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Abstract

This paper is devoted to the problem of detectability and observability of a class of time-varying stochastic systems. The main
contribution of this note is to propose a PBH-type test which is equivalent to the detectability of the considered stochastic
systems in the sense that all unstable modes produce some non-zero output. Then, we apply the obtained results in order to
derive a criterion of exponential stability in mean square sense as well as existence conditions for the stabilizing solution of a
class of discrete-time time-varying Riccati equations.
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1 Introduction

It is a well established fact that the detectability and
the observability notions play a key role in several do-
mains from modern control theory both in the deter-
ministic and stochastic cases. It is also well known that
the characterization of the detectability and the observ-
ability in the stochastic framework offers some very spe-
cific challenges when compared to there deterministic
case [5,7,9,10,14]. For example, in the deterministic case,
one defines a system to be detectable if all its unsta-
ble modes produce a non-zero output and shows that
the system detectability is equivalent to the dual system
being stabilizable which is also equivalent to the exis-
tence of an asymptotically stable linear dynamic state
observer. Moreover, detectability could be equivalently
characterized via an algebraic criterion: the so called
Popov-Belevich-Hautus test (PBH-test). Such equiva-
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lent characterizations don’t hold in the stochastic frame-
work. More specifically, we know that (see [5]):

• in the stochastic case the property that all unstable
modes produce some non-zero output is only a neces-
sary but not sufficient condition for stabilizability of
the dual system,

• the stabilizability of the dual system does not give rise
to a realizable observer equation,

• a PBH-type test for stochastic systems is only a nec-
essary condition for stabilizability of the dual system.

Several authors devoted there efforts to address some
of the above raised points. We cite for example here
[5,9,10,14] where the authors succeeded to show the
equivalence between the stochastic version of the PBH-
test and the natural concept of detectability of the
system in the sense that all unstable modes produce
some non-zero outputs. Exact observability together
with the corresponding PBH criterion was first intro-
duced in [13], and then developed in [5] and [14] for
exact detectability of linear time-invariant Itô systems.
Unlike the afore mentioned papers, where only the time
invariant case was considered, recently, in [15] a class
of discrete-time time-varying stochastic linear systems
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is studied. Two kinds of detectability for this class of
stochastic linear systems are defined and characterized,
namely uniform detectability and exact detectability.
In the present paper, we consider also the case of lin-
ear discrete-time time-varying stochastic systems. The
time-varying nature of the system coefficients is as-
sumed to be periodic. Different from [15] where the
coefficients matrices of the output are deterministic, in
the present paper, the coefficients matrices of the out-
put are allowed to be affected by perturbations modeled
by sequences of independent random variables. We first
propose a definition for detectability of this class of
systems, namely exact detectability. The concept intro-
duced here is in adequacy with its deterministic coun-
terpart. The central contribution of this note is then to
propose a PBH-type test for this class of time-varying
systems which is equivalent to the exact detectability
of the considered stochastic systems. The proof of such
result relies on the use of spectral theory of positive
operators. We then apply the obtained results in order
to obtain a criterion of exponential stability in mean
square sense as well as existence conditions for the
stabilizing solution of a class of discrete-time Riccati
equations with periodic coefficients. It is worth point-
ing out that the PBH criterion for exact detectability
allows us to prove the criterion for exponential stability
in mean square without any additional assumptions as
in [15]. The results reported in this paper can be viewed
as a discrete-time time-varying counterpart of [5]. Even
though we follow a similar philosophy as in [5], it is im-
portant to mention here that the time-varying nature
of the considered problem imposes some hard specific
challenges. Obtaining a PBH-type test for detectability
in this context is far from being trivial.
The rest of the paper is organized as follows: In Section
2 we give the problem setting. In Section 3, we introduce
some preliminary results. In Section 4 and Section 5 we
give the main results of the paper. Section 6 is devoted
to show several consequences and applications of the
proposed main results.

2 Problem Description

Consider the discrete-time linear stochastic system:{
x(t+ 1) = (A0(t) +

∑r
k=1Ak(t)wk(t))x(t)

y(t) = (C0(t) +
∑r
k=1 Ck(t)wk(t))x(t)

(1)

where Ak(t + θ) = Ak(t), Ck(t + θ) = Ck(t), for all
0 ≤ k ≤ r, t ∈ Z+ = {0, 1, ...}where θ ≥ 1 is a fixed inte-

ger. In (1) w(t) =
(
w1(t) · · · wr(t)

)T
are independent

random vectors with zero mean and E
[
w(t)wT (t)

]
= Ir.

In this paper, E stands for the mathematical expecta-
tion.
If (t0, x0) ∈ Z+ ×Rn we denote x(t; t0, x0) the solution
of (1) with the initial condition x(t0; t0, x0) = x0. The

corresponding output is
y(t; t0, x0) = (C0(t) +

∑r
k=1 Ck(t)wk(t))x(t; t0, x0), t ≥

t0.

Definition 2.1a) We say that the system (1) is exact
detectable at time t0 ∈ Z+ if for any initial state x0 ∈
Rn for which y(t; t0, x0) = 0, a.s. for any t ≥ t0, we
have lim

t→∞
E
[
|x(t; t0, x0)|2

]
= 0.

b) We say that the system (1) is exact detectable if it is
exact detectable at any time t0 ∈ Z+.

