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WEAK CONSISTENCY OF NON LINEAR CONVECTION OPERATORS ON

STAGGERED MESHES.

APPLICATION TO A QUASI - SECOND ORDER STAGGERED SCHEME

FOR THE TWO-DIMENSIONAL SHALLOW WATER EQUATIONS

T. GALLOUET!, R. HERBIN?, J.-C. LATCHE?, Y. NASSERI* AND N. THERME®

Abstract. In this paper a Lax-Wendroff type result of consistency is given for convection operators
on staggered meshes. It is applied to a class of second order finite volume schemes developed to
obtain approximate solutions of the shallow water equations with bathymetry. These schemes are
based on staggered grids for the space discretization: scalar and vector unknowns are defined on
different meshes. MUSCL-like interpolations for the discrete convection operators in the water
height and momentum equations are performed in order to improve the precision of the scheme.
The time discretization is performed either by a first order segregated forward Euler scheme in
time or by the second order Heun scheme. Both schemes are shown to preserve the water height
positivity under a CFL condition and an important state equilibrium known as the lake at rest.
Using the above mentioned staggered Lax-Wendroff type results, these schemes are shown to be
Lax-consistent with the weak formulation of the continuous equations; besides, the forward Euler
scheme is shown to be consistent with a weak entropy inequality. Numerical results confirm the
efficiency and accuracy of the schemes.
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1. INTRODUCTION

The shallow water equations form a hyperbolic system of two conservation equations (mass and momen-
tum) which models the flow of an incompressible fluid, assuming that the mean vertical height of the fluid is
small compared to the plane scale. It is widely used for the simulation of numerous geophysical phenomena,
such as flow in rivers and coastal areas. For a fluid occupying the space-time domain Q x (0,7"), where
is an open bounded subset of R2 and T > 0, the shallow water equations with bathymetry solve the water
height h and the (vector) velocity of the fluid u = (u1,u2) and read:

Och + div(hu) =0 in Qx(0,7), (1a)
Oi(hu) + div(hu @ u) + Vp+ ghVz =0 in Qx(0,7), (1b)
p= %gh2 in Qx(0,7), (1c)
u-n=0 on 00 x (0,7), (1d)
h(z,0) = ho, u(x,0) = ug in Q. (Le)

where 0, is the partial time derivative, div denotes the spatial divergence operator, g is the standard gravity
constant and z the (given) bathymetry, which is supposed to be regular in this paper. The initial conditions
are hg € L°°(Q) and ug = (uo,1,u0.2) € L>(2,R?) with hg > 0. This system has therefore been intensively
studied, both theoretically and numerically, so that it is impossible to give an exhaustive list of references.
We refer to the books @ and to the more recent books or parts of books and the references
therein. We recall that it is wellknown that if no dry zone exists, the system is strictly hyperbolic. In all
cases, the solution of the system may develop shocks, so that the finite volume method is often preferred
for numerical simulations. Two main approaches are found: one is the colocated approach which is usually
based on some approximate Riemann solver, see e.g. @ and references therein; the other one is based on
a staggered arrangement of the unknowns on the grid, which is quite classical in the hydraulic and ocean
engineering community, see e.g. . These latter staggered schemes have been implemented with an
upwind choice for the convection operators and a forward Euler time discretization and analysed in the case
of one space dimension @7, following the works on the related barotropic Euler equations, see and
references therein. In particular, the weak consistency of the scheme is shown as well as a weak entropy
consistency. Let us recall that if (h,u) is a regular solution of , the following elastic potential energy
balance and kinetic energy balance are obtained by manipulations on the mass and momentum equations:

1 1 1
5t(59h2) + diV(ighzu) + igthivu =0 (2)

1 1
at(§h|u|2) +div(§h|u\2u) +u-Vp+ghu-Vz=0. (3)
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Summing these equations, we obtain an entropy balance equation: 0; E+div® = 0, where the entropy-entropy
flux pair (E, ®) is given by:

1 1 1
E= §h|u|2 + §gh2 + ghz and ® = (E + ighQ)u. (4)

For non regular functions the above manipulations are no longer valid, and the entropy inequality 0;F +
div® < 0 is satisfied in a distributional sense. The weak entropy consistency consists in showing that any
possible limit of the scheme satisfies a weak form of the entropy inequality given in below.

