
are available computing resources and there is enough brown
energy to maintain these services. In [28], Leo et al. proposed
a heuristic IT scheduling algorithm for datacenter powered by
renewable energies and the grid. The algorithm takes into account
a limited knowledge of the power sources. Specifically, each
source is supposed to have a predicted function that provides the
estimation of the available energy over time. Then the algorithm
takes this prediction as an input in order to schedule IT jobs for
the datacenter.

The project DATAZERO' [23-25] is among the first studies
that proposes the architecture of datacenters entirely powered
by renewable energy, with a detailed consideration of joint IT
and energy management. The works in [23] introduced the design
of the architecture, while the research in [24] presented the

1 Www.datazero.org.

Table 1
Notations of datacenter model.

Symbol Name Description

T Time window T is a constant; T is equal to the number of time

steps in each profile; in experiment, T = 72 (h)

X Power profile ~ Power profile has the form
Xx={x1,...,X,...,xr},i=1,..., T, where x; is
the power value at ith time step; the unit of
power value is Watt (W)

u(-) Utility The utility of a DM; the utility in the black-box
approach is normalized to [0, 1] and has no unit,
whereas the utility in the semi black-box
approach is the monetary gain, which has the
unit Euro and is not normalized

r(-) Revenue The revenue of a DM; similar to the utility, the
revenue in the black-box approach has no unit,
whereas the revenue in the semi black-box
approach has the unit Euro

c() Cost The cost of a DM; the cost in the black-box
approach has no unit, whereas the cost in the
semi black-box approach has the unit Euro

J®) Number of Number of batch jobs that are being processed by

batch jobs ITDM

Je) Number of Number of service jobs that are being processed

service jobs by ITDM

J Number of all  Number of service and batch jobs that are being

jobs processed by ITDM; J = J® 4 J©

d(x,y) Distance Distance between two profiles x and y; distance
can be measured by Mean Square Error or
Pearson correlation

& Distance Threshold used in stopping criteria of the

threshold negotiation algorithms; this threshold is set

through experiment parameters

management of power demand, and the technical report [25]
presented the management of power supply. In this paper, we
propose the negotiation between the power demand and power
supply. As a part of the project, this paper presents the results of
negotiation as well as the performance of the whole system.

3. Datacenter model
3.1. Generic model

We define that a power profile (or profile) x is a set of power
values, associated with a time window, denoted as x = {xq, ...,
xr}, where T is the length of the time window. Depending on each
specific context, a profile may have other names, e.g., candidate
profile/candidate or hint profile/hint. Table 1 is the list of main
notations used in our datacenter model.

We design a generic model for the DMs, then any scheduler
whose implementation follows this model can work with the
proposed negotiation algorithms. In the generic model, the ITDM
is responsible for scheduling the IT workload in data center. Sim-
ilarly, the PDM is responsible for scheduling the energy sources
and storage devices. The DMs run scheduling algorithms to find
multiple feasible scheduling solutions, and the negotiation mod-
ule helps to find a compromised solution from those scheduling
solutions (Fig. 1). The proposed negotiation algorithm is a turn-
based approach, i.e.,, when the ITDM schedules, the PDM does not,
and vice versa.

The two schedulers of the two DMs are described as follows.

e ITDM scheduler: this is an IT job scheduler; with each
scheduling solution, this scheduler generates a correspond-
ing power profile. Specifically, with respect to each schedul-
ing solution, the scheduler computes the power profile



needed to execute the scheduled jobs (including both ser-
vice and batch jobs).

e PDM scheduler: this is a power sources scheduler; with
each scheduling solution, this scheduler generates a corre-
sponding power profile, which represents the power output
from the electrical components (including energy sources
and storage devices).

3.1.1. ITDM utility

The schedulers are able to output multiple feasible scheduling
solutions. Each solution corresponds to a power profile, called
candidate. Then, the negotiation solution is selected based on the
utility of the candidates. We explain in detail this selection in the
next sections. For each profile x, the ITDM’s utility u(x) is com-
puted based on the Amazon pricing® for on-demand instances,
which is given as

u(x) = r(x) — c(x), (1)

where the revenue r(x) = g(x) — h(x), with g(x) is job execution
time multiplied by instances cost, and h(x) is the service-level
agreement (SLA) violation compensation; the cost c(x) of the black-
box and the semi black-box approach are given differently, which
will be described in corresponding sections. The SLA violation
compensations of IT batch job and service job are computed
differently. First, with a set of J®® batch jobs, we compute their
average due date violation v?(x) as

(b)
J ) ti(d)

t/) — 5
- (2)

(b) _
v(x) =
JO = @ gl

1

where ti(s), tl.(d) and ti(f ) are the starting time, due date and finishing
time of i-job, respectively. Note that in Eq. (2), for simplicity, we
abandon x on the right-hand side expression, implicitly imply-
ing that the expression is computed with respect to x. Second,
for service jobs, we calculate the ratio between the amount of
utilized computing resources (i.e., CPU and memory) and the
amount of reference computing resources. Specifically, when a
set J® of service jobs fail to receive their reference amount
computing resource, and hence, undergo QoS degradation, we
calculate the under-provisioning ratio vg])u(x) of CPU and the

under-provisioning ratio vﬁﬁgm(x) of memory as

1 J© utiz)
(s) — ) — i
V) = Ven () = 755 > ey (3)
i=1 i
where ") is the computing resource utilized, and r"? is the
reference computing resource. In case of CPU,
.
fi(u ) = Zﬁi,gfg, (4)
Eel
and
ri(ref) _ Zai(,r;f)fg(ref)’ (5)
Eel

with o;¢ is the percentage of the processing element/processing
core & that is assigned to job i, f; is the frequency of processing

core &, ai(,ref Vis the percentage of reference processing core & that
the job i requests, f; is the reference frequency of processing core
&,and & is the set of processing cores. Similar to Eq. (2), in Eq. (3),
we abandon x on the right-hand side expression for simplicity.

Finally, we compute the SLA violation compensation as

1
h(x) = vV + 57— V) + Vi) £ 0. (6)
vcpu(x) + Umem(X)

2 www.aws.amazon.com/ec2/pricing/on-demand.

------ Information flow
—— Electrical flow

Fig. 1. Datacenter model.

Note that for comparability, the values are normalized before
applying the computation.

3.1.2. PDM utility
The PDM computes its utility value, associated with each
profile x, as

U(X) = r(X) - C(Xr S)v (7)

where S = {WT, PV, BT, EZ, FC} is the set of utilized compo-
nents; the revenue r(x) of the black-box and the semi black-box
approach are given differently, which will be described in cor-
responding sections; the cost c(x, S) is normalized to [0,1], after
being computed as

T
At (op) (cap)
cx.5)=3 D G + G (8)
i=1 jeS ~j
where x; = Zjes Pji,i =1,...,T, with P;; is the output power

of component j at time step i (this output power is obtained

from the solution of PDM scheduling); (:j("’J ), cj(“'p ) and Ej(max) are

respectively the operational cost, the capital cost (i.e., replace-
ment cost) and the maximum energy produced by the power
source component j during its lifetime; At is the duration of one
time step. Note that Pj; can be positive or negative depending
on the status of the source j (i.e, charging or discharging). We
define the operational cost cj("p ) based on the characteristics of

each component. This cost is the fixed amount of maintenance
cost during the entire lifetime of a component. Note that the cost
to purchase hydrogen for fuel cell is not considered. In this way,
we only use fuel cell when hydrogen tank is not empty.

3.1.3. Difference between two profiles

In order to quantify the difference between two profiles x
and y, we define the distance between them, denoted as d(x, y).
Though d(x,y) can be implemented by any method, in the ex-
periment, we use Mean Square Error (MSE) and inverse Pearson
correlation to implement this distance.



3.2. A specific implementation of DMs

Based on the above generic model, we implement one ITDM
scheduler and one PDM scheduler, which were described partially
in our previous works [24,25]. As in [24], the ITDM scheduler
is implemented with three versions of Best Fit algorithm; these
versions are different on the way that the jobs are sorted: (i) due
date, closest job first; (ii) arrival time, first come first served; and
(iii) job size, longest one first. Each of those algorithms takes one
profile as an input, called power constraint [24]. We use the PDM’s
profile with highest utility for that power constraint. However,
the scheduling algorithms are not required to strictly respect the
power constraint, because each PDM’s profile has a relaxation
value p, indicating how much the ITDM is allowed to violate
the power constraint. For instance, when p = 0.2, the power
demand can be arbitrarily lower than the power supply, but the
power demand can only exceed the power supply by 20%. In
other words, denoting the power constraint as [™®), the output
profile of the scheduling algorithm must be lower than or equal
to (1 + p) x [P, The ITDM has three techniques to generate
multiple scheduling solutions, and therefore multiple profiles.
The first technique is to vary the relaxation value. The second
technique is to use different versions of Best Fit algorithm. As
the third technique, the ITDM supports multiple service grades,
i.e.,, multiple QoS levels of a job. For example, video streaming
service can provide multiple encoding quality levels. We define
that the degraded QoS of a batch job is associated with delay
violation, whereas the degraded QoS of a service job is associated
with resource under-provisioning. In this way, when a job has
multiple service grades, the ITDM finds one scheduling solution
for each service grade. In other words, the ITDM generates mul-
tiple scheduling solutions, each solution corresponds to a service
grade.

As described in [25], the PDM scheduler is based on the
following integer linear program.

T
max Z Pi(p rod)
i—1

s.t. Pi(pmd) < Pwri + Ppv i + (Prc i +Pé?"uf n

(PEZIx z(;l'lr'l,)i)ﬁa i=1,...,T,
(1-¢)x M <P <@+ 1)x M, i=1,...,T,
state of charge equations, 9)

electrolyzer equations,

fuel cell equations,

level of hydrogen equations,
bounds of FC, EZ,

bounds of state of charge,
bounds of level of hydrogen,

where corresponding to the time step i, P”"°" "0 Py i Ppy s,

Prc i, and PB‘}"P, are respectively the produced power, load power,

wind turbine power, photovoltaic power, power delivered by fuel
cell, and power discharged from battery; PEZI and Pg?), are the
power put into electrolyzer, and the power used to recharge
battery, respectively; n is the inverter efficiency. The resolution
of the integer linear program takes the load [T as an input [25].
We use the ITDM'’s profile with highest utility for that input. To
output multiple scheduling solutions, the PDM varies the relax-
ation value ¢. The meaning of relaxation in PDM is similar as in
ITDM, except the case when the power supply is higher than the
power demand. For example, when ¢ = 0.2, the power supply

Table 2
Main notations of black-box approach.