Remark 1 In the stochastic framework there are many
ways to define the concept of stabilizability and detectabil-
ity (see for example [2,3,7,9,10,12] to cite only a few).
The most known concept of detectability is the so called
stochastic detectability. In this case, the system (1) is
named stochastic detectable if there exist matricesH(t) ∈
Rn×n such that the closed-loop systems:

x(t+ 1) = [A0(t) +H(t)C0(t)+

+

r∑
k=1

wk(t) (Ak(t) +H(t)Ck(t))

]
x(t) (2)

is exponentially stable in mean square sense.
Noting that the closed-loop system (2) may be rewritten
in the form:

x(t+ 1) =

(
A0(t) +

r∑
k=1

wk(t)Ak(t)

)
x(t) +H(t)y(t)

we may deduce easily that if system (1) is stochastic de-
tectable then it is exact detectable. We will show in Sec-
tion 5 (via an example) that the converse implication is
not always true.

Definition 2.2a) We say that the system (1) is exact
observable at time t0 ∈ Z+ if y(t; t0, x0) = 0, a.s. for
all t ≥ t0 if and only if x0 = 0.

b) The system (1) is exact observable if it is exact observ-
able at any time t0 ∈ Z+.

Remark 2 From Definition 2.1 and Definition 2.2 it
follows that if the system (1) is exact observable then it
is exact detectable.

Our goal is to derive a PBH-type criterion to test if the
system (1) is or not exact detectable and is or not exact
observable, respectively. In the developments from this
note, we adapt to the discrete-time periodic case the
approach from [5] for the continuous time-invariant case.

3 Few preliminary issues

Let Sn ⊂ Rn×n be the linear subspace of real symmetric
matrices. Equipped with the inner product:

〈X,Y 〉 = Tr[XY ] (3)
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Sn becomes a finite dimensional Hilbert space. Addi-
tionally, Sn is an ordered linear space, ordered by the
ordering relation induced by the convex cone S+n of pos-
itive semidefinite matrices.
If x(t) is a solution of the systems (1), then we set

X(t) , E[x(t)xT (t)]. By direct calculation one obtains
that X(·) is a solution of the following initial value prob-
lem (IVP): {

X(t+ 1) = L(t)[X(t)]

X(t0) = x0x
T
0

(4)

where we denoted

L(t)[X] =

r∑
k=0

Ak(t)XATk (t) (5)

for all X ∈ Sn. The operator L(t) is the extended
Lyapunov-type operator (or the extended Stein oper-
ator) associated to the discrete-time linear stochastic
system (1). One can see from (5) that L(t) is a positive
operator i.e. L(t)S+n ⊂ S+n . The periodicity property
of the coefficients Ak(·), 0 ≤ k ≤ r, leads to the peri-
odicity property of the sequence of operators {L(t)}t≥0
i.e. L(t + θ) = L(t), for all t ∈ Z+. Even if the system
(1) works only for t ∈ Z+, the sequence of operators
{L(t)}t≥0 can be extended by periodicity to the whole
set Z.
Let T (t, s) , L(t − 1)L(t − 2) · · · L(s) if t > s and
T (t, s) = ISn if t = s. T (t, s) is a linear evolution oper-
ator on the space Sn defined by the discrete-time linear
equation (4). The solutions of the equation (4) satisfy
X(t) = T (t, s)[X(s)], ∀t ≥ s. We set:

Tθ(t) , T (t+ θ, t) (6)

for all t ∈ Z. Tθ(t) will be named the monodromy opera-
tor associated to the linear equation (4), or equivalently
to L(·).
According with the terminology used in periodic lin-
ear systems, the eigenvalues of the monodromy opera-
tor Tθ(t) will be named characteristic multipliers. One
may show that the spectrum σ(Tθ(t)) of the monodromy
operator does not depend upon t. Since Tθ(t) is a pos-
itive operator, then based on [8] one may deduce that
the spectral radius ρθ of the monodromy operator is an
eigenvalue of Tθ(t). Moreover, there exists an eigenvec-
tor Y ∈ S+n corresponding to this eigenvalue. In the de-
velopments from this paper, an important role will be
played by the eigenvalues of the monodromy operator
which have corresponding eigenvectors in S+n . We de-

mote σ+(Tθ(t)) =

{
λ ∈ σ(Tθ(t))|∃Y ∈ S+n : Tθ(t)[Y ] =

λY, Y 6= 0

}
. Hence, ρθ ∈ σ+(Tθ(t)) and σ+(Tθ(t)) ⊂ R,

but, in general, it does not contain all real eigenvalues
of the monodromy operator.

Now we consider the deterministic counterpart of sys-
tem (1) given by:{

x(t+ 1) = A0(t)x(t)

y(t) = C0(t)x(t).
(7)

In this case, the linear operator (5) becomes:

L0(t)[X] = A0(t)XAT0 (t) (8)

and the discrete-time linear equation (4) takes the form:

X(t+ 1) = A0(t)X(t)AT0 (t). (9)

The linear evolution operator T0(t, s) defined by the lin-
ear equation (9) is given by:

T0(t, s)[X] = ΦA0(t, s)XΦTA0
(t, s) (10)

where ΦA0(t, s) = A0(t − 1)A0(t − 2) · · ·A0(s) if t > s
and ΦA0(t, s) = I if t = s.
The monodromy operator associated to the linear equa-
tion (9) is given by:

Tθ0(t)[Y ] = ΨA0(t)YΨT
A0

(t) (11)

for all Y ∈ Sn, where ΨA0
(t) , ΦA0

(t + θ, t) is the
monodromy matrix associated to the linear equation
x(t+ 1) = A0(t)x(t). The reason behind considering the
above deterministic counterpart will be clarified in the
next section.

4 A PBH-type criterion for exact detectability

Before addressing the problem of exact detectabil-
ity/observability in the stochastic framework and for-
mulating our main results, we would like first to intro-
duce a result related to the deterministic framework.
Such a result gives a positive operator characterization
of exact detectability of deterministic θ-periodic sys-
tems. We believe that such result has not been reported
yet in the literature.

