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A CONSISTENT QUASI - SECOND ORDER STAGGERED SCHEME FOR

THE TWO-DIMENSIONAL SHALLOW WATER EQUATIONS

R. Herbin1, J.-C. Latché2, Y. Nasseri3 and N. Therme4

Abstract. A quasi-second order scheme is developed to obtain approximate solutions of the shal-
low water equations with bathymetry. The scheme is based on staggered finite volume scheme for
the space discretization: scalar unknowns are located in the discretisation cells while the vector un-
knowns are located on the edges (in 2D) or faces (in 3D) of the mesh. A MUSCL-like interpolation
for the discrete convection operators in the water height and momentum equations is performed
in order to improve the precision of the scheme. The time discretization is performed either by a
first order segregated forward Euler scheme in time or by the second order Heun scheme. Both
schemes are shown to preserve the water height positivity under a CFL condition and an impor-
tant state equilibrium known as the lake at rest. Using some recent Lax-Wendroff type results for
staggered grids, these schemes are shown to be Lax-consistent with the weak formulation of the
continuous equations; besides, the forward Euler scheme is shown to be consistent with a weak
entropy inequality. Numerical results confirm the efficiency and accuracy of the schemes.
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1. Introduction

The shallow water equations form a hyperbolic system of two conservation laws (mass and momentum
balance equations) which models the flow of an incompressible fluid, assuming that the range of the vertical
height of the flow is small compared to the horizontal scales. This model is widely used for the simulation
of numerous geophysical phenomena, such as flow in rivers and coastal areas, lava flows or snow avalanches;
many other applications may be found as, for instance, in process industries.

The shallow water equations with bathymetry, posed over a space-time domain Ω× (0, T ), where Ω is an
open bounded subset of R2 of boundary ∂Ω and T > 0, read

∂th+ div(hu) = 0 in Ω× (0, T ), (1a)

∂t(hu) + div(hu⊗ u) +∇p+ gh∇z = 0 in Ω× (0, T ), (1b)

p =
1

2
gh2 in Ω× (0, T ), (1c)

u · n = 0 on ∂Ω× (0, T ), (1d)

h(x, 0) = h0, u(x, 0) = u0 in Ω. (1e)

where the unknowns are the water height h and the (vector valued) horizontal velocity of the fluid u =
(u1, u2), averaged over the fluid depth; g is the gravity constant and z the (given) bathymetry, supposed to
be regular in this paper. The initial conditions, featured in (1e), are h0 ∈ L∞(Ω) and u0 = (u0,1, u0,2) ∈
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L∞(Ω,R2) with h0 ≥ 0. We suppose here that the boundary conditions boil down to (1d), i.e. an imperme-
ability boundary condition.

This system has been intensively studied, both theoretically and numerically, and it is impossible to give
a comprehensive list of references; we thus refer for an introduction to classical textbooks, e.g. [6, 25], and
to more recent reviews [3, 8, 26] and references therein. If no dry zone exists, the system is known to be
strictly hyperbolic, and its solution may develop shocks, so that the finite volume method is often preferred
for numerical simulations. In such a context, two main approaches are found in the literature: the first one
one is the colocated approach, where the expression of the numerical fluxes usually relie on (approximate
or exact) Riemann solvers, see e.g. [6, 8] and references therein; the other one is based on a staggered
arrangement of the unknowns on the grid, which is quite classical in the hydraulic and ocean engineering
community, see e.g. [2,5,24]. These latter staggered schemes have been implemented with an upwind choice
for the convection operators and a forward Euler time discretization and analysed in the case of one space
dimension in [9, 16]; closely related works on the barotropic Euler equations may also be found in [22] and
references therein. In particular, the weak consistency of the scheme is shown as well as a weak entropy
consistency. A staggered scheme, still first order in time and space and with fluxes derived through the
kinetic approach, is studied in [4]. For simplicial staggered discretizations, we refer to the recent work [10]
and references herein.

Let us recall that if (h,u) is a regular solution of (1), the following elastic potential energy balance and
kinetic energy balance are obtained by manipulations on the mass and momentum equations:

∂t(
1

2
gh2) + div(

1

2
gh2u) +

1

2
gh2divu = 0, (2)

∂t(
1

2
h|u|2) + div(

1

2
h|u|2u) + u · ∇p+ ghu · ∇z = 0. (3)

Summing these equations, we obtain an entropy balance equation: ∂tE+divΦ = 0, where the entropy-entropy
flux pair (E,Φ) is given by:

E =
1

2
h|u|2 +

1

2
gh2 + ghz and Φ = (E +

1

2
gh2)u. (4)

For non regular functions the above manipulations are no longer valid, and the entropy inequality ∂tE +
divΦ ≤ 0 is satisfied in a distributional sense.

The aim of this paper is to analyze and test a class of schemes for the Shallow Water equations working
on staggered structure grids, namely the so-called Marker-And-Cell (MAC) scheme [17, 18], sometimes also
referred to in the (coastal flows) literature as the Arakawa-C discretization [2]. The originality with previous
works, besides the 2D setting, first lies in the formulation of the numerical flux for the convection operator,
which is general enough to include the first order upwind choice already studied in [20] and a quasi-second
order MUSCL-like procedure originally introduced in [23]. Furthermore, we also study a second order in
time scheme which was briefly presented in [14], obtained from the previous one by swithching from a first
order Euler time discretization to the second order Heun (or RK2) method. Generic properties are shown
to be preserved, such as the positivity of the water height and the preservation of the ”lake at rest” steady
state. The weak consistency of the schemes is proven thanks to a generalised Lax-Wendroff type result which
is recalled in the appendix. The first order in time scheme is shown to be entropy-weak consistent in the
sense that a weak entropy inequality is satisfied by any possible limit of the scheme as the time and space
steps tend to 0, under some CFL condition.

This paper is organized as follows. In Section 2, we introduce the space and time discretizations. The
discrete stability and well-balanced properties of the approximate solutions are stated and proven in Section
3. Furthermore, under some convergence and boundedness assumptions, the approximate solutions are shown
in Section 4 to converge to a weak solution of the shallow water equations (1). This proof heavily relies on
the general Lax-Wendroff consistency lemma [12] which is given in the appendix A. In Section 5 we consider
the first order time discretization and show that any possible limit of the scheme satifies a weak entropy
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inequality, again using the consistency result. A numerical comparison of the schemes is presented in Section
6. Finally, some previous results which are recalled in the appendix for the sake of completeness.

2. Space and time discretization

2.1. Definitions and notations

Let Ω be a connected subset of R2 consisting in a union of rectangles whose edges are assumed to be
orthogonal to the canonical basis vectors, denoted by e(1) and e(2).

Definition 2.1 (MAC discretization). A discretization (M,E) of Ω with a staggered rectangular grid (or
MAC grid), is defined by:

– A primal mesh M which consists in a conforming structured, possibly non uniform, rectangular grid

of Ω. A generic cell of this grid is denoted by K, and its mass center by xK = (x
(1)
K , x

(2)
K ). The scalar

unknowns (water height and pressure) are associated to this mesh.
– A set E of all edges of the mesh, with E = Eint ∪ Eext, where Eint (resp. Eext) are the edges of E that

lie in the interior (resp. on the boundary) of the domain. The set of edges that are orthogonal to e(i)

is denoted by E(i), for i ∈
[
|1, 2|

]
. We then have E(i) = E

(i)
int ∪E

(i)
ext, where E

(i)
int (resp. E

(i)
ext) are the edges

of E(i) that lie in the interior (resp. on the boundary) of the domain.
For σ ∈ Eint, we write σ = K|L if σ = ∂K ∩ ∂L. A dual cell Dσ associated to an edge σ ∈ E is

defined as follows:
- if σ = K|L ∈ Eint then Dσ = DK,σ ∪DL,σ, where DK,σ (resp. DL,σ) is the half-part of K (resp.
L) adjacent to σ (see Fig. 1);

- if σ ∈ Eext is adjacent to the cell K, then Dσ = DK,σ.

For each dimension i = 1, 2, the domain Ω can also be split up in dual cells: Ω = ∪σ∈E(i)Dσ, i ∈
[
|1, 2|

]
;

the ith grid is refered to as the ith dual mesh; it is associated to the ith velocity component, in a sense

which is clarified below. The set of the edges of the ith dual mesh is denoted by Ẽi (note that these

edges may be non-orthogonal to e(i)); the set Ẽi is decomposed into the internal and boundary edges:

Ẽi = Ẽ
(i)
int ∪ Ẽ

(i)
ext. The dual edge separating two duals cells Dσ and Dσ′ is denoted by ε = σ|σ′. We

denote by Dε the cell associated to a dual edge ε ∈ Ẽ defined as follows:

- if ε = σ|σ′ ∈ Ẽint then Dε = Dσ,ε ∪Dσ′,ε, where Dσ,ε (resp. Dσ′,ε) is the half-part of Dσ (resp.
Dσ′) adjacent to ε (see Fig. 1);

- if ε ∈ Ẽext is adjacent to the cell Dσ, then Dε = Dσ,ε.

In order to define the scheme, we need some additional notations. The set of edges of a primal cell K

and of a dual cell Dσ are denoted by E(K) ⊂ E and Ẽ(Dσ) respectively; note that Ẽ(Dσ) ⊂ Ẽi if σ ∈ E(i).

For σ ∈ E, we denote by xσ = (x
(1)
σ , x

(2)
σ ) the mass center of σ. The vector nK,σ stands for the unit normal

vector to σ outward K.

K L
σ = K|L

nK,σ

σ
Dσ

K L M
σ′ = L|Mε = σ|σ′

nσ,εDK,σ DL,σ

Figure 1. Notations for the primal and dual meshes (in two space dimensions, for the first
component of the velocity).

The size δM of the mesh and its regularity θM are defined by:

δM = max
K∈M

diam(K), and θM = max
K∈M

max
σ∈EK

|Dσ|
|K|

, (5)
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where | · | stands for the one (or two) dimensional measure of a subset of R (or R2). Note that in the
rectangular case that is considered here, the regularity parameter θM is also equal to:

θM =
1

2
(1 + max

{ |σ|
|σ′|

, (σ, σ′) ∈ E(i)2
, i = 1, 2

}
.

The discrete velocity unknowns are associated to the velocity cells and are denoted by (ui,σ)σ∈E(i) , i ∈
[
|1, 2|

]
,

while the discrete scalar unknowns (water height and pressure) are associated to the primal cells and are
denoted respectively by (hK)K∈M and (pK)K∈M.

Let us consider a uniform discretisation 0 = t0 < t1 < · · · < tN = T of the time interval (0, T ), and let
δt = tn+1 − tn for n = 0, 1, · · · , N − 1 be the (constant, for the sake of simplicity) time step.

2.2. The segregated forward Euler scheme

We first present a first order in time segregated discretisation and MAC discretization in space of the
system (1) with a MUSCL-like technique for the computation of the numerical flux, see [23]; the scheme is
written in compact form as follows:

Initialisation:

h0
K =

1

|K|

∫
K

h0(x) dx, p0
K =

1

2
g (h0

K)2, ∀K ∈M, (6a)

u0
σ =

1

|Dσ|

∫
Dσ

ui,0(x) dx, ∀σ ∈ E
(i)
int, for i = 1, 2. (6b)

For 0 ≤ n ≤ N − 1, solve for hn+1, pn+1 and un+1 = (un+1
i )i=1,2 :

ðthn+1
K + divK (hnun) = 0, ∀K ∈M, (6c)

pn+1
K =

1

2
g (hn+1

K )2, ∀K ∈M, (6d)

ðt(hui)n+1
σ + divDσ (hnuni u

n) + ðσpn+1 + g hn+1
σ,c ðσz = 0, ∀σ ∈ E

(i)
int, for i = 1, 2, (6e)

where the different discrete terms and operators introduced here are now defined.

Discrete time derivative – The term ðthn+1
K is the discrete time derivative of of the fluid height in the

cell K and over the time interval (tn, tn+1):

ðthn+1
K =

1

δt
(hn+1
K − hnK).

The discrete time derivative of the ith component of the momentum in the dual cell Dσ and over the time
interval (tn, tn+1) reads

ðt(hui)n+1
σ =

1

δt

(
hn+1
Dσ

(ui)
n+1
σ − hnDσ (ui)

n
σ

)
,

where, for σ ∈ Eint, σ = K|L, hDσ stands for the following weighted average of the fluid height in the cells
K and L:

hDσ =
1

|Dσ|
(
|DK,σ| hK + |DL,σ| hL

)
.

Discrete divergence and gradient operators – The discrete divergence operator on the primal mesh
denoted by divK is defined as follows:

divK (hu) =
1

|K|
∑

σ∈E(K)

|σ| F σ · nK,σ, with F σ = hσ uσ and uσ = ui,σ e(i) for σ ∈ E(i), i ∈
[
|1, 2|

]
, (7)
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and hσ is approximated by a MUSCL-like interpolation technique [23]; in the subsequent analysis, we do not
need to have an explicit formula for hσ, we only need the following conditions to be satisfied:

∀ K ∈M, ∀σ = K|L ∈ Eint(K),

− ∃λK,σ ∈ [0, 1] : hσ = λK,σhK + (1− λK,σ)hL. (8)

− ∃ αKσ ∈ [0, 1] and MK
σ ∈M : hσ − hK =

{
αKσ (hK − hMK

σ
) if uσ · nK,σ ≥ 0,

αKσ (hMK
σ
− hK) otherwise.