Symbol  Name Description

X The set of ITDM hints x = {X', ..., XM, ...XM}, where ¥™ is an
ITDM hint

y The set of PDM hints  y = {(y',...,y",...y"}, where y" is a
PDM hint

X One variable in the
binary integer
program (12)

x={x' ..., *M} indicates which ITDM
hint is selected for the matched pair, for
example, X = {0, 1, 0} indicates that X
is selected for the matched pair

v=u ..., M} indicates which PDM
hint is selected for the matched pair, for
example, y = {1, 0, 0} indicates that y'
is selected for the matched pair

y One variable in the
binary integer
program (12)

8(x,y) Minimum distance This minimum distance is defined as
between two sets X min{d(x', '), d(X", y%), ..., dxM, yN)y
and y
¢ The relaxation values ¢ = {¢', ..., [N oM}, where
of ITDM hints @™ € (0, 1] is the relaxation value of the
hint X™; the ITDM assigns one relaxation
value to each hint
0 The relaxation values p ={p',...0" ..., oM}, where

of the PDM hints (O 1] is the relaxation value of the
hmt y"; PDM assigns one relaxation

value to each hint

cannot be arbitrarily higher than the power demand, but can only
be higher by 20%.

Inside the scheduling algorithms, the distance between two
profiles is implemented by MSE and inverse Pearson correlation.
Denoting T as the number of time steps in each profile, the MSE
distance between x = {xq,...,xr} and y = {y1, ..., yr} is given
as

)= 3 3" (-0 (10)
Note that, similar to Euclidean distance, MSE is invariant if we
change the order of power values inside the profiles. In contrast,
inverse Pearson correlation can recognize that change, because it
can realize the trends and evolution of power values. As a result,
we implement both methods and compare their performance.
When using inverse Pearson correlation, the distance between x
and y is given as

dx,y) = \/Zl 10— %) \/ZI il , (11)

> = )i — )
where X and y are the averages of the sets {xi,...,
1, ..., yr}, respectively.

xr} and

4. Black-box approach

As a straightforward approach, we introduce and analyze a
black-box negotiation algorithm, named Scheduling Negotiation
Algorithm. Instead of considering the whole system by a global
model, we consider the sub-systems of NM, ITDM and PDM
separately. The sub-problems are solved with as little specific
information as possible. The only exchanged information is power
profiles.

In SAN, at the first negotiation round, each Decision-support
Sub-module generates its feasible profiles, called candidates, and
sends them to the NM. Each DM generates its profiles without
considering the other DM. As described in Section 3, each profile
has an associated utility. The NM selects half of the candidates
of each DM as hints, and abandons the other half. The selection



is based on the weighted sum of utilities and similarity, which
is called weighted similarity. We will describe this selection in
detail in the next subsection. In the next negotiation round, the
NM requests a DM to generate a new half of candidates. The
NM selects the DM to request based on the negotiation mode,
which will be also described in the next subsection. If the ITDM
is selected, the NM requests this ITDM by sending to it the PDM
hint with highest utility as power constraint (i.e., ['™). Similarly,
if the PDM is selected, the NM requests this PDM by sending
to it the ITDM hint with highest utility as load (i.e., I'™). As
mentioned in the previous section, I"® and I/7) serve as the
inputs of ITDM scheduler and PDM scheduler, respectively. After
receiving the request, the DM reschedules to generate its new half
of candidates. Then the DM sends this new half to the NM. The
NM combines this new half of the DM with the hints of this DM
in the previous round, in order to form a new candidate set for
this DM. Again, the NM selects new hint set based on the new
candidate set. The process is repeated until the NM found a pair
of {1 ITDM hint, 1 PDM hint} that are matched. A pair is called
matched when it consists of two profiles that have maximized
summation of utilities, while the distance between these two
profiles is below a given threshold . Note that, in this black-box
approach, we set the ITDM'’s cost ¢(-) = 0, and the PDM’s revenue
r(-)=1.

The proposed negotiation algorithm has two stages, namely,
checking for matched pair and negotiating. After executing stage 1,
the algorithm checks whether to continue the stage 2 or not. We
describe these two stages as follows.

e Stage 1 - Checking for matched pair: after having a new hint
set, the NM checks whether there is a pair of {1 ITDM hint,
1 PDM hint} that approximately matches with each other.
If this matched pair exists, the NM returns these two hints
to the DMs as the final negotiation solution. Then it is not
necessary to continue the stage 2.

e Stage 2 - Negotiating: if the NM cannot find any matched
pair, stage 2 is executed. We propose a turn-based mecha-
nism in which the two DMs do not reschedule at the same
time. In each negotiation round, the NM determines the
negotiation mode, which indicates which DM is allowed to
reschedule at the next negotiation round. To do this, the NM
monitors the quality of the rescheduling, in order to decide
which DM should reschedule at the next round. In the next
subsection, we describe this negotiation algorithm in detail.

4.1. Details of algorithm

In Fig. 2, we show diagram of the proposed algorithm; stage
1 is depicted at the upper part, and stage 2 is depicted at the
lower part of the figure. In stage 1, if a matched pair is found, the
final solutions are sent to the DMs, and the negotiation stops. If
a matched pair is not found, stage 2 is performed. In stage 2, the
algorithm is in one of these two negotiation modes: (i) following
ITDM (named FLW_IT), and (ii) following PDM (named FLW_PD).
In the FLW_IT mode, the NM requests the PDM to reschedule;
then the PDM reschedules to generate a new half of candidates,
and sends back to the NM. Similarly, in the FLW_PD mode, the
NM requests the ITDM to reschedule, then the ITDM reschedules
to generate a new half of candidates. In brief, a negotiation round
includes three tasks: (i) scheduling, (ii) evaluating the candidates
using weighted similarity, and (iii) selecting new hints. In the
FLW_IT mode, after receiving new half of candidates from the
PDM, the NM evaluates the quality of rescheduling in order to
decide the mode for the next negotiation round. The procedures
in the FLW_PD mode follow the same processes.

The details of the two stages are provided in the following
subsections.

4.1.1. Stage 1 - Checking for matched pair

We denote the set of ITDM hints as X = {X!,...x™, ..., XM},
and the set of PDM hints as y = {y', ..., y",...y"}, where M and
N are respectively the number of ITDM hints and PDM hints. We
describe the main notations of the black-box approach in Table 2.
Stage 1 checks whether there is a pair of {1 hint X™, 1 hint y"}
that matches. In order to find that pair, we solve a binary integer
program with two variables X and y. These variables are two bi-
nary vectors: x = {x', ..., X", ... &AM}, y = {3\, ... 9" L 9N,
where X" € {0,1}, m=1,...,M,andy" € {0, 1}, n=1,...,N.
Each x™ is a binary value, indicating that X™ is selected or not.

Stage 1 is represented by the following binary integer pro-
gram.

M
m

n)%’ey;x K™ +Z

m=1

M N

m ny.,mgsen >m o o¥n

sty Y (1=¢™(1 = p" YR, ) < e, 1)

m=1 n=1

M N

Se=1y =1,

m=1 n=1

X", y" e {0, 1},

where

e u(x™) and u(y") are the utilities of the hints X" and y",
respectively,

e d(X™, y") is the distance between x™ and y",

e ¢™ and p" are the relaxation values of the hints X™ and y",
respectively,

e ¢ is the distance threshold, which is set through experiment

parameters.

The binary integer program finds a pair of profiles that maximizes
the summation of utilities, while the distance between these two
profiles is lower than the distance threshold .

4.1.2. Stage 2 - Negotiating

In this stage, the NM continues to use the hints of the previous
stage. This stage includes the scheduling process of the DMs and
the evaluating process of the NM. The scheduling process is for
generating multiple feasible scheduling solutions, corresponding
to multiple candidates. The evaluating process is for assessing the
candidates against the hints, based on weighted similarity.

We describe the FLW_PD mode as follows. Note that the
FLW_IT mode undergoes similar processes. After receiving the re-
quest with [™® from the NM, the ITDM reschedules to find a new
half of candidates. Then the ITDM sends these new candidates to
the NM. The NM combines the ITDM hints of previous round with
the newly received candidates to form the new ITDM candidate
set. Then, the NM computes the quality w of each ITDM candidate
x based on weighted similarity, as follows.

u(x) + u(y
N Z dix,y») (13)

where

° d(x y") is the distance between the candidate x and the hint
v

e u(x) is the utility of the candidate x, and u(y") is the utility
of the hint y".

The NM selects half of ITDM candidates to become the ITDM’s
new hints. Then the NM decides whether to continue the FLW_PD
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Fig. 2. Scheduling-based negotiation algorithm. How to evaluate quality of rescheduling is explained in Section 4.1.2.

mode or switch to the FLW_IT mode. To this end, the NM eval-
uates the quality of the ITDM’s reschedule by comparing two
distances: (i) the minimum distance §(-) between the PDM hints
and the ITDM hints of previous negotiation round, and (ii) the
minimum distance §(-) between the PDM hints and the ITDM'’s
new hints of current negotiation round. If the former is greater
than the latter, we say that the quality of the ITDM'’s reschedule
is satisfactory. Then the NM allows the ITDM to execute another
reschedule at the next negotiation round. If the former is smaller
than the latter, the PDM is allowed to reschedule. The intuition
behind this comparison is that, when the former is greater than
the latter, we expect that the ITDM will generate new candidates
that get closer to the PDM hints. To compute the minimum
distance §(-) between two sets, we compute the distance of every
pair between two sets, then select the smallest distance.

The negotiation process repeats until the NM finds a pair of
matched profiles, or the number of negotiation rounds reaches a
given threshold. This threshold is set via an experiment parame-
ter. When the NM cannot find a matched pair, the pair with the
smallest distance is selected as the final solution. Then the PDM'’s
profile in that pair is implemented as the power supply, and there
is a possibility that the performance of the datacenter is degraded
when the power supply is lower than the power demand.