4.1 The deterministic case

In the case of system (7), Definition 2.1 becomes:

Definition 4.1 a) We say that the system (7) is ex-
act detectable if for some (t0, x0) ∈ Z+ × Rn we have
y(t; t0, x0) = C0(t)ΦA0

(t, t0)x0 = 0 for all t ≥ t0, then
lim
t→∞

ΦA0
(t, t0)x0 = 0.

b) We say that the system (7) is detectable if there exists a
periodic sequence of period θ, H(·) such that the system:

x(t+ 1) = (A0(t) +H(t)C0(t))x(t)

is exponentially stable.
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Remark 3 Specializing Remark 1 to the deterministic
case one obtains that if the system (7) is detectable in the
sense of Definition 4.1 b than it is exact detectable (in
the sense of definition 4.1 a).

The next result is an extended version of Proposition
4.13 from [1].

Proposition 4 The following are equivalent:

i) system (7) is detectable;
ii) for any characteristic multiplier λ ofA0(·) with |λ| ≥ 1

the equalities:

ΨA0(t)η = λη (12a)

C0(j)ΦA0
(j, t)η = 0 (12b)

for all t ≤ j ≤ t+ θ − 1 implies that η = 0;
iii) for any characteristic multiplier µ ∈ σ+(Tθ0(t)) with

µ ≥ 1, there does not exist Y ∈ S+n , with Y 6= 0, which
satisfies:

Tθ0(t)[Y ] = µY (13a)

C0(j)ΦA0(j, t)Y ΦTA0
(j, t) = 0, t ≤ j ≤ t+ θ − 1

(13b)

Proof 4.1 The equivalence i) ⇔ ii) is proved in Propo-
sition 4.13 from [1]. Du to page limitation, we will not
develop the proof of the equivalence ii)⇔ iii). This proof
can be done adapting to the discrete-time periodic case
the proof of Lemma 4 from [5].

4.2 The stochastic case

The main result of this subsection is given by the follow-
ing Theorem.

Theorem 5 Under the considered assumptions the fol-
lowing are equivalent:

i) the system (1) is exact detectable at time t0;
ii) there does not exist characteristic multipliers µ ≥ 1

associated to the discrete-time linear equation (4) and
non zero symmetric matrices Y ∈ S+n which satisfy
the equations:

Tθ(t0)[Y ] = µY (14a)

Ck(j)T (j, t0)[Y ] = 0 (14b)

where t0 ≤ j ≤ t0 + θ − 1, 0 ≤ k ≤ r.

Proof 4.2 See Appendix A.

Combining the results proved in Proposition 4 and The-
orem 5 we obtain:

Corollary 6 In the case of deterministic discrete-time
linear systems (7) with periodic coefficients, the following
are equivalent:
(i) The system (7) is exact detectable.
(ii) For any t0 ∈ Z+ and any characteristic multiplier
1 ≤ µ ∈ σ+(Tθ0(t0)), there does not exist Y ∈ S+n , with
Y 6= 0, which satisfies:

Tθ0(t0)[Y ] = µY

C0(j)ΦA0
(j, t0)Y ΦTA0

(j, t0) = 0, t0 ≤ j ≤ t0 + θ − 1.

(iii) The system (7) is detectable.

Proof 4.3 (i)→ (ii) follows from the implication (i)→
(ii) from Theorem 5 specialized to the case of system (7).
The implication (ii) → (iii) follows from (iii) → (i) of
Proposition 4. The implication (iii) → (i) follows from
Remark 3.

Remark 7 According to the result proved in Theorem
5, in order to conclude if the system (1) is or not exact
detectable at time t0, we need to check for each charac-
teristic multiplier µ ≥ 1 if the equations (14) have or not
nonzero solutions Y ∈ S+n . It follows from the periodicity
property of the coefficients of the system (1) that equa-
tions (14) need to be solved only for t0 ∈ {t̂, t̂+ 1, ..., t̂+
θ − 1} for some t̂ ∈ Z+.

We describe in what follows a numerical procedure that
allows us to compute the characteristic multipliers of
the monodromy operator Tθ(t0) and the corresponding
eigenvectors. Using similar arguments as in [13] and by
generalizing them to our setting, let us defineMTθ(t0) as
the matrix induced by Tθ(t0). Let Y = (yij)n×n ∈ Sn.
We denote by:

Ỹ ,
(
y11 · · · y1n y22 · · · y2n · · · yn−1,n−1 · · · yn−1,n yn,n

)T
the column vector formed by different elements of Y .

Hence one can show that (14a) is equivalent to the fol-
lowing conventional matrix characteristic equation:

MTθ(t0)Ỹ = µỸ

For example, let us consider the following randomly gen-
erated 2-periodic matrices:

A0(0) =

−0.6482 1.0123

0.4999 0.4174

 , A0(1) =

−0.0657 1.0103

0.6707 0.2737



A1(0) =

−1.1283 0.2255

0.3748 −0.2133

 , A1(1) =

−0.1186 0.7718

−1.1584 −1.0241


Hence by using the above described procedure one ob-

tains: σ(Tθ(t0)) =
{

3.3486 0.4180 0.6842
}

. The corre-

sponding eigenvectors are given by:
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Y1 =

(
0.5617 0.3962

0.3962 0.7263

)
, Y2 =

(
0.2146 −0.0410

−0.0410 −0.9758

)

Y3 =

(
−0.1040 −0.2083

−0.2083 0.9725

)

5 A PBH-type criterion for exact observability

In the following theorem, we give a PBH-type criterion
that allows us to characterize the exact observability at
time instant t0 of system (1).