(9)

By (8), hσ is a convex combination of hK and hL, and if uσ ·nK,σ < 0, the cell MK
σ in (9) can be chosen as

L and αK,σ as 1 − λK,σ. In the case of a discrete divergence free velocity field u, this assumption ensures

that hn+1
K is a convex combination of the values hnK and (hnM )M∈Nm(K), where Nm(K) denotes the set of

cells MK
σ satisfying (9), see [23, Lemma 3.1], for any structured or unstructured mesh.

Note that if K = [σ′σ] with σ′ = J |K and σ = K|L and uσ · nK,σ ≥ 0, the cell MK
σ in Relation (9) can

be chosen as the cell J and the value hσ computed using the following limitation procedure:

hσ − hK =
1

2
ψ
(
hL, hK , hJ

)
, where

ψ
(
hL, hK , hJ

)
=

minmod
(hL − hJ

2
, ζ+(hL − hK), ζ−(hK − hJ)

)
, if (hL − hK)(hK − hJ) > 0,

0, otherwise,

where the limitation parameters ζ+, ζ− are such that ζ+, ζ− ∈ [0, 2]. Observe that if ζ+ = ζ− = 1, the
classical minmod limiter (minmod

(
hL − hK , hK − hJ

)
) is recovered.

A local discrete derivative applied to a discrete scalar field ξ (with ξ = p, h or z) is defined by:

ðσξ =
|σ|
|Dσ|

(ξL − ξK) for σ = K|L ∈ E
(i)
int, with x

(i)
K < x

(i)
L , for i = 1, 2. (10)

The above defined discrete divergence and discrete derivatives satisfy the following div-grad duality relation-
ship [13, Lemma 2.4]: ∑

K∈M

|K|ξKdivK(hu) +

2∑
i=1

∑
σ∈E(i)

int

|Dσ|hσui,σ ðσξ = 0. (11)

Discrete water height for the bathymetry term – In equation (6e) the term ðσz denotes the discrete
derivative (in the sense of (10)) of the piecewise constant function zM =

∑
K∈M z(xK)11K (with 11K(x) = 1

if x ∈ K and 0 otherwise), that is:

ðσz =
|σ|
|Dσ|

(z(xL)− z(xK)) for σ = K|L ∈ E
(i)
int, with x

(i)
K < x

(i)
L , for i = 1, 2. (12)

The value hσ,c of the water height is defined so as to satisfy:

ðσp+ g hσ,c ðσz = 0 if ðσ(h+ z) = 0, ∀i = 1, 2. (13)

This requirement is fulfilled if hσ,c is centered, i.e.for hσ,c defined by:

hσ,c =

{
1
2 (hK + hL) for σ = K|L ∈ Eint,

hK for σ ∈ Eext ∩ E(K).
(14)

Indeed, if hσ,c is defined by (14), since p = 1
2gh

2, one has from the definition of the discrete gradient (10),
for σ = K|L,

ðσp+ g hσ,c ðσz =
1

2
g
|σ|
|Dσ|

(hK + hL)ðσ(h+ z)

5



and therefore (13) holds, so that the “lake at rest” steady state is preserved, see Lemma 3.2 below.

Discrete convection operator – The term (h ui)
n+1
σ in the discrete time derivative in (6e) is defined by

(h ui)
n+1
σ = hn+1

Dσ
un+1
i,σ , (15a)

hDσ =
1

|Dσ|

(
|DK,σ| hK + |DL,σ| hL

)
, with σ = K|L ∈ Eint, (15b)

where Dσ, DK,σ and DL,σ are defined in Definition 2.1.
The discrete divergence operator on the dual mesh divDσ is given by:

divDσ (huiu) =
1

|Dσ|
∑

ε∈Ẽ(i)(Dσ)

|ε| Gε · nσ,ε, with Gε = F εui,ε, (16)

where

• the flux F ε is computed from the primal numerical mass fluxes; following [19] (see also [1,21] for an
extension to triangular or quandrangular meshes using low order non-conforming finite element), it
is defined as follows:

for ε = σ|σ′, ε ⊂ K, F ε =
1

2

(
F σ + F σ′

)
, ε ⊂ K, (left on Figure 2) (17a)

for ε = σ|σ′, ε 6⊂ K, ε ⊂ τ ∪ τ ′, F ε =
1

|ε|
(1

2
|τ | F τ +

1

2
|τ ′| F τ ′

)
, (right on Figure 2), (17b)

J K L

σ′ σε

K L

M N

σ

σ′

τ τ ′ε

Figure 2. Notation for the definition of the momentum flux on the dual mesh for the first
component of the velocity - left: ε ⊂ K - right: ε ⊂ τ ∪ τ ′.

• the value ui,ε is expressed in terms of the unknowns ui,σ, for σ ∈ E(i), again by a second order
MUSCL-like interpolation scheme; the values ui,σ are thus assumed to satisfy the following property:

∀ σ ∈ E
(i)
int, i = 1, 2, ∀ ε = σ|σ′ ∈ Ẽ(Dσ),

ui,ε is a convex combination of ui,σ and ui,σ′ : ∃µσ,ε ∈ [0, 1] : ui,ε = µσ,εui,σ + (1− µσ,ε)ui,σ′ (18)

∃ ασε ∈ [0, 1] and τσε ∈ E
(i)
int : ui,ε − ui,σ =

{
ασε (ui,σ − ui,τσε ) if F ε · nσ,ε ≥ 0,
ασε (ui,τσε − ui,σ) otherwise.

(19)

Again note that in the case F ε · nσ,ε < 0, the edge τσε may be chosen as σ′.

Let us emphasize that owing to the definitions (15b) and (17) the following discrete mass balance version on
the dual mesh holds:

|Dσ|
δt

(hn+1
Dσ
− hnDσ ) +

∑
ε∈Ẽ(Dσ)

|ε| F n
ε · nσ,ε = 0. (20)

6



2.3. A second order in time Heun scheme

We retain here the quasi-second order space discretization which we just set up, but consider now a second
order time discretization using the Heun (or Runge Kutta 2) scheme. The initialization of the scheme is the
same as that of the forward Euler scheme, see Equations (6a)-(6b), but the n-th step now reads:

Step n : For hn and un = (uni )i=1,2 known,

ĥn+1
K = hnK − δtdivK(hnun), ∀K ∈M (21a)

ĥn+1
Dσ

ûn+1
i,σ = hnDσu

n
i,σ − δtFDσ (hn, uni ), ∀σ ∈ E

(i)
int (21b)

h̃n+1
K = ĥn+1

K − δtdivK(ĥn+1ûn+1), ∀K ∈M (21c)

h̃n+1
Dσ

ũn+1
i,σ = ĥn+1

Dσ
ûn+1
i,σ − δtFDσ (ĥn+1, ûn+1

i ), ∀σ ∈ E
(i)
int (21d)

hn+1
K =

1

2
(hnK + h̃n+1

K ), ∀K ∈M (21e)

hn+1
Dσ

un+1
i,σ =

1

2

(
hnDσu

n
i,σ + h̃n+1

Dσ
ũn+1
i,σ

)
, ∀σ ∈ E

(i)
int (21f)

where
FDσ (hn, uni ) = divDσ (hnununi ) + g hnσ,c

(
(ðσhn) + (ðσz)

)
(22)

and the dual cell values ĥn+1
Dσ

, h̃n+1
Dσ

and hn+1
Dσ

are computed from the corresponding cell values by the
analogue of the formula (15b), so that they satisfy a dual mass balance of the type (20).

The steps (21c)-(21f) of the above scheme (21) may be replaced by the more compact form

ðthn+1
K = −1

2

(
divK(hnun) + divK(ĥn+1ûn+1)

)
, ∀K ∈M (23a)

ðt(hDσ ui,σ)n+1 = −1

2

(
FDσ (hn, uni ) + FDσ (ĥn+1, ûn+1

i )
)
, ∀σ ∈ E(i), (23b)

where the dual cell value hn+1
Dσ

is computed by the formula (15b) and hence satisfies a dual mass balance of
the type (20).

3. Stability of the schemes

The positivity of the water height under a CFL like condition is ensured by both the schemes (6) and
(21); it is a consequence of the property (9) of the MUSCL choice for the interface values. Indeed, the proof
of the positivity in [23, Lemma 3.1] remains valid even if the discrete velocity field is not divergence free, as
is the case here.

Lemma 3.1 (Positivity of the water height). Let n ∈
[
|0, N − 1|

]
, let (hnK)K∈M ⊂ R∗+ and (unσ)σ∈E ⊂ Rd

be given, and let hn+1
K be computed by the forward Euler scheme, step (6c). Then hn+1

K > 0, for all K ∈M

under the following CFL condition,

2 δt ≤ |K|∑
σ∈E(K)

|σ| |unσ · nK,σ|
. (24)

If (24) is fullfilled and if furthermore

2 δt ≤ |K|∑
σ∈E(K)

|σ| |ûn+1
σ · nK,σ|

, (25)

7



then hn+1
K computed by the Heun scheme (21) is positive.

Secondly, thanks to the choice (14) for the reconstruction of the water height, the property (13) holds, so
that the so-called ”lake at rest” steady state is preserved by both schemes.

Lemma 3.2 (Steady state ”lake at rest”). Let n ∈
[
|0, N − 1|

]
, C ∈ R+; let (hnK)K∈M ⊂ R such that

hnK +zK = C for all K ∈M and unσ = 0 for σ ∈ E. Then the solution (hn+1
K )K∈M, (un+1

σ )σ∈E of the forward

Euler scheme (6) (resp. Heun scheme (21)) satisfies hn+1
K + z = C for all K ∈M and un+1

σ = 0 for σ ∈ E.

As a consequence of the careful discretisation of the convection term, the segregated forward Euler scheme
satisfies a discrete kinetic energy balance, as stated in the following lemma. The proof of this result is an
easy adaptation of [22, Lemma 3.2].

Lemma 3.3 (Discrete kinetic energy balance, forward Euler scheme). A solution to the scheme (6) satisfies
the following equality, for i = 1, 2, σ ∈ E(i) and 0 ≤ n ≤ N − 1:

|Dσ|
2 δt

(hn+1
Dσ

(un+1
i,σ )2 − hnDσ (uni,σ)2) +

1

2

∑
ε∈Ẽ(i)(Dσ)

|ε| (uni,ε)
2 F n

ε · nσ,ε

+ |Dσ| un+1
i,σ (ðσpn+1) + |Dσ| g hn+1

σ,c un+1
i,σ (ðσz) = −Rn+1

i,σ , (26)

with

Rn+1
i,σ =

1

2 δt
|Dσ| hn+1

Dσ

(
un+1
i,σ − u

n
i,σ

)2 − 1

2

∑
ε∈Ẽ(i)(Dσ)

|ε| F n
ε · nσ,ε

(
uni,ε − uni,σ

)2
+

∑
ε∈Ẽ(i)(Dσ)

|ε| F n
ε · nσ,ε

(
uni,ε − uni,σ

)(
un+1
i,σ − u

n
i,σ

)
.

The scheme also satisfies the following potential energy balance.

Lemma 3.4 (Discrete potential balance, forward Euler scheme). Let, for K ∈ M and 0 ≤ n ≤ N the
potential energy be defined by (Ep)

n
K = 1

2g (hnK)2 + ghnKzK . A solution to the scheme (6) satisfies the
following equality, for K ∈M and 0 ≤ n ≤ N − 1:

ðt(Ep)n+1
K + divK(

1

2
g(hn)2un) + gzKdivK(hnun) + pnKdivK(un) = −rn+1

K , (27)

with ðt(Ep)n+1
K =

1

δt
((Ep)

n+1
K − (Ep)

n
K), divK(

1

2
g(hn)2un) =

∑
σ∈E(K)

|σ|(1

2
g(hnσ)2)uσ · nK,σ and

|K| rn+1
K =

1

2

|K|
δt
g(hn+1

K − hnK)2 − 1

2

∑
σ∈E(K)

|σ| g(hnσ − hnK)2 unσ · nK,σ

+
∑

σ∈E(K)

|σ|g(hn+1
K − hnK) hnσ unσ · nK,σ. (28)

Proof. Applying [22, Lemma A1], (re-stated in Lemma B.1 below for the sake of completeness), with P = K,
ψ : x 7→ 1

2gx
2 , ρP = hn+1

K , ρ∗P = hnK , η = σ, ρ∗η = hnσ and V ∗η = |σ|unσ · nK,σ, and Rn+1
K = |K| rn+1

K , we get
that

g

2
ðt(hn+1

K )2 +divK(
g

2
(hn)2un)+pnKdivK(un) = − g

2δt
(hn+1
K −hnK)2 +

g

2

1

|K|
∑

σ∈E(K)

|σ| (hnσ−hnK)2 unσ ·nK,σ

− 1

|K|
∑

σ∈E(K)

|σ|g(hn+1
K − hnK) hnσ unσ · nK,σ,

8



Then, multiplying the discrete mass balance equation (6c) by gzK yields

ðt(ghz)n+1
K + divK(hnzu) +

1

|K|
∑

σ∈E(K)(m)

|σ|g(zK − zσ)hnσu
n · nK,σ = 0

Summing the two above equations yields (28). �

Since the discrete kinetic and potential energies are computed on the dual and primal meshes respectively,
the obtention of a discrete entropy inequality is not straightforward. In [20], a kinetic energy inequality on
the primal cell is obtained from the inequality (1d) to get a discrete local entropy inequality. Here, however
we proceed otherwise, and show that the first order in time scheme is entropy consistent thanks to a general
Lax-Wendroff Lemma for staggered grids (Theorem A.1 in the appendix), which allows to show that the first
order in time scheme is to handle each energy inequality on its respective mesh, without any reconstruction,
see Section 5 below.

