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David Nevoc, Sophie Dareysd
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Abstract

The elastic orthotropic behavior of thin woven composites is studied combining a numerical and experimental strategy. For thin
materials, in-plane properties are measured by classical tensile tests and digital image correlation. The out-of-plane properties
are derived performing finite element simulations at the level of the internal structure of the laminate. Indeed, the glass fiber
arrangement in the yarn and the weaving pattern are defined based on microtomography and SEM observations. So a representative
unit cell is found. A statistical approach is further proposed to derive the behavior of the warp and fill yarns, since the fiber position
may fluctuate between yarns. For the considered laminate, the matrix (resin and ceramic inclusion) behavior is unknown and
difficult to measure. Therefore an inverse method is proposed. By comparing with measured in-plane elastic moduli, behaviors
of the matrix, of yarns and of the laminate are defined. The present homogenization strategy is exemplified by laminates used in
printed circuit boards for high frequency applications. This approach has also been applied to investigate the evolution of the elastic
moduli of the laminate with temperature. Those information, usually not available in the literature, are important when dealing with
reliability of printed circuit boards during thermal cycles.

Keywords: woven composite, mechanical tests, X-ray tomography, orthotropic behavior, numerical homogenization, printed
circuit boards

1. Introduction

In a context of miniaturization of electronic devices, the di-
mensions of Printed Circuit Boards (PCB) decrease sensibly
with a constant growing interconnection density. The PCB is
nowadays not only the carrier of electronic devices but may
contain passive or active components (Kpobie et al. [1]). This
densification leads manufacturers to the limits of their exper-
tise. In this study, specific material adopted in the bare board is
investigated, i.e. no SMD component assembly is considered.
The PCB is a multi-layer, multi-material combining dielectric
laminates and copper ensuring the conductive pathways. For
space or military aeronautic applications, PCBs should with-
stand a large number of thermal cycles without failure. Materi-
als used in PCB have very different thermomechanical behav-
iors. In particular, the difference in the coefficient of thermal
expansion of copper and composite laminates is the source of
some failures (cracks in metallization or in insulation layers, in-
terface problems...). In order to anticipate reliability problems
in PCBs, the use of simulation is a necessity, allowing thus to
work around the design strategy and avoiding the definition of
several unsuccessful prototypes. By simulating different con-
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(Sébastien Mercier)

figurations, it is possible to determine the most reliable design
and thus improve the fatigue life of the PCB [2, 3, 4, 5, 6].

Beforehand, numerical models need to be supplied by pre-
cise data. Therefore, the behaviors of all concerned materials
have to be precisely determined, namely the elasto-plastic be-
havior of copper and the complete elastic behavior of laminates.
For PCB applications, laminates are usually woven compos-
ites, made of one or several glass frames embedded into a resin
phase that may contain inclusions. The behavior of laminates
or composite plies is orthotropic. For multi-layer PCBs, the
thickness of any individual ply is usually a few hundreds of mi-
crometers. Tensile tests in the plane of the laminate allow us to
measure in-plane elastic properties. However, the characteriza-
tion of the mechanical behavior is difficult in the out of plane
direction. The idea is to estimate these elastic moduli by means
of numerical simulations.

A large majority of laminates used in PCBs are composites
made of one or several plain weave glass fabrics coated by a
polymer matrix. The weaving pitch, the number of fibers by
yarn or the composition of the matrix can vary, depending on
the application. Numerous methods have already been devel-
oped in the literature to model woven composites: analytical as
well as numerical methods.

Several authors have focused on the derivation of analytical
models, to obtain the homogenized behavior. As woven fabric
composites were gaining technological importance, Ishikawa
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and Chou [7] have presented a model to predict the elastic prop-
erties of such materials. The model is also built to describe
the non-linear behavior due to the failure of the fabric. The
prediction of the elastic behavior is obtained by considering
a simplified mosaic representation of the woven composite, in
which each cell is assigned a different material, either unidirec-
tional composite or matrix. Classical Laminate Theory (CLT) is
adopted to compute the average stiffness of the composite. Naik
and Ganesh [8] have proposed to describe precisely the lami-
nate structure from micrograph observations. From the mea-
surements, the laminate unit cell is discretized into slices rep-
resenting the different components (warp, fill yarns or matrix).
This is called the slice array model, where slices are analyzed
separately and assembled in parallel or series to obtain bounds
for the elastic moduli. In some specific cases, the bounds may
be too wide. A second method proposed by Naik and Ganesh
[8] is the element array model, in which the slices are subdi-
vided into elements which are analyzed separately and then as-
sembled together. These models are compared to experiments
and give good estimates. Sottos et al. [9] have established two
analytical models to homogenize the behavior of a plain weave
laminate. The equivalent laminate model uses composite cylin-
der assemblage (Hashin and Rosen [10]) on each yarn and clas-
sical laminate theory to get the overall behavior. In the blending
model, micromechanical relationships are used to combine the
orthotropic warp and fill bundles and give more accurate pre-
dictions. Xiong et al. [11] have developed an analytical model
by considering a simplified stitch. The volume of fibers is com-
puted and introduced in the simplified model on which compu-
tations are done.

Numerical approaches are extensively proposed in the liter-
ature. Döbrich et al. [12] have worked on a near micro-scale
model. The digital element approach proposed by Wang and
Sun [13] is used to reduce the computation time. With this ap-
proach, the unit cell is represented with almost all fibers so a
two-level homogenization is not needed and the geometry is
very realistic. To generate the unit cell, a first simulation has to
be performed to get the positions of all fibers. From this work,
it is observed that the exact number of fibers does not have to
be represented. It has been shown that representing more than
60 fibers per yarn does not affect the predictions for the overall
behavior. Fuchs et al. [14] have worked on the homogeniza-
tion of a PCB (including the copper layer). The behavior of the
laminate is computed by a finite element homogenization using
the commercial software Digimat. The Mori-Tanaka scheme is
used to determine the yarn response. Note that the yarn con-
tains two phases: matrix and fibers. A FE model of the com-
posite representative volume element containing only voxels is
generated. Barbero et al. [15], Chen et al. [16] or Jacques et al.
[17] also propose numerical homogenization methods for wo-
ven composites. The methods are quite similar and first consist
on determining the homogenized transverse isotropic behavior
of yarns (fibers + matrix), using micromechanical method. A
Representative Volume Element (RVE) of the structure is de-
fined and periodic boundary conditions are applied on it. The
RVE is subjected to different loadings in order to deduce the
homogenized elastic behavior. Barbero et al. [15] assigned a

material orientation to the yarns since fiber alignments present
some undulation (represented usually by a sine curve) within
the weaving pattern. Chen et al. [16] do an averaging along the
sine curve to capture the behavior of the yarn. Jacques et al.
[17] have implemented the transverse isotropic homogenized
yarn behavior without taking the oscillation into account. Bai
et al. [18] concentrated on the micro-scale behavior, at the yarn
level. They propose to describe the visco-thermo-mechanical
behavior of the matrix in order to describe the material deterio-
ration. Green et al. [19] represented a 3D woven composite and
homogenized its behavior based on a FE model. An important
work has been done on the geometry definition and it has been
noticed that a simplified model gives less accurate results than a
realistic model (with a geometry closer to the reality). The 3D
RVE models for the composite are generated by the software
TexGen. Again a unit cell is studied in which the homogenized
yarns are considered and periodic boundary conditions (PBC)
are applied. This unit cell is discretised with voxels. Since the
meshes are identical on opposite faces of the RVE, implemen-
tation of the PBCs is straightforward. In addition, a voxel may
contain more than one phase but by construction, the material
response at the level of the voxel corresponds to the one of the
dominant phase (in volume). With such strategy of voxel based
finite elements, the presence of resin between crossing yarns is
avoided. In a classical FE model, the remaining volume of ma-
trix phase between yarns may induce the presence of small and
distorted elements, leading to numerical singularities. The be-
havior of the yarns is considered as transversely isotropic and is
homogenized using a finite element analysis. The authors still
observed a small difference in predictions between experiments
and numerical simulations. The origin of the discrepancy is ex-
pected to originate from the voxelisation of the real microstruc-
ture.