4.2. Stability of black-box approach

We implement a middleware of datacenter powered by re-
newable energies in order to carry out experiments for our re-
search, as described in [29]. With SAN, we evaluate and analyze
the execution time, as well as the generational distance of each
individual execution, as showed in Figs. 3 and 5. Generational
distance is first introduced by Van Veldhuizen and Lamont [30],
for estimating the average Euclidean distance between a solution

and the nearest point on Pareto front. We measure this distance
in order to evaluate the trade-off of our final solution. To this,
we trace the generated solutions and approximate their Pareto
front by finding the set of non-dominated solutions; then we
measure the generational distance of our final solution to this
Pareto front (Fig. 4). We note that the Pareto front is the best
known approximation, because in order to compute the complete
Pareto front, we need to have the set of all feasible solutions,
which is highly complex to generate.

In Fig. 3, we depict the execution time, grouped by the num-
ber of hints. Each gray dot represents the execution time of
an individual execution. The vertical line and the middle bar,
respectively, represent the standard deviation and the mean,
which are computed from the values of gray dots. We can see
that, when the number of hints is 4, the execution time varies
widely. When the number of hints is high, the execution time
becomes more consistent but also grows higher. In Figs. 5 and
6, we show the generational distance with respect to the number
of negotiation rounds and the number of hints, respectively. In
these experiments, we set the distance threshold ¢ = 1.12. Fig. 6
shows that the black-box model cannot guarantee stable results,
in term of generational distance.

The experiments show that SAN is not able to provide highly
consistent and stable results. In the next section, we propose a
semi black-box approach for negotiation.

5. Semi black-box approach

To deal with the instability of the black-box approach, in this
section, we propose a semi black-box approach, which includes
a game model and a negotiation algorithm, named Game Theory
Based Negotiation. The game has two players, namely IT-Player



°
0.6
° °
205+ [ ° °
©
] ()
kel
5 0.4 ® 0 0 °
s °
S
£ °
203 (] ® )
(G}
° ® ¢
0.21 °
® o
0.1 T T T T T
4 12 20 28 36

Number of hints

Fig. 6. Generational distance with respect to the number of hints.

Users @

IT Infrastructure @ ----------- Information flow

---- Electrical flow

Payment from IT-
Player to PD-Player

IT-Player/Buyer I

)

@ Payment from users

@ Operating cost

25 A { ]

20 A PY
g @ ° 0
2 15 L4 °
€
o [ J
E ¢
F 104 °

o
{ ] x
° $ °
5 [ ]
;1 1I2 2|0 2|8 3|6
Number of hints
Fig. 3. Execution time with respect to the number of hints.
1.0 A b ¢
° *
'}
®
0.8 % ® e %@ & o N
N N
® @ 5
® @ 8 @% p @ o ¢
> B
zo0s % oo, .
. %?
z 1 M
&) % § ® @
S 0.4 o? ﬁ % 88
° o o @ N 8%@
o® OO

0.2 %@8@ ®

wo %°

0.0 % ¢

0.0 0.2 0.4 0.6 0.8 1.0
ITDM utility

Fig. 4. Illustration of solutions (gray dots), final solution (red square), and Pareto
front (blue stars).

0.55 1

0.50 1

0.45 1

E2T=EEEX
oo
z2zzz2z
LI T T T }
WNNRF A
o WO N

0.40 1

Generational distance

|

0.35 1

0.30 1

10 20 30
Number of negotiation rounds

Fig. 5. Generational distance with respect to the number of negotiation rounds.

and PD-Player, corresponding to the two sub-systems. The PD-
Player controls the electrical sub-system, playing the role of a
supplier; the IT-Player controls the IT sub-system, playing the
role of a buyer (Fig. 7). The IT-Player and PD-Player have the
functionality of game players, and they only use ITDM and PDM
as their schedulers. With this game design, we abandon the role
of the NM.

f : Negotiation

PD-Player/Supplier I
=5
=
Encironmentall
condition

Electrical Infrastructure

Fig. 7. Game model.

We introduce the new terms order, aspiration order, aspiration
supply, and price. Among them, order, aspiration order, and aspira-
tion supply are profiles. We will provide the detailed definitions
of aspiration supply and aspiration order in the next section. The
definitions of order and price are as follows.

e Order: a power profile, which indicates how much power
the IT-Player plans to buy from the PD-Player.

e Price: similar to opening price in [31], price is the per-unit
payment that the IT-Player has to pay to the PD-Player, price
is in Euros/kWh.

The roles of the IT-Player and PD-Player are different, specifi-
cally, the PD-Player first proposes price, then the IT-Player places
order based on that price. In other words, the PD-Player controls
the price, while the IT-Player controls the order. In this way, the
PD-Player is able to reflect the availability of energy in the price.

In the proposed game, each player has its own objective and
constraints, which are described as follows.

e [T-Player: maximizes its utility (i.e., monetary gain), while
satisfying the users’ demand. Unlike SAN where the utility
is an abstract value and normalized to [0, 1], the utility in
GAN is the amount of money a DM earns. Specifically, the



IT-Player utility is defined as the difference between: (i)
the payment that the users give to the IT-Player, and (ii)
the payment that the IT-Player gives to the PD-Player. The
first payment is r(x), corresponding to an ITDM profile x,
computed based on the Amazon pricing. Each ITDM profile
indicates how much power the IT-Player will buy from the
PD-Player. This power provides a certain computing capacity
to the users; then, the users pay to the IT-Player.

e PD-Player: maximizes its utility (i.e., monetary gain), while
considering the environmental conditions and operating
cost (i.e., operational and capital cost, as in Section 3). That
utility is defined as the difference between: (i) the payment
from the IT-Player and (ii) the operating cost of the electrical
infrastructure.

We depict the two players and their relationship as in Fig. 7.

The decision variables of the PD-Player are price and energy
source scheduling, whereas those of the IT-Player are order and job
scheduling. The players obtain scheduling solutions from the ITDM
and PDM. The PD-Player obtains the energy source scheduling
solution from the PDM; similarly, the IT-Player obtains the IT
job scheduling solution from the ITDM. We described the DMs’
scheduling algorithms in Section 3.

The proposed game is not completely a cooperative game or
a non-cooperative game. The players are partially selfish, i.e.,
each player maximizes its own utility, however, at some points,
the players sacrifice their utility, in order to reach a negotiation
agreement. We will define this sacrifice mechanism in subsec-
tion 6.2.

6. Overview of GAN algorithm
6.1. Terms definitions

Fig. 8 shows the variables and procedures of the proposed
algorithm. In the figure, we introduce some new terms.

e Aspiration order: the power profile that the IT-Player de-
sires to order, after considering users’ demand. We also use
aspiration order as the load 1" for the PDM’s scheduler.

e Aspiration supply: the power profile that the PD-Player de-
sires to supply, after considering the environmental condi-
tions and operating cost. The final solution of the negotiation
is the aspiration supply in the last negotiation round. We
also use aspiration supply as the power constraint I for
the ITDM’s scheduler.

The aspiration order and aspiration supply are used as two
reference points [31]. Also, we introduce two other reference
points, namely, IT incentive price and PD incentive price. In a
buyer-supplier game, reference points are important; and the
players can revise these points during the negotiation, in order
to reach an agreement. That revision is necessary because there
is a possibility that the game has negative bargaining zone [31].

Fig. 9 is an example of the aspiration supply, order, and as-
piration order. In that example, the power supply of PD-Player is
generally lower than the power demand of IT-Player. We suppose
that the reasons are the environmental conditions, operating cost,
and/or users’ demand. The PD-Player proposes the price r that is
inversely proportional to x™. Then, the IT-Player places the order
X, considering the IT-Player utility and the price 7. Since 7 is
inversely proportional to x™°, we can expect that ® has similar
curve with x™. Fig. 10 shows how to generate the aspiration
order x'T and the aspiration supply x™P. The IT-Player generates
xT based on the scheduling solution of job 1, job 2 and job 3.
The difference between x'" and % is that ' is the direct result
of a scheduling solution, whereas X is the output of another
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Fig. 8. Variables and procedures in the algorithm.
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computation after we already had a scheduling solution. Similar
to IT-Player, the PD-Player generates x" based on the scheduling
solution of available energy. We will describe in detail these gen-
erations in the formulations of IT-Player and PD-Player. Table 3
summarizes the main notations in semi black-box approach.

In GAN, the two modes FLW_IT and FLW_PD correspond to
follow IT-Player and follow PD-Player. Due to our turn-based de-
sign, at a time, the algorithm follows only IT-Player or PD-Player.
The decision of which mode to follow is not made by any player,
but by the global variable mod, as will be explained in Section 7.
On the other hand, the players are selfish, and they negotiate
just because they foresee their benefit. Specifically, the IT-Player
wants the PD-Player to follow it, i.e., the IT-Player wants the
PD-Player to reschedule, in order to propose a more attractive
supply. Similarly, the PD-Player wants the IT-Player to reschedule
and propose a more attractive order. In this way, a problem of
selfishness may occur: both players do not want to follow each
other, and they stop negotiating without reaching any agreement.
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Table 3
Main notations of semi black-box approach.

Symbol Name Description

b4 Price Price is in Euros/kWh, proposed by the
PD-Player, indicating the per-unit payment
that the IT-Player has to pay to the PD-Player,

having the form 7 = {7y, ..., 77}

x>

Order An order is a power profile, proposed by the
IT-Player, indicating how much power the
IT-Player wants to buy from the PD-Player,
having the form X = {X, ..., X}

IT

T IT incentive " is the price that the IT-Player can offer to
price the PD-Player, i.e., willing-to-pay price; 7T has
the vector form like 7

P PD incentive 7™ is the price that PD-Player can offer to
price IT-Player; 7P has the vector form like 7
X7 Aspiration X' is the profile that the IT-Player desires,

order with respect to users’ demand; x has the
vector form like %

PD

Aspiration x'” indicates the power that the PD-Player

supply wants to supply to the IT-Player, with respect
to the states of electrical components; x™” has
the vector form like X

a Sacrifice This variable is used in sacrifice mechanism,
variable making the DMs sacrifice their utility in order
to continue negotiation
y Sacrifice y indicates how much « is increased every
step-size time we use sacrifice mechanism; this

step-size is set though experiment parameters

To deal with this problem, we introduce the mechanism of incen-
tive pricing. In this mechanism, each player proposes an incentive
price that is possibly attractive to the other player. However, the
players cannot freely propose this price; they must guarantee that
their utilities are not reduced if this price is used. The intuition
behind this mechanism is as follows.

e IT incentive pricing: if the PD-Player is attracted by the IT
incentive price, and the PD-Player wants this price to be

used, then the PD-Player must supply a power profile that
is equal to the aspiration order.

e PD incentive pricing: if the IT-Player is attracted to the PD
incentive price, and the IT-Player wants this price to be used,
then the IT-Player must place an order that is equal to the
aspiration supply.