4. Weak consistency of the schemes

We now wish to prove the weak consistency of the scheme in the Lax-Wendroff sense, namely to prove
that if a sequence of solutions is controlled in suitable norms and converges to a limit, this latter necessarily
satisfies a weak formulation of the continuous problem.

The pair of functions (h̄, ū) ∈ L1(Ω× [0, T ))×L1(Ω× [0, T ))2 is a weak solution to the continuous problem

if it satisfies, for any ϕ ∈ C∞c
(
Ω× [0, T )

)
(ϕ ∈ C∞c

(
Ω× [0, T )

)2
):∫ T

0

∫
Ω

[
h̄ ∂tϕ+ h̄ ū · ∇ϕ

]
dx dt+

∫
Ω

h0(x)ϕ(x, 0) dx = 0, (29a)∫ T

0

∫
Ω

[
h̄ ū · ∂tϕ + (h̄ū⊗ ū) : ∇ϕ +

1

2
g h̄2divϕ + g h̄∇zϕ

]
dx dt (29b)

+

∫
Ω

h0(x)u0(x) · ϕ(x, 0) dx = 0.

A weak solution of (29) is an entropy weak solution if for any nonnegative test function ϕ ∈ C∞c
(
Ω ×

[0, T ),R+

)
: ∫ T

0

∫
Ω

[
Ē ∂tϕ+ Φ̄ · ∇ϕ

]
dx dt+

∫
Ω

E0(x)ϕ(x, 0) dx ≥ 0, (30)

with

Ē =
1

2
h̄|ū|2 +

1

2
gh̄2 + gh̄z and Φ̄ = (Ē +

1

2
gh̄2)ū.

Let (M(m),E(m))m∈N be a sequence of meshes in the sense of Definition 2.1 and let (h(m), u(m))m∈N be
the associated sequence of solutions of the scheme (6) defined almost everywhere on (Ω× [0, T ) by:

u
(m)
i (x, t) =

N−1∑
n=0

∑
σ∈(E(i))(m)

(u
(m)
i )n+1

σ 11Dσ (x)11[tn,tn+1)(t), for i ∈
[
|1, 2|

]
h(m)(x, t) =

N−1∑
n=0

∑
K∈M(m)

(h(m))n+1
K 11K(x)11[tn,tn+1)(t),

where 11A is the characteristic function of a given set A, that is 11A(y) = 1 if y ∈ A, 11A(y) = 0 otherwise.

Assumed estimates - Some boundedness and compactness assumptions on the sequence of discrete
solutions (h(m), u(m))m∈N are needed in order to prove the Lax-Wendroff type consistency result, namely
we assume that:
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– the water height h(m) and its inverse are uniformly bounded in L∞(Ω × (0, T )), i.e. there exists
ChM ∈ R∗+ such that for m ∈ N and 0 ≤ n < N (m):

1

Ch
< (h(m))nK ≤ Ch, ∀K ∈M(m), (31)

– the velocity u(m) is also uniformly bounded in L∞(Ω× (0, T ))2, i.e. there exists Cu ∈ R∗+ such that

|(u(m))nσ| ≤ Cu, ∀σ ∈ E(m). (32)

Theorem 4.1 (Weak consistency of the schemes). Let (M(m),E(m))m∈N be a sequence of meshes such that
δt(m) and δM(m) → 0 as m→ +∞ ; assume that there exists θ > 0 such that θM(m) ≤ θ for any m ∈ N (with
θM(m) defined by (5)).

Let (h(m),u(m))m∈N be a sequence of solutions to the scheme (6) satisfying (31) and (32) converging to
(h̄, ū) in L1(Ω × (0, T )) × L1(Ω × (0, T ))2. Then (h̄, ū) satisfies the weak formulation (29) of the shallow
water equations.

Similarly, if (h(m),u(m))m∈N, (ĥ
(m), û(m))m∈N are sequences of solutions to the scheme (21) both uniformly

bounded in the sense of (31) and (32) and converging to (h̄, ū) in L1(Ω× (0, T ))×L1(Ω× (0, T ))2, then the
limit (h̄, ū) satisfies (29).

The proof of this theorem is the object of the following paragraphs; it relies on some general consistency
lemmas proven in [12], which generalize the results of [11] to staggered meshes; for the sake of completeness,
some of these results are recalled in the Appendix A. The proof of the consistency of the schemes is given in
Section 4.1 for the forward Euler time discretization and in Section 4.2 for the Heun time discretization.

Note that because the convergence and boundedness of the approximate solutions are assumed, no CFL
condition is required in Theorem 4.1. However, recall that a CFL condition is for instance already needed
to show the positivity of the water height (Lemma 3.1), which is assumed in the theorem.

Finally, in Section 4.3, we give some conditions that imply the boundedness and convergence of the

sequence (ĥ(m), û(m))m∈N if the boundedness and convergence of the sequence (h(m),u(m))m∈N is assumed.
One of this condition is a rather strong CFL-like condition.

4.1. Proof of consistency of the forward Euler MAC scheme

4.1.1. Consistency, mass equation

Under the assumptions of Theorem 4.1, the aim here is to prove that the limit (h̄, ū) of the scheme (6)
satisfies the weak form of the mass equation (29a). In order to do so, we apply the consistency result of
Theorem A.1 in the appendix A, which is a slightly weaker and simpler version (sufficient here in our case)
of [12, Theorem 2.1]; we apply it here with U = (h,u), β(U) = h, f(U) = hu, P(m) = M(m),F(m) = E(m),
and

C
(m)
MASS(U (m)) : Ω× (0, T )→ R,

(x, t) 7→ ðt(h(m))n+1
K + divK ((h(m))nun) for x ∈ K and t ∈ (tn, tn+1) (33)

The boundedness assumptions (31) and (32) imply that (74) holds. Furthermore, the assumption of Theorem
4.1 that (h(m),u(m))m∈N is a sequence of solutions to the scheme (6) converging to (h̄, ū) in L1(Ω× (0, T ))×
L1(Ω× (0, T ))2 implies that (75) holds.

By the initialisation (6a)-(6b) of the scheme, it is clear that

∑
K∈M(m)

∫
K

|(h(m))0
K − h0(x))|dx = 0,

so that the assumption (77) is satisfied.
10



Since for any n ∈
[
|0, Nm − 1|

]
and K ∈M, one has β(U (m)(x, t)) = hnK for any (x, t) ∈ K × [tntn+1) and

(β(m))nK = hnK ,

Nm−1∑
n=0

∑
K∈M(m)

∫ tn+1

tn

∫
K

|(h(m))nK − h(m)(x, t))|dx dt = 0,

and therefore the assumption (78) is also clearly satisfied. Now (F (m))nσ = hnσu
n
σ and, because the velocity

components are piecewise constant on different grids,

f(Um(x, t)) = (f1(Um(x, t)), f2(Um(x, t))), with

fi(U
m(x, t)) =

{
hnKu

n
i,σ if x ∈ DK,σ

hnKu
n
i,σ′ if x ∈ DK,σ′ ,

with K = [σσ′] and where σ and σ′ ⊥ e(i).

For x ∈ K, σ = K|L and t ∈ [tntn+1),

∣∣∣((F (m))nσ − f(Um(x, t)
)
· nK,σ

∣∣∣ =
∣∣∣(hnσunσ − hnKunσ + hnKunσ − hnKu(x, t)

)
· nK,σ

≤ Cu
∣∣∣hK − hL∣∣∣+ Ch

∣∣∣uσ − uσ′

∣∣∣.
Thanks to Lemma B.2 ( [11, Lemma 4.2], recalled in Lemma B.2 in the appendix below) we have

Nm−1∑
n=0

∑
K∈M(m)

∫ tn+1

tn

diam(K)

|K|

∫
K

|σ|
∣∣∣(hnσunσ − h(x, t)u(x, t)

)
· nK,σ

∣∣∣dx dt→ 0 as m→ +∞.

so that the assumption (79) is also satisfied. Hence, by Theorem A.1,

∀ϕ ∈ C∞c
(
Ω× [0, T )

)
,

∫ T

0

∫
Ω

C
(m)
MASS(U (m))ϕ(x, t) dx dt→

−
∫

Ω

h0(x)ϕ(x, 0) dx−
∫ T

0

∫
Ω

[
h̄(x, t) ∂tϕ(x, t) + h̄(x, t)ū(x, t) · ∇ϕ(x, t)

]
dx dt as m→ +∞. (34)

From (6c) and (34), we conclude that the limit (h̄, ū) of the approximate solutions defined by the forward
Euler scheme (6) satisfies (29a).

4.1.2. Consistency, momentum equation

Let ϕ = (ϕ1, · · · , ϕd) ∈ (C∞c (Ω × [0, T )))d be a test function and let ϕn+1
i,σ denote the mean value of ϕi

over σ × (tn, tn+1). Multiplying the equation (6e) by |Dσ|ϕn+1
i,σ , summing the result over σ ∈ E(i) and then

summing over n ∈
[
|0, N − 1|

]
and i = 1, 2 yields:

2∑
i=1

Q
(m)
1,i +Q

(m)
2,i +Q

(m)
3,i +Q

(m)
4,i = 0, (35)

11



with (dropping the superscripts (m) in the summations for the sake of simplicity)

Q
(m)
1,i =

Nm−1∑
n=0

δt(m)
∑

σ∈(E(m))(i)

|Dσ| ðt(h ui)n+1
σ , (36)

Q
(m)
2,i =

Nm−1∑
n=0

δt(m)
∑

σ∈(E(m))(i)

|Dσ| divDσ (hnununi )ϕn+1
i,σ , (37)

Q
(m)
3,i =

Nm−1∑
n=0

δt(m)
∑

σ∈(E(m))(i)

|Dσ| ðσpn+1 ϕn+1
i,σ , (38)

Q
(m)
4,i =

Nm−1∑
n=0

δt(m)
∑

σ∈(E(m))(i)

|Dσ|g hn+1
σ,c ðσz ϕn+1

i,σ . (39)

The nonlinear convection operator. In order to study the limit of the discrete non linear convection

operator defined by Q
(m)
i = Q

(m)
1,i +Q

(m)
2,i , we apply Theorem A.1 with U = (h,u), β(U) = hui, f(U) = huui,

with P(m) the set of dual cells associated with ui (that is with the cells corresponding to the vertical edges

for i = 1 and the horizontal edges for i = 2), with F = Ẽ
(m)
i and with the dual fluxes (G)nε defined by (17).

The discrete non linear convection operator thus reads

[C
(m)
MOM(U (m))]i : Ω× (0, T )→ R,

(x, t) 7→ ðt(hui)n+1
σ − divDσ (hnuiu

n) for x ∈ Dσ and t ∈ (tn, tn+1) (40)

(again dropping the superscripts (m) for the sake of simplicity).
Again, by the initialisation of the scheme (6a)-(6b) and by the definition of (hu)0

i,σ (see (15)), it is clear
that

∑
σ∈Ẽ(m)

i

∫
Dσ

|(hu)0
i,σ−h0(x)ui,0(x))|dx = 0 and

Nm−1∑
n=0

∑
σ∈E(m)

∫ tn+1

tn

∫
Dσ

|(hu)ni,σ−h(x, t)ui(x, t)|dx dt = 0, i = 1, 2.

so that the assumptions (77) and (78) are satisfied.
In order to show that the assumption (79) is satisfied, we need to show that

Nm−1∑
n=0

∑
σ∈E(m)

∫ tn+1

tn

diam(Dσ)

|Dσ|

∫
Dσ

|ε|
∣∣∣ ∑
ε∈Ẽ(m)

i

(
(G(m))nε − h(x, t)ui(x, t)u(x, t)

)
· nσ,ε

∣∣∣dx dt→ 0

as m→ +∞. (41)

Let us then estimate, for any ε ∈ Ẽ
(m)
i , n ∈

[
|0, Nm − 1|

]
and x ∈ Dσ the quantity Y nε defined by:

Y nε (x) =
∣∣∣((G(m))nε − h(x, t)ui(x, t)u(x, t)

)
· nσ,ε

∣∣∣.
Let L be the (primal) cell such that σ = K|L.

(1) If ε = σ′|σ ⊂ K, then (G(m))nε is defined by (17a). By the triangular inequality and thanks to the
assumptions (8), (18),(31), and (32), we get that

Y nε (x) ≤ 1

2
(Cu)2|hK − hL|+

1

2
(Cu)2|hK − hJ |+ ChCu|uσ,i − uσ′,i|, ∀x ∈ Dσ,

where J is the (primal) cell such that σ′ = J |K, see Figure 2, left.
12



(2) If ε ⊂ K, then (G(m))nε is defined by (17b). Again by the triangular inequality and thanks to the
assumptions (8), (18),(31), and (32), we get that

Y nε (x) ≤ 1

2
(Cu)2|hK − hM |+

1

2
(Cu)2|hK − hN |+ ChCu|uσ,i − uσ′,i|, ∀x ∈ Dσ,

where M and N are the two (primal) cells such that τ = K|M and τ ′ = L|N , as depicted on Figure
2, right.