Different homogenization methods for the yarns are inves-
tigated in the literature. One can cite the Mori-Tanaka method,
the self-consistent scheme, the three phase approach, the com-
posite cylinder assemblage, or the finite element homogeniza-
tion based on the description of a RVE with fibers and matrix,
as used by Green et al. [19] or Srbová et al. [20]. In Chen et al.
[16] or in Abaimov et al. [21], different homogenization meth-
ods are compared, but over a certain volume fraction of fibers,
the quality of the predictions is reduced. In our field of inter-
est, the volume fraction of fibers is larger than 60%. Further-
more, as observed in most of the literature, the matrix behavior
or more generally the behaviors of all phases are known and
their elastic properties well established. In the PCB industry,
for very specific applications like for high frequency applica-
tions, information concerning the matrix behavior is difficult to
obtain and its composition is usually considered confidential by
the manufacturer.

To overcome these difficulties, we propose a multistep ho-
mogenization approach to derive the elastic behavior of the yarns
and the laminate. The novelty is that the homogenization pro-
ceeds without knowing a priori the matrix behavior. Indeed
an inverse method, based on the comparison between experi-
ments and numerical predictions for the in-plane elastic prop-
erties is adopted so that the matrix behavior is a direct outcome
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of our model. The paper is organized as follows. In section
2 the material characterization is described. This includes the
measurement of in-plane elastic properties and the precise ge-
ometrical description of the laminate. Section 3 explains the
homogenization procedure starting from analytical and numer-
ical procedures at the level of the yarns in section 3.2 and lead-
ing to the homogenization of the woven composite in section
3.3. The geometry generation, the periodic boundary condi-
tions implementation and the finite element model leading to
the elastic properties of the laminate are carefully presented.
Finally in section 3.4, the inverse method used to perform the
homogenization without knowing the matrix behavior before-
hand is developed and some estimates for the elastic moduli at
different temperatures are provided. Such information is rarely
available in the literature.

2. Material characterization

In this section, a precise material characterization is pro-
posed. The in-plane elastic behavior will be determined and the
internal structure of the material will be accurately defined by
a combination of images from micro-tomography and scanning
electron microscopy devices.

2.1. Elastic properties
Elastic properties in the plane of the laminate are first ob-

tained via an electrodynamic tensile machine Instron E3000
equipped with an environmental chamber. The chamber can be
heated up to 300°C, cooled down below -60°C with liquid ni-
trogen. The front door of the chamber is designed with a heated
window so that the tensile test can be video-recorded. This will
further permit the determination of strain maps by digital image
correlation (DIC). This contactless strain measurement tech-
nique is not disturbing the experiment. Other strain measure-
ment technologies like clip-on extensometer, could not have
been adopted for thin specimens (as considered in the present
work).

The tested material is a laminate designed for high frequency
applications, with a thickness of h = 309µm. The composite is
made of a woven glass fabric and the hydrocarbon (not PTFE)
resin contains ceramic particles. Owing to the structure of the
material, its elastic behavior is orthotropic. The corresponding
Hooke’s law can be classically written with the Voigt notation
as :
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In the PCB industry, the convention usually sets the warp
direction as x and the fill direction as y. This is also adopted
in the present work. Tensile tests have been performed first at
room temperature on specimens with 0°, 45°and 90°orientation
(with respect to the x direction), leading to the determination
of the elastic moduli E1, E2, ν12, G12 (see classical handbook

on composite materials for instance Jones [22]). Table 1 pro-
vides the corresponding measured values and compares with
the supplier’s data. It has to be noticed that the elastic proper-
ties given in the datasheet for a given material are usually valid
for a specific glass fabric. But the material is commercially
available with various standard thicknesses (from 0.203mm to
1.524mm) and may contain different woven glass fabrics. As
a consequence, the supplier data may not be appropriate for the
thickness considered in this work. The mechanical characteri-
zation has also been carried out at various temperatures in the
range [-55°C ; +125°C], the temperature range that the PCB
may experience during thermal cycles compulsory for the qual-
ification process to space standard. In fact, such temperature
dependency of the elastic properties is usually not provided by
the supplier, while this information is of primary importance to
investigate by finite element calculations the reliability of the
PCB during thermal cycles. Data at different temperatures are
presented later in the paper, see Fig. 14.

E1 [GPa] E2 [GPa] ν12 [-] G12 [GPa]
experimental measurements 18.53 20.37 0.168 5.78
datasheet values 25.510 26.889 - -

Table 1: In-plane elastic properties at room temperature. Comparison between
measurements and datasheet values for the studied laminate designed for high
frequency applications. Difference originates from the glass fiber fabric of the
tested laminate which is not similar to the one characterized by the supplier and
whose properties are reported in the datasheet.

The out of plane elastic moduli cannot be measured by clas-
sical tensile machines, owing to the small sample thickness. As
proposed in the literature, estimates will be provided by devel-
oping a salient multi-scale approach combining Mori-Tanaka
scheme and Finite Element Model, see Section 3.

2.2. Microstructure definition

In order to estimate the out-of-plane components, a numer-
ical approach will be proposed in the next sections. So before-
hand, it is important to precisely define the laminate microstruc-
ture. Indeed, the plain weave fabric structure is not unique and
may vary depending on the thickness of the composite material.
The proposed measurements will let us define the geometrical
features of a Representative Volume Element (RVE). In section
3.3, a Finite Element Model (FEM) on the real microstructure
will provide precise determination of the orthotropic elastic re-
sponse of the composite.

To describe accurately the laminate structure, measurements
have been performed by X-ray microtomography (with a voxel
size of 1.7µm), on a ”EasyTom” from RX Solutions, in LEM3.
Figure 1 presents a microtomography scan (three orthogonal
views) which permits to observe the woven glass fabric and the
resin; the process being nondestructive. As mentioned in the
datasheet of the supplier, the resin is filled with a large volume
content of ceramic particles. In our approach, the resin and the
filler content will be considered as the matrix phase. The fill
and warp fiber bundles interlace with each other in an orthog-
onal way. We also observe that the laminate is made of three
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identical superimposed glass fabrics. Based on microtomog-
raphy, some geometrical features can be determined: the gap
between two adjacent yarns (gw and gf ) and the period of the
yarn undulation (2bf and 2bw).

2bw

2bf

gf gw

x
y

x
z

z
y

Figure 1: Observation of the laminate by X-ray microtomography. Three or-
thogonal views are represented and some geometrical measurements of the
RVE are drawn. Note that the x direction refers to the warp direction. It is
clearly seen that the warp and fill yarns are perpendicular. The matrix is filled
with a large volume content of ceramic inclusions.

Similarly to the work of Naik and Ganesh [8], a 3D model
accounting for the actual yarn cross-section geometry, the gap
between two adjacent yarns and undulation amplitude will be
proposed owing to the observations at the microstructure level.
Microtomography shows that the cross section of a yarn is sim-
ilar all along the weaving pattern. For the material considered
in the present work, the warp and fill yarns have different cross-
sections. It is also observed that the warp and fill yarns are in
contact when they cross each other, i.e. the shape of the cross
section of a warp yarn fits the sinusoidal shape of the crossing
fill yarn (see the schematic view on Fig. 2).

bw

gf/2
hf

hw
warp

fill

M0(x0, z0) Mf (xf , zf )

x

z
central line

Figure 2: Layout of the cross section of the fill yarn, corresponding to a view in
the plane (x, z) of Fig. 1. The shape of the yarn is directly evaluated from the
knowledge of the undulation which has been measured by X-ray tomography.
hf and hw refers to the yarn thickness, bw to the half size of the RVE in the
warp direction and gf the gap between two adjacent fill yarns.