Theorem 8 Under the considered assumptions the fol-
lowing are equivalent:

i) the system (1) is exact observable at time t0;
ii) there does not exist characteristic multipliers µ ≥ 0

associated to the discrete-time linear equation (4) and
non zero symmetric matrices Y ∈ S+n which satisfy
the equations:

Tθ(t0)[Y ] = µY, (15a)

Ck(t0)T (t, t0)[Y ] = 0 (15b)

for all t0 ≤ t ≤ t0 + θ − 1, 0 ≤ k ≤ r.

Proof 5.1 i)⇒ ii). Let us assume by contrary that there
exist a characteristic multiplier µ ≥ 0 associated to the
discrete-time linear equation (4) and a nonzero symmet-
ric matrix Y ∈ S+n that satisfy (15). Let X(t; t0, Y ) be
the solution of the IVP:{

X(t+ 1) = L(t)[X(t)]

X(t0) = Y
t ≥ t0

L(·) being the linear operator (5) associated to the
discrete-time linear system (1). As in the proof of the
implication i)⇒ ii) from Theorem 5 one shows that:

X(t; t0, Y ) = µ[
t−t0
θ ]T

(
t; t0 + [

t− t0
θ

]θ

)
[Y ] (16)

for all t ≥ t0. Particularly, for t = t0 + kθ, we have:
X(t0 + kθ; t0, Y ) = µkY , ∀k = 0, 1, · · · . Also, the anal-
ogous of (51) is:

Ck(t)X(t; t0, Y )CTk (t) = 0 (17)

∀t ≥ t0, 0 ≤ k ≤ r. Let:

Y =

ν∑
l=1

xlx
T
l (18)

be the decomposition of Y where xl ∈ Rn and ν =
rank (Y ). We haveX(t; t0, Y ) =

∑ν
l=1X(t; t0, xlx

T
l ). As

in the proof of Theorem 5 one shows that:

0 ≤ X(t; t0, xlx
T
l ) ≤ X(t; t0, Y ), ∀ 1 ≤ l ≤ ν, t ≥ t0.

This allows us to deduce via (17) that:

Ck(t)X(t; t0, xlx
T
l )CTk (t) = 0, 0 ≤ k ≤ r, 1 ≤ l ≤ ν, t ≥ t0.

This is equivalent to: E
[
y(t; t0, xl)y

T (t; t0, xl)
]

= 0, 1 ≤
l ≤ ν, t ≥ t0, which leads to E

[
|y(t; t0, xl)|2

]
= 0, or

equivalently:

y(t; t0, xl) = 0 a.s. ∀t ≥ t0, 1 ≤ l ≤ ν. (19)

If i) is true, then (19) yields xl = 0, 1 ≤ l ≤ ν. In this case
(18) becomes Y = 0, which contradicts our supposition
that Y 6= 0. Thus we have shown that the implication i)
⇒ ii) holds.
To prove the implication ii)⇒ i), let us assume that for
some t0 ∈ Z+ we have:

y(t; t0, x0) = 0 a.s. ∀t ≥ t0. (20)

We have to show that x0 = 0. Let X(t; t0, x0x
T
0 ) :=

E[x(t; t0, x0)xT (t; t0, x0)]. One sees that t→ X(t; t0, x0x
T
0 )

is the solution of the IVP (4). Hence it has the represen-
tation:

X(t; t0, x0x
T
0 ) = T (t, t0)[x0x

T
0 ], ∀t ≥ t0 ≥ 0.

From (20) together with X(t; t0, x0x
T
0 ) ≥ 0, t ≥ t0, we

deduce that Ck(t)X(t; t0, x0x
T
0 ) = 0 or equivalently:

Ck(t)T (t, t0)[x0x
T
0 ] = 0, 0 ≤ k ≤ r, t ≥ t0. (21)

As in the proof of Theorem 5 we consider the closed linear
subspace H ⊂ Sn defined by H = H+ − H+ where H+

is the closed, solid, convex cone containing the sequence
{X(t0 + lθ; t0, x0x

T
0 )}l≥0. Moreover both H and H+ are

invariant with respect to the monodromy operator Tθ(t0).
Following similar lines as in the proof of the implication
ii) ⇒ i) from Theorem 5, one shows that the spectral

radius ρ̃θ of the restriction T̃θ(t0) , Tθ(t0)|H is ρ̃θ = 0

if ii) from the statement is true. Hence, T̃θ(t0) is the null
operator. This allows us to deduce that:

Tθ(t0)[X(t0 + lθ; t0, x0x
T
0 )] = T̃θ(t0)[X(t0 + lθ; t0, x0x

T
0 )]

= 0 ∀ l ∈ Z+.

Particularly, for l = 0, we have:

Tθ(t0)[x0x
T
0 ] = 0. (22)

From (22) and (21) written for t0 ≤ t ≤ t0 + θ − 1 we
deduce that Y = x0x

T
0 and µ = 0 satisfy (15).
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If ii) is true, we conclude that x0x
T
0 must be zero which

is equivalent to x0 = 0. Thus the proof is complete

Another concept of observability for discrete-time
stochastic systems of type (1) is the so called uniform
stochastic observability. For rigorous definition and
characterization of uniform stochastic observability we
refer for example to Chapter 4 from [7]. According to
the Definition 4.4 and assertion iv) from Theorem 4.5
in [7], the system (1) is uniform stochastic observable if
there exist δ > 0 and τ0 ∈ Z+, τ0 ≥ 1, such that:

t0+τ0∑
t=t0

E[ΦT (t, t0)C̃(t)Φ(t, t0)] ≥ δIn (23)

for all t0 ∈ Z+, where Φ(t, t0) is the fundamental matrix
solution of (1), i.e., Φ(t, t0) = A(t− 1)A(t− 2) · · · A(t0)

if t > t0 and Φ(t, t0) = In if t = t0 with A(t) , A0(t) +∑r
k=1Ak(t)wk(t), t ∈ Z+, C̃(t) =

∑r
k=0 C

T
k (t)Ck(t).