Now recall that the sequence of meshes is assumed to be regular in the sense that θ(m) ≤ θ with θ(m) defined
by (5); therefore, since the sequences h(m) and u(m) converge in L1 as m tends to +∞, we may again apply
Lemma B.2 below, to get that (41) holds. Hence, owing to Theorem A.1, we get that

Q
(m)
i = Q

(m)
1,i +Q

(m)
2,i =

∫ T

0

∫
Ω

C
(m)
MOM(U (m)) ϕ(x, t) dx dt→∫ T

0

∫
Ω

[
h̄(x, t)ūi(x, t) ∂tϕ(x, t) + h̄(x, t)ūi(x, t)ū(x, t) · ∇ϕ(x, t)

]
dx dt

+

∫
Ω

h0(x)ui,0(x)ϕ(x, 0) dx as m→ +∞. (42)

Pressure gradient and bathymetry. Let us now study the terms Q
(m)
3,i and Q

(m)
4,i defined by (38) and

(39). By the definition (10) of ðσp and by conservativity, we have (again dropping the superscripts (m))

2∑
i=1

Q
(m)
3,i = −

Nm−1∑
n=0

δt(m)
∑

K∈M(m)

∑
σ∈E(K)

pn+1
K

∫
σ

ϕn+1
σ · nK,σ

= −
∫ T

0

∫
Ω

p(m)(x, t) divϕ(x, t) dx dt

Since the sequence (h(m))m ∈ N is bounded in L∞(Ω × (0, T )) and converges to h̄ in L1(Ω × (0, T )), the
sequence (p(m))m∈N converges to p̄ = 1

2gh̄
2 in L1(Ω× (0, T )) as m→ +∞. Hence we get

2∑
i=1

Q
(m)
3,i →

∫ T

0

∫
Ω

p̄(x, t) divϕ(x, t) dx dt as m→ +∞. (43)

Let us now turn to the bathymetry term Q
(m)
4,i , which may be written

Q
(m)
4,i =

∫ T

0

∫
Ω

h̃(m)(x, t)ð(m)
i z(x)ϕ̃

(m)
i (x, t) dx dt,

where

• the function h̃(m) : Ω × (0, T ) → R is defined by h̃(x, t) = hn+1
σ,c = 1

2 (hn+1
K + hn+1

L ) for x ∈ Dσ and

t ∈ (tn, tn+1); the sequence (h̃(m))m∈N is therefore bounded in L∞(Ω× (0, T )) and converges to h̄ in
L1(Ω× (0, T ));

• the function ϕ̃
(m)
i : Ω× (0, T )→ R is defined by ϕ̃

(m)
i (x, t) = ϕn+1

σ for x ∈ Dσ and t ∈ (tn, tn+1); by

the regularity of ϕ, the sequence (ϕ̃
(m)
i )m∈N converges to ϕi uniformly.

• by (12), the function ð(m)
i z : Ω→ R is defined by ð(m)

i z =
∑

σ∈Eint

σ=K|L

|σ|
|Dσ| (z(xL)− z(xK))11Dσ . Since

z is a regular function, the sequence of functions (ð(m)
i z)m∈N converges uniformly to the derivative

∂iz of z with respect to the i-th variable as m→ +∞.
13



Hence

Q
(m)
4,i →

∫ T

0

∫
Ω

h̄(x, t)∂iz(x)ϕi(x, t) dx dt as m→∞. (44)

Limit of the momentum equation. Passing to the limit in (35) as m→ +∞, using (42), (43) and (44),
we get that the limit (h̄, ū) of the approximate solutions defined by the forward Euler scheme (6) satisfies
(29b), which concludes the first part of the proof of Theorem 4.1.

4.2. Proof of the weak consistency of the Heun scheme

4.2.1. Mass balance

Under the assumptions of Theorem 4.1, the aim here is to prove that the limit (h̄, ū) of the scheme (21a)-
(21f) satisfies the weak form of the mass equation (29a). In order to do so, we consider the equivalent mass
equation (23a). Because of the structure of the scheme, we cannot use here Theorem A.1 (which is a simplified
version of [12, Lemma 2.7])straightforwardly as in the case of the forward Euler scheme. We apply Lemma
A.2 with U = (h,u), β(U) = h, f(U) = hu, P(m) = M(m),F(m) = E(m) and then Lemma A.3 (which is a
simplified version of [12, Lemma 2.8]) twice: once with U = (h,u), f(U) = hu, P(m) = M(m),F(m) = E(m),

and then with U = (ĥ, û), f(U) = ĥû.
Thanks to the arguments developed in Section 4.1.1, it is easy to check that in each case, the assumptions

of the lemmas are satisfied, so that we can conclude that (h̄, ū) satisfies (29a).

4.2.2. Momentum balance

Still under the assumptions of Theorem 4.1, we now prove that the limit (h̄, ū) of the scheme (21a)-(21f)
satisfies the weak form of the mass equation (29b). Again we consider the equivalent momentum equation
(23b). Multiplying the equation (23b) by |Dσ|ϕn+1

i,σ , summing the result over σ ∈ E(i) and then summing

over n ∈
[
|0, N − 1|

]
and i = 1, 2 yields:

2∑
i=1

[
Q

(m)
1,i +

1

2
(Q

(m)
2,i + Q̂

(m)
2,i +Q

(m)
3,i + Q̂

(m)
3,i ) +Q

(m)
4,i + Q̂

(m)
4,i )

]
= 0, (45)

where Q
(m)
1,i , . . . , Q

(m)
4,i are defined by (36)-(39), and Q̂

(m)
2,i , Q̂

(m)
3,i , Q̂

(m)
4,i are defined by (37)-(39), replacing the

unknowns h, p, u by ĥ, p̂, û.
Again, because of the structure of the scheme, we cannot use Theorem A.1 directly: we use Lemma A.2

for the time derivative term Q
(m)
1,i and Lemma A.3 for the terms Q

(m)
2,i and Q̂

(m)
2,i , with P(m) the set of dual

cells associated with ui (that is with the vertical edges for i = 1 and the horizontal edges for i = 2), with

F = Ẽ
(m)
i and with the dual fluxes (G)nε defined by (17). We first apply Lemma A.2 with U = (h,u),

β(U) = hui, f(U) = huui, and then Lemma A.3, once with U = (h,u), β(U) = hui, f(U) = huui and then

with U = (ĥ, û), β(U) = ĥûi, f(U) = ĥûûi. Thanks to the arguments developed in Section 4.1.2, it is easy
to check that in each case, the assumptions of the lemmas are satisfied, so that

Q
(m)
1,i +

1

2
(Q

(m)
2,i + Q̂

(m)
2,i )→

∫ T

0

∫
Ω

[
h̄(x, t)ūi(x, t) ∂tϕ(x, t) + h̄(x, t)ūi(x, t)ū(x, t) · ∇ϕ(x, t)

]
dx dt

+

∫
Ω

h0(x)ui,0(x)ϕ(x, 0) dx as m→ +∞. (46)

The proof of convergence of the pressure gradient and bathymetry terms Q
(m)
3,i ), Q

(m)
4,i , Q̂

(m)
3,i ) and Q̂

(m)
4,i

follow the exact same lines as that of the terms Q
(m)
3,i ) and Q4,i in Section 4.1.2. Hence,

2∑
i=1

1

2

(
Q

(m)
3,i + Q̂

(m)
3,i +Q

(m)
4,i + Q̂

(m)
4,i

)
→
∫ T

0

∫
Ω

(
p̄(x, t) divϕ(x, t) + h̄(x, t)∇z(x) ·ϕ(x, t)

)
dx dt

as m→ +∞. (47)
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Therefore, owing to (46) and (47), we may pass to the limit in (45) and conclude that (h̄, ū) satisfies (29b).
This concludes the proof of Theorem 4.1.

4.3. A sufficient condition for the convergence of the intermediate solutions

In Theorem 4.1, we assumed the boundedness and convergence of both sequences (h(m), u(m)) and

(ĥ(m), û(m)). In fact, under a restricted CFL condition, we may prove that the convergence and bound-

edness of the sequence (h(m), u(m)) implies the convergence and boundedness of the sequence (ĥ(m), û(m)).

Lemma 4.2 (Bound on the intermediate step, Heun scheme). Let n ∈
[
|0, N − 1|

]
, let (hnK)K∈M ⊂ R∗+

and (unσ)σ∈E ⊂ Rd be given. Assume that there exists ζ ∈ (0, 1) such that the following restricted CFL-like
condition holds (note that it is slightly more restrictive than (24)):

2 δt ≤ ζ |K|∑
σ∈E(K)

|σ| |unσ · nK,σ|
for all K ∈M. (48)

Let CδtM, ChM and CuM ∈ R∗+ be such that

δt ≤ CδtM min
σ∈E
|σ|, (49a)

1

ChM
≤ hnK ≤ ChM,∀n ∈

[
|0, N − 1|

]
,∀K ∈M, (49b)

max
σ∈E
|unσ| ≤ CuM,∀n ∈

[
|0, N − 1|

]
. (49c)

Then the solutions (ĥn+1
K )K∈M (ûnσ)σ∈E of the Heun steps (21a)-(21b) satisfy:

1− ζ
ChM

≤ ĥn+1
K ≤ 2ChM ∀K ∈M, (50a)

|ûn+1
σ | ≤ CuM + CδtM

(ChM)2

1− ζ

(
4(CuM)2 + g(ChM + ||z||∞)

)
. ∀σ ∈ E, (50b)

Proof. From (21a) and by the definition (7) of the discrete divergence, we have

ĥn+1
K = hnK −

∑
σ∈E(K)

(ωnK,σ)+hnσ +
∑

σ∈E(K)

(ωnK,σ)−hnσ with ωnK,σ = δt
|σ|
|K|

unσ · nK,σ.

Owing to (9), there exists αKσ ∈ [0, 1] and MK
σ ∈ M such that hnσ − hnK = αKσ (hnK − hnMK

σ
) if ωnK,σ ≥ 0, in

which case hnσ = hnK(1 + αKσ )− αKσ hnMK
σ
. Hence

ĥn+1
K =

(
1−

∑
σ∈E(K)

(ωnK,σ)+(1 + αKσ )
)
hnK +

∑
σ∈E(K)

(ωnK,σ)−hnσ +
∑

σ∈E(K)

αKσ (ωnK,σ)+hnMK
σ
.

Therefore, thanks to the condition (48), we get (50a).
15



Let us now prove (50b); from (21b) we have

ûn+1
i,σ =

1

ĥn+1
Dσ

(
hnDσu

n
i,σ −

δt

|Dσ|
∑

ε∈Ẽ(Dσ)

|ε|F n
ε · nσ,εuni,ε

)
− δt|σ|
|Dσ|

ghnσ,c

ĥn+1
Dσ

(
hnL − hnK + zL − zK

)
=

1

ĥn+1
Dσ

[(
hnDσ −

δt

|Dσ|
∑

ε∈Ẽ(Dσ)

|ε|F n
ε · nσ,ε

)
uni,σ −

δt

|Dσ|
∑

ε∈Ẽ(Dσ)

|ε|F n
ε · nσ,ε

(
uni,ε − uni,σ)

]

− δt|σ|
|Dσ|

ghnσ,c

ĥn+1
Dσ

(
hnL − hnK + zL − zK

)
.

Since the values ĥn+1
Dσ

and ĥnDσ are computed by an equivalent formula to (16), they satisfy a discrete dual
mass balance of the type (20), and therefore:

ûn+1
i,σ = uni,σ −

1

ĥn+1
Dσ

[
δt

|Dσ|
∑

ε∈Ẽ(Dσ)

|ε|F n
ε · nσ,ε

(
uni,ε − uni,σ)

]
− δt|σ|
|Dσ|

ghnσ,c

ĥn+1
Dσ

(
hnL − hnK + zL − zK

)
.

Thanks to the CFL condition (49a) and to the bounds on unσ and ĥn+1
Dσ

for all σ (recall that for σ = K|L,

ĥn+1
Dσ

is a convex combination of ĥn+1
K and ĥn+1

L ),

1

ĥn+1
Dσ

∣∣∣∣∣ δt|Dσ|
∑

ε∈Ẽ(Dσ)

|ε|F n
ε · nσ,ε

(
uni,ε − uni,σ)

∣∣∣∣∣ ≤ 4CδMt(C
u
M)2(ChM)2

1− ζ
.

Furthermore, since 2hnσ,c = hnK + hnL and agina owing to (49a),

δt|σ|
|Dσ|

ghnσ,c

ĥn+1
Dσ

(
hnL − hnK + zL − zK

)
≤ CδtMg

(ChM)2

1− ζ

(
max
K∈M

(hnK) + max
K∈M

(zK)
)
≤ CδtM(ChM)2g

1− ζ
(ChM + ||z||∞).

Therefore,

|ûn+1
i,σ | ≤ C

u
M +

4CδMt(C
u
M)2(ChM)2

1− ζ
+
CδtM(ChM)2g

1− ζ
(ChM + ||z||∞),

which concludes the proof that (50b) holds. �

Lemma 4.3 (L1 convergence of the intermediate step, Heun scheme). Let (M(m),E(m))m∈N be a sequence
of meshes such that δt(m) and δM(m) → 0 as m→ +∞ ; assume that (M(m),E(m))m∈N is uniformly regular,
in the sense that there exists θ > 0 such that θM(m) ≤ θ for any m ∈ N (with θM(m) defined by (5)).

Let (h(m),u(m))m∈N be a sequence of solutions to the scheme (6) satisfying (31) and (32) converging to
(h̄, ū) in L1(Ω× (0, T ))× L1(Ω× (0, T ))2.