In the case of two space dimensions, the consistency of the upwind scheme with respect to the weak
formulation and and to a weak entropy inequality is stated in [20]; a quasi-second order scheme in time and
space using the second order Heun method in time dependent and a MUSCL-like interpolation in space was
proposed in [14].

Here, we analyse the former schemes both theoretically and numerically. The framework that is developed
here includes three schemes : the first order scheme of [20], the same scheme replacing the upwind choice in
the numerical convection operator by a MUSCL-like procedure, and the quasi second order scheme proposed
in [14]. Generic properties are shown to be preserved, such as the positivity of the water height and the
preservation of the ”lake at rest” steady state. The weak consistency of the schemes is proven thanks to a
generalisation of Lax-Wendroff type result which is given in an appendix; this consistency result is interesting
for its own sake and valid for general convection operators on general colocated or staggered grids in any
space dimension. Furthermore, the two first schemes are shown to be entropy-weak consistent in the sense
that a weak entropy inequality is satisfied by any possible limit of the scheme as the time and space steps
tend to 0, under some CFL condition.

The remainder of the paper is organized as follows: In Section 2 we introduce the space and time dis-
cretization. The resulting approximate solutions have some discrete stability and well balance properties
which are studied in Section Furthermore, under some convergence and boundedness assumptions, the
approximate solutions are shown in Section to converge to a weak solution of . This proof of these esults
heavily relies on the general Lax-Wendroff consistency lemma which is given in the appendix [A]In Section [5]
we consider the first order time discretization and show that any possible limit of the scheme satifies a weak
entropy inequality, again using the consistency result of the appendix. Numerical results comparing the first
order scheme of [20], the same scheme replacing the upwind choice in the numerical convection operator
by a MUSCL-like procedure, and the quasi second order scheme proposed in [14]are presented in Section
[(l Finally, the appendix [A] contains the general consistency result for a nonlinear convection operator on
general meshes with a staggered arrangement of the unknowns, which generalizes the result obtained in [12],
while the appendix |B| contains some technical lemmas which were proved formerly and which are recalled
for the sake of completeness.

2. SPACE AND TIME DISCRETIZATION

2.1. Definitions and notations

We concentrate on the MAC discretization in space, see [17|18] for some seminal papers and [13] for the
convergence analysis of the scheme applied to the incompressible Navier-Stokes equations. This scheme is
also widely used by the hydrologist and known as the Arakawa scheme [2].

Let Q be a connected subset of R? consisting in a union of rectangles whose edges are assumed to be
orthogonal to the canonical basis vectors, denoted by (e(!), e(?)).

Definition 2.1 (MAC discretization). A discretization (M, €) of  with a staggered rectangular grid (or
MAC grid), is defined by:

— A primal mesh M which consists in a conforming structured, possibly non uniform, rectangular grid
of Q. A generic cell of this grid is denoted by K, and its mass center by xx. The scalar unknowns
(water height and pressure) are associated to this mesh.

— A set € of all edges of the mesh, with €& = Epp U Eext, where Eiyy (resp. Eext) are the edges of € that
lie in the interior (resp. on the boundary) of the domain. The set of edges that are orthogonal to el
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is denoted by ), for i € [1,2]. We then have el = 81(;1 U 85;'2“ where 81(;1 (resp. Sg()t) are the edges
of €% that lie in the interior (resp. on the boundary) of the domain.
For o € Eint, we write 0 = K|L if 0 = 0K NOL. A dual cell D, associated to an edge o € € is
defined as follows:
-if o = K|L € &y then D, = Dk ,UDy, ,, where Dg , (vesp. Dy, ) is the half-part of K (resp.
L) adjacent to o (see Fig. [1));
- if 0 € Ecxt is adjacent to the cell K, then D, = Dk ;.
For each dimension ¢ = 1,2, the domain 2 can also be split up in dual cells: 2 = ers(i)ﬁg, 1€ ﬂl, QH ;
the i*" grid is refered to as the i*" dual mesh; it is associated to the i*" velocity component, in a sense
which is clarified below. The set of the edges of the i*" dual mesh is denoted by EZ (note that these
edges may be non-orthogonal to e(i)); the set El is decomposed into the internal and boundary edges:
€ =€ UED.
denote by D, the cell associated to a dual edge € € € defined as follows:
-ife=olo’ € Eint then D, = D, .U D,/ ¢, where D, . (resp. D, ) is the half-part of D, (resp.
D,/) adjacent to € (see Fig. [I));
- if € € €% is adjacent to the cell D,, then D, = D,e.