In the warp direction, the undulation of the central line of
the yarn is mathematically represented by a sinusoidal curve,

see Naik and Ganesh 1992 [8], Chen et al 2014 [16]:

z0 = f(x0) =
hf
2
cos

(
πx0
bw

)
(2)

where x0 and z0 are the coordinates of a material point M0 ly-
ing on the central line of the yarn, hf the thickness of the fill
yarn and bw the pitch of the warp yarn. Note that 2bw is the pe-
riod of an undulation in the warp direction and will correspond
to the size of the RVE in this direction. To describe the fill di-
rection undulation, the same equation (2) is used by replacing
hf by hw and bw by bf .

Since warp and fill yarns are in contact when they cross
(there is no resin in between), the outer frontier of the cross
section of a yarn can be computed directly from the knowledge
of the undulation curve, as follows. Point Mf (xf , zf ) on the
frontier of the fill yarn cross section should be located at a con-
stant distance from the central line of the warp yarn that it is
crossing; this distance being hw/2 (half thickness of the warp
yarn). In addition, we assume that the point Mf is also placed
on the perpendicular line to the cosine function (see Fig. 2).
Based on these two requirements, for a point (x0, z0) on the
central line of the warp yarn, the coordinates of the correspond-
ing point Mf (xf , zf ) on the border point of the fill yarn are
found as the solution of the following system:





(xf − x0)2 + (zf − z0)2 =

(
hw
2

)2

zf = −xf − x0
f ′(x0)

+ z0

(3)

The system has two solutions (xf , zf ), as seen of Fig.2. We
select the solution leading to a point on the frontier of the fill
yarn: 




xf = ± hw

2
√

1 + f ′(x0)−2
+ x0

zf = ± hwf
′(x0)−1

2
√

1 + f ′(x0)−2
+ z0

(4)

with

f ′(x0) = −hfπ
2bw

sin

(
πx0
bw

)
(5)

As observed on microtomography scans (Fig. 1) and as de-
picted in Figs. 2 and 3, a gap gf exists between two adjacent
fill yarns. Therefore, the frontier of the cross section of a yarn
is defined based on the parametric curve (4), its symmetric part
and in addition by shortening the tips, see Fig. 2. This defined
shape will be extruded in the 3D model to represent a yarn, fol-
lowing the undulation curve.

The microtomography scans provide a first set of geometri-
cal distances, see Fig. 3. Nevertheless, the precise knowledge
of the geometrical set is needed for the 3D model of the fab-
ric. To increase our confidence in the geometrical quantities
defining the microstructure of the laminate, complementary ob-
servations on yarns and fibers constituting the composite have
been done with use of a Scanning Electron Microscope (SEM
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x

z

h

bw

h1 hw

hf

gf

Figure 3: Layout of the weaving pattern, corresponding to a view in the plane
(x, z) of Fig. 1. X-ray microtomography provides a first estimate of distances.
Scanning electron microscopy observations will confirm these values, as re-
ported in Table 2.

Figure 4: Yarn observation by scanning electron microscopy. Ceramic inclu-
sions of different sizes and shapes can be observed. It is also clear that the radii
of fibers are not homogeneous. The surface is polished and a thin layer of black
carbon is deposited on the surface for SEM observation.

Zeiss) (Fig. 4). The SEM images will be analyzed and will con-
firm the global shape of a yarn (Fig. 5). For each SEM image of
a yarn, the center and radius of all fibers are detected by a dedi-
cated Matlab program, developed for this work. Note that each
yarn contains around two hundred fibers. By repeating this op-
eration on several tens of images, one can superimpose all data
on one single plot as presented in Fig. 5. All detected fibers are
displayed with some level of transparency and the opacity gets
more important as several fibers are superimposed. In that way,
as the number of analyzed images increases, the exact shape of
the mean yarn is revealed, see Fig. 5. The horizontal extent of
the yarn (bw−gf for fill yarns, see Fig. 3) and the yarn thickness
(hf for fill yarns) are deduced for each SEM image by evaluat-
ing the position of the fibers which are located at the extremities
of the yarn. By averaging these values on all images, one gets
the mean dimensions of the yarn. The parameter bw being eval-
uated from microtomography scans and based on the measured
bw − gf and hf values, it is possible to plot the contour of the
yarn section derived from the Eqs. (4) and (5). This correspond-
ing average yarn cross-section is displayed on Fig. 5 with the
solid line. One can see that the proposed strategy reproduced
accurately the average shape of the yarn. It was shown that data

provided by SEM were consistent with microtomography pre-
dictions. But owing to the resolution of both devices, in the
following, we will adopt geometrical values captured based on
SEM images. Table 2 lists all geometrical features necessary
for the 3D definition of the woven glass fabric. Combining data
of Table 2 and Eqs. (4) and (5), the frontier of the warp and fill
yarns are defined. As observed in Fig. 5, the warp and fill yarns
have different cross-section but also different volume content of
glass fibers. For each SEM image, the fiber volume fraction in
the yarn can be computed by dividing the sum of the areas of all
fibers by the area of the mean yarn (as defined previously). The
averages of the fiber volume fraction on all images are 62% for
the warp direction and 67% for the fill one.

Figure 5: Shape of the fill and warp yarns after observation by SEM. A statis-
tical analysis on several tens of yarns leads to the definition of a mean shape
that will be used for numerical simulations. The solid line reproduces the outer
surface of the yarn, as defined by Eq. (4). A good agreement between the lo-
cations of thousands fibers and the mathematical description of both yarns is
observed. The warp yarn is larger than the fill yarn while the fill yarn is thicker.
The volume fraction of fibers is 62% (resp. 67%) for the warp yarn (resp. fill
yarn).

h h1 hf bf gf hw bw gw
309 33.0 35.0 405 96.3 27.9 321 62.9

Table 2: Geometrical quantities characterizing the internal structure of the stud-
ied laminate (in µm). One may refer to Figs 1 and 3 for illustration.

The precise observation of SEM images representing a large
number of warp and fill yarns provides additional information
which is not often present in the literature. Indeed, the fiber
detection by the Matlab program provides also the fiber radii.
From these measurements, the mean fiber radius can be calcu-
lated and the radii distribution can be evaluated. Fig. 6 shows
the experimental probability density function for the fiber ra-
dius and the corresponding fitted curve with a Burr distribution:

pdfBurr(r, c, k, α) =
ck

α

( r
α

)c−1 [
1 +

( r
α

)c]−k−1
(6)

The parameters for the Burr distribution are: c = 41.935, k =
0.366 and α = 2.43µm. It should be mentioned that for the
considered material, the fiber radius distribution is identical for
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the warp and fill yarns. The mean radius is 2.57µm and the
standard deviation is 0.20µm. Fibers have radius in the range
[2µm; 3.5µm]. These information will be adopted next for the
definition of the homogenized response of the yarn. It will al-
low us to integrate the influence of the fiber radius distribution
on the effective elastic properties. In most studies of the litera-
ture, the radius of all fibers is assumed identical. Owing the pre-
cise characterization of the microstructure (geometrical param-
eters of the RVE, cross-section of each yarn, amplitude of the
undulation, volume fraction of fibers in the fill and warp yarns,
radius distribution of fibers), the 3D model will be closely rep-
resentative of the studied laminate.

3. Homogenization of a woven composite

3.1. Definition of the Representative Volume Element and ho-
mogenization strategy

From section 2.2 on experimental characterization, a RVE
of extent 2bw × 2bf × h is defined. The numerical model rep-
resentative of the RVE is built on Abaqus using python scripts
with the following steps. The shape of the yarn cross-section,
defined by Eq. (4), has been drawn in an Abaqus sketch and ex-
truded along the undulation curve (2). Since warp and fill yarns
have different cross-sections, they are generated separately, du-
plicated and placed to reproduce the glass fabric. Finally, the
numerical model of the RVE is available for further analysis,
see Fig. 12.

From microtomography, the composite material has a com-
plex structure and is made of three different materials: glass
for the fibers, ceramic material for the inclusion and hydrocar-
bon polymer for the resins. Except for the glass fibers which
are made of E-glass, none of the elastic properties of the con-
stituents are known.