Assume that there exists ζ ∈ (0, 1) such that the following restricted CFL-like condition holds:

2 δt(m) ≤ ζ |K|∑
σ∈E(K)

|σ| |(u(m))nσ · nK,σ|
, ∀K ∈M(m), ∀m ∈ N, (51)

and assume that there exists Cδt ∈ R∗+ not depending on m such that

δt(m) ≤ Cδt min
σ∈E(m)

|σ|,∀m ∈ N. (52)
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Then there exist Ĉu, Ĉh ∈ R∗+ such that

1

Ĉh
< (h̃(m))nK ≤ Ĉh, ∀K ∈M(m), (53a)

|(ũ(m))nσ| ≤ Ĉu, ∀σ ∈ E(m). (53b)

Furthermore, the sequence
(
ĥ(m), û(m))

m∈N converges to (h̄, ū) in L1(Ω× (0, T ))× L1(Ω× (0, T ))2.

Proof. Under the above assumptions, the hypotheses (48) and (49) hold uniformly with respect to m, so
that the bounds (53) are a direct consequence of Lemma 4.2. Now, from equation (21a), we get that

ĥn+1
K − hnK = − δt

|K|
∑

σ∈E(K)

|σ|unσ · nK,σ (hnσ − hnK)− δt

|K|
∑

σ∈E(K)

|σ|hnK unσ · nK,σ, ∀K ∈M(m).

For K ∈ M(m), let us denote by σK,i and σ′K,i the edges of K in the direction i ∈
[
|1, 2|

]
, with xσK,i · ei <

xσ′
K,i
· ei, for i ∈

[
|1, 2|

]
; noting that nK,σK,i = −nK,σ′

K,i
and that |σK,i| = |σ′K,i|, and owing to (31), we get

that ∣∣∣ ∑
σ∈E(K)

|σ|hnK unσ · nK,σ
∣∣∣ ≤ Ch d∑

i=1

|σK,i||uni,σK,i − u
n
i,σ′

K,i
|, ∀K ∈M(m).

Since hσ is a convex combination of hK and hL, with K and L such that σ = K|L, we get:

|ĥn+1
K − hnK | ≤

∑
σ∈E(K)
σ=K|L

δt(m)

|K|
|σ|
∣∣unσ · nK,σ∣∣ |hnL − hnK |+ Ch

2∑
i=1

δt
|σ|
|K|
|uni,σK,i − u

n
i,σ′

K,i
|, ∀K ∈M(m).

Noting that (52) implies that
δt(m)

|K|
|σ| ≤ 1 and thanks to the condition (32), we thus get that there exists

C ∈ R+ depending on Ch, Cu, Cδt such that

|ĥn+1
K − hnK | ≤ C

[ ∑
σ∈E(K)
σ=K|L

|hnL − hnK |+
d∑
i=1

|uni,σK,i − u
n
i,σ′

K,i
|
]
, ∀K ∈M(m).

Multiplying this latter inequality by |K|δt(m) and summing over K ∈ M(m) and n ∈
[
|0, N |

]
, using the

uniform regularity of the mesh and owing again to the convergence result on the space translates given in
Lemma B.2, we conclude that ∫ T

0

∫
Ω

|ĥ(m) − h(m)| dx dt→ 0 as m→ +∞.

Let us now turn to the intermediate velocities. Owing to (21b), (22) and since û satisfies a dual mass

balance of the form (20), we have for σ = K|L ∈ (E
(i)
int)

(m), i ∈
[
|1, 2|

]
:

ĥn+1
Dσ

(ûn+1
i,σ − u

n
i,σ) = −(ĥn+1

Dσ
− hnDσ )uni,σ −

δt

|Dσ|
∑

ε∈Ẽ(Dσ)

F n
ε · nσ,εuni,ε − δt ghnσ,c

(
(ðσhn) + (ðσz)

)
= −

∑
ε∈Ẽ(Dσ)

[δt |ε|
|Dσ|

F n
ε · nσ,ε(uni,ε − uni,σ) +

δt|σ|
|Dσ|

ghnσ,c
(
hnL − hnK + zL − zK

)]
.
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Hence, owing to (31), (32), (52) and to the fact that for ε = σ|σ′, uni,ε is a convex combination of uni,σ and

uni,σ′ , there exists C ∈ R+ depending only on Ch, Cu, Cδt and g such that

|ûn+1
i,σ − u

n
i,σ| ≤ C

[ ∑
ε∈Ẽ(Dσ)
ε=σ|σ′

|uni,σ′ − uni,σ|+ |hnL − hnK |+ |zL − zK |
]
, for i = 1, 2.

Multiplying this latter inequality by |Dσ|δt(m) and summing over σ ∈ M(m) and n ∈
[
|0, N |

]
, using the

uniform regularity of the mesh and again thanks to Lemma B.2 we conclude that∫ T

0

∫
Ω

|û(m)
i − u(m)

i | dx dt→ 0 as m→ +∞, for i = 1, 2.

�

5. Weak entropy consistency of the forward Euler- MAC scheme

Theorem 5.1 (Weak entropy consistency of the forward Euler MAC scheme). Let (M(m),E(m))m∈N be a
sequence of meshes such that δt(m) and δM(m) → 0 as m → +∞ ; assume that there exists θ > 0 such that
θM(m) ≤ θ for any m ∈ N (with θM(m) defined by (5)). Let (h(m),u(m))m∈N be a sequence of solutions to the
scheme (6) converging to (h̄, ū) in L1(Ω× (0, T ))× L1(Ω× (0, T ))2, such that (31), (32) hold. Assume the
following CFL-like condition:

δt(m) ≤
|Dσ|hn+1

Dσ∑
ε∈E(Dσ)
Fnε nσ,ε>0

|ε| F n
ε · nσ,ε

. (54)

Assume furthermore that

∃CBV t ∈ R+ :
∑

K∈M(m)

|K||(h(m))n+1
K − (h(m))nK | ≤ CBV t, ∀m ∈ N, (55a)

δt(m)

infK∈M(m) diam(K)
→ 0 as m→ +∞, (55b)

and that the coefficients λK,σ and µσ,ε in (8) and (18) satisfy:

λK,σ ∈ [
1

2
, 1] if F σ · nK,σ ≥ 0, and µσ,ε ∈ [

1

2
, 1] if F ε · nσ,ε ≥ 0. (56)

Then (h̄, ū) satisfies the entropy inequality (30).

Note that the condition (56) is rather restrictive. Indeed, it is satisfied by the usual two slopes minmod
limiter [15] only in the case of a uniform Cartesian mesh [23], and it is not satisfied by the three slopes
minmod limiter.

Proof. Let ϕ ∈ C∞c (Ω × [0, T ),R+), and for a given discretization (M(m),E(m)) let ϕnK (resp. ϕnσ) denote

the mean value of ϕ on K × (tn, tn+1) (resp. Dσ × (tn, tn+1)), for any K ∈ M(m) (resp. σ ∈ E(m)) and
n ∈

[
|0, Nm − 1|

]
. Let us multiply the discrete kinetic energy balance (26) by δtϕn+1

σ and sum over σ ∈ E(m)

and i ∈ {1, 2}; let us then multiply the discrete potential energy balance (27) by δt|K|ϕnK and sum over

K ∈ M(m). Summing the two resulting equations and summing over n ∈
[
|0, Nm − 1|

]
, we get, owing to

lemmas 3.3 and 3.4,∫ T

0

∫
Ω

C
(m)
KIN(U (m))ϕ(x, t) dx dt+

∫ T

0

∫
Ω

C
(m)
POT(U (m))ϕ(x, t) dx dt+ P(m) + Z(m) = −R(m)

k − R(m)
p , (57)
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with

C
(m)
KIN(U (m))|Dσ =

2∑
i=1

C
(m,i)
KIN (U (m))|Dσ with C

(m,i)
KIN (U (m))|Dσ = (ðtEk,i)n+1

σ +
∑

ε∈Ẽ(Dσ)

|ε|
(uni,ε)

2

2
F n
ε · nσ,ε,

and (Ek,i)
n
σ =

1

2
hnDσ (uni,σ)2,

C
(m)
POT(U (m))|K =

1

2
(ðth2

K)n + divK

(1

2
g(hn)2un

)
,

P(m) =

Nm−1∑
n=0

δt(m)
[ ∑
σ∈E(m)

|Dσ|un+1
σ ðσpn+1ϕn+1

σ +
∑

K∈M(m)

|K|pnKdivKunϕnK

]
,

Z(m) = +

Nm−1∑
n=0

δt(m)
[ ∑
σ∈E(m)

|Dσ|hn+1
σ,c u

n+1
σ ðσzϕn+1

σ +
∑

K∈M(m)

g
(
zK(ðthK)n + gzKdivK(hnun)

)
ϕnK

]
,

R
(m)
k =

2∑
i=1

Nm−1∑
n=0

δt(m)
∑

σ∈E(i,m)
int

[1

2

|Dσ|
δt(m)

hn+1
Dσ

(un+1
σ − unσ)2

+
∑

ε∈Ẽ(i)(Dσ)

|ε| F n
ε · nσ,ε

(
− 1

2
(uni,ε − uni,σ)2 + (uni,ε − uni,σ)(un+1

i,σ − u
n
i,σ)
)]
ϕn+1
σ

R(m)
p ≥

Nm−1∑
n=0

δt(m)
∑

K∈M(m)

[
− 1

2
g
∑

σ∈E(K)

|σ| (hnσ − hnK)2 unσ · nK,σ +
∑

σ∈E(K)

|σ|g(hn+1
K − hnK) hnσ unσ · nK,σ

]
ϕK .

Kinetic energy convection term – Let us check that the above defined convection operator C
(m,i)
KIN satisfies

the hypotheses (77)–(79) of the Lax-Wendroff type consistency theorem A.1 given in the appendix, which we
apply here with d = 2, P(m) and F(m) the i-th dual mesh and its set of edges, U = (h,u), β(U) = Ek,i(U) =
1
2hu

2
i , for i = 1, 2.

Let us start with the assumption (77). For a given function ψ ∈ L1(Ω), and any subset A of Ω we denote
by 〈ψ〉A the mean value of ψ on A. By definition of the kinetic energy, we have (Ek,i)

0
σ = 1

2h
0
Dσ
|u0
i,σ|2 =

1
2 〈h0〉Dσ (|〈ui,0〉Dσ |)2 and Ek,i(U0) = Ek,i(h0,u0) = 1

2h0u
2
i,0 . Therefore, owing to the assumptions (31)-(32)

on the functions h(m) and u(m) and to the fact that these sequences converge in L1

∑
P∈P(m)

∫
P

|(β(m))0
P − β(U0(x))|dx =

∑
σ∈E(m)

∫
Dσ

|(Ek,i)0
σ − Ek,i(h0,u0)|dx

=
1

2

∑
σ∈E(m)

|Dσ|
∣∣∣〈h0〉Dσ 〈ui,0〉2Dσ − 〈h0u

2
i,0〉Dσ

∣∣∣
→ 0 as m→ +∞.

The assumption (77) is thus satisfied. Let us then note that the assumption (78), which reads

Nm−1∑
n=0

∑
σ∈E(m)

∫ tn+1

tn

∫
Dσ

|E(m)
k,i )nσ − Ek,i(U (m)(x, t))|dx dt→ 0 as m→ +∞,

is satisfied, again thanks to the assumptions (31)-(32) on the functions h(m) and u(m) and to the fact that
these sequences converge in L1. Let us now turn to the assumption (79), which reads

Nm−1∑
n=0

∑
σ∈E(m)

∫ tn+1

tn

diam(Dσ)

|Dσ|

∫
Dσ

∣∣∣ ∑
ε∈Ẽ(m)

|ε|
(

(F (m))nε − f(Um(x, t)
)
· nσ,ε

∣∣∣dx dt→ 0 as m→ +∞,
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with (F (m))nε = 1
2 (ui,εn)2F n

ε and f(U) = 1
2h|u|

2ui. This assumption is indeed satisfied since F n
ε is a convex

combination of hσuσ and hσ′uσ′ for ε = σ|σ′, and thanks to the boundedness and convergence assumptions
on the sequences (h(m))m∈N and (u(m))m∈N. By Theorem A.1, we thus get that

∫ T

0

∫
Ω

[C
(m)
KIN(U (m))]iϕ(x, t) dx, dt→ −

∫
Ω

Ek,i(U
(0)ϕ(x, 0) dx−

∫ T

0

∫
Ω

Ek,i(Ū)∂tϕ+
1

2
Ek,i(Ū)ūi∂iϕ dx dt

with Ek,i(Ū) = 1
2gh̄ū

2
i ; summing over i = 1, 2, we get that

∫ T

0

∫
Ω

C
(m)
KIN(U (m))ϕ(x, t) dx dt→

−
∫

Ω

Ek(U (0)ϕ(x, 0) dx−
∫ T

0

∫
Ω

[
Ek(Ū)∂tϕ+

1

2
Ek(Ū)u · ∇ϕ

]
dx dt as m→ +∞. (58)

with Ek(Ū) = 1
2 ḡ|ū|

2.