The dual edge separating two duals cells D, and D, is denoted by € = o|o’. We

In order to define the scheme, we need some additional notations. The set of edges of a primal cell K
and of a dual cell D, are denoted by &(K) C € and &(D,) respectively; note that &(D,) C &; if o € £,
For o € &, we denote by x, the mass center of o. The vector nx , stands for the unit normal vector to o
outward K. In some cases, we need to specify the orientation of various geometrical entities with respect to
the axis: .

- aprimal cell K is denoted K = [o0”] if 0,0’ € € (K) for some i € [1,2] are such that (g —x5)-eD) >
0.
' . . N ~__$ . .
- wewrite c = K|Lifo € el o= K|L and zgxf - ed > 0 for some i € ﬂ1,2ﬂ;

- the dual edge € separating D, and D, is written € = oo’ if z 2, - e > 0 for some i € ﬂl, 2ﬂ.

o,€

NK,o Dk o
—

= K|L
o \ I

i n
1

1 —
1

1 e=o|o
1

1

1

L

o =L|M

L

~

K D,

FIGURE 1. Notations for the prima and dual meshes (in two space dimensions, for the first
component of the velocity).

The size dp¢ of the mesh and its regularity 0y are defined by:

Do,
Oy = max diam(K), and Oy = max max ||K|| (5)
where | - | stands for the one (or two) dimensional measure of a subset of R (or R?). Note that in the

rectangular case that is considered here, the regularity parameter 6y is also equal to:

1 )
O = 5(1 —|—max{||0,||, (0,0") € 8(2)2, 1= 1,2}.
o

The discrete velocity unknowns are associated to the velocity cells and are denoted by (¢is)gce@, @ € HL 2ﬂ ,
while the discrete scalar unknowns (water height and pressure) are associated to the primal cells and are
denoted respectively by (hg)xenm and (px)rkem-
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Let us consider a uniform discretisation 0 = tgp < t; < -+ < ty = T of the time interval (0,7"), and let
0t =tp41 —ty for n =0,1,--- , N — 1 be the (constant, for the sake of simplicity) time step.

Here we present two schemes: a first order in time segregated scheme using the forward Euler scheme and
the second order in time Heun scheme. Both schemes use a MUSCL-like technique for the computation of
the numerical flux, see |27], so that they are quasi second-order in space.

2.2. The segregated forward Euler scheme

We propose here a first order in time segregated discretisation and MAC discretization in space of the
system ; the scheme is written in compact form as follows:

Initialisation: ud = ! / u;o(x) de, h¥ = L/ ho(z) dz, p° = }g(hO)Q. (6a)
1Ds| Jp, K| Jk 2
For 0 <n < N —1:solve for A"t p"*! and u"*! = (u?“)i:l,g :
O:ht +divi (h"u™) =0, VKeM (6b)
P = g, (60)
0(h ws)2 ™ + divp, (R u™ull) + Oyp™ T + g hiE 0,2 = 0,Vo € € i € [1,2], (6d)

where the different discrete terms and operators introduced here are now defined.

Discrete time derivative - In the sequel, we shall denote by d,v"*! the discrete forward time derivative of
a given discrete function of time v, i.e.:

Un—i—l — "

B! = (7)

Discrete divergence and gradient operators - The discrete divergence operator on the primal mesh denoted
by divg is defined as follows:

1

Z lo| Fo-nks, with Fo =h, vy, with u, = 44 e forocee®, je HLQH, (8)
ce&(K)

and h, is approximated by the MUSCL-like interpolation technique with respect to u.; in the subsequent
analysis, we do not need to have an explicit formula for h,, but we need the following conditions to be
satisfied:

VK eM, Vo=KI|L € &, (K),
— HAKVU S [O, 1] the = )\K,o-hK —+ (1 — AK,a)hL if F, "NK.o > 0. (9)

(10)

K .