The incentive prices are the signals of the willingness to co-
operate. Incentives can be a powerful tool for the buyer to seek
for agreement with the supplier [32]. In our model, we allow
both supplier and buyer to use this tool. We utilize cooperative
incentive, instead of competitive incentive [32], since cooperative
incentives enable players to share cost [33] and/or revenue [34].

6.2. Sacrifice mechanism

We found that, even with incentive pricing mechanism, the
problem of selfishness may still occur, i.e., both players stop
negotiating while an agreement is not reached. The problem of
selfishness occurs when the incentive is not attractive enough
for both players to follow each other. From the system-wide
perspective, this situation is unacceptable, since the system will
stop working. To deal with this problem, we introduce sacrifice
mechanism. At first, both players negotiate without sacrificing. If
the problem of selfishness occurs, the players sacrifice their utility
to continue negotiating, trying to reach an agreement.

A player sacrifices by giving more attractiveness to the in-
centive price, even though the utility of that player is reduced.
The intuition behind this is that, if the players stop negotiating
without reaching any agreement, we can assume that the players
and the end-users receive a very low utility (e.g., negative infinity
utility); therefore, the players need to continue negotiating, even
though their utility decreases. We introduce the sacrifice variable
o, which indicates how much utility the players sacrifice. Every
time the problem of selfishness occurs, we increase «, raising the
sacrifice quantity that each player should abide by.

6.3. Two modes of negotiation

Fig. 11 depicts two sequential diagrams of two modes FLW_IT
(i.e., following IT-Player) and FLW_PD (i.e., following PD-Player).
Those modes are described as follows.

e FLW_IT: The PD-Player reschedules and computes new aspi-
ration supply, new price, new PD incentive price, and new
mode. After that, the PD-Player sends these new information
to the IT-Player. The IT-Player computes new order and new
mode, then sends to the PD-Player.

e FLW_PD: The IT-Player reschedules and computes new as-
piration order, new order, new IT incentive price, and new
mode. Then the IT-Player sends these new information to
the PD-Player. The PD-Player computes new mode, then
sends to the IT-Player.

We note that, as showed in Fig. 11, if some information is not
modified, it can be stored and reused. For example, in the FLW_IT
mode, the PD-Player can reuse the aspiration order and the IT
incentive price.

6.4. Mode controlling

In order to control the mode, we use 3 variables: IT-Player
local variable it_pre € {FLW_IT, FLW_PD}, PD-Player local vari-
able pd_pre € {FLW_IT, FLW_PD}, and global variable mod €
{FLW_IT, FLW_PD}. Both players always run the same mode,
called system mode; this mode depends only on mod. And mod,
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Fig. 11. Two modes of GAN algorithm.

The determining of system mode; (*) means either FLW_IT or FLW_PD.

if

then

Checking current values

Updating new value

Updating system mode

Variable it_pre Variable pd_pre

Variable mod

Variable mod

System mode

FLW_IT FLW_IT *) FLW_IT Follow IT-Player
FLW_PD FLW_PD *) FLW_PD Follow PD-Player
FLW_IT FLW_IT (keep unchanged) Follow IT-Player
FLW_PD FLW_IT FLW_PD FLW_PD (keep unchanged) Follow PD-Player
FLW_IT FLW_PD @ mod cannot be determined System mode cannot be determined, the

problem of selfishness occurs; we have to use
sacrifice mechanism to solve this problem

Algorithm 1 Procedures of IT-Player

Algorithm 3 IT-Player Loop

procedure follow_it()

X < it_place_order()

Send a message of {x,it_pre, mod}, and wake up the
PD-Player Loop

procedure follow_pd()

xT <« it_sched()

X < it_place_order()

7T <« it_est_price()

Send a message of {xT, %, #'T, it_pre, mod}, and wake up the
PD-Player Loop

Algorithm 2 Mode Updating

1: procedure update_mode(i_pre, p_pre, g_mod)

2 if i_pre = FLW_IT and p_pre = FLW_IT then

3 | return FLW_IT

4: else

5: if i_pre = FLW_PD and p_pre = FLW_PD then
6: | return FLW_PD

7 else

8 | return g_mod

in turn, is jointly controlled by two local variables. The two local
variables cannot directly control the system mode, but instead,
indirectly through the global variable. The local variable it_pre
indicates the mode that the IT-Player prefers; similarly, the local
variable pd_pre indicates the mode that the PD-Player prefers.
Based on the current values of the variables, we update the new

La<«0717<«1

2: while d(x’P, %) > ¢ and © < ITER do
3: if it_pre = FLW_IT then

4 if pd_pre = FLW_PD then
5: o <—a+vy

6: else

7 | follow_it()

8

9

else

: if pd_pre = FLW_PD then
10: | follow_pd()
11: else
12: if mod = FLW_IT then
13: | follow_it()
14: else
15: | follow_pd()
16: | if c(x™P, 7™) — o < (%, w) and d(x™, %) > ¢ then
17: | it_pre <~ FLW_PD
18: else
19: | | it_pre < FLW_IT

20: mod < update_mode(it_pre, pd_pre, mod)
21: T+ +
22: Sleep until received new message from PD-Player

value of mod and the system mode. Specifically, if it_pre =
FLW_IT and pd_pre = FLW_IT, we will set mod = FLW_IT
regardless of current value of mod. Similarly, if it_pre = FLW_PD
and pd_pre = FLW_PD, we will set mod = FLW_PD regardless



of the current values of mod. If it_pre = FLW_PD and pd_pre =
FLW_IT, we keep the mod unchanged. If it_pre = FLW_IT and
pd_pre = FLW_PD, we cannot determine either mod or system
mode. This means that we encounter the problem of selfishness,
and negotiation cannot be continued. We have to use sacrifice
mechanism to deal with this problem. We summarize how to
determine system mode in Table 4.

If the players are completely selfish, then each player always
wants the other player to follow itself, regardless of whether it
foresees benefit from following the other player or not. In this
way, there is high possibility that we encounter the situation
when it_pre = FLW_IT and pd_pre = FLW_PD, meaning that the
negotiation cannot be continued. In order to reduce the possibility
of this situation, instead of designing the players to be completely
selfish, we design them to be partially selfish, i.e.,

o when the IT-Player foresees benefit from following the PD-
Player, the IT-Player sets it_pre = FLW_PD

o when the PD-Player foresees benefit from following the
IT-Player, the PD-Player sets pd_pre = FLW _IT.

In this way, the problem of selfishness only occurs when both
players cannot foresee any benefit of following each other.

7. Details of GAN algorithm

Corresponding to two modes, the algorithm of each player
has two procedures, namely follow_it() and follow_pd(). Moreover,
each player has a main loop, named IT-Player Loop (algorithm
3) and PD-Player Loop (algorithm 5). Note that, in the loops, the
parameter ITER is the maximum number of iterations. The two
loops have the same values of ITER, distance threshold &, and
sacrifice step-size y; other variables and parameters are different;
especially, each player has its own value of «. The parameters
ITER, ¢, and y are constants, and they are set via experiment
parameters. We note that, two players have the procedures with
same names, but their implementations are different. Two pro-
cedures of IT-Player are showed in algorithm 1; two procedures
of PD-Player are showed in algorithm 4. When the negotiation
starts, the two main loops run in parallel. Within a loop, depend
on the system mode, a procedure can be called accordingly. A
player, after finishing a procedure, sends a message containing
updated information to the other player. On the other hand, a
loop goes to sleep after reaching its end, and wakes up after re-
ceiving a new message from the other player’s procedure (i.e., line
22 in algorithm 3 and algorithm 5).

In the proposed game, the players have the choice to stop
negotiating. However, both players have the opportunity to in-
crease their utility if they continue to negotiate. We define that if
both players stop negotiating before reaching an agreement, each
player receives a very low utility. That is why we introduce the
incentive pricing mechanism and the system mode controlling. In
this way, no player is allowed to unilaterally stop the negotiation
process.

7.1. IT-Player algorithm

7.1.1. Overview of IT-player algorithm

Two IT-Player procedures follow_it() and follow_pd() are
showed in algorithm 1. During one iteration, the IT-Player Loop
can call one procedure; after finishing the iteration, the IT-Player
Loop sleeps and waits for new message from PD-Player. Mean-
while, the called procedure starts to run; when this procedure
finishes, this procedure wakes up the PD-Player Loop (algorithm
5). The two procedures are described as follows.

Table 5
Behaviors of the IT-Player Loop, depending on the updated value of mod.
if then

Updated value mod

FLW_IT
FLW_PD

mod cannot be determined; the
problem of selfishness occurs

Updating behavior

Call follow_it()
Call follow_pd()

Increase «; use sacrifice mechanism
to solve the problem of selfishness

e follow_it(): the IT-Player runs this procedure when mod =
FLW _IT. In this procedure, the IT-Player only needs to com-
pute and sends to PD-Player the new order X and new
modes (Fig. 11). This computation uses the price proposed
by the PD-Player. The IT-Player computes X by the procedure
it_place_order().

e follow_pd(): the IT-Player runs this procedure when mod =
FLW_PD. In this procedure, the IT-Player must reschedule
to compute the new aspiration order x'T, the new order
%, and the new IT incentive price =T (Fig. 11). The IT-
Player computes x, %, and 7'T by the procedure it_sched(),
it_place_order() and it_est_price(), respectively.

7.1.2. IT-Player loop

The main loop of IT-Player is showed in algorithm 3. We
terminate the loop when: (i) the distance between x™ and X% is
equal or less than a threshold ¢, or (ii) the maximum number
of iterations is reached, i.e. t > ITER. We verify these stopping
criteria at line 2 of the algorithm 3. The criterion (i) means
that the power demand is approximately equal to the power
supply. When the criterion (ii) is satisfied, we stop the negotiation
without obtaining a compromise solution. In this case, the power
supply from the PD-Player is x’”, and there is a possibility that the
performance of the datacenter is degraded if the power supply is
lower than the power demand.