Potential energy convection terms – Let us now check that the above defined convection operator C
(m)
POT

satisfies the hypotheses (77)–(79) of Theorem A.1 which we now apply with d = 2, P(m) and F(m) the primal
mesh and its set of edges, U = (h,u), β(U) = 1

2gh
2 and f(U) = 1

2gh
2u. Indeed,

∑
K∈M

∫
K

∣∣∣〈h(·, 0)2〉K − h(x, 0)2
∣∣∣ dx→ 0 as m→ +∞,

so that the hypothesis (77) is satisfied. Next,

Nm−1∑
n=0

∫ tn+1

tn

∑
K∈M

∫
K

∣∣∣(hnK)2 − h2(x, t)
∣∣∣ dx dt→ 0 as m→ +∞,

thanks to the boundedness and convergence assumptions on the sequence (h(m))m∈N. so that the hypothesis
(78) is satisfied. Finally, the left hand side of (79) reads

XF =

Nm−1∑
n=0

∫ tn+1

tn

∑
K∈M

diam(K)

|K|

∫
K

∣∣∣ ∑
σ∈E(K)

|σ|
(1

2
g(hnσ)2unσ −

1

2
gh2(x, t)u(x, t)

)
· nK,σ

∣∣∣ dx dt

=

Nm−1∑
n=0

∫ tn+1

tn

∑
K∈M

diam(K)

|K|

∣∣∣ ∑
σ∈E(K)

|σ|
∫
DK,σ

(1

2
g(hnσ)2 − 1

2
g(hnK)2

)
unσ · nK,σ

∣∣∣ dx dt

→ 0 as m→ +∞

thanks to the fact that hnσ is a convex combination of hnK and hnL for σ = K|L, and thanks to the boundedness

and convergence assumptions on the sequences (h(m))m∈N and (u(m))m∈N. Therefore, the assumption (79)
is also satisfied. Hence by Theorem A.1, defining Ep(Ū) = 1

2gh̄
2, we get that

∫ T

0

∫
Ω

C
(m)
POT(U (m))ϕ(x, t) dx dt→ −1

2

∫
Ω

gh2(x, 0)ϕ(x, 0) dx

−
∫ T

0

∫
Ω

[
Ep(Ū)∂tϕ+ Ep(Ū)ū · ∇ϕ

]
dx dt, asm→ +∞. (59)

.
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Pressure terms – Let us rewrite P(m) as

P(m) =

Nm−1∑
n=0

δt(m)(An+1 +Bn+1) − δt(m)B0,

with An =
∑

σ∈E(m)
int

σ=K|L

|Dσ|unσðσpnϕnσ, and Bn =
∑

K∈M(m)

|K|pnKdivK(un)ϕnK .

By Lemma 5.2 below,

An+1 +Bn+1 =
∑

K∈M(m)

∑
σ∈E(K)

|DK,σ|pn+1
K un+1

σ ·
|σ|(ϕn+1

K − ϕn+1
σ )

|DK,σ|
nK,σ

On each subcell DK,σ the quantity
|σ|(ϕn+1

K − ϕn+1
σ )

|DK,σ|
nK,σ is, up to higher order terms, a discrete differential

quotient of ϕ between xK and xσ, in the direction i if σ ∈ E(i), which uniformly converges to ∂iϕei in the
case of a rectangular grid, and therefore,

Nm−1∑
n=0

δt(m)(An+1 +Bn+1)→ −
∫ T

0

∫
Ω

p̄(x, t) ū(x, t) · ∇ϕ(x, t)dx dt as m→ +∞.

Now, since we assume u0 ∈W 1,1(Ω),

δt(m)|B0| = δt(m)
∣∣∣ ∑
K∈M(m)

|K|p0
KdivK(u0)ϕ0

K

∣∣∣
≤ gδt(m)‖h0‖2∞‖ϕ‖∞

∑
K∈M(m)

|K||divK(u0)|

≤ 2g
δt(m)

infK∈M(m) diam(K)
‖h0‖2∞‖ϕ‖∞

∑
σ∈E(K)

|σ|dσ‖u0‖∞,

so that, by the assumption (55b),

Nm−1∑
n=0

δt(m)B0 → 0 as m→ +∞; and therefore,

P(m) → −
∫ T

0

∫
Ω

p̄(x, t) ū(x, t) · ∇ϕ(x, t)dx dt as m→ +∞. (60)

In the above bound, we used the assumption (55b); this could be avoided if we assume u0 ∈W 1,1(Ω) )or
u0 ∈ L1(0, T ;BV (Ω))); indeed, in this case we have

|B0| ≤ g‖h0‖2∞‖ϕ‖∞‖u0‖W 1,1(Ω).

However, the assumption (55b) seems unavoidable to deal with the remainder term appearing in the discrete
potential energy, see below.

Bathymetry terms – Let us introduce the following piecewise constant functions:

• h̃(m) is the piecewise constant function equal to hn+1
σ,c = 1

2 (hn+1
K + hn+1

L ) on each set Dσ × (tn, tn+1),

for σ = K|L ∈ E
(m)
int and n ∈∈

[
|0, Nm − 1|

]
;

• ∇(m)z(m) is the piecewise constant function equal to
|σ|
|Dσ|

(zL − zK) on each set Dσ, for σ = K|L ∈

E
(m)
int ;
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• ϕ̃(m) is the piecewise constant function equal to ϕσ on each set on each set Dσ × (tn, tn+1), for

σ = K|L ∈ E
(m)
int and n ∈∈

[
|0, Nm − 1|

]
;

With these notations, we get that

Nm−1∑
n=0

δt(m)
∑

σ∈E(m)

|Dσ|hn+1
σ,c u

n+1
σ ðσzϕn+1

σ =

∫
Ω

h̃(m)(x, t)u(m)(x, t) · ∇z(m)(x) ϕ̃(m)(x, t) dx dt as n→ +∞

→
∫

Ω

h(x, t)u(x, t) · ∇z(x) ϕ(x, t) dx dt as m→ +∞, (61)

thanks to the convergence assumptions on h(m) and u(m) and owing to the strong convergence of the discrete
gradient∇(m) (which would be only a weak convergence in the case of a non rectangular mesh, see [11, Lemma
3.1]).

Now let TnK = g ðthn+1
K zK and ZnK =

1

|K|
g
∑

σ∈E(K)

|σ|hnσunK,σzK . Using a discrete summation by parts in

time and thanks to the convergence assumption on h(m), we get that

Nm−1∑
n=0

δt(m)
∑

K∈M(m)

|K|TnK → −
∫

Ω

gz(x)h(x, 0)ϕ(x, 0) dx−
∫ T

0

∫
Ω

gz(x)h(x, t)∂tϕ(x, t) dx dt. (62)

Using next a discrete summation by parts in space, we get∑
K∈M(m)

|K|ZnK =
∑

K∈M(m)

gzKϕ
n+1
K

∑
σ∈E(K)

|σ|hnσunK,σzK

=
∑

σ∈E(m)
int

σ=K|L

|σ|hnσunK,σ(zKϕ
n+1
K − zLϕn+1

L )

= −
∑

σ∈E(m)
int

σ=K|L

|Dσ|hnσunσ · (∇(m)(zϕ))n+1
σ ,

where ∇(m)(zϕ) is the piecewise constant discrete gradient defined by:

∀σ = K|L ∈ E
(m)
int , ∀n ∈

[
|0, Nm − 1|

]
, ∀(x, t) ∈ Dσ × [tn, tn+1),

∇(m)(zϕ)n+1(x, t) = (∇(m)(zϕ))σ =n+1 |σ|
|Dσ|

(zKϕ
n+1
K − zLϕn+1

L )nK,σ,

which converges to ∇(zϕ) uniformly in the case of a rectangular mesh, and weakly in the case of a general
mesh, see [11, Lemma 3.1].

Therefore, thanks to the convergence assumptions on h and u,

Nm−1∑
n=0

δt(m)
∑

K∈M(m)

|K|ZnK → −
∫ T

0

∫
Ω

gh̄(x, t)ū(x, t) · ∇(zϕ)(x, t) dx dt as m→ +∞. (63)

Owing to (61), (62) and (63), we thus get that

Z(m) → −
∫

Ω

gz(x)h(x, 0)ϕ(x, 0) dx−
∫ T

0

∫
Ω

gz(x)h̄(x, t)∂tϕ(x, t) dx dt

−
∫ T

0

∫
Ω

gh̄(x, t)z(x)ū(x, t) · ∇ϕ(x, t) dx dt as m→ +∞. (64)
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Remainder terms The remainder term R
(m)
k in (57) satisfies

R
(m)
k = R

(m)
k,1 + R

(m)
k,2 + R

(m)
k,3 (65)

with

R
(m)
k,1 =

1

2

2∑
i=1

Nm−1∑
n=0

δt(m)
∑
σ∈E(i)

int

1

δt
|Dσ| hn+1

Dσ

(
un+1
i,σ − u

n
i,σ

)2
ϕn+1
σ ,

R
(m)
k,2 = −1

2

2∑
i=1

Nm−1∑
n=0

δt(m)
∑
σ∈E(i)

int

∑
ε∈Ẽ(i)(Dσ)

|ε| F n
ε · nσ,ε

(
uni,ε − uni,σ

)2
ϕn+1
σ

R
(m)
k,3 =

2∑
i=1

Nm−1∑
n=0

δt(m)
∑
σ∈E(i)

int

∑
ε∈Ẽ(i)(Dσ)

|ε| F n
ε · nσ,ε

(
uni,ε − uni,σ

)(
un+1
i,σ − u

n
i,σ

)
ϕn+1
σ .

The term R
(m)
k,3 satisfies

R
(m)
k,3 ≥ R

(m)
k,3,1 + R

(m)
k,3,2 (66)

with

R
(m)
k,3,1 = −1

2

2∑
i=1

Nm−1∑
n=0

δt(m)
∑
σ∈E(i)

int

∑
ε∈Ẽ(i)(Dσ)
Fnε ·nσ,ε>0

|ε| F n
ε · nσ,ε

(
un+1
i,σ − u

n
i,σ

)2
ϕn+1
σ ,

R
(m)
k,3,2 = −1

2

2∑
i=1

Nm−1∑
n=0

δt(m)
∑
σ∈E(i)

int

∑
ε∈Ẽ(i)(Dσ)

|ε| F n
ε · nσ,ε

(
uni,ε − uni,σ

)2
ϕn+1
σ .

Thanks to the CFL condition (54), we get that

R
(m)
k,1 + R

(m)
k,3,1 ≥ 0. (67)

Let us now study the term

R̃
(m)
k,2 = R

(m)
k,3,2 + R

(m)
k,2 = −

2∑
i=1

Nm−1∑
n=0

δt(m)
∑
σ∈E(i)

int

∑
ε∈Ẽ(i)(Dσ)

|ε| F n
ε · nσ,ε

(
uni,ε − uni,σ

)2
ϕn+1
σ ,

which we decompose as: R̃
(m)
k,2 ≥ R̃

(m)
k,2,1 + R̃

(m)
k,2,2, with

R̃
(m)
k,2,1 = −

2∑
i=1

Nm−1∑
n=0

δt(m)
∑
σ∈E(i)

int

∑
ε∈Ẽ(i)(Dσ)
Fnε ·nσ,ε>0

|ε| F n
ε · nσ,ε

(
uni,ε − uni,σ

)2
ϕn+1
ε ,

R̃
(m)
k,2,2 = −

2∑
i=1

Nm−1∑
n=0

δt(m)
∑
σ∈E(i)

int

∑
ε∈Ẽ(i)(Dσ)

|ε| F n
ε · nσ,ε

(
uni,ε − uni,σ

)2
(ϕn+1
ε − ϕn+1

σ ),
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and, by conservativity,

R̃
(m)
k,2,1 ≥

2∑
i=1

Nm−1∑
n=0

δt(m)
∑

ε=σ|σ′∈Ẽ(i)
int

Fnε ·nσ,ε>0

|ε| F n
ε · nσ,ε

[(
uni,ε − uni,σ

)2 − (uni,ε − uni,σ′

)2]
ϕn+1
ε

≥
2∑
i=1

Nm−1∑
n=0

δt(m)‖ui‖∞
∑

ε=σ|σ′∈Ẽ(i)
int

Fnε ·nσ,ε>0

|Dε|(2ui,ε − ui,σ − ui,σ′)(ui,σ′ − ui,σ′).

Therefore, thanks to (18) and (56),

R̃
(m)
k,2,1 ≥

2∑
i=1

Nm−1∑
n=0

δt(m)
∑

ε=σ|σ′∈Ẽ(i)
int

Fnε ·nσ,ε>0

|ε| F n
ε · nσ,ε(2µσ,ε − 1)

(
uni,σ − uni,σ′

)2
ϕn+1
ε ≥ 0. (68)

Let us then write that, thanks to the regularity of ϕ,

|R̃(m)
k,2,2| ≤ Cϕ

2∑
i=1

Nm−1∑
n=0

δt(m)
∑
σ∈E(i)

int

∑
ε∈Ẽ(i)(Dσ)

|Dε| |F n
ε · nσ,ε|

(
uni,ε − uni,σ

)2
≤ Cϕ‖h‖∞‖u‖∞

2∑
i=1

Nm−1∑
n=0

δt(m)
∑
σ∈E(i)

int

∑
ε∈Ẽ(i)(Dσ)

|Dε| uni,ε − uni,σ|

so that, thanks to the L1 convergence of u(m) and to the regularity of the mesh, we may again apply Lemma
B.2 to obtain

|R̃(m)
k,2,2| → 0 as m→ +∞. (69)

Therefore, owing to (65)-(69)

lim
m→+∞

R
(m)
k ≥ 0. (70)

Let us now turn to the remainder R
(m)
p . We have R

(m)
p ≥ R

(m)
p,1 + R

(m)
p,2 , with

R
(m)
p,1 = −

Nm−1∑
n=0

δt(m)

2

∑
K∈M(m)

g
∑

σ∈E(K)

|σ| (hnσ − hnK)2 unσ · nK,σϕnK ,

R
(m)
p,2 =

Nm−1∑
n=0

δt(m)
∑

K∈M(m)

∑
σ∈E(K)

|σ|g(hn+1
K − hnK) hnσ unσ · nK,σϕnK .