The next result gives the relation between the uniform
stochastic observability and exact observability notions.
It shows that the concept of exact observability is wider
than the concept of uniform stochastic observability.

Corollary 9 If the system (1) is uniform stochastic ob-
servable then it is exact observable

Proof 5.2 If for some t0 ≥ 0 we have y(t; t0, x0) = 0,
a.s., t ≥ t0 then (23) yields

0 =
∑t0+τ0
t=t0

E[|y(t; t0, x0)|2] ≥ δ|x0|2 which leads to x0 =
0. Hence the proof is complete.

By using the above result, let us show via a numerical
example that exact detectability is wider than the con-
cept of stochastic detectability.

Example 5.1 Consider the following particular case of
system (1) with n = 1, r = 1:{

x(t+ 1) = (a0 + a1w1(t))x(t)

y(t) = cx(t)
(24)

where a0, a1, c ∈ R with c 6= 0 and |a1| ≥ 1. The sys-
tem (24) is uniform stochastic observable.It follows from
Corollary 9 that it is exact observable. One can also show
that system (24) is not stochastic detectable (see Exam-
ple 4.5 from [7]). According with Remark 2, system (24)
is exact detectable.

6 Several consequences of exact detectability

6.1 A criterion for exponential stability in mean square

We introduce the following discrete-time linear back-
ward equation:

Z(t) = L∗(t)[Z(t+ 1)] +

r∑
k=0

CTk (t)Ck(t) (25)

where L∗(t) is the adjoint of the operator L(t) defined
in (5) with respect to the inner product (3).

Proposition 10 Assume that the system (1) is exact
detectable. Then the following are equivalent:

i) the discrete-time backward linear equation (25) has a
solution Z(·) which is θ-periodic and positive semidef-
inite at any t ∈ Z+;

ii) there exist β ≥ 1, δ ∈ (0, 1) with the property that the
solutions of the system (1) satisfy:

E[|x(t; t0, x0)|2] ≤ βδt−t0 |x0|2, ∀t ≥ t0 ≥ 0, x0 ∈ Rn.

Proof 6.1 To prove the implication i) ⇒ ii) it is suffi-
cient to show that the spectral radius ρθ of the monodromy
operator Tθ(t) satisfies: ρθ < 1.
Since ρθ ∈ σ+ (Tθ(t)) it follows that there exists 0 6= Y ∈
S+n such that:

Tθ(t)[Y ] = ρθY. (26)

On the other hand, if i) holds, then (25) has a solution
Z(·) which is θ-periodic and Z(t) ≥ 0, ∀t ∈ Z+. This
solution has the representation:

Z(t) = T∗θ(t)[Z(t+ θ)]+

+

t+θ−1∑
j=t

r∑
k=0

T ∗(j, t)[CTk (j)Ck(j)], ∀ t ∈ Z+

(27)

According to (3) and (26)-(27), we have:

0 ≤ Tr

t+θ−1∑
j=t

r∑
k=0

T ∗(j, t)[CTk (j)Ck(j)]Y

 =

=
〈t+θ−1∑

j=t

r∑
k=0

T ∗(j, t)[CTk (j)Ck(j)], Y
〉

=

=
〈
Z(t), Y

〉
−
〈
T∗θ(t)[Z(t+ θ)], Y

〉
=

=
〈
Z(t), Y

〉
−
〈
Z(t+ θ),Tθ(t)[Y ]

〉
=

=
〈
Z(t), Y

〉
− ρθ

〈
Z(t+ θ), Y

〉
(28)

If we assume by contrary that ρθ ≥ 1, then (28) together
with the fact that Z(t) = Z(t+ θ), ∀t ∈ Z+ yield:

t+θ−1∑
j=t

r∑
k=0

Tr[T ∗(j, t)[CTk (j)Ck(j)]Y ] = 0 (29)

Since T ∗(j, t)[CTk (j)Ck(j)] ≥ 0 and Y ≥ 0 we obtain that
(29) is equivalent to:

Tr[T ∗(j, t)[CTk (j)Ck(j)]Y ] =
〈
T ∗(j, t)[CTk (j)Ck(j)], Y

〉
= 0
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∀ 0 ≤ k ≤ r, t ≤ j ≤ t+ θ − 1. Further we may write:

0 =
〈
CTk (j)Ck(j), T (j, t)[Y ]

〉
=

= Tr[CTk (j)Ck(j)T (j, t)[Y ]] =

= Tr[Ck(j)T (j, t)[Y ]CTk (j)] (30)

∀ 0 ≤ k ≤ r, t ≤ j ≤ t+ θ − 1. Since T (j, t)[Y ] ≥ 0, we
deduce from (30) that

Ck(j)T (j, t)[Y ] = 0, ∀ 0 ≤ k ≤ r, t ≤ j ≤ t+ θ − 1
(31)

Employing Theorem 5 we deduce that under the assump-
tion of exact detectability of the system (1), the equa-
tions (26) and (31) cannot be satisfied simultaneously by
a matrix Y ≥ 0 and Y 6= 0. It follows that the supposi-
tion ρθ ≥ 1 is false and hence ρθ < 1. This shows that
i)⇒ ii) is true.
The implication ii)⇒ i) follows immediately by applying
Theorem 2.5 from [7] in the case of equation (25). Thus
the proof is complete.

Remark 11 The PBH criterion for exact detectability
allowed us to state and to prove the criterion for exponen-
tial stability in mean square from Proposition 10 under
less conservative assumptions than those from Theorem
3.2 and Theorem 3.3 from [15].