In the loop, the IT-Player first checks and updates the sacrifice
variable «. This check and update are done from line 3 to line 5.
We need to increase « when both IT-Player and PD-Player stop
following each other. Specifically, « is increased when the loop
is not terminated but it_pre = FLW_IT and pd_pre = FLW_PD,
meaning that IT-Player wants to follow itself and PD-Player also
wants to follow itself. We increase « in order to help the players
have more incentive to follow each other. We use « in the
condition at line 16. In that condition, c(-) is the cost function,
indicating the IT-Player payment to the PD-Player. This condition
means that, if the PD incentive price and the aspiration supply are
used, the IT-Player pays lower cost than when the current price
and order are used. With larger «, this condition is more likely to
hold, then it_pre is more likely to be set to FLW_PD (line 17).

In the loop, the IT-Player calls the procedure follow_it() or
follow_pd() based on the system mode; and the system mode
depends on the values of mod, it_pre and pd_pre (from line 7 to
line 15). We summarize the behaviors of the loop, depending on
the modes, as in Table 5.

At the end of the loop (line 20), the IT-Player updates the
global variable mod using algorithm 2. This variable only switches
its value when both local variables it_pre and pd_pre have
switched to the same value. In this way, a player cannot unilat-
erally change the system mode, which results in conflicting.

The sacrifice mechanism supports the convergence of the al-
gorithm. When the players stop following each other but the
algorithm still has not converged, the players are required to sac-
rifice their utility by «, then the negotiation has more possibility
to continue. Every time the players stop following each other,
we increase « by an amount of the sacrifice step-size, which is
denoted as y (line 5). The sacrifice mechanism is applied until



the algorithm converges or the maximum number of iterations
is reached. The value of y is set via experiment parameters. We
summarize the behaviors of IT-Player Loop in Table 5.

7.1.3. IT-Player formulation
With T is the size of time window, we denote x = {x1, X, ...,
xr} as an ITDM profile. The price proposed by the PD-Player is

7w = {m, 72, ..., r}. Utility function of IT-Player is
T
ux, ) =r(x) —cx,m) =r(x) — Z X (14)
k=1
where

e 1(x) is the revenue of the IT-Player, indicating the pay-
ment that the users pay to the IT-Player; as mentioned in
Section 3, r(x) is computed based on Amazon pricing,

e c(-) is the payment that the IT-Player pays to the PD-Player.
Unlike in SAN where the cost is set c(-) = 0, the cost in GAN
isc(x, m) = ZLI Xk

7.1.4. IT-Player procedures

Considering a negotiation round with the current aspiration
order is x'T and the current IT incentive price is 7'T, we denote
the aspiration order and IT incentive price of the previous nego-
tiation round as X' and 7T, respectively. The three procedures of
IT-Player are described as follows.

e it_sched():

- At the first negotiation round, the IT-Player finds x'T
by generating multiple feasible scheduling solutions
(called candidates) then selects the best solution based
on their utility. The generation of scheduling solutions
is described in Section 3.

- At later rounds, the selection needs to satisfy another
condition: d(x, x?) < d(¥'T, x™). This condition im-
plies that the new aspiration order must be closer to
x™P than the aspiration order of previous negotiation
round.

e it_place_order(): the IT-Player finds X that maximizes its
utility as in Eq. (14). The computation of X is given as

X = argmaxu(x, ). (15)
X

e it_est_price(): the IT-Player proposes a more attractive price
to the PD-Player, while keeping the IT-Player’s total utility
non-decreased. The price is proposed based on the following
rationales.

- We have the fact that, from our definition, the aspi-
ration order is the IT-Player desired order; hence, the
revenue associated with this order is higher than the
revenue associated with other orders.

- Based on this fact, the IT-Player estimates the revenue
that it can gain if it runs the users’ jobs using the power
equal to the aspiration order, instead of the placed order.

Based on those two rationals, the IT-Player computes an
incentive price that possibly increases the IT-Player cost, but
the IT-Player total utility has to be non-decreased, i.e., u(x'",
7'T) > u(X, 7). This incentive price implies that the IT-
Player is willing to pay this price, if the PD-Player supplies
the power equal to the aspiration order. Denoting p =
{p1, D2, ..., pr} as a temporary variable, the pseudo-code for
computing 7'T is as follows.

p=7TIT =fi’lT

while u(x'", p) > u(X, )
IT

7 =p
Di .
p,:pf+E', i=1...T,
where 7T is the IT incentive price of the previous nego-

tiation round; R is a positive integer, which is set through
experiment parameters.

7.2. PD-Player algorithm

Algorithm 4 Procedures of PD-Player

procedure follow_pd()
\ Send a message of {pd_pre, mod}, and wake up the IT-Player
Loop
procedure follow_it()
xP « pd_sched()
7 < pd_propose_price()
7P <« pd_est_price()
Send a message of {(x°, =, 7P, pd_pre, mod}, and wake up
the IT-Player Loop

Algorithm 5 PD-Player Loop

1:a <07« 1

2: while d(x’P, %) > ¢ and t < ITER do
3: if pd_mode = FLW_PD then
4 if it_pre = FLW_IT then
5: \ o <—a+vy

6: else

7 | follow_pd()

8

9

else
: if it_pre = FLW_IT then
10: | follow_it()
11: else
12: if mod = FLW_IT then
13; | follow_it()
14: else
15; | follow_pd()
16: | ifr(xT, 7T)+ « > r(X, 7) and d(x°, }) > ¢ then
17: | pd_pre < FLW_IT
18: else
19: | pd_pre < FLW_PD
20: mod <« update_mode(it_pre, pd_pre, mod)
21: T+ +

22: Sleep until received new message from IT-Player

We show two procedures follow_pd() and follow_it() of the PD-
Player in algorithm 4; and the PD-Player loop in algorithm 5. The
PD-Player loop can be described similarly to the IT-Player loop.

Denoting x = {xq1,X2,...,Xr} as a PDM profile, the utility
function of the PD-Player is given as

T
u(x, 7w, S) =r(x, ) = c(x. S) = Y _mxi — c(x,S), (16)
i=1

where c(x, S) is computed as in Eq. (8). Unlike in SAN where the
revenue is set r(-) = 1, the revenue in GAN is r(x, 7) = ZLl TiX;.

7.2.1. PD-Player procedures

Similar to the IT-Player procedures, we denote the aspiration
supply, price and PD incentive price of the previous negotiation
round as ¥P, 7# and 7P, respectively. The three procedures of the
PD-Player are described as follows.



e pd_propose_price(): each value 7; is generated such that it
is inversely proportional to the value fo. We denote Z as
the base price of electricity; in experiment, we set Z = 0.17
Euros/kWh. The computation of 7 is given as follows.

ifoDEI_’i
7'[,'=Z
else
J'L’i:Zﬂ i=1,...,T
XD el

1

where P = {Py,...,Pr} is the PD-Player average power
supply; these values are stored and updated regularly by
the PD-Player. In this computation, x?,i = 1...T and P;, i =
1...T are normalized to (0,1].

e pd_est_price(): similar to the procedure it_est_price(), the
PD-Player proposes an incentive price that is attractive to
the IT-Player, while keeping PD-Player’s total utility non-
decreased. We have defined that the aspiration supply is
the PD-Player desired supply, hence the cost associated with
this supply is lower than the cost associated with other sup-
plies. Based on this fact, the PD-Player estimates the amount
of cost that it can reduce if it provides the IT-Player with the
power equal to aspiration supply, instead of the placed order.
Then the PD-Player computes an incentive price such that
its total utility is non-decreased, i.e., u(x™, 7™) > u(%, 7).
This computation implies that the PD-Player is willing to
offer this price, if the IT-Player purchases the power equal
to the aspiration supply. Denoting p = {p1, p2,...,DPr} as a
temporary variable, the pseudo-code for computing 7™ is
as follows.

PD

p=m =ﬁPD

while u(x™, p) > u(x, )

JTPD:p

p=p—2
1 1 R k)
where 7P is the PD incentive price of previous negotiation
round; R is a positive integer as in the IT-Player algorithm.
e pd_sched():

i=1,...,T,

- Similar to the IT-Player, at the first negotiation round,
the PD-Player finds x® by generating multiple feasible
scheduling solutions (called candidates) then selects
the best solution based on their utility. The genera-
tion of the scheduling solutions is based on Eq. (9) of
Section 3.

- At later rounds, this procedure needs to satisfy two
other conditions: (i) X must be closer to x'T than the
aspiration supply of previous negotiation round X",
i.e., d(x, x'T) < d(X", xT), and (ii) the new price = must
be closer to /" than the price of previous negotiation
round 7, i.e., d(mw, #'T) < d(7, ='T).

In order to provide more explanations on the algorithms, we
present a simplified numerical example of the negotiation process
in Appendix B.

7.3. Properties of the proposed game

7.3.1. General properties

As mentioned in section 5, the proposed game is neither a
cooperative game nor a non-cooperative game. This game can
also be categorized as an integrative, win-win or problem solving
bargaining game [35-38]. In this integrative bargaining game,

the benefits of both players are addressed by a cooperative
and information-exchange oriented negotiation process. This is a
well-known method to find a win-win agreement between sup-
pliers and buyers. Without defining target and minimal outcomes,
the players view the negotiation as a “problem to be solved”, then
mutually seek for a win-win agreement through negotiation [37,
38]. As a results, one player’s gain does not necessarily come at
the expense of the other player’s gain.

The proposed game has some similar properties to the cen-
tipede game [39,40]. In brief, centipede game is a sequential game
in which two players play alternatively, choosing their strategy
on a shared resource. The two main similar properties between
the proposed game and centipede game are as follows. First,
in our game, both players alternately have the option to stop
negotiating [40]. When a player prefers to stop negotiating, if it
does stop, its utility is kept non-decreased. Second, the players
have the chance to achieve higher utility if they continue. A player
continues because it expects to obtain higher utility, in contrast,
a player stops because it is afraid that the next move of the
opponent will not be beneficial to it. Although there are two
similar properties, the proposed game and the centipede game
have a major difference. The players in the centipede game have
the same set of two predefined discrete strategies, whereas the
players in the proposed game have different continuous strategy
sets.