Note that if hnσ is the upwind choice for any σ ∈ E(m), then R
(m)
p,1 ≥ 0. In the general case, we may write

that
R

(m)
p,1 = R

(m)
p,1,1 + R

(m)
p,1,2

with

R
(m)
p,1,1 = −

Nm−1∑
n=0

δt(m)

2

∑
K∈M(m)

g
∑

σ∈E(K)

|σ| (hnσ − hnK)2 unσ · nK,σϕnσ

R
(m)
p,1,2 = −

Nm−1∑
n=0

δt(m)

2

∑
K∈M(m)

g
∑

σ∈E(K)

|σ| (hnσ − hnK)2 unσ · nK,σ(ϕnK − ϕnσ).
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By conservativity,

R
(m)
p,1,1 ≥ −g

Nm−1∑
n=0

δt(m)

2

∑
σ=K|L∈E
unσ ·nK,σ>0

|σ|
[
(hnσ − hnK)2 − (hnσ − hnL)2

]
unσ · nK,σϕnσ

= −g
Nm−1∑
n=0

δt(m)

2

∑
σ=K|L∈E
unσ ·nK,σ>0

|σ| (hnL − hnK))(2hnσ − hnK − hnL) unσ · nK,σϕnσ.

Owing to the assumption (8), one has

(hnL − hnK))(2hnσ − hnK − hnL) = −2λK,σ(hnK − hnL)

and since by (56), λK,σ ≥ 1
2 if unσ · nK,σ > 0,

R
(m)
p,1,1 = 2g

Nm−1∑
n=0

δt(m)
∑

σ=K|L∈E
unσ ·nK,σ>0

|σ|(λK,σ −
1

2
) (hnL − hnK)2 unσ · nK,σϕnσ ≥ 0.

Now

|R(m)
p,1,2| ≤

Nm−1∑
n=0

δt(m)

2

∑
K∈M(m)

g‖h‖∞‖u‖∞Cϕ
∑

σ∈E(K)

|DK,σ| |hnL − hnK | → 0 as m→ +∞

so that
lim

m→+∞
R

(m)
p,1 ≥ 0.

Let us now turn to R
(m)
p,2 . Since for all K ∈M and σ ∈ E(K) we have |σ| ≤ |K|

infK∈M diam(K)
, we have

|R(m)
p,2 | ≤ g‖h‖∞‖u‖∞‖ϕ‖∞

Nm−1∑
n=0

δt(m)

infK∈M(m) diam(K)

Nm−1∑
n=0

∑
K∈M(m)

|K||(h(m))n+1
K − (h(m))nK |

→ 0 as m→ +∞,

thanks to the assumption (55). Hence

lim
m→+∞

R(m)
p ≥ 0. (71)

Conclusion of the proof – Owing to (70) and (71), passing to the limit in (57) as m→ +∞ yields, together
with (58), (59), (60) and (64), that the limit (h̄, ū) satisfies the weak entropy inequality (30). �

The next lemma, used to pass to the limit in the pressure terms of the entropy is the discrete equivalent,

on a staggered grid, of the formal equality

∫
Ω

(u · ∇p ϕ+ p divu ϕ) dx = −
∫

Ω

p u · ∇ϕ dx.

Lemma 5.2 (Pressure terms). Let (M,E) be a MAC discretization of Ω in the sense of Definition 2.1 ;
Let (pK)K∈M ⊂ R and (uσ)σ∈E ⊂ Rd be some discrete unknowns associated to M and E respectively. Let
ϕ ∈ C∞c (Ω), and let ϕK (resp. ϕσ) denote the mean value of ϕ on K (resp. Dσ), for any K ∈ M (resp.
σ ∈ E(m)). Then

∑
σ∈Eint

σ=K|L

|Dσ| uσ ðσp ϕσ +
∑
K∈M

|K| pK divKu ϕK =
∑
K∈M

∑
σ∈E(K)

|DK,σ| pK uσ ·
|σ|(ϕK − ϕσ)

|DK,σ|
nK,σ.

25



Proof. Let us denote by A and B the first and second terms of the right hand side. Then, with the notations
of Definition 2.1,

A =
∑

K∈M(m)

∑
σ∈E(K)

|DK,σ|uσ ðσp ϕσ) =
∑

K∈M(m)

∑
σ∈E(K)
σ=K|L

|DK,σ| uK,σ
pL − pK
|Dσ|

|σ| ϕσ

=
∑

K∈M(m)

∑
σ∈E(K)
σ=K|L

|DK,σ| uK,σ
pσ − pK
|DK,σ|

|σ| ϕσ,

where pσ is defined by
pσ − pK
|DK,σ|

=
pL − pK
|Dσ|

. By conservativity,
∑

K∈M(m)

∑
σ∈E(K)
σ=K|L

uK,σpσ|σ|ϕσ = 0, so that

A = −
∑

K∈M(m)

∑
σ∈E(K)
σ=K|L

|DK,σ| uK,σ
pK
|DK,σ|

|σ| ϕσ

Now

B =
∑

K∈M(m)

|K| pK divKu ϕK =
∑

K∈M(m)

∑
σ∈E(K)

|σ| pK |DK,σ| uσ ϕK .

Adding the results for A and B concludes the proof. �

6. Numerical results

This section is devoted to numerical tests: we first check the order of convergence of the proposed scheme
on a two-dimensional regular solution (Section 6.1); then we turn to one-dimensional and two-dimensional
shock solutions on a plane topography (Sections 6.2 and 6.3); in Section 6.4, we address a two-dimensional
dam-break problem in a closed computational domain with a variable topography, which, in particular, shows
tha ability of staggered scheme to ”natively” cope with reflection boundary conditions; finally, we compute
the motion of a liquid slug over a partly dry support (6.5).

In this section, we compare three schemes: the second-order scheme developed here, the scheme referred to
in Section 2.2 as the segregated forward Euler scheme (combining a segregated forward Euler scheme in time
and the proposed MUSCL-like discretization of the convection fluxes) and a first order scheme which still
features the segregated forward Euler scheme in time but with first-order upwind convection fluxes. These
schemes are referred to in the following as the second-order, segregated and first-order scheme respectively.

The schemes have been implemented within the CALIF3S open-source software [7] of the French Institut
de Sûreté et de Radioprotection Nucléaire (IRSN); this software is used for the following tests.

6.1. A smooth solution

We begin here by checking the accuracy of the scheme on a known regular solution consisting in a travelling
vortex. This solution is obtained through the following steps: we first derive a compact-support H2 solution
consisting in a standing vortex which becomes time-dependent by adding a constant velocity motion. The
velocity field of the standing vortex and the pressure are sought under the form:

û = f(ξ)

[
−x2

x1

]
, p̂ = ℘(ξ),

with ξ = x2
1 + x2

2. A simple derivation of these expressions yields:

û ·∇û = −f(ξ)2

[
x1

x2

]
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and

∇p̂ = 2℘′(ξ)

[
x1

x2

]
.

Using the relation p = 1
2gh

2, we thus obtain a stationary solution of the shallow water equations (1) with a

topography z = 0 if ℘ satisfies 8 g ℘ = (F + c)2, where F is such that F ′ = f2, F (0) = 0 and c is a positive
real number. For the present numerical study, we choose f(ξ) = 10 ξ2(1− ξ)2 if ξ ∈ (0, 1), f = 0 otherwise,
which indeed yields an H2(R2) velocity field (note that as a consequence, the pressure and the water height
are also regular), and c = 1. The problem is made unsteady by a time translation: given a constant vector
field a, the pressure p and the velocity u are deduced from the steady state solution p̂ and û:

h(x, t) = ĥ(x− at), u(x, t) = û(x− at) + a.

The center of the vortex is initially located at x0 = (0, 0)t, the translation velocity a is set to a = (1, 1)t,
the computational domain is Ω = (−1.2, 2.)2 and the computation is run on the time interval (0, 0.8).

Computations are performed with successively refined meshes with square cells, and the time step is
δt = δM/8, and corresponds to a Courant (or CFL) number with respect to the celerity of the fastest waves
close to 1/3. The discrete L1-norm of the difference between the exact solution and the solution obtained by
the second-order scheme is given in Table 1. The observed order of convergence over the whole sequence is
2 for the water height and 1.5 for the velocity. Results with the first-order scheme are given in Table 2; one
observes that the second-order scheme is much more accurate. Finally, the segregated scheme yields good
results on coarse meshes (it is the most accurate scheme on the 32× 32 mesh); unfortunately, when refining
the mesh, oscillations appear, and the convergence is lost. This results confirms a behaviour already observed
for the transport operator in [23]: for multi-dimensional problems, the smoothing produced by the Heun
time-stepping seems to be necessary to compensate the oscillatory character of the MUSCL scheme (which,
for the transport operator, does not lead, of course, to violate the local maximum principle warranted by
construction of the limitation process).

mesh error(h) ord(h) error(u) ord(u)

32× 32 3.61 10−3 / 2.93 10−1 /
64× 64 1.15 10−3 1.65 1.14 10−1 1.36

128× 128 2.58 10−4 2.16 4.06 10−2 1.49
256× 256 5.85 10−5 2.14 1.49 10−2 1.45
512× 512 1.53 10−5 1.93 4.67 10−3 1.68

Table 1. Measured numerical errors for the travelling vortex – Discrete L1-norm of the
difference between the numerical and exact solution at t = 0.8, for the height and the
velocity, and corresponding order of convergence.

mesh error(h) ord(h) error(u) ord(u)

32× 32 8.04 10−3 / 6.55 10−1 /
64× 64 5.56 10−3 0.53 4.84 10−1 0.44

128× 128 3.53 10−3 0.66 3.22 10−1 0.59
256× 256 2.08 10−3 0.76 1.96 10−1 0.72
512× 512 1.15 10−3 0.85 1.16 10−1 0.76

Table 2. Measured numerical errors for the travelling vortex with the first order scheme -
Discrete L1-norm of the difference between the numerical and exact solution at t = 0.8, for
the height and the velocity, and corresponding order of convergence.
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mesh error(h) error(u)

32× 32 2.06 10−3 2.33 10−1

64× 64 1.37 10−3 1.18 10−1

128× 128 1.24 10−3 8.50 10−2

256× 256 1.26 10−3 6.16 10−2

512× 512 1.56 10−3 4.85 10−2

Table 3. Measured numerical errors for the travelling vortex with the segregated scheme -
Discrete L1-norm of the difference between the numerical and exact solution at t = 0.8, for
the height and the velocity.

6.2. A Riemann problem

We now turn to a one-dimensional shock solution, corresponding to a Riemann problem posed over
Ω = (0, 1). The initial height is h = 1 if x < 0.5 and h = 0.2 otherwise, and the topography z is set to zero
over the computational domain; the fluid is initially at rest. The solution consists in a 1-rarefaction wave
and a 2-shock.

We plot on Figure 3 and Figure 4 the results obtained a t = 0.1 with the second-order scheme, the
segregated scheme and the first-order scheme. The space step is δx = 1/200 and the time step is chosen
as δt = δx/10, which corresponds to a CFL number lower than 0.5 with respect to the waves celerity (the
maximal speed of sound is close to 3 and the maximal velocity is close to 2). As expected, the first order
scheme is more diffusive than the other ones. As in the previous test, the segregated forward Euler scheme
(with MUSCL fluxes) exhibits some oscillations, which are damped by the Heun time discretization (see the
Figure 4). In this test case, for both the second-order and the segregated scheme, the shock is captured with
only one intermediate cell between the left and the right state.

6.3. A circular dam break problem

The objective of this test-case is to check the capability of the scheme to capture a multi-dimensional
shock solution. The fluid is initially at rest and the height is given by:

h = 2.5 if r < 2.5, h = 0.5 otherwise, with r2 = x2
1 + x2

2.

The computational domain is Ω = (−20, 20)× (−20, 20) and the final time is T = 4.7.

We plot on Figure 5 the results obtained with a 800× 800 uniform mesh, with the second-order scheme.
The time-step is δt = hM/10 (with a maximal velocity in the range of 3.5 and a maximal speed of sound
in the range of 5). In addition, to cure some oscillations (see Figure 7), we add a slight stabilization in the
momentum balance equation which consists in adding to the dicrete momentum equation associated to an
edge σ included in a cell K the following flux through a dual edge ε = Dσ|Dσ′ :

Fstab,σ,ε = ζ hK diam(K)d−1 (uσ − u′σ),

where ζ is a user-defined parameter. Here, ζ = 0.1, which is significantly lower than the diffusion generated
by the use of an upwind scheme in the momentum balance equation; indeed, the upwind scheme may be seen
as the centered one complemented by a diffusion taking the same expression as Fstab,σ,ε with ζ hK replaced
by |Fσ,ε|/2. The interest of this stabilization stems from the fact that the numerical diffusion introduced
in the present family of schemes depends on the material velocity (and not on the waves celerity as, for
instance, in colocated schemes based on Riemann solvers), and is sometimes too low in the zones where
the fluid is almost at rest [22]. Note that, as a counterpart, the scheme does not become overdiffusive for
low-Mach number flows. For the same computation, we give on Figure 6 the height and the radial velocity
along the axis x2 = 0 (i.e. the first component of the velocity) at different times.
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Figure 3. Riemann problem. Top: flow height – Bottom: velocity.