_ K K . _ _ Qs (h’K - th) if Us NK o > Oa
Ja; €l0,]]and M;* €M : hy — hg = { X (hygie — hic) otherwise,
By (9). ho is a convex combination of hx and hp, and if u, - ng , < 0, the cell MX in can be chosen
as L and ax s as 1 — Ag,,. In the case of a discrete divergence free velocity field u, this assumption ensures
that h?ﬁl is a convex combination of the values h’% and (h%,) MeN,, ((K), Where Ny (K) denotes the set of
cells M satisfying (10), see [27, Lemma 3.1], for any structured or unstructured mesh.
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Note that if K = [0’0] with ¢/ = J|K and 0 = K|L and u, - ng , > 0, the cell MX in Relation can
be chosen as the cell J and the value h, computed using the following limitation procedure:

hg—hK: ’Qb(hL,hK,hJ), where

| =

) — 4 mimmod (G CF (e = i), € e = ). (b = i) = ) >

0, otherwise,
where the limitation parameters (™, (™ are such that ¢*,(~ € [0,2]. Observe that if (* = (= = 1, the
classical minmod limiter (minmod (hz — hi, hx — hy)) is recovered.
A local discrete derivative applied to a discrete scalar field £ (with & = p, h or z) is defined by:

o]
| Do |

—
0,€ = (fL - fK) for o = K|L € Eint- (11)
The above defined discrete divergence and discrete derivatives satisfy the following div-grad duality relation-
ship [13, Lemma 2.4]:

2
Z |K|£Kdvi(hu) + Z Z |Da|haui,o 50§ =0. (12)

KeM i=1,ce)

int

Discrete water height for the bathymetry term — In equation the term 0,z denotes the discrete
derivative (in the sense of (1)) of the piecewise constant function zat = Y- xcp 2(2x) &, that is:

_ ol

—>
=10, (z(xr) — z(xk)) for 0 = K|L € Ejpnt. (13)

Oy2

The value h, . of the water height is defined so as to satisfy:
0o+ ghoe 0o2=0if0,(h+2) =0, Vi=1,2. (14)
This requirement is fulfilled if h, . is centered:

h _ %(hK—FhL) fOrU=K|L€8int, (15)
¢ hx  for o € Eexy N E(K).
Indeed, if hy,. is defined by (15)), since p = 1gh?, one has from the definition of the discrete gradient (1)),
for o = K|L,
1
5017 +g ha,c 602 = 59 |g| | (hK + hL)Esa(h + Z)

and therefore holds, so that the “lake at rest” steady state is preserved, see Lemma below.

Discrete convection operator — The term (h u;)?*! in the discrete time derivative in is defined by

s

(hu)gtt = bt uftt (16a)
1
hp, = B (|DK7,,| hi + |Dy.o| hL), with o = K|L € &, (16b)

where D,, Dk, and Dy, , are defined in Definition
The discrete divergence operator on the dual mesh divp, is given by:
1

divp, (hu;u) = m Z le| Ge - ng e, wWith Ge = Feu; ., (17)

ec€() (D)

where



e the flux F is computed from the primal numerical mass fluxes; following [19] (see also [21], and [1] for
an extension to triangular or quandrangular meshes using low order non-conforming finite element),
it is defined as follows:

1
for e = olo’, € C K, F. i(F +F,), eCK, (left on Figure ) (18a)
1
fore=olo’,e ¢ K,eC TUT, ngﬂ ( |7| Fr + = |T’| F./), (right on Figure[2), (18b)
M o' N
/
0_, 2 & T € T
J K L K o L

FIGURE 2. Notation for the definition of the momentum flux on the dual mesh for the first
component of the velocity- left: e C K - right: e C 7 U 7.

e the value u; ¢ is expressed in terms of the unknowns u; », for o € & by a second order MUSCL-like
interpolation scheme with respect to F¢ - n, . [27]; the values u; , satisfy the following property:

Voee? i=1,2 Ve=olo € &D,),
Uire is a convex combination of Ui,o and Ui,o! - 3/1’0',6 € [Oa 1] P Uje = Hoelio + (1 - :U/a',e)ui,a’ (19)
@ .. _ [ al(uie—uise) if Fe-ngo>0,
JaZ €[0,1] and 77 € &1} U e — Uiy = { a7 (g e — 1y ) oo = (20)

Again note that in the case F - n, . < 0, the edge 77 may be chosen as ¢’.