7.3.2. Equilibrium

Definition 1. The incentive to unilaterally deviate: a player has
incentive to unilaterally deviate if and only if the condition d(x"?, %)
> ¢ holds.

Definition 2. Equilibrium: the game reaches equilibrium when the
condition d(x"P, X) > ¢ does not hold for both players.

We note that, the equilibrium in Definition 2 is Nash equilib-
rium [40] because of followings. When the d(x"°, %) > & does
not hold for both players, we reach equilibrium (Definition 2),
and at the same time, the two players have no incentive to
unilaterally deviate (Definition 1). On the other hand, the state
when each player does not want to unilaterally deviate (given
the current strategies of other players are unchanged) is called
Nash equilibrium [40]. This means that the equilibrium we have
reached is the Nash equilibrium.

Proposition 1. Consider algorithm 3 and algorithm 5,

e (i) given that the scheduling relaxation can be arbitrarily var-
ied,

e (ii) if these two algorithms run for a large enough number of
iterations,

then the DMs’ scheduling solution is ergodic in [x'T, x™P] given a pre-
defined granularity, and these algorithms converge to equilibrium.

Proof. See Appendix A.

8. Experimental results
8.1. Setup

To evaluate GAN, we conduct various experiments using our
middleware of datacenter powered by renewable energies. The
middleware system is composed of a negotiation controller, an IT
sub-system, and an electrical sub-system; they connect with each



other through ActiveMQ.> We implement the ITDM using DC-
Worms [41], a tool for simulating distributed computing systems.
More description about this middleware can be found in our
previous article [42]. When running the negotiation algorithm,
at each negotiation round, two representative profiles from IT-
Player and PD-Player are logged for evaluation. To have these
two profiles, we use the placed order and the aspiration supply.
The time window is set to 72 (h), corresponding to 3 days. We
run the experiments on Taurus cluster of Grid5000 platform®
and on a local computer. The local computer is used to run the
experiments relating to execution time. This local computer has
one Intel® processor 2.20 GHz with 4 cores, and 8.27 GB memory.
Pearson correlation is used as the default implementation of
profile distance. With some abuse of notation, we use M and N
to denote the number of candidates in the scheduling of ITDM
and PDM, respectively. In case there is not specific information
provided, the default number of candidates is M = N = 36, and
the default value of y is 50. The default maximum number of
iteration is ITER = 18.

The workload and weather information is trace data. The
workload is a set of jobs, each has the information of arrival
time, resource consumption over time, due date, and service
grades. The traces of the workload are generated from a generator
that is introduced in our previous research [24]. We use Google
based workload generator to generate jobs for 72-h time win-
dow. This means that the datacenter has to execute these jobs
within 72 h, otherwise, the jobs are expired. However, we use
a different workload set with [24] (which has only batch jobs);
our workload includes 312 jobs, with 156 batch jobs and 156
service jobs. The trace of solar radiation is from the National
Solar Radiation Database,” and the trace of wind is from the
wind prospect database,% both traces are of Los Angeles in August
2002. The parameters of electrical infrastructure are summarized
in Table 6. Our research targets the datacenters that have 1 MW
peak of power demand, which were mentioned in our previous
article [42]. This kind of datacenter is popular in enterprises and
public clouds. As a result, the sizing of the experimented data-
center is 1 MW. This sizing is based on our other research [43],
which focuses on the sub-topic Infrastructure sizing inside the
DATAZERO project. We also note that the negotiation algorithm
works based on the relative relationship between the power of
ITDM and PDM, instead of absolute values of power. In other
words, the absolute values of both ITDM and PDM power can
be scaled up or down together. As a result, with other sizes of
datacenter, as long as the ITDM and PDM are sized relatively in
the proper order of magnitude, the algorithm can work. Other
information about the setup and configurations of PDM and ITDM
can be seen in [24,25] and [42].

We conduct various experiments to verify the convergence
(Section 8.2) and stability (Section 8.3) of the proposed algo-
rithms, then compare their performance with other algorithms
(Section 8.4). In order to verify the convergence, generally we
show the distance between ITDM and PDM profiles over time.
To verify the stability, we perform multiple executions, then
estimate the standard deviation among those executions in term
of execution time and generational distance. Finally, we compare
the performance of SAN and GAN with two other algorithms,
namely SAN-IT and GreenSlot [26]. The algorithm SAN-IT is a
modified version of SAN, in which the scheduling of PDM is not
considered. GreenSlot is an algorithm that schedules workload in
time based on the information of predicted available renewable
energy and grid electricity price.

www.activemq.apache.org.
www.grid5000.fr.
www.nrel.gov/rredc/solar_data.html.
www.maps.nrel.gov/wind-prospector.
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Table 6
Setup parameters of electrical infrastructure.
Components Parameters Values
. . Number of turbines 2
Wind turbines Maximum power per turbine 1800 W
. Number of panels 14
Photovoltaic panels Area per panel 7 8 m?
Fuel cell Maximum power 2740 W
Minimum power oW
Electrolyzer Maximum power 2740 W
y Minimum power 600 W
Number of batteries 2
Batteries Capacity per battery 2500 Wh
Maximum charging/discharging power 1486 W

8.2. Convergence

Fig. 12 depicts the performance of Pearson and MSE in term
of distance between ITDM and PDM profiles, over negotiation
rounds, in 3 different values of the sacrifice step-size y. In the
experiments about convergence, we set the distance threshold
¢ to an extremely low value, in order to prevent the algorithm
from stopping before reaching the maximum number of iteration,
i.e., ITER = 18. In general, the curves drop gradually over time,
but with different paces. We can see that the curve y = 100
fluctuates dramatically, while the curve y = 20 drops slowly,
and therefore, reaches stable state slowly. The explanation is
that when y is small, « is reduced slowly, then the sacrifice
mechanism needs more time to take effect. When y = 50, the
algorithm provides more proper result than two others.

We define power violation between an ITDM profile and a
PDM profile is the total amount of power that the ITDM profile
exceeds the PDM profile. Fig. 13 presents the power violation of
two implementations of distance, namely Pearson and MSE. We
show the results of three scenarios: M = N =4, M = N = 12,
and M = N = 20. We can see that the curves generally drop over
time. When M = N = 12 or M = N = 20, the curve fluctuates
more than when M = N = 4, but reaches stable state faster. With
higher number of candidates, we reach the stable state faster at
the cost of running time. We can see that, with proper settings,
the algorithm converges in about 12 negotiation rounds (Figs. 12
and 13).

In Figs. 12 and 13, we also see that Pearson has better perfor-
mance than MSE in term of convergence. This can be explained
by the fact that, as discussed earlier, the Pearson correlation is
able to capture the change in the order of power levels. Note
that, to be comparable, all the curves showed in the figure are
in Pearson measurements, even with the curve of MSE imple-
mentation. Specifically, in the implementation of MSE, we only
use MSE measurement when comparing two profile inside the
algorithm; after obtaining the solution for each round, we apply
Pearson measurement on that solution.

In Fig. 14, we illustrate the evolution of sacrifice variable «
over time. In this experiment, we set y = 50, so « is increased
by 50 each time. The corresponding utilities of two players are
showed in Fig. 21. We note that, due to the sacrifice mechanism,
the utility is not always increased. When the IT-Player utility
increases, the PD-Player utility tends to be decreased (Fig. 21).

8.3. Stability

Fig. 15 depicts the execution time of each execution, cate-
gorized by the number of candidates. Note that as defined in
Section 3, a candidate is a profile corresponding to a feasible
scheduling solution. When performing scheduling, the sched-
ulers generate multiple feasible scheduling solutions, then select
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the final solution based on the criteria described in it_sched()
and pd_sched(). In the experiments about execution time, we
fix the stopping criteria of the negotiation algorithm by setting
the distance threshold ¢ = 1.12. Table 7 summarizes the mean
execution time of GAN in four scenarios of candidate. The table

0.7
0.6
8 0.5
C
8
o
T 0.4
©
5
'JE 0.3 1 %
o L}
c
goz2q @ e
[ ]
e e -
- e
0.1 (-] a
0.0 T T T T T
4 12 20 28 36
Number of candidates
Fig. 16. Generational distance over the number of candidates.
Table 7
Execution time of GAN.
Number of 4 12 20 28 36
candidates
Mean 588 min 9.2 min 123 min 14.31 min  16.31 min
execution time
Table 8
Execution time and generational distance of SAN and GAN.
Metrics No. of cand.  SAN GAN SAN = GAN
4 8.0451 0.4609  17.4552
12 43564 0.2608 16.704
Stand. dev. on exe. time 20 3.7724  0.1741  21.668
28 3.4225 0.1487 23.0161
36 25734 0.1284  20.0421
4 0.1597 0.0315  5.0698
12 0.1069  0.0157 6.8089
Stand. dev. on gen. dist. 20 0.0876  0.0062 14.129
28 0.1453  0.0052  27.9423
36 0.1002  0.0047  21.3191

shows that the execution time of GAN does not grow exponen-
tially with the number of candidates; instead, the growth is nearly
linear.

Fig. 16 depicts the generational distance of the negotiation
solution after 18 rounds. Compared to SAN (Figs. 3 and 6), the ap-
proach GAN (Figs. 15 and 16) achieves more stable execution time
and generational distance. Table 8 summarizes the performance
of SAN and GAN in term of standard deviation on execution time
(stand. dev. on exe. time) and standard deviation on generational
distance (stand. dev. on gen. dist) over different number of can-
didates (no. of cand.). We generate this table using the data in
Figs. 3, 6, 15, and 16. As an example, the SAN’s standard deviation
on execution time of 28 candidates scenario is 3.4225, and the
deviation on generational distance is 0.1453; whereas for GAN,
those deviations are 0.1487 and 0.0052, respectively. This means
that the deviations of GAN are lower than SAN by 23.0161 and
27.9423 times. In general, with the scenarios of 28 candidates or
higher, the execution time and generational distance of GAN are
lower than SAN more than 20 times. Unlike GAN, the DMs in SAN
have less information about direction to negotiate; hence, in some
cases, the negotiation process may takes long time.