In the present work, the prediction of the behavior of the
laminate is performed at the meso-scale through a two step ho-
mogenization procedure in association with an inverse method.
First the behavior of the yarns is homogenized from an assem-
bly of unidirectional glass fibers and a resin. Computations
have to be done for both the warp and fill directions since the
volume fractions of fibers are different. As a consequence, the
behavior of the two homogenized warp and fill materials is ob-
tained. Nevertheless, due to lack of data, the behavior of the
resin phase present in each yarn is unknown and will be es-
timated in a next section. In a second step, a finite element
model at the level of the RVE is performed. At that stage, the
RVE contains three different materials, namely the matrix phase
(hydrocarbon resin + ceramic inclusion), the warp and fill ma-
terials. Since the behavior of the resin in each yarn and of the
matrix phase cannot be measured, then an inverse method will
be adopted. The subsequent steps leading to the predictions of
orthotropic behavior of the composite material are described in
the following of this section.

3.2. Yarn homogenization

In the laminate studied here, around 200 fibers can be found
in a yarn and the detailed representation in a numerical model

would lead to huge computation time. Some attempt was pro-
posed by Döbrich et al. [12]. They have derived the homoge-
nized behavior of a composite with woven glass fabric, based on
a numerical model where the fiberglasses were meshed. Nev-
ertheless, due to the large computation costs, the number of
fibers represented in a yarn was limited. In addition, in their
work, the matrix phase was homogeneous. In the present work,
such full numerical strategy is not adopted for several reasons.
Here, the matrix phase is filled with a large content of inclu-
sions. Creating a precise model with an accurate description
of the microstructure would impose to consider both fibers and
also inclusions in the matrix. In addition, the positions of all
fibers are varying from yarns to yarns, as observed in Fig. 5.
So instead of developing a RVE with fibers and inclusions, we
propose to develop a statistical strategy for the definition of the
yarn behavior, by testing a large number of configurations.

A first homogenization stage is conducted to define the be-
havior of yarns. With more than 200 fibers, a yarn is supposed
to have a transverse isotropic behavior described by the relation
(7):

ε = S : σ (7)

where S stands for the elastic compliance tensor. With the Voigt

notation, introducing the engineering moduli (subscripts A and
T standing for axial and transverse properties respectively), and
considering that fibers are aligned along direction 1, the elastic
law becomes:
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(8)

Different homogenization methods are available in the liter-
ature to provide estimates of the elastic moduli, see Barbero et
al. [15], Chen et al. [16], Jacques et al. [17]. One can cite the
homogenization methods of Mori-Tanaka, the composite cylin-
der assemblage method, the self-consistent method, or numer-
ical homogenization by finite element method. The analytical
Mori-Tanaka scheme is well adapted for particulate composite
but a large volume content of fibers can be detrimental for the
prediction accuracy.

3.2.1. Mori-Tanaka scheme for long fibers
The Mori-Tanaka scheme for two-phase composite material

with long fibers is well-established in the literature and can be
found elsewhere. Weng [23], has shown an exact correspon-
dence of the Mori-Tanaka model with the Hashin Strickman
(lower) bound when the matrix is softer. The derivation of the
model and related analytical expressions can be found for in-
stance in Mura [24], Hill [25] or Hashin [26]. The homoge-
nized yarn behavior is transversely isotropic when the phase
behavior of the inclusions (long fibers) and of the matrix is
elastic isotropic. We denote by Em, νm (respectively Ei, νi)
the Young’s modulus and Poisson’s ratio of the matrix (respec-
tively of the fibers). f is the volume fraction of long fibers.

6



G. Girard et al.

Following notation of Eq. (8), the homogenized expressions for
the transverse plain strain bulk modulus kT and shear modulus
GT are found in Mura [24] :

kT = km + f(ki − km)
(km + µm)

(km + µm) + (1 − f)(ki − km)
(9)

GT = µm+
2µmf(µi − µm)(km + µm)

2µm(km + µm) + (1 − f)(µi − µm)(km + 2µm)
(10)

where the plain strain bulk modulus ki of the inclusion (resp.
km of the matrix) is linked to the Young’s modulus and Pois-
son’s ratio of the inclusion (resp. of the matrix):

ki =
Ei

2(1 − νi − 2ν2i )
km =

Em
2(1 − νm − 2ν2m)

(11)

and µi and µm are the shear moduli of the inclusion and matrix.
From Eqs. (9) and (10), the transverse Young’s modulus ET
and Poisson’s ratio νT are obtained:

ET =
GT (3kT −GT )

kT
(12)

νT =
−GT + kT

2kT
(13)

The expression of the axial elastic properties EA, GA and
νA are taken from Hill [25] and Hashin [26]:

EA = fEi + Em(1 − f) +
4(νi − νm)2f(1 − f)

f

km
+

1 − f

ki
+

1

µm

(14)

GA = µm
µi(1 + f) + µm(1 − f)

µi(1 − f) + µm(1 + f)
(15)

νA = fνi + νm(1 − f) +

(νi − νm)

(
1

km
−

1

ki

)
f(1 − f)

f

km
+

1 − f

ki
+

1

µm
(16)

3.2.2. Generation of the numerical unit cell
Since the volume fraction of fibers is larger than sixty per-

cent, we propose to compare the Mori-Tanaka homogenization
method with numerical homogenization adopting 3D and 2D fi-
nite element models, based on periodic unit cell. In order to be
as representative as possible of the studied laminate, the radii of
fibers in the unit cell will be distributed according to the Burr
distribution (Eq. (6), as measured in each yarn) and the volume
fraction of fibers corresponds to the experimental one. A large
number of instances will be also considered to capture the effect
of the spatial distribution of fibers on elastic predictions; differ-
ent positions of the fibers in the unit cell leading to different
homogenized predictions.

It exists an important literature concerning the definition of
representative volume element for composite materials, see for
instance Torquato [28]. The method called random sequential

Burr distribution parameters:

c
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Figure 6: Probability density function of the fiber radius. The probability den-
sity function has been fitted by a Burr distrubtion, see Eq. (6). The param-
eters adopted for the Burr distribution are: c = 41.935, k = 0.366 and
α = 2.43µm. The mean radius is 2.57µm with a standard deviation of
0.2µm. The fiber radius is ranging from 2µm to 3.5µm.

addition (RSA), as presented in the work of Smith [29], is fre-
quently considered in the literature for the generation of partic-
ulate composite microstructure. For a 2D microstructure, the
principle is to add sequentially disks. As a new disk is added,
it may overlap with another disk in the unit cell. When such
condition is met, then the last added disk is removed. Another
position is chosen. The disk position is validated when it does
not meet any already pre-existing disks. The main drawback of
the method is the jamming limit which occurs for cylinders for a
volume fraction of approximately 55%. Since the volume frac-
tions of fibers measured in our material are respectively 62%
and 67% for warp and fill directions, the RSA scheme is not
efficient for the present work. Therefore, a different strategy
has been adopted based on the work of Lubachevsky [27]. The
main steps are recalled in the following. First a set of disks (rep-
resenting fibers with very small radius) is generated. At t = 0,
nuclei (in the sense that they have small radius) of disks are dis-
tributed randomly in the RVE and a random speed is assigned
to each disk. Since the disks are very small, the probability that
two disks overlap is low. As time increases, disks grow, the
number of collision increases. When two disks (considered as
rigid) get in contact, they bounce as billiard balls. To prevent
vanishing distance between two fibers in the RVE, leading to
very small or distorted elements, a small offset of 0.05µm is
added to the contact criteria during the generation of the RVE
so that fibers bounce when they are at this distance. When a disk
crosses the remote boundary of the RVE, it is duplicated by pe-
riodicity on the opposite side. The computation stops when the
total area of the disks reaches the requested value, i.e. when
the targeted volume fraction of fibers is reached (Fig. 7). In
our approach, fibers do not have a unique radius. A dedicated
program is scaling the initial distribution of the fibers (at t = 0)
so that the final distribution of radii of the generated disks fits
the measured Burr distribution (when the volume fraction of
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(b) Step 2
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(c) Step 3

Figure 7: Generation of a 2D representative unit cell containing 30 fibers. The Lubachevsky method [27] is adopted, since the volume fraction of fibers is larger
than the jamming limit of the random sequential addition scheme. (a) At time t = 0, nuclei are randomly distributed and a random velocity is prescribed to all disks.
Note that the radii are heterogeneous, following a Burr distribution. (b) As time increases, the radius of all disks grows homothetically. (c) The growth progress is
stopped when the targeted volume fraction is met. More details can be found in Appendix A.

fibers is reached). This ensures a good description of the real
structure. More details can be found in Appendix A.