Let us emphasize that thanks to the definitions (16b|) and the following discrete mass balance version

on the dual mesh holds: |D |

5 (BBt =hp )+ > |l F!nge=0. (21)

e€&(D,)
2.3. A second order in time Heun scheme

We retain here the quasi-second order space discretization which we just set up, but consider now a second
order time discretization using the Heun (or Runge Kutta 2) scheme.

The initialization of the scheme is the same as that of the forward Euler scheme, see , but the n-th
step now reads:

Step n : For ™ and u" = (u]');=1,2 known,

R = p — St divg (b u™), VK eM (22a)
Wt artt = ul, — 6t Fp, (B ul), Vo €&l (22b)
R = R 5t divge (B G, VK e M (22¢)
Rt arit =yttt - st gp, (L arth),  voe el (22d)
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1

hutl = 5 (W + R, VK € M (22¢)
1 i
Wt st = S (Wl + T A, Vo e el (22f)
where
Fp, (h",uf) = divp, (B"u"ul) + g h? . ((0,h") + (3,2)) (23)

and the dual cell values h”Jrl h"Jrl and h”+1 are computed from the corresponding cell values by the
analogue of the formula , SO that they satlsfy a dual mass balance of the type (21 .
The steps (22¢] of the above scheme ) may be replaced by the more compact form

1 -

duh = -3 (divic(h™u") + divie (" @), VK e M (24a)
1 - .

8u(hp, uis)"" = —3 (?Dg(h”,u?) + &”Da(h”“,a?“)), Vo € e, (24D)

where the dual cell value h’f;gl is computed by the formula (16b)) and hence satisfies a dual mass balance of

the type (21)).

3. STABILITY OF THE SCHEMES

The positivity of the water height under a CFL like condition is ensured by both the schemes @ and
; it is a consequence of the property of the MUSCL choice for the interface values. Indeed, the proof
of the positivity in [27, Lemma 3.1] remains valid even if the discrete velocity field is not divergence free, as
is the case here.

Lemma 3.1 (Positivity of the water height). Let n € [0,N — 1], let (h)kem C R} and (ul)sce C R?
be given, and let h’}("’l be computed by the forward Euler scheme, step . Then h"K‘”'1 >0, forall K e M
under the following CFL condition,

2 0t < K] . (25)
> lollug nk,
ce&(K)
If is fullfilled and if furthermore
K
2 5t < K] - , (26)
Z o ||un+ "NMK,o
ce&(K)

then h";'1 computed by the Heun scheme is positive.

Secondly, thanks to the choice for the reconstruction of the water height, the property holds, so
that the co-called ”lake at rest” steady state is preserved by both schemes.

Lemma 3.2 (Steady state "lake at rest”). Let n € HO,N — 1“, C € Ry; let (Wy)kem C R such that
B4 zi = C for all K € M and u = 0 for o € &. Then the solution (W ) ken, (ulTY)pee of the forward
Euler scheme () (resp. Heun scheme ([22)) satisfies Ky + 2 = C for all K € M and u?*! =0 for o € €.

As a consequence of the careful discretisation of the convection term, the segregated forward Euler scheme
satisfies a discrete kinetic energy balance, as stated in the following lemma. The proof of this result is an
easy adaptation of [22] Lemma 3.2].



Lemma 3.3 (Discrete kinetic energy balance, forward Euler scheme). A solution to the scheme @ satisfies
the following equality, fori=1,2, 0 € €M and 0 <n < N —1:

D, 1 n
el ey~ mp, i) 4 2 X0l (Wl)? FY

20t _
c€E()(D,)
+ Dol w1 (@op™ ) + Dol ghytt uil i (0,2) = =Ry, (27)

with

2 2
ho ! = 5g7 Dol MpTH (uigh —uily)” ~ el F& - o (ufe —uily)

1
4,0 26t 2
ee€()(D,)
> e U ong (e — ) (! ).
ec€) (D)

The scheme also satisfies the following potential energy balance.