This computation is also used as ”reference computation” on Figure 7, where we compare the results
obtained at t = 3T/5 with a 200 × 200 mesh with the second-order scheme, the second-order scheme with
stabilization and the first-order scheme. This latter is significantly more diffusive, and we observe how
the stabilization (even if added to the momentum balance only and not on the mass balance) damps the
oscillations obtained with the second-order scheme for both the flow height and the velocity.

6.4. A so-called partial dam-break problem

We now turn to a test consisting in a partial dam-break problem with reflection phenomena, and with
a non-flat bathymetry. In this test, the computational domain is Ω = (0, 200) × (0, 200) \ Ωw with Ωw =
(95, 105)× (0, 95)∪ (95, 105)× (170, 200). The fluid is supposed to be initially at rest, the initial water height
is h = 10 for x1 ≤ 100 and h = 5− 0.04 (x1 − 100) otherwise, and the bathymetry is z = 0 if x1 ≤ 100 and
z = 0.04 (x1−100) otherwise. A zero normal velocity is prescribed at all the boundaries of the computational
domain. The computation is performed with a mesh obtained from a 1000× 1000 regular grid by removing
the cells included in Ωw. The time step is δt = δM/40 (the maximal speed of sound and the maximal velocity
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Figure 4. Riemann problem. Details of the flow height.

are both close to 10). A stabilization with ζ = 0.25 (so two orders of magnitude lower than the artificial
viscosity generated by the upwind scheme in high momentum zones) is added to damp oscillations appearing
in the zones at rest, where no numerical diffusion is generated by our schemes. Results obtained at t = 20
with the first order in time and space and the present scheme are compared on Figure 8. One can observe
that the second-order scheme is clearly less diffusive. In addition, these results illustrate the capacity of the
staggered scheme to deal with reflection conditions by simply imposing the normal velocity to the boundary
at zero.

6.5. Uniform circular motion in a paraboloid

We address in this section a classical test which admits a closed-form solution and corresponds to the
uniform rotation of a drop of liquid on a paraboloid-shaped support. The solution is very regular (at a given
time, the velocity field is constant and h + z is affine outside the dry zones), and the essential interest of
this test is to check whether the scheme is able to cope with dry zones, i.e. zones where the height is zero
(in the continuous setting) or very close to zero, as we shall use numerically. The computational domain is
Ω = (0, L)× (0, L) and the topography is given by

z = −h0

a2

(
a2 − (x− L

2
)2 − (y − L

2
)2
)
,
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with h0 and a parameters which are given below. The height is:

h = max(0, h̄) with h̄ = η
h0

a2

(
2 (x− L

2
) cos(ωt) + 2(y − L

2
) sin(ωt)− η

)
− z,

with η a parameter and ω (the angular rotation velocity of the drop) given by

ω =
(2gh0)1/2

a
.

Finally, the velocity is

u = η ω

[
− sin(ωt)
cos(ω)t

]
.

The computation is run up to T = 6π/ω, so the drop is supposed to perform 3 turns and to lie at the final
time at its initial position. The parameters are fixed here to L = 4, h0 = 0.1, a = 1 and η = 0.5.

For numerical tests, we bound h from below by 10−8, i.e. we set h = max(10−8, h̄), in particular to avoid
divisions by zero in the averaging steps of the Heun scheme (Equations (21e) and (21f)). The computation
are performed with a uniform 100×100 mesh, with δt = δM/16, without changing anything to the numerical
fluxes to cope with dry zones. This is clearly dangerous, since a non-upwind approximation of the water
height at a face separating two cells with a large ratio of water height may lead to a huge outflow mass flux
in view of the cell mass inventory (or, in other words, a very large CFL number). This probably explains
the rather small time step used here (the CFL number with repect to the celerity of the fastest waves is in
the range of 1/8); the first-order scheme, which uses upwind fluxes, works with time steps four times larger.
This problem would be probably cured by a more careful limitation of the mass fluxes outward an almost
dry cell.

Results obtained with the first order, the segregated and the second order scheme at t = 6π/ω are plotted
on Figure 9. All schemes give good results, which, for the first-order scheme, is probably due to the regularity
of the solution. For the momentum, one observes that the second-order scheme is less accurate than the
other ones; this seems to be due to the time-stepping procedure, which perhaps generates some diffusion at
the interface between dry and wet zones, especially in the last averaging step, since the segregated scheme
is the most accurate one (and superimposed to the exact solution on Figure 9).

We note that even though we only have a theoretical proof of weak entropy consistency for the first order
in time schemes, the numerical results seem to show that the second order in time scheme also converges to
the entropy weak solution.

Appendix A. Consistency of numerical non linear convection fluxes on
staggered meshes

We recall here some results of [12], which generalise the Lax-Wendroff theorem to multidimensional
staggered meshes. Let us suppose that:

Ω ⊂ Rd, d = 1, 2, 3, T ∈ (0,+∞), (72a)

p ∈ N∗, β ∈ C1(Rp,R), f ∈ C1(Rp,Rd), U ∈ L∞(Ω× (0, T ),Rp), (72b)

and consider the conservative convection operator defined (in the distributional sense) by:

C(U) : Ω× (0, T )→ R,
(x, t) 7→ ∂t(β(U))(x, t) + div(f(U))(x, t). (73)

The following theorem is a straigthforward consequence of [12, Theorem 2.1].
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Theorem A.1 (Weak consistency for a multi-dimensional conservative convection operator). Under the
assumptions (72), let (U (m))m∈N ⊂ L∞(Ω× (0, T ),Rp) be a sequence of functions such that:

∃ Cu ∈ R∗+ : ‖U (m)‖∞ ≤ Cu ∀m ∈ N, (74)

∃ Ū ∈ L∞(Ω× (0, T ),Rp) : ‖U (m) − Ū‖L1(Ω×(0,T ),Rp) → 0 as m→ +∞. (75)

Let (Pm)m∈N be a sequence of polygonal or polyhedral conforming mesh of Ω such that

δ(Pm) = max
P∈Pm

diam(P )→ 0 as m→ +∞.

Let F(m) denote the set of faces (or edges) of the mesh, and for a given polyhedron (or polygon) P ∈ P(m),

let F(m)(P ) be the set of faces (or edges) of P . For m ∈ N, let t
(m)
0 = 0 < t

(m)
1 < . . . < t

(m)
Nm

= T be a

discretization of (0, T ) with δt(m) = t
(m)
k+1 − t

(m)
k → 0 as m → +∞, and consider the discrete convection

operator

C(m)(U (m)) : Ω× (0, T )→ R,

(x, t) 7→ ðt(β(m))nP +
1

|P |
∑

ζ∈F(m)(P )

|ζ|(F (m))nζ · nP,ζ for x ∈ P and t ∈ (tn, tn+1) (76)

with ðt(β(m))nP = 1
δt ((β

(m))n+1
P − (β(m))nP ) and where the families {(β(m))nP , P ∈ P(m), n ∈

[
|0, Nm − 1|

]
} of

real numbers and {(F (m))nζ , ζ ∈ F(m), n ∈
[
|0, Nm − 1|

]
} of real vectors are such that

∑
P∈P(m)

∫
P

|(β(m))0
P − β(U0(x))|dx→ 0 as m→ +∞, with U0 ∈ L∞(Ω,Rp), (77)

Nm−1∑
n=0

∑
P∈P(m)

∫ tn+1

tn

∫
P

|(β(m))nP − β(U (m)(x, t))|dx dt→ 0 as m→ +∞, (78)

Nm−1∑
n=0

∑
P∈P(m)

∫ tn+1

tn

diam(P )

|P |

∫
P

∣∣∣ ∑
ζ∈F(m)

|ζ|
(

(F (m))nζ − f(Um(x, t)
)
· nP,ζ

∣∣∣dx dt→ 0 as m→ +∞. (79)

Let ϕ ∈ C∞c (Ω× [0, t)), then

∫ T

0

∫
Ω

C(m)(U (m))(x, t)ϕ(x, t) dx dt→ −
∫

Ω

β(U0(x))ϕ(x, 0) dx

−
∫ T

0

∫
Ω

(
β(Ū)(x, t)∂tϕ(x, t) + f(Ū)(x, t) · ∇ϕ(x, t)

)
dx dt as m→ +∞. (80)

The next two lemmas are straigthforward consequences of [12, Lemma 2.7 and Lemma 2.8].

Lemma A.2 (Weak consistency, time derivative). Under the assumptions and notations of Theorem A.1,∫ T

0

∫
Ω

ðt(β(m))nPϕ(x, t) dx dt→ −
∫

Ω

β(U0(x))ϕ(x, 0) dx−
∫ T

0

∫
Ω

β(Ū)(x, t)∂tϕ(x, t)dx dt

Lemma A.3 (Weak consistency, space derivative). Under the assumptions and notations of Theorem A.1,∫ T

0

∫
Ω

1

|P |
∑

ζ∈F(m)(P )

|ζ|(F (m))nζ · nP,ζϕ(x, t) dx dt→ −
∫ T

0

∫
Ω

f(Ū)(x, t) · ∇ϕ(x, t)dx dt as m→ +∞.
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Appendix B. Some known technical lemmas

B.1. A result on a finite volume convection operator

We begin with a property of the convection operator C : ρ 7→ ∂t(ρ) + div(ρu); at the continuous level,
this property may be formally obtained as follows (see [22] for the detailed derivation). Let ψ be a regular
function from (0,+∞) to R; then:

ψ′(ρ) C(ρ) = ∂t
(
ψ(ρ)

)
+ div

(
ψ(ρ)u

)
+
(
ρψ′(ρ)− ψ(ρ)

)
divu. (81)

This computation is of course completely formal and only valid for regular functions ρ and u. The following
lemma states a discrete analogue to (81), and its proof follows the formal computation which we just
described.

Lemma B.1. [On the discrete convection operator, [21, Lemma A1]] Let P be a polygonal (resp. polyhedral)
bounded set of R2 (resp. R3), and let E(P ) be the set of its edges (resp. faces). Let ψ be a twice continuously
differentiable function defined over (0,+∞). Let ρ∗P > 0, ρP > 0, δt > 0; consider three families (ρ∗η)η∈E(P ) ⊂
R+ \ {0}, (V ∗η )η∈E(P ) ⊂ R and (F ∗η )η∈E(P ) ⊂ R such that

∀η ∈ E(P ), F ∗η = ρ∗η V
∗
η .

Let RP,δt be defined by:

RP,δt =
[ |P |
δt

(ρP − ρ∗P ) +
∑

η∈E(P )

F ∗η

]
ψ′(ρP )

−
[ |P |
δt

[ψ(ρP )− ψ(ρ∗P )] +
∑

η∈E(P )

ψ(ρ∗η)V ∗η + [ρ∗Pψ
′(ρ∗P )− ψ(ρ∗P )]

∑
η∈E(P )

V ∗η

]
.

Then this quantity may be expressed as follows:

RP,δt =
1

2

|P |
δt

(ρP − ρ∗P )2 ψ′′(ρ
(1)
P )− 1

2

∑
η∈E(P )

V ∗η (ρ∗P − ρ∗η)2 ψ′′(ρ∗η) +
∑

η∈E(P )

V ∗η ρ
∗
η (ρP − ρ∗P )ψ′′(ρ

(2)
P ),

where ρ
(1)
P , ρ

(2)
P ∈

[
|ρP , ρ∗P |

]
and ∀η ∈ E(P ), ρ∗η ∈

[
|ρ∗P , ρ∗η|

]
. We recall that, for a, b ∈ R, we denote by

[
|a, b|

]
the interval

[
|a, b|

]
= {θa+ (1− θ)b, θ ∈ [0, 1]}.

B.2. A result on the space translates

Lemma B.2 (Convergence of the space translates [11, Lemma 4.2]). For a given mesh M, let

θM = max
K∈M

max
σ∈EK

|Dσ|
|K|

.

Let θ > 0 and (M(m))m∈N be a sequence of meshes such that θM(m) ≤ θ for all m ∈ N and limm→+∞ hM(m) =
0. We suppose that the number of faces of a cell K ∈M(m) is bounded by NE, for any m ∈ N. Let ψ ∈ L1(Ω),
let 〈ψ〉K denote the mean value of ψ on a cell K. Then,

lim
m→+∞

∑
σ∈Eint

σ=K|L

|Dσ| |〈ψ〉K − 〈ψ〉L| = 0. (82)
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Figure 5. Circular dam-break problem. Height obtained at t = 0.38, t = 0.705, t = 1.88,
t = 3.76, t = 4.28 and t = T = 4.7 with the stabilized second-order scheme and a 800× 800
mesh. The color range corresponds to the (0.1, 2.5) interval for the first two plots, and to
the (0.1, 1) interval for the last four ones.
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Figure 6. Circular dam-break problem. Height and radial velocity obtained at different
times along the line x2 = 0 with the stabilized second-order scheme and a 800× 800 mesh.

36



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

-20 -15 -10 -5  0  5  10  15  20

he
ig

ht

x

1st order
2nd order

2nd o. + stab
n=800

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

-4 -2  0  2  4

he
ig

ht

x

1st order
2nd order

2nd o. + stab
n=800

Figure 7. Circular dam-break problem. Height obtained at t = 3T/5 with the first-order
scheme and the second-order scheme with and without stabilization, with a 200×200 mesh.
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Figure 8. Partial dam-break flow. Top: MUSCL scheme – Bottom: upwind scheme.
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Figure 9. Circular motion of a drop over a paraboloid-shaped topography. Sum of the
height and the topography, height alone and second component of the momentum along the
y = L/2 line at t = 6π.
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