At the end of the process, the center positions and radii of
all fibers in the unit cell are transfered into Abaqus software.
For that purpose, a dedicated Python script reads a file in which
the positions and radii are listed and draws disks in the unit cell.
One finally gets a 2D RVE of fibers in a matrix. To obtain a 3D
RVE, one only proceeds by extrusion along the third direction.
In our case, the 3D RVE is a cube but the infinite length of
the fibers is taken into account by adopting periodic boundary
conditions.

In our work, a statistical analysis is developed. We do not
restrict our analysis to a single configuration. Various sets have
been generated, each of them leading to a new configuration,
satisfying both the prescribed volume fractions of fibers and
distribution of fiber radius.

Finite element calculations on the unit cell are carried out
with periodic boundary conditions (PBC) prescribed at the re-
mote boundary of the RVE. More details on PBCs are given
in Appendix B. For the 3D model, six loading conditions are
created: three tensions and three shears. For the 2D model
(plane strain), only three loading conditions are applied: two
tensions and one shear. For both 2D and 3D unit cell, a small
displacement is imposed on one face of the RVE and the result-
ing homogenized strains and stresses are calculated by volume
averaging of strains and stresses over all elements:

Xmoy =

n∑

e=1

XeV e∑n
e=1 V

e
(17)

In our approach, X stands for stress or strain components
and Xe the corresponding quantities at the element level. V e is
the volume of the element and n the total number of elements
in the model.

3.2.3. Selection of a salient unit cell
Figs. 8a and 8b present the unit cells generated by the

Lubachevsky [27] scheme, as presented in the previous section
3.2.2. The 3D model is obtained from the 2D unit cell by a

simple extrusion along the fiber direction, so the number, radii
and positions of fibers are identical. The radius of the fibers
is varying according to the Burr probability density function,
relationship (6). In order to evaluate the effect of the radius het-
erogeneity in the unit cell on the elastic predictions, monodis-
perse 2D RVE have been generated with still random position
of fibers but considering that all fibers have the same radius,
see Fig. 8c. A unit cell with face centered cubic distribution of
fibers is also proposed, see Fig. 8d. The cells presented in Figs
8a to 8c contain thirty fibers. In the last part of this section, the
number of fibers in the unit cell will be varied. The fibers are
aligned with the direction 1 and the volume fraction of fibers is
set to 67% as a reference (corresponding to the fill yarn). Note
that a mesh convergence study has been carried out for all FEM
models. It has been checked that the overall elastic moduli are
mesh insensitive for the mesh density with approximately 8000
elements of type CPE3 and CPE4R (plane strain elements, tri-
angles and quadrangles) for a 2D cell containing 30 fibers.

For purpose of comparison, the elastic behavior of fibers
and matrix is considered as linear isotropic with the following
set of elastic moduli:

• glass fibers: Ei = 72.3 GPa, νi = 0.22

• matrix: Em = 4.73 GPa, νm = 0.167

Note that the considered values for the matrix are consistent
with future results of Section 3.4.

The predictions based on the 3D RVE (Fig. 8a) are con-
sidered as the reference and are compared in Table 3 to those
obtained based on unit cells presented in Figs 8b to 8d. For all
unit cells considered in the present paper, it has been checked
that E2 = E3, ν12 = ν13 and G12 = G13. It has also been
checked that G23, obtained by prescribing a shear loading to
the RVE, satisfies G23 = E2/(2(1 + ν23)) so the random gen-
eration of fibers in the unit cell provides a transverse isotropic
response. Note that the estimates provided by the Mori-Tanaka
scheme is also included in this table.

From Table 3, it is observed that predictions based on unit
cells displayed in Figs 8b and 8c provide similar results. It
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(a) (b) (c)
(d)

Figure 8: Presentation of the four configurations used for the yarn homogenization. In each model, fiber volume fraction of 67% is considered (representative of
the fill yarn). (a) Presentation of the 3D model. The fiber radii distribution has been determined based on SEM images and described by a Burr probability density
function (6), (b) the corresponding 2D model with exactly the same position for all fibers. Radii are still heterogeneous. (c) 2D VER with a unique fiber radius. (d)
simple unit cell model with fibers placed on a regular grid (face centered symmetry).

67% fiber volume fraction
EA [GPa] ET [GPa] νA [-] νT [-] GA [GPa] GT [GPa]

Homogenization method E1 E2 = E3 ν12 = ν13 ν23 G12 = G13 G23

3D RVE 49.7 17.8 0.209 0.219 8.55 7.37
2D RVE - 18.2 - 0.239 - 7.40
error /3D RVE [%] - 2.18 - 9.38 - 0.43
2D RVE - fixed radius - 18.5 - 0.236 - 7.41
error /3D RVE [%] - 3.37 - 7.66 - 0.64
2D RVE - regular disposition - 16.0 - 0.323 - 8.70
error /3D RVE [%] - 10.26 - 47.58 - 18.07
Mori-Tanaka 50.0 15.6 0.208 0.203 7.72 6.49
error /3D RVE [%] 0.52 12.57 0.63 7.37 9.65 11.93

Table 3: Predictions of elastic properties at the level of the yarn. The yarn elastic response is transverse isotropic as presented in Eq. (8). Comparison between
four different numerical models based on a 3D RVE, a 2D RVE, a 2D RVE where fibers have the same radius, a 2D RVE with a face centered cubic symmetry.
Mori-Tanaka homogenization results are also presented. Fibers are aligned with direction 1. A fiber volume fraction of 67% is considered.

seems that for the case considered here, taking into account the
radii distribution leads to slight changes in the predictions. This
is probably due to the small heterogeneity of the fiber radii, il-
lustrated by a standard deviation of 0.2µm and a mean radius
of 2.57µm. The 2D model (Fig. 8d) with a face centered cubic
distribution of fibers is not able to provide accurate estimates
for a composite with randomly distributed fibers. For instance,
a 48% error is observed when considering the value of the Pois-
son’s ratio ν23 when compared to the 3D RVE. This unit cell
will be avoided for our study.

The determination of the transverse elastic properties (E2,
ν23, G23) requires 2D or 3D unit cells. It is observed that the
3D simulation and the corresponding 2D plane strain simula-
tion provide close results. Nevertheless 2D simulations are less
time consuming than 3D computations. It is also observed that
the Mori-Tanaka homogenization scheme gives accurate results
for the prediction of the elastic properties relative to the direc-
tion of fibers (E1, ν12 = ν13 and G12 = G13) and less accurate
estimates for the transverse elastic moduli (E2 = E3, ν23 and
G23). As a consequence, a hybrid model is adopted in the fol-
lowing to compute the homogenized properties of a yarn. The
elastic properties relative to the axial direction are computed

with Mori-Tanaka scheme and the transverse properties with
the 2D model corresponding to the unit cell of Fig. 8b.