8.4. Performance
When scheduling, the schedulers generate multiple feasible

scheduling solutions, called candidates, then assess these candi-
dates to select proper ones. We define that an evaluation is an
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assessment of one candidate when selecting the proper candi-
date. The number of evaluations is affected by the number of
candidates (i.e., M and N) and the number of negotiation rounds.
For instant, with M = N = 4, the number of evaluation after 18
negotiation round is 72. Fig. 17 shows the number of evaluations
of GAN, with different scenarios of M and N. This result can help
to understand the complexity of the proposed algorithm, if this
algorithm is compared to other algorithms that are also based
on generating multiple solutions, e.g., genetic algorithm. From
this figure, we can see that, since the curves “Pearson (M = N
= 20)” and “Pearson (M = N = 12)” in Fig. 13 require higher
number of evaluations, they reach stability sooner than the curve
“Pearson (M = N = 4)". Unlike the Pearson curves, the MSE curve
cannot reach stability although it also requires a high number of
evaluation.

We compare our approaches with the “GreenVarPrices” ver-
sion of the algorithm GreenSlot [26], which is implemented into
our system with several simplifications and modifications. These
modifications allow GreenSlot to have the same machine and
workload model with ours. The modifications are: (i) the renew-
able sources are predicted without error, (ii) the job execution
time is predefined, there is no time tolerance, (iii) if the due date
of a job cannot be guaranteed, we still admit and schedule that
job after its due date, and (iv) a machine may run multiple jobs
at a same time, instead of only one job as in GreenSlot.

We modify SAN to have the new approach SAN with only
ITDM, named SAN-IT. In SAN-IT, the scheduling solution from the
ITDM is used as the final solution, without negotiating with PDM.
The NM requests the ITDM to schedule with minimum relax-
ation, then the ITDM computes and returns the final solution.
The power constraint [ of the ITDM scheduler is set to the
maximal available energy, meaning that the ITDM is allowed to
used maximal available energy without regarding to the PDM
cost. We implement the approach SAN with only ITDM, instead
of SAN with only PDM, in order to have comparable results with
GreenSlot (which focuses on IT scheduling, while taking into

account the prediction of available energy). In Fig. 18, we compare
the generational distance of SAN, SAN-IT, GAN, and GreenSlot.
Note that the result of SAN in Fig. 18 is identical to the curve M =
36 in Fig. 5. The generational distance of SAN-IT and GreenSlot in
Fig. 18 are constant because they are one-shot algorithms. We can
see that SAN-IT provides lower performance than others because
it only considers ITDM scheduling. SAN and GAN have highest
performance, and they both converged before 20 negotiation
rounds.

In Figs. 21, 19, and 20, we compare the utility, revenue and
cost of four approaches. Each approach has one ITDM curve and
one PDM curve, each curve is named by the approach name
followed by “ITDM” or “PDM”; for example, the ITDM curve of
SAN is “SAN - ITDM”. With some abuse of notation, we also
name the curves of GAN as “GAN - ITDM” and “GAN - PDM”,
instead of “GAN - IT-Player” and “GAN - PD-Player”. To make the
performances of four approaches more comparable, we compute
the utility, cost and revenue of GreenSlot, SAN-IT and SAN using
the same formulation with GAN. Unlike in the SAN formulation
where the cost of ITDM is set to zero, and the revenue of PDM is
set to 1, in these experiments, we compute this cost and revenue
similar as in GAN. Specifically, GreenSlot, SAN-IT and SAN call
the GAN’s procedures that compute utility, cost and revenue.
As defined in Section 3, the utility is the difference between
the revenue and the cost. Note that the ITDM cost in Fig. 20 is
identical to the PDM revenue in Fig. 19, because the ITDM pays
to the PDM. The utility, cost and revenue are all measured in Euro.

The figures show that, in each negotiation round, if the curve
“SAN - ITDM” raised or dropped, the curve “SAN - PDM” un-
changed, and vice versa. This is the effect of turn-based negoti-
ation. However, we cannot see this effect in the curves of GAN
because of following reasons.

e First, for GAN, a negotiation round in the FLW_PD mode is
slightly different with a negotiation round in the FLW_IT
mode. In the FLW_PD mode, a negotiation round is finished
after the IT-Player sends a message to the PD-Player. How-
ever, in the FLW_IT mode, a negotiation round is finished
after the PD-Player sends a message to the IT-Player and the
IT-Player finishes recomputing new order X.

e Second, unlike SAN where each DM shows its utility, rev-
enue and cost with respect to its own profile (i.e., the profile
with highest utility), the players in GAN show their util-
ity, revenue and cost with respect to a common profile
(i.e., the order X). Specifically, the revenue and cost of IT-
Player are from r(X) and c(x, ), respectively; similarly, the
revenue and cost of PD-Player are from r(x, 7) and c(X, S),
respectively.

In the figures, we can see that, because SAN-IT only considers
ITDM scheduling, its ITDM has high revenue and low cost, while,
in contrast, its PDM has low revenue, and high cost. As a result,
its PDM utility is low, and even negative. Compared to SAN-IT,
GAN provides a higher fairness between the utilities of ITDM
and PDM. Among all four approaches, GAN, in general, achieves
the highest performance in utility, though its cost is not always
lowest. On the other hand, as showed in Fig. 14, the IT-Player sac-
rifices more than PD-Player, so the curves of IT-Player’s revenue
and IT-Player’s cost fluctuate more than PD-Player, making the
IT-Player’s utility vary more than PD-Player’s utility.

In Figs. 22-24, we show the SLA violation of batch jobs, ser-
vice jobs and overall violation, respectively. In each figure, we
present the SLA violation of the final negotiation solutions of
each approach. With batch jobs, we define the SLA violation as
the rate at which the jobs finish their execution after their due
dates. With service jobs, the SLA violation is the rate at which
the computing resource received is lower than the computing



y- ¥ V¥ -¥--V
v-
’/
400 - s
/’\ ¥ -¥- GAN-ITDM  -@- SAN-IT - ITDM
vey. Y —% GAN-PDM  —e— SAN-T-PDM
,’ =¥~ SAN - ITDM —e- GreenSlot - ITDM
2 300 - ! —*— SAN-PDM  —e— GreenSlot - PDM
E I
[} I
1
g 1
c
[
3 200
o
100 A
1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18
Round
Fig. 19. Revenue over negotiation round.
]
300 4 ~¥- GAN-ITDM  -@- SAN-IT - ITDM
—¥— GAN-PDM  —@— SAN-IT - PDM
250 4 w-w-—p-%_ %= SAN-ITDM  -e- GreenSlot - ITDM
v %, = SAN - PDM —e— GreenSlot - PDM
}N x Ny -V -F-F-¥-¥--V
200 4 I Ny v

150 A

Cost (Euros)

100 4

501

©-0-0-0-90-0-0--0-0-0-0-0-0-0-0-0--0-9

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18

Round

Fig. 20. Cost over negotiation round.

resource requested. Denoting the number of violated batch jobs
is b, we have the SLA violation as % Similarly, denoting the
number of violated service jobs is s, we have the SLA violation
as ;. In this way, the overall SLA violation is % where | =
J® 4 J©) Though SAN-IT has generally low performance in other
metrics, it has higher performance than GreenSlot in SLA vio-
lation of both service and batch jobs, because it only considers
ITDM scheduling without regarding to the PDM. However, SAN-
IT cannot have higher performance than GAN and SAN because
when it disregards PDM scheduling, there is a higher possibility
that the power supply mismatches the power demand, then the
performance of datacenter is degraded. GAN and SAN have the
highest performance, achieving around 0.23% and 0.96% overall
violation, respectively.

We summarize the performances of all approaches in Table 9,
with different scenarios of distance threshold and number of ne-
gotiation rounds. We show the metrics of average execution time
(avg. exe. time), average profile distance (avg. prof. dist.), average
generational distance (avg. gen. dist.), average utility (avg. util.),
total utility (tot. util.), and average overall SLA violation (avg.
over. SLA violat.). We define the total utility as the sum of ITDM
utility and PDM utility. Note that the average profile distance
of GreenSlot and SAN-IT is not showed in the table because in
these approaches, there are not two separate profiles of ITDM
and PDM, so we cannot measure their distance. The table shows
that GAN outperforms other approaches in most metrics, except
the average execution time. Specifically, compared to other ap-
proaches, GAN achieves lower average profile distance, lower
average generational distance, higher total utility, and lower av-
erage overall SLA violation. The GreenSlot and SAN-IT have small
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average execution time because they use a one-shot algorithm,
instead of a sequential algorithm. SAN-IT obtains negative PDM
utility because it disregards the electrical management. Within
a same approach, with lower value of distance threshold &, the
performance tends to be higher but the average execution time
tends to be larger.

9. Conclusions

In this paper, we investigate the problem of joint IT and en-
ergy management in datacenters entirely powered by renewable



Table 9
Summarized performance with fixed stopping criteria.