6.2 The existence of the stabilizing solution of a class
of discrete-time Riccati equations with periodic co-
efficients

Let us consider the backward nonlinear equations:

X(t) =

r∑
k=0

ATk (t)X(t+ 1)Ak(t)−

−

(
L(t) +

r∑
k=0

ATk (t)X(t+ 1)Bk(t)

)
×

×

(
R(t) +

r∑
k=0

BTk (t)X(t+ 1)Bk(t)

)−1
×

×

(
LT (t) +

r∑
k=0

BTk (t)X(t+ 1)Ak(t)

)
+M(t)

(32)

where Ak(·), Bk(·), 0 ≤ k ≤ r, M(·), L(·), R(·) are ma-
trix valued periodic sequences of period θ ≥ 1. Addi-
tionally we assume that:

R(t) = RT (t) > 0

M(t) = MT (t)

M(t)− L(t)R−1(t)LT (t) ≥ 0

(33)

∀t ∈ Z+. A solution X̃(·) of (32) is named stabilizing
solution if the closed-loop system:

x(t+ 1) =
(
A0(t) +B0(t)F̃ (t)+

+

r∑
k=1

wk(t)
(
Ak(t) +Bk(t)F̃ (t)

))
x(t) (34)

is ESMS, where:

F̃ (t) = −

(
R(t) +

r∑
k=0

BTk (t)X(t+ 1)Bk(t)

)−1
×

×

(
LT (t) +

r∑
k=0

BTk (t)X(t+ 1)Ak(t)

)
, t ∈ Z+

(35)

Let us consider the auxiliary system:
x(t+ 1) =

[
A0(t)−B0(t)R−1(t)LT (t)+

+
∑r
k=1 wk(t)

(
Ak(t)−Bk(t)R−1(t)LT (t)

) ]
x(t)

y(t) = C(t)x(t)
(36)

with C(t) =
(
M(t)− L(t)R−1(t)LT (t)

) 1
2 .

Proposition 12 Under the considered assumptions, if
the system (36) is exact detectable, then any θ-periodic
and positive semi-definite solution of (32) is a stabilizing
solution.

Proof 6.2 Let X̃(t), t ∈ Z+ be a θ-periodic solution of

(32) and X̃(t) ≥ 0. By direct calculation one obtains that

(32) satisfied by X̃(·) may be rewritten as:

X̃(t) = L∗
F̃

(t)[X̃(t+ 1)] +M(t)− L(t)R−1(t)LT (t)+

+
(
F̃ (t) +R−1(t)LT (t)

)T
R(t)

(
F̃ (t) +R−1(t)LT (t)

)
(37)

where L∗
F̃

(t) is the adjoint operator of the linear operator

LF̃ (t) defined by:

LF̃ (t)[Y ] =

r∑
k=0

[
Ak(t) +Bk(t)F̃ (t)

]
Y×

×
[
Ak(t) +Bk(t)F̃ (t)

]T
(38)

∀ Y ∈ Sn and F̃ (t) are the gain matrices associated to

X̃(·) by (35). One sees that (37) is the backward linear
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equation of type (25) associated to the system:

x(t+ 1) =
[
A0(t) +B0(t)F̃ (t)+

+
∑r
k=1 wk(t)

(
Ak(t) +Bk(t)F̃ (t)

) ]
x(t)

y(t) =

 (
M(t)− L(t)R−1(t)LT (t)

) 1
2

R
1
2 (t)

(
F̃ (t) +R−1(t)LT (t)

)x(t)

(39)
The conclusion may be obtained applying Proposition 10
in the case of system (39). To this end we have to show
that the system (39) is exact detectable.
Let x(t; t0, x0) be a solution of the system (39) with the
property that the corresponding output y(t; t0, x0) satis-
fies:

y(t; t0, x0) = 0 a.s. ∀t ≥ t0 ≥ 0 (40)

This means that

C(t)x(t; t0, x0) =
(
M(t)− L(t)R−1(t)LT (t)

) 1
2 ×

× x(t; t0, x0) = 0 (41)

and

R
1
2 (t)

(
F̃ (t) +R−1(t)LT (t)

)
x(t; t0, x0) = 0, a.s. ∀t ≥ t0

(42)
Since R(t) > 0, (42) yields:

F̃ (t)x(t; t0, x0) = −R−1(t)LT (t)x(t; t0, x0)a.s. ∀t ≥ t0
(43)

Substituting (43) in the first equation from (39) written
for x(t) replaced by x(t; t0, x0) we obtain that x(·; t0, x0)
is a solution of (36). From (41) together with exact de-
tectability of the system (36) we deduce that:

lim
t→∞

E
[
|x(t; t0, x0)|2

]
= 0. (44)

Finally, (40) and (44) allow us to conclude that (39) is
exact detectable. Thus the proof is complete.

It is well known that an equation of type (32) is closely
related with a linear quadratic optimal control problem
described by the controlled system:

x(t+ 1) = A0(t)x(t) +B0(t)u(t)+

+
∑r
k=1 wk(t) (Ak(t)x(t) +Bk(t)u(t))

x(t0) = x0

(45)

and the performance criterion:

J (t0, x0;u) = E

[ ∞∑
t=t0

(
xT (t)M(t)x(t) + 2xT (t)L(t)u(t)

+uT (t)R(t)u(t)
)]
. (46)

Now we are in position to prove:

Theorem 13 Assume:

a) the system (45) is stochastically stabilizable;
b) the weights matrices in (46) satisfy the conditions (33);
c) the system (36) is exact detectable.

Under these conditions the backward nonlinear equation
(32) has a unique stabilizing solution X̃(·) which is peri-
odic of period θ and positive semi-definite. Additionally,
J (t0, x0;u) ≥ J (t0, x0; ũ) = xT0 X̃(t0)x0, for all admis-
sible control u(·), where:

ũ(t) = F̃ (t)x̃(t) (47)

F̃ (t) being computed as in (35) and x̃(t) is the solution
of the closed-loop system (34).