Results of Table 3 are obtained for a fixed configuration.
From SEM observations, it has been noted that the spatial dis-
tribution of fibers may change from yarns to yarns. So to inves-
tigate this spatial distribution effect, a large number of 2D RVE
has been considered. Predictions are compared to evaluate the
influence of different seeds of fibers. Of course, each config-
uration is based on the same radii distribution as measured by
SEM (see section 1), contains the same number of fibers and the
same volume content of fibers. Hundred random configurations
have been generated and simulated. For each configuration, the
homogenized elastic properties (E2, ν23, G23) have been com-
puted. Fig. 9 displays the predicted heterogeneity (based on
histogram) generated by hundred configurations containing 30
fibers with a fiber volume fraction of 67%. The vertical line
represents the average value. One can see that properties vary
from one configuration to another. Considering only one sin-
gle configuration can lead to a result quite far from the average
value (more than ten percent difference). Next, for the homog-
enization of the woven composite, the configuration providing
the closest predictions from the average for the three quantities
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(E2, ν23, G23) will be selected. It should be noted that results
shown in Table 3 are deduced based on this configuration.

The effect of the number of inclusions in a RVE has been
tested by considering various sizes of unit cell. In the present
work, we have adopted RVE containing 10, 30, 50 and 70 fibers
respectively. A hundred RVE (corresponding to Fig. 8b) has
been generated for each case (400 simulations have been con-
ducted in total). The volume fraction of fibers is 67% and
the fiber radius is following the Burr distribution (Eq. (6)) in
each considered case. Fig. 10 presents the average value and
the standard deviation of the predicted homogenized transverse
Young’s modulus when the number of fibers is increased from
10 to 70. It can be noticed that the mean value (based on hun-
dred configurations) is constant regardless the number of fibers
in the RVE. However the standard deviation decreases when the
unit cell contains a larger number of fibers. Since only the con-
figuration leading to the closest predictions (with respect to the
average values) is selected for the homogenization of the yarn
and since the average value of the transverse Young’s modu-
lus does not depend on the number of fibers (see Fig. 10), a
configuration with 30 fibers is selected, leading to reasonable
computation times.
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Figure 10: Effect of the number of fibers in a 2D RVE on (a) the average trans-
verse Young’s modulus ET , (b) the associated standard deviation. The volume
fraction of fibers is fixed and equal to 67%. The prediction ofET for each con-
figuration is plotted in (a) with a black dot. The solid line shows the evolution
of the average value. It is observed that as the number of fibers is increased,
the predictions are more homogeneous leading to the decrease of the standard
deviation. Note that as concerned the overall transverse Young’s modulus, the
average value is not evolving with the number of fibers.

The same computations have also been carried out for lower
fiber volume fractions: 50% and 30% (see Tables 4 and 5). As
expected, it is observed that the difference between predictions
based on a random distribution of fibers and on one hand the
cubic unit cell or on the other hand the Mori-Tanaka approach
decreases when the fiber volume fraction is lower. Neverthe-
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Figure 11: Effect of the volume fraction of fibers in a 2D RVE on (a) the average
transverse Young’s modulus ET , (b) the associated relative standard deviation
σ(ET )/ET . Each configuration contains 30 fibers. The value of ET for each
configuration is plotted with a black dot in (a). The solid line depicts the evo-
lution of the average value when the volume fraction of fibers increases. As
expected for low volume fraction of fibers, the discrepency between various
instances is quite small. The relative standard deviation is increased when the
volume fraction of fibers increases from 30% to 67%.

less, even for 30% fiber content, a random fiber distribution in
the unit cell is still compulsory to describe properly the yarn be-
havior. Fig. 11 presents the evolution of the transverse Young’s
modulus ET for the three volume fractions considered in this
paper (30%, 50% and 67%). Thirty fibers are present in the
unit cell. Numerous configurations have been tested for each
case, so that the deviation between instances can be estimated.
As expected, as the volume content of fibers increases, the het-
erogeneity in predictions increases. The relative standard devia-
tion, defined as the ratio between the standard deviation and the
mean value, is growing significantly when the volume fraction
increases from 30% to 50%. Therefore, it is important to con-
sider a larger number of configurations for large volume con-
tent of fibers, so that the average value of the elastic properties
is statistically obtained.

3.3. Homogenization of the woven composite

The laminate geometry has been defined precisely based on
the measurements carried out by microtomography and SEM,
as seen in section 2.2. The numerical model is built on Abaqus.
The main steps for the RVE definition have been presented pre-
viously. Fig. 12 presents the adopted geometry for the numeri-
cal calculations where part of the matrix phase has been hidden
to precisely show the yarns and their geometry.

The transverse isotropic behavior of the yarns is computed
with the method described in section 3.2.3 while the matrix sur-
rounding the yarns is considered as elastic isotropic. Due to
the weaving pattern, a local frame of anisotropy is attached to
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(a) (b) (c)

Figure 9: Prediction of the transverse elastic properties of the yarn, based on hundred RVE with 30 fibers. A fiber volume fraction of 67% is considered. Results
are obtained by considering 2D unit cell (see Fig. 8b). a) Transverse Young modulus ET . b) Transverse Poisson ratio νT . c) Transverse shear modulus GT . It has
been checked for all configurations that E2 = E3 = ET , ν23 = ν32 = νT . The present predictions are representative of the fill yarn behavior. For the present
finite element model, glass fiber and matrix properties are: Ei = 72.3 GPa, νi = 0.22, Em = 4.73 GPa, νm = 0.167.

50% fiber volume fraction
EA [GPa] ET [GPa] νA [-] νT [-] GA [GPa] GT [GPa]

Homogenization method E1 E2 = E3 ν12 = ν13 ν23 G12 = G13 G23

3D RVE 38.2 11.6 0.201 0.217 5.51 4.72
2D RVE - 11.8 - 0.232 - 4.76
error /3D RVE [%] - 2.14 - 6.80 - 0.84
2D RVE - regular disposition - 10.3 - 0.293 - 5.22
error /3D RVE [%] - 10.61 - 34.75 - 10.62
Mori-Tanaka 38.5 10.6 0.200 0.195 5.16 4.42
error /3D RVE [%] 0.91 8.65 0.55 9.98 6.31 6.33

Table 4: Predictions of elastic properties at the level of the yarn. The yarn elastic response is transverse isotropic as presented in Eq. (8). Comparison between
four different numerical models based on a 3D RVE, a 2D RVE, a 2D RVE where fibers have the same radius, a 2D RVE with a face centered cubic symmetry.
Mori-Tanaka homogenization results are also presented. Fibers are aligned with direction 1. A fiber volume fraction of 50% is considered

30% fiber volume fraction
EA [GPa] ET [GPa] νA [-] νT [-] GA [GPa] GT [GPa]

Homogenization method E1 E2 = E3 ν12 = ν13 ν23 G12 = G13 G23

3D RVE 24.8 7.70 0.189 0.211 3.55 3.17
2D RVE - 7.82 - 0.225 - 3.18
error /3D RVE [%] - 1.61 - 6.65 - 0.49
2D RVE - regular disposition - 7.39 - 0.251 - 3.31
error /3D RVE [%] - 4.09 - 19.34 - 4.68
Mori-Tanaka 25.0 7.37 0.189 0.186 3.46 3.11
error /3D RVE [%] 0.94 4.35 0.30 11.86 2.53 1.89

Table 5: Predictions of elastic properties at the level of the yarn. The yarn elastic response is transverse isotropic as presented in Eq. (8). Comparison between
four different numerical models based on a 3D RVE, a 2D RVE, a 2D RVE where fibers have the same radius, a 2D RVE with a face centered cubic symmetry.
Mori-Tanaka homogenization results are also presented. Fibers are aligned with direction 1. A fiber volume fraction of 30% is considered

each yarn. The transverse isotropy axis is tangent to the cen-
tral axis of the yarn which follows a cosine curve. However, it
has been observed by simulations that the yarn oscillation be-
ing small, considering the local frame induces a difference on
homogenized values as small as 1.4%. This is observed for all
estimated elastic moduli.

The RVE represents the elementary cell of the woven com-
posite. The whole composite can be generated by translating

the RVE of any vector k · (2bw, 2bf , 0) (k being an integer).
It is important to mention that the RVE has the thickness of
the composite so the periodicity of the RVE does not exist in
direction 3. Loadings are prescribed to the RVE by adopting
Periodic Boundary Conditions (PBC). They are implemented
as described in the work of Pierard et al. [30], at least for the
in-plane loading, see Appendix B.