Scenario Avg. exe. time Avg. prof. dist. Avg. gen. dist. Avg. util. Tot. util. (Euro) Avg. over. SLA
(min) (ITDM/IT-Player, violat. (%)
PDM/PD-Player) (Euro)

GreenSlot 0.43 0.39 (67.67, 46.30) 113.97 2.95

SAN-IT 4.45 0.44 (137.34, —112.05) 25.29 2.57

SAN ¢ = 1.2, 6.08 1.20 0.42 (67.77, 40.29) 108.06 1.90

M=N=20

GAN ¢ = 1.2, 6.80 1.17 0.15 (150.95, 106.67) 257.62 0.88

M=N=20

SAN ¢ = 1.2, 9.49 1.18 0.31 (103.20, 55.40) 158.6 125

M=N=36

GAN ¢ = 1.2, 10.69 1.17 0.10 (185.88, 125.92) 311.8 0.81

M=N =36

SAN ¢ = 1.12, 10.13 1.12 0.38 (81.29, 40.01) 121.3 0.98

M =N =20

GAN ¢ = 1.12, 12.30 1.11 0.12 (178.22, 106.03) 284.25 0.49

M=N=20

SAN & = 1.12, 15.84 1.11 0.23 (107.99, 55.17) 163.16 0.91

M=N=36

GAN & = 1.12, 16.31 1.11 0.09 (245.90, 118.77) 364.67 0.23

M=N=36

12 the proposed game-theoretic algorithm provides stable solutions,
and outperforms other approaches in term QoS and utility.
~ 10+ For future works, we plan to design a multi-timescale ver-
< sion of GAN, in which the algorithm makes prompt short-term
5 8 decisions to deal with small-timescale events, while maintain-
© ¥— GAN ing long-term objectives. This design is important because our
o — . . . . .
S 64 SAN system involves multiple sub-systems with different operational
S ®— SAN-IT timescales. For example, the operational objective of the electrical
A *— GreenSlot sub-system may be in the order of years or quarters; while the
g environmental events can be in the order of months or days; and
3 2 the IT workload events may be in the order of hours or minutes.
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Fig. 24. Overall SLA violation.

energies. The IT and electrical sub-systems, named ITDM and
PDM, are modeled separately in order to take advantage of the
distributed design, facilitating the developing and maintaining
process. We aim to find an efficient compromise between power
demand and power supply, while respecting the operational re-
quirements of each sub-system. We propose a black-box and
a semi black-box algorithm that allow the ITDM and PDM to
negotiate. In addition, we design a generic model for the DMs,
then any scheduler whose implementation follows this generic
model can work with the proposed negotiation algorithms. We
found that the semi black-box approach achieves higher stability
and performance than the black-box approach. Specifically, the
black-box approach is prone to unstable performance in term of
execution time and generational distance. This can be explained
that, in the black-box approach, the DMs are not provided with
the information about the direction to negotiate. Therefore, in
some cases, this approach takes long time to converge. On the
contrary, the semi black-box approach allows the game players to
exchange information about the direction for negotiating, based
on the framework of a buyer-supplier relationship. The analytical
results prove that the proposed algorithm converges and the
game reaches equilibrium. These results are confirmed by various
experiments in a middleware. The experimental results show that
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Appendix A. Proof of Proposition 1

We have following facts.

e First, due to

= (i),

- (iii) incentive mechanism, and

- (iv) the fact that « in algorithm 3 and algorithm 5 can
be increased freely,

the negotiation can be continued for an arbitrary number of
iterations, therefore the condition (ii) holds;

e Second, the two constraints d(x,x™?) < d(*'7T,x™) and
d(x, xT) < d(x™,xT) inside the two procedures it_sched()
and pd_sched() guarantee that x'T approaches x™.



e Third, X7 approaches x™, or in other words, d(x™, x'") al-
ways decreases. Moreover, the two algorithms have the
same stopping criterion d(x"™”, %) < &, hence two negotiation
loops terminate at the same time.

Based on the first and second facts, the DM scheduling solution
is ergodic in [x'T, "] given a pre-defined granularity.

Based on the third fact and the two definitions, algorithm 3
and algorithm 5 terminate at the point where no player wants to
deviate, meaning that the game reaches equilibrium. =

Appendix B. Example of negotiation process

In Fig. B.25, we provide a simplified example of negotiation
process. The information in the Common Space is accessible to
both players. The time window is set to T = 2. In the figure, the
first column is the negotiation round, whereas the second column
is the row index. In this example, we suppose that the aspiration
supply is initially lower than the aspiration order. Specifically,
we suppose that x” = {20, 40} and x'T = {70, 70}. After one
reschedule of the PD-Player and one reschedule of the IT-Player,
x™P = (30, 40}, x'T = {40, 50}, and X = {35, 45}. At that time, we
assume that the condition d(x™, %) < ¢ holds, and the negotiation
finishes. The details of the example are provided in the following
descriptions.

e Round 1: We suppose that, initially, mod = FLW _IT.
- Row 1

* PD-Player: We suppose that, after scheduling, the
procedure pd_sched() obtains the aspiration sup-
ply ™ = {20, 40}. On the other hand, the price
7 is inversely proportional to its associated as-
piration supply. As a result, the output of the
procedure pd_propose_price() is 1 = {8, 6}. The
PD-Player also tries to propose a PD incentive
price that is attractive to the IT-Player. We sup-
pose that the PD-Player is able to propose 7™ =
{7, 6}, using the procedure pd_est_price(). Finally,
the PD-Player sends 7 and 7' to the IT-Player.

* IT-Player: We assume that, after scheduling (as
in the chart Scheduling solution), the procedure
it_sched() obtains the aspiration order xT = {70,
70}. After receiving 7 from the PD-Player, the
IT-Player places order using procedure it_place_
order(). We suppose that the output of this pro-
cedure is X = {25, 50}. The IT-Player places this
order with the consideration of 7 and x. In this
scenario, we can expect that the power levels
of % are between x™ and xT; also, the power
levels of % have similar curve with x™. Similar
with PD-Player, the IT-Player tries to propose an
attractive price to the PD-Player, using the proce-
dure it_est_price(). We suppose that the IT-Player
is only able to propose the IT incentive price
7T = {3, 3). Finally, the IT-Player sends X and
7'T to the PD-Player.

- Row 2: As in line 16 of the algorithm 3 and algo-
rithm 5, both players verify whether it is beneficial to
switch their mode. The PD-Player verifies the revenue,
ie, r(xT, 7'") + « > r(&, 7), and the IT-Player verifies
the cost, i.e., c(x°, 7™P) —a < c(X, 7). In the example,
we assume that r(xT, 7'T) 4+ o = 0.25, r(X, 7) = 0.22,
c(x™P, 7Py —a = 0.13, and (X, 7) = 0.15. As a result,
both verifying conditions return true. The intuition be-
hind this verification is as follows. We can call x and

7'" as the offers from the IT-Player; similarly, we can
call ¥ and 7" as the offers from the PD-Player. The
PD-Player verifies the attractiveness of the IT-Player
offer by comparing the revenue r(x'T, /™) 4+« with the
revenue r(X, 7). Similarly, the IT-Player compares the
cost c(x™P, 7)) — & and the cost c(X, ). Then, a player
will follow the other player if the offers from the other
player are attractive.

- Row 3: We suppose that, both comparisons in row
2 return true, then pd_pre = FLW_IT and it_pre =
FLW_PD. However, the global mode is unchanged, i.e.,
mod = FLW _IT, since this mode is switched to FLW_PD
only when both players switched to FLW_PD.

e Round 2:

- Row 4:

* PD-Player: Since the current global mode is
FLW_IT, the PD-Player reschedules, trying to find
a new aspiration supply whose associated price is
closer to 7'". We suppose that the PD-Player finds
the aspiration supply ¥ = {30, 40}, and the
associated price is 7 = {7, 6}. Similar to the row
1, the PD-Player also tries to find a PD incentive
price that is attractive to the IT-Player. However,
the PD-Player is unsuccessful at this time, and the
PD incentive price is equal to 7, i.e., 77° = {7, 6}.
Finally, the PD-Player sends m and 7™ to the
IT-Player.

* IT-Player: The IT-Player, after estimating its util-
ity, will place an order x = {40, 50}.

- Row 5: We suppose that the comparison r(x'T, 7'T) +
a > r(X, ) returns false; this means that the PD-Player
no longer foresees benefit in following the IT-Player.
Compared to row 2, we see that the term r(x'T, 7/T)+«
is unchanged at 0.25, but r(%, 7r) has increased to 0.28.
This increase can be explained that, compared to row 2,
X has grown significantly, whereas 7 has just reduced
slightly. At the side of IT-Player, compared to row 2,
we can see that both x and % have increased. As
a result, though 7 decreases slightly, both IT-Player
costs c(x?, 7™) — o and c(&, ) increase, keeping the
condition ¢(x™P, 7™)—« < c(X, 7) return true again as
in row 2.

- Row 6: Because of the results in row 5, the PD-Player
switches to the mode FLW_PD. At this time, both play-
ers already switched to the mode FLW_PD, so the global
mode also switches to FLW_PD.

e Round 3:

- Row 7: Since the global mode is FLW_PD, the IT-
Player reschedules. In contrast with the objective of
the PD-Player rescheduling, the objective of the IT-
Player rescheduling is to find an aspiration order that is
closer to x™. We suppose that the IT-Player found the
new scheduling solution as in the chart New scheduling
solution, then the aspiration order is xT = {40, 50}.
With this new aspiration order, the IT-Player estimates
its utility, then places an order X = {35, 45}. Also, with
the new aspiration order, the IT-Player recomputes and
obtains the new IT incentive price #'T = {6, 5}.

- Row 8:

% PD-Player: Compared to row 5, both x'T and &
have decreased, keeping the condition r(x'T, 7'T)+4
a > r(x, ) return false again as in row 5.
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Fig. B.25. An example of negotiation.

* IT-Player: Unlike row 5, the comparison now re-
turns false. We can explain this result as follows.
Compared to row 5, P and 7™ are unchanged,
but % has decreased, making c(%, 7 ) decrease from
0.17 to 0.14. As a result, c(X, ) is no longer larger
than c(x™, 7™) — «.

- Row 9: The variables of mode are updated according to
the results at row 8.

e Round 4:

- Row 10: Assume that we set ¢ = 1.1, now the Pearson
distance between x™ = {30, 40} and X = {35, 45} is
d(x™,%) = 1 < &, meaning that the stopping criteria
of both players are met. We note that these criteria are
not only verified after round 3, but also after round
1 and round 2. However, these criteria were not met
after round 1 and round 2.

- Row 11: The negotiation algorithm stops according to
the results at row 10.

After negotiation, the PD-Player will implement the final solution
xP = {30, 40}, and the IT-Player must accept this solution. In
practice, we need to choose ¢ such that the gap between x™ and
x™ is acceptable to IT-Player. We can summarize the effect of
the negotiation process as follows. At row 1, through the price
7T = {3, 3}, the IT-Player gives the PD-Player the information
about the direction for negotiating, which is to increase the power
level of the first time step or to decrease the power level of the
second time step in x™°, in order to comply with the aspiration
order xT = {70, 70} which has two equal power levels. How-
ever, according to the conditions in the procedure pd_sched(), the
power level of the second time step cannot be decreased. As a
result, the PD-Player reschedules and increases the power level

of the first time step from 20 to 30. Similarly, through the price
7P = {7, 6}, the IT-Player knows it should reschedule to reduce
the power level of the first time step in x'7, because the energy
price of the first time step is high. And in fact, the IT-Player has
reduced the power level of the first time step from 70 to 40.
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