Proof 6.3 Applying Theorem 5.9 from [7] we deduce
that under the assumptions a) and b) the equation (32)
has at least two periodic solutions of period θ. Further,
from Proposition 12 from above, we deduce that if the as-
sumption c) is fulfilled, then the periodic solution is a sta-
bilizing solution. From Corollary 5.2. from [7] we obtain
that the stabilizing solution is unique. The proof of the
optimality of the control (47) is standard and is omitted.

7 Conclusion

In this paper, we have proposed a PBH-type condi-
tions which are equivalent to the exact detectabil-
ity/observability of stochastic systems. We showed also
that the derived PBH-test is an appropriate algebraic
criterion to deal with generalized Lyapunov and Riccati
equations. It remains as a challenge for future research
to derive similar algebraic conditions in order to test the
exact detectability/observability of stochastic discrete-
time time-varying systems with arbitrary time variation
(not necessarily periodic).

8 Appendix

A. Proof of the Theorem 5
i)⇒ii). Let us assume by contrary that there exist a char-
acteristic multiplier µ ≥ 1 associated to the discrete-
time linear equation (4) and a non zero symmetric matrix
Y ∈ S+n satisfying the equations (14). Let X(s; t0, Y ),
s ≥ t0 be the solution of the IVP:

X(s+ 1) = L(s)[X(s)], s ≥ t0, X(t0) = Y (48)

L(s) being the linear operator introduced by (5)
written for s in place of t. We have X(s; t0, Y ) =
T (s, t0)[Y ], ∀s ≥ t0. From the definition of the
evolution operator T (s, t0) one sees immediately
that: T (s, t0) = T (s, τ)T (τ, t0) ∀s ≥ τ ≥ t0 and
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T (τ + jθ, t0 + jθ) = T (τ, t0) ∀τ ≥ t0, j ∈ Z. These
allow us to obtain:

X(s; t0, Y ) =

(
T

(
s, t0 + [

s− t0
θ

]θ

)
×

×T
(
t0 + [

s− t0
θ

]θ, t0 + [
s− t0
θ

]θ − θ
)
· · ·

×T (t0 + θ, t0)) [Y ]

= T

(
s, t0 + [

s− t0
θ

]θ

)
(Tθ(t0))[

s−t0
θ ] [Y ]

where
[
s−t0
θ

]
is the integer part of s−t0θ , i.e. the integer

number which satisfies:[
s− t0
θ

]
≤ s− t0

θ
<

[
s− t0
θ

]
+ 1 (49)

Further (14a) leads to:

X(s; t0, Y ) = µ[ s−t0θ ]T

(
s, t0 + [

s− t0
θ

]θ

)
[Y ] (50)

for all s ≥ t0 such that t0 +
[
s−t0
θ

]
θ ≤ s <

[
s−t0
θ

]
θ+ θ.

We set j , s−
[
s−t0
θ

]
θ. From the previous inequality we

deduce that t0 ≤ j ≤ t0+θ−1. Employing (50) together
with the periodicity of Ck(·) we get:

Ck(s)X(s; t0, Y ) = µ[ s−t0θ ]Ck(s)T

(
s, t0 + [

s− t0
θ

]θ

)
[Y ]

= µ[ s−t0θ ]Ck

(
s− [

s− t0
θ

]θ

)
×

× T
(
s− [

s− t0
θ

]θ, t0

)
[Y ]

= µ[ s−t0θ ]Ck(j)T (j, t0)[Y ]

where j ∈ {t0, t0+1, · · · , t0+θ−1}. From (14b) we may

infer that Ck(s)X(s; t0, Y ) = µ[ s−t0θ ]Ck(j)T (j, t0)[Y ] =
0, ∀s ≥ t0, 0 ≤ k ≤ r. Thus we have shown that:

Ck(s)X(s; t0, Y )CTk (s) = 0, ∀s ≥ t0, 0 ≤ k ≤ r. (51)

Since Y ∈ S+n it follows that it can be written as Y =∑ν
l=1 xlx

T
l where xl ∈ Rn and ν = rank Y . Having in

mind that (48) is a linear equation, we deduce that:

X(s; t0, Y ) =

ν∑
l=1

X
(
s; t0, xlx

T
l

)
(52)

From xlx
T
l ≤ Y we obtain:

0 ≤ X
(
s; t0, xlx

T
l

)
= T (s, t0)

[
xlx

T
l

]
≤ T (s, t0)[Y ] =

= X(s; t0, Y )
(53)

for all s ≥ t0, because T (s, t0) is a positive operator. Let
x(s; t0, xl) be the solution of the IVP:{

x(s+ 1) = (A0(s) +
∑r
k=1 wk(s)Ak(s))x(s)

x(t0) = xl.

By direct calculation one obtains that:

E
[
x(s; t0, xl)x

T (s; t0, xl)
]

= X
(
s; t0, xlx

T
l

)
(54)

s ≥ t0, 1 ≤ l ≤ ν. If
y(s; t0, xl) , (C0(s) +

∑r
k=1 wk(s)Ck(s))x(s; t0, xl),

then from (51)-(54) we deduce that

E
[
y(s; t0, xl)y

T (s; t0, xl)
]

=

=

r∑
k=0

Ck(s)X
(
s; t0, xlx

T
l

)
CTk (s) = 0

This allows us to deduce that:

y(s; t0, xl) = 0, a.s. for all s ≥ t0, 1 ≤ l ≤ ν (55)

Since in (50) µ ≥ 1 we have that at least one of the
terms from the right hand side of (52) does not tend
to zero when s tends to ∞. Let l0 ∈ {1, 2, · · · , ν} be
such that X(s; t0, xl0x

T
l0

) 9 0 when s → ∞. Thus
from (54) and (55) written for l = l0, it follows that
E
[
|x(s; t0, xl0)|2

]
9 0 when s→∞, but y(s; t0, xl0) = 0

a.s. s ≥ t0. This fact is in contradiction with the exact
detectability at time t0 of system (1). Thus the proof of
the implication i)⇒ii) is completed.
Now we prove the implication ii)⇒i). Let us assume that
for a certain initial data (t0, x0) ∈ Z+ × Rn we have:

y(t; t0, x0) = 0, a.s., ∀t ≥ t0 (56)

where y(t; t0, x0) = (C0(t) +
∑r
k=1 wk(t)Ck(t))x(t; t0, x0).