Three tensile and three shear loadings are prescribed inde-
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h

2bw
2bf

Figure 12: 3D representative volume element. The laminate is made of three
layers of intertwinned warp and fill yarns. The size of the RVE is 2bw in the
warp direction, 2bf in the fill direction. The thickness of the laminate is h.
The model will be adopted for the derivation of the orthotropic behavior of the
laminate. Note that since the matrix phase is unknown, an inverse method is
compulsory. The model contains around 360000 tetrahedral elements. A mesh
convergence study has been carried out to check that the proposed mesh is dense
enough to provide mesh insensitive predictions (at least for the overall elastic
properties).

pendently on the RVE to get the overall orthotropic elastic be-
havior as presented in Eq. (1). Indeed, from the numerical cal-
culations, average strains εavg and stresses σavg are computed
by a summation over all elements of the RVE, see Eq. (17).
From the simulations of the three uniaxial tensions along direc-
tion ēi, the homogenized moduli Ei and νij can be computed
(no summation on the indices, j refers to ēj direction normal to
ēi):

Esimi =
σavgii

εavgii

(18)

νsimij = −
εavgjj

εavgii

(19)

From the three shear loadings, the effective shear moduli
are obtained:

Gsimij =
σavgij

2εavgij

(20)

The numerical homogenization computations have been per-
formed with two mesh densities in order to verify that results
are mesh insensitive. The two models contain respectively 360,000
and 597,000 tetrahedral elements C3D10 (with quadratic inter-
polation). It has been checked that the two models give the
same homogenized values.

This numerical homogenization method works when the ma-
terial behavior of each phase is known.

3.4. Optimization, inverse identification

In our study, the behavior of the glass fiber is supposed
known (Ef = 72.3 GPa, νf = 0.22, see Chen et al. [16]
and Barbero et al. [15]). But the resin present in the investi-
gated laminate is not clearly described by the provider and its
behavior is unknown. In fact, the resin is a thermoset. So it

is really difficult to extract the resin behavior directly from the
laminate. In addition, in contrast to what is usually reported in
the literature, the matrix phase is not a pure polymeric resin. In-
deed, for high frequency applications, as observed on SEM, the
matrix surrounding the yarns is filled with inclusions, whereas
the matrix inside the yarns contains no inclusions (see Fig. 4).
So in addition to the glass fiber, the laminate is made of two
phases (intra-strand resin and inter-strand matrix), whose elas-
tic behaviors are assumed isotropic but unknown. Their elastic
responses will be identified by an inverse method, by compar-
ing the predictions of the 3D model with the measured in-plane
global elastic moduli of the laminate (Eexp1 , Eexp2 , νexp12 , Gexp12 ).

Four unknown parameters are introduced: Em, νm (respec-
tively Emt, νmt) the Young’s modulus and Poisson’s ratio of
the inter-strand matrix (respectively intra-strand resin). The in-
verse method is an iterative process, as illustrated on Fig. 13.
The reliability of the prediction is measured by a cost function,
defined as the sum of the squared differences between simula-
tion and experiment:

fcost =

(
Eexp1 − Esim1

Eexp1

)2

+

(
Eexp2 − Esim2

Eexp2

)2

+

(
νexp12 − νsim12

νexp12

)2

+

(
Gexp12 −Gsim12

Gexp12

)2
(21)

The set of parameters (Em, νm, Emt, νmt) is obtained by
minimizing the cost function fcost using a Nelder-Mead algo-
rithm coupled with Abaqus by a dedicated Python script. First,
an initial set for the four unknown parameters (Eim, νim, Eimt,
νimt) is defined. Based on the initial trial set, a homogeniza-
tion process is performed on a 2D numerical RVE to estimate
the transverse isotropic behavior of the warp and fill yarns,
the Mori-Tanaka homogenization being used for the remaining
elastic moduli. Computations are repeated since the two yarns
have a different fiber volume fraction. The computed elastic
transverse isotropic behaviors of the fill and warp yarns are in-
troduced in the 3D homogenization model. Three simulations
are carried out: tension along ē1 axis, tension along ē2 axis
and one in-plane shear. As a result, four homogenized elastic
moduli Esim1 , Esim2 , νsim12 and Gsim12 are derived and compared
to the in-plane measured data. By evaluating the cost function
and using the Nelder-Mead minimization algorithm, new esti-
mates Em, νm, Emt, νmt are available. The simulations are
performed once again with these new estimates.

For the case considered in the present work, the cost func-
tion decreases rapidly and saturates toward a limit value f limcost
after some tenth of iterations. In the iterative optimization pro-
cess, the calculations are stopped when an asymptotic value is
reached, meaning that the value of fcost has not changed by
more than 10−5 during 20 consecutive iterations. Nevertheless,
in order to ensure that the solution is stable, the optimization
procedure, based on the Nelder-Mead algorithm, is performed
again with the previously calculated optimized values as initial
guess. It has been checked that the limit value f limcost and the
estimated parameters Em, νm, Emt, νmt are unchanged. Once
the convergence criterion is reached, estimates for the elastic
behavior of the two unknown phases as well as of the fill and
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Figure 13: Global scheme for the inverse method. All the steps necessary to homogenize a woven composite are represented. An estimate of the behaviors of the
two phases (intra-strand resin and inter-strand matrix) is given. A first homogenization is done at the yarn level with Mori-Tanaka model and a 2D RVE studied with
Abaqus. The yarn is made of glass fibers and an intra-strand resin. This 2D RVE is selected from 100 random configurations to be the most representative. This
is done for both warp and fill yarns. Next the RVE for the complete woven composite homogenization is generated from microtomography and SEM observations.
The yarn and the inter-strand phase behaviors are defined or estimated. Three loadings are applied to the RVE so as to compute the four in-plane elastic moduli.
In the next step, these four estimated elastic moduli are compared with the measured ones. A cost function is minimized with the use of a Nelder-Mead algorithm.
New estimates are used and the whole homogenization cycle is performed again. When a convergence criterion is reached on the cost function, six loadings are
prescribed to the 3D RVE to compute the orthotropic elastic behavior. The method is carried out at different temperatures.

warp yarns are obtained. Subsequently, the elastic orthotropic
behavior of the laminate is predicted by considering the six uni-
tary loadings (three uniaxial tensions and three shear loadings).

Different initial sets have been tested. The inter-strand ma-
trix is filled with ceramic inclusions so its corresponding initial
Young’s modulus Eim is chosen larger than the one of the intra-
strand resin: Eimt < Eim. With this additional condition, the
solution of the optimization process is insensitive to the initial
guess. In our approach, the initial elastic properties of the intra-
strand resin are taken from the work of Chen et al. [16] and
are representative of an epoxy resin: Eimt = 3450MPa and
νimt = 0.37. The initial guess for the inter-strand matrix is
taken as Eim = 2Eimt and νim = νimt

Experimentally, the elastic moduli have been measured at
different temperatures in the range [-50°C ; +125°C]. Thus, this
numerical strategy has been successively applied at different
temperatures. It is observed in Fig. 14 that the elastic moduli
are quite temperature insensitive in the range [-50°C ; +20°C]
but as the temperature overcomes room temperature, the de-
crease of the Young’s modulus or of the shear modulus (not
presented here) is really important. In addition, it must be em-
phasized that in the range [-50°C ; +125°C], the value of the
Young’s modulus E1 is reduced by a factor of two, see Fig. 14.
It is also observed that the value of the datasheet, which cor-
responds to the behavior of the woven composite characterized
at room temperature and with a different glass fiber fabric, is
overestimating the measured properties. Fig. 14 presents also

the temperature evolution of the out-of-plane Young’s modulus
E3. Due to the thickness of the laminate, such data are difficult
to obtain by tests. It is also found in Fig. 14 that the value of
Young’s modulus E3 is divided by a factor of three when the
temperature is varied from -50°C to +125°C.