We have to prove that lim
t→∞

E
[
|x(t; t0, x0)|2

]
= 0 if ii)

from the statement is true. We set:

X(t) , E
[
x(t; t0, x0)xT (t; t0, x0)

]
(57)

and we remark that X(·) is the solution of the IVP (4).
Furthermore (56) yields:

Ck(t)X(t) = 0, ∀t ≥ t0 (58)

because from (57) we have thatX(t) ≥ 0, ∀t ≥ t0. Let X
be the set of all finite sums of the terms of the sequence
{X(t0 + `θ)}`≥0. So, Y ∈ X if and only if:

Y =

N∑
j=1

αjX(t0 + `jθ) (59)
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where αj > 0 are arbitrary. In (59), N is not prefixed.
It depends upon Y . One sees that X ⊂ S+n is a pointed
convex cone. We show now that:

Tθ(t0)X ⊂ X , (60a)

X ⊂ kerCk(t0), 0 ≤ k ≤ r. (60b)

Indeed, if Y ∈ X then we obtain via (59) that:

Tθ(t0)[Y ] =

N∑
j=1

αjTθ(t0)[X(t0 + `jθ)]

=

N∑
j=1

αjT (t0 + (`j + 1)θ, t0 + `jθ)[X(t0 + `jθ)]

=

N∑
j=1

αjX(t0 + (`j + 1)θ) ∈ X .

Thus we have shown that (60a) is true. Further (58)
allows us to abstain:

Ck(t0)Y =

N∑
j=1

αjCk(t0)X(t0 + `jθ)

=

N∑
j=1

αjCk(t0 + `jθ)X(t0 + `jθ) = 0

which shows that (60b) holds. Let H+ , Cl (X ) be the
closer of the set X with respect to the topology induced
on Sn by the norm defined by the inner product (3).
Hence, H+ is a closed pointed convex cone and H+ ⊂
S+n . Additionally (60a) and (60b) can be extended in a
natural way to H+, that is:

Tθ(t0)H+ ⊂ H+, (61a)

H+ ⊂ kerCk(t0), 0 ≤ k ≤ r. (61b)

We set:
H = H+ −H+. (62)

This means that H consists of all matrices of the form
Y = Y1 − Y2 where Y1, Y2 are arbitrary in H+. One
sees that H ⊂ Sn is a closed linear subspace. Hence,
the restriction of the inner product (3) induces a Hilbert
space structure on the vector space H. From (61a) we

deduce that Tθ(t0)H ⊂ H. Let T̃θ(t0) , Tθ(t0)|H be
the restriction of Tθ(t0) to the subspaceH. Additionally

from (61a) we deduce that T̃θ(t0) is a positive linear
operator on the finite dimensional ordered Hilbert space
(H,H+). From (62) it follows that H+ is a reproducing
convex cone in H. Employing Lemma 3.1.3 from [4] we
may conclude thatH+ is a closed, solid, convex cone. Let

ρ̃θ be the spectral radius of the linear operator T̃θ(t0).
Applying Theorem 2.6 from [6] to the adjoint operator

T̃∗θ(t0) defined on the ordered Hilbert space (H,H∗+) we

deduce that there exists 0 6= Ỹ ∈ (H∗+)∗ ⊂ S+n such that

T̃θ(t0)[Ỹ ] = ρ̃θỸ . (63)

We show that:

Ck(j)T (j, t0)[Ỹ ] = 0, t0 ≤ j ≤ t0 + θ − 1. (64)

For j = t0, (64) is true because in this case it becomes

(61b). If Ỹ ∈ X then based on (59) we may write:

Ck(j)T (j, t0)[Ỹ ] =

N∑
i=1

αiCk(j)T (j, t0)[X(t0 + `iθ)]

=

N∑
i=1

αiCk(j + `iθ)×

× T (j + `iθ, t0 + `iθ)[X(t0 + `iθ)]

=

N∑
i=1

αiCk(j + `iθ)X(j + `iθ) = 0

where for the last equality we have used (58). Thus we

have shown that (64) is true when Ỹ ∈ X . Since X is
densely inclosed in H+ it follows that (64) remains true

in the case when Ỹ ∈ H+. Taking into account that

0 6= Ỹ ∈ H+ ⊂ S+
n satisfies (63) and (64) we may

conclude via ii) from the statement that ρ̃θ < 1. Hence,
‖X(t0+kθ)‖ = ‖Tkθ(t0)[X(t0)]‖ ≤ βρ̃kθ‖X(t0)‖, ∀k ≥ 0.

If t ≥ t0 we may infer that ‖X(t)‖ ≤ β̃ρ̃
[
t−t0
θ ]

θ ‖X(t0)‖,
where β̃ ≥ βe‖L(·)‖∞θ. Thus we have obtained from (57)
that lim

t→∞
E[|X(t; t0, X0)|2] = 0 because ρ̃θ < 1. Thus the

proof is complete.
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