4. Conclusion

The PCB industry is facing rapid evolution with a huge
competition for developing high performing PCB. In space and
military applications, achieving reliability of high performance
PCB is a challenge as it is a complex construction made out of
many different materials. Consequently, the reliability of the
board cannot be assessed without a precise material descrip-
tion. Numerical simulations based only on the properties of the
datasheet will generate predictions with a low degree of relia-
bility. This can be problematic, especially when the goal is to
predict the fatigue life of printed circuit boards during thermal
cycles. With the proposed combined and multi-stage homoge-
nization procedure, the temperature dependent behavior of the
woven composite can be accurately described, even when the
matrix phase has a complex internal structure and is unknown.
Such deep and complete information are not usually available
in the literature.

A deep investigation of the elastic behavior of the woven
composite is proposed. It relies on measurement of the in-
plane elastic properties. To estimate out of plane properties,
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Figure 14: Predictions of the elastic moduli for the laminate. The in-plane
elastic moduli E1 and E2 and the out of plane Young’s modulus E3 are seen
to varying strongly with temperature. The prediction of the Young’s modulus
E3 is the main outcome of the proposed work since the precise experimental
determination ofE3 is difficult due to the small thickness of the laminate. Com-
parison with datasheet values proves the necessity of a careful characterization
(experiments + numerical simulations) of the considered laminate. The pro-
posed strategy has been employed in the temperature range [-55°C ; +125°C].
Thermal cycles in this range of temperature is a requirement of space standards
during the qualification process of any printed circuit board.

the internal structure of the composite is quantified, based on
micro-tomography scans and scanning electron microscope im-
ages. A new methodology is proposed to describe precisely the
shape of the yarns. Owing to the large volume fraction of fibers
in the yarns, 2D representative volume elements are generated
by a scheme similar to the one proposed by Lubachevsky [27].
From observations, it has been checked that some variability in
the fiber radius and in position of fibers exists from one yarn
to another. As a consequence, a large number of configurations
has been tested. The laminate considered in the present pa-
per is designed for high frequency applications. The matrix is
made of polymeric resin and filled with a large volume content
of ceramic inclusions. The matrix behavior is not available, so
an inverse method is proposed. Finally, 3D simulations at the
level of the RVE enable to define the orthotropic behavior of
the laminate. Therefore, as the main outcome of the work, the
out of plane properties are evaluated. There is usually a lack of
reliable data on these properties in the literature.

The considered laminate is part of a multi-layer PCB for
space applications. During qualification process and operation,
the PCB will face severe thermal cycles. For that purpose, the
behavior of the laminate has been identified in the temperature
range of interest for the applications, i.e. [-50°C ; +125°C].

The proposed method is general enough and can be applied
to other complex laminates and is not restricted to the evalu-
ation of the thermo-elastic behavior. In the present work, we
have enlightened how a combination of experimental set-ups
and numerical simulations can provide precise predictions of
the constitutive behavior of plain woven composite, dedicated

to non-conventional structural applications like high frequency
PCB.
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Appendix A. 2D unit cell generation for composite with long
fibers

The procedure for the generation of multiple instances of
2D microstructure with inclusions (disks) of heterogeneous ra-
dius and for a given inclusion volume fraction f is explained
in this Section. The number of fibers N in the unit cell is first
chosen. In our approach, N is varied in the range [10 : 70].
For each value of N , hundred configurations are tested. The
J th configuration is built as follows. From the Burr distribution
(6), a set S(J) of N values for the radius is selected (a Matlab
procedure has been used for that purpose). Let’s denoteR(i, J)
the radius of the ith disk in the configuration J . The total area
of the N disks is computed. Since the volume fraction of fibers
is known (62% for the warp yarn and 67% for the fill yarn), the
length l(J) of the squared unit cell is determined:

l(J) =

√∑N
i=1 πR(i, J)2

f
(A.1)

Among all configurations (one hundred for each set of parame-
ters), it has been checked that l(J) is changing only slightly.

Consider that at a given time t, the radius of the disks in
the unit cell is ri(J, t) for the configuration J . To start the
Lubachevsky [27] type of approach, the radius of all disks is
downsized: ri(J, t = 0) = R(i, J)/A. A is an arbitrary real
number, set to A = 100 in the present work. During the pro-
cess, all disks grow homothetically:

ri(J, t) = ri(J, t = 0) · t
t0

·A (A.2)

where t0 is an arbitrary time (here t0 = 1s). Since a random
velocity is prescribed to all disks at time t = 0 and their radius
is small (the initial volume fraction of fibers being 0.006%),
they move along a straight line with a probability of collision
relatively low. As they reach the border of the RVE, they are du-
plicated on the opposite side, to preserve periodicity. As disks
begin to grow, the frequency of collisions increases. Note that
during the process, disks are considered as rigid so they bounce
like billiard balls. Note that an offset distance δ is introduced
so that the collision between two disks is triggered when the
distance between them is equal to this offset distance. δ has
been introduced to avoid the situation where two disks are fi-
nally in contact. Indeed, from the numerical point of view, this
offset distance eases to avoid too small and distorted elements.
As the cell is meshed in Abaqus, this may induce convergence
problem. At time t = t0, the simulation is stopped. All disks
have reached their final radius ri(J, t = t0) = R(i, J), and the
volume fraction of fibers is naturally f .

Appendix B. Periodic boundary conditions

The periodic boundary conditions adopted in the present
work are described in Pierard [30] or Herráez [31]. The dis-
placements on two opposite faces are described by the follow-
ing relations:

ū(0, x2, x3) − ū(a, x2, x3) = ū1

ū(x1, 0, x3) − ū(x1, b, x3) = ū2

ū(x1, x2, 0) − ū(x1, x2, c) = ū3

(B.1)

Where a, b and c are the dimensions of the unit cell, x1, x2
and x3 are the coordinates of any material point on the remote
boundary of the RVE. ū1, ū2 and ū3 represent the loadings ap-
plied to the reference points of the cell. ū1 describes the dis-
placement of the first reference point, representing the relative
movement of the two faces of normal 1. For instance, a uni-
axial tension along the x1 axis is obtained with ū1 = (u, 0, 0),
ū2 = (0, u2, 0) and ū3 = (0, 0, u3) where u is a small dis-
placement prescribed to the reference point. u can be linked
to the engineering strain ε by u = εa. The displacements u2
and u3 correspond to the lateral contractions due to Poisson’s
effect and computed from the condition that the force acting
on surfaces having normal vectors perpendicular to the 1-axis
(direction of loading here) remain free of loading (overall free
surface). This PBC (B.1) applies for a unit cell periodic in the
three directions of space, e.g. the 3D RVE of the yarn presented
in Fig. 8a of section 3.2. In that case, the dimension of the RVE
is: a = b = c = l(J) where l(J) is defined in Eq. (A.1).
For the simulations of 2D periodic RVE of yarns (see Fig. 8b
of section 3.2), the periodic boundary conditions described by
Eq. (B.1) are applied, only in the plane. In that case, we con-
sider opposite edges instead of opposite faces. We have also
a = b = l(J).

The 3D RVE of the laminate displayed in Fig. 12 presents
an in-plane periodicity, since the whole thickness of the lam-
inate is considered in the numerical model. Hence PBC de-
scribed by Eq. (B.1) only apply to in-plane loadings with faces
of normal vector 1 or 2. The faces of normal 3 are free sur-
faces. For shear or tensile loading on faces of normal vector 3,
we consider that faces with normal vector 1 or 2 are supporting
PBC while the faces of normal vector 3 remain planar. In that
case, as pointed out in Fig. 12, a = 2bw, b = 2bf and c = h.

Since on Abaqus sofware, the meshes on two opposite faces
are usually different even when the unit cell is periodic, each
node on one face does not always coincide with another node
on the opposite face. To overcome this problem, an exact copy
of all nodes of one face has been superimposed to nodes of the
opposite face. This set of new nodes has then been linked to
this opposite face with a tie constraint. The constraint equation
(B.1) is thus set to link the displacements of all nodes of the
face and the displacements of their exact copies on the opposite
face.
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