Lemma 3.4 (Discrete potential balance, forward Euler scheme). Let, for K € M and 0 < n < N the
potential energy be defined by (Ep,)% = 39 (W%)* + ghtzix. A solution to the scheme (6)) satisfies the

following equality, for K € M and 0 <n < N —1:

1
Ou(Ep) i + divic(59(h")*u") + garedivic (B u") + pledivie (u”) = =i, (28)

) " 1 " , . 1 1
with 8By = LB — (B, divi(SorPut) = 30 lol(Sa(hi)? sy -y and
c€&(K)

| K| TKH = 35t g(hKH - hK)2 ~ 3 E lo| g(hg — hK)2 U, " NK o
oceé(K)

+ > olg(hitt = i) bl nko. (29)
c€&(K)

Proof. Applying [22, Lemma Al], (re-stated in Lemmabelow for the sake of completeness), with P = K,
YT %g:c2 , pp = hTIL(H, pp = hi, n=o0, p; =hy and V) = |o|uy - ngk ., and R’}(H | K| ry nHlwe get

that
g6 (hn+1)2+d- g B 2. n n i ny __ thrl hn _i_gi Z | B — B 2 ,n.
2 t\'K IVK(2( ) u )+pK IVK(U’ )_ 26t( ) ‘K| |J ( o K) Uy MK ,o
c€el(K)
1
= D ol = ) bl m,

| | oc€e&(K)
Then, multiplying the discrete mass balance equation by gzk yields

1
K] Z lolg(zx — 20)hou™ -ng o =0
oeE(K)m

Bi(gh2)i + divg (A" 2u) +

Summing the two above equations yields . |

Since the discrete kinetic and potential energies are computed on the dual and primal meshes respectively,

the obtention of a discrete entropy inequality is not straightforward. In [20], a kinetic energy inequality on
9



the primal cell is obtained from the inequality to get a discrete local entropy inequality. Here, however
we proceed otherwise, thanks to a general Lax-Wendroff Lemma for staggered grids (Lemma in the
appendix), which allows to handle each energy inequality on its respective mesh, without any reconstruction,
see Section [ below.

4. WEAK CONSISTENCY OF THE SCHEMES

We now wish to prove the weak consistency of the scheme in the Lax-Wendroff sense, namely to prove
that if a sequence of solutions is controlled in suitable norms and converges to a limit, this latter necessarily
satisfies a weak formulation of the continuous problem.

The pair of functions (h, @) € L' (2% [0,T)) x L' (22 x [0,T))? is a weak solution to the continuous problem
if it satisfies, for any ¢ € C2° (2 x [0,T)) (¢ € C2°(Q x [O,T))Q):

T
/ / (howe +ha V| da ar +/ ho(@) @ (x,0) dz = 0, (30a)
0 Q Q
T _ _ 1 _ _
/ / [hﬁ e+ (ha® @) : Ve + 5 ghidive +gth<p} de dt (30b)
0 Q
—|—/ ho(x) up(x) - p(x,0) de = 0.
Q

A weak solution of is an entropy weak solution if for any nonnegative test function ¢ € C° (Q X
[0,7),Ry):

T
/ /[E’@t(p—F@-ch] dex dt+/E0(:c)<p(m,O) dx >0, (31)
o Jo Q
with
e s . = I
E:§h|u| +§gh + ghz and(I>:(E—|—§gh ).

Before stating the global weak consistency of the schemes @ and , some definitions and assumptions
are needed.

Let (M(™),&(M), cy be a sequence of meshes in the sense of Definition and let (R(™, u(™), oy be
the associated sequence of solutions of the scheme (6])) defined almost everywhere on (€2 x [0, T) by:

N—-1
uM@t) = S ™) i, (@)1, 0,,0)(1), forie [1,2]
n=0 gg(&))(m)

N-—1
(@) = >0 > (W) (@), 0,00 (),

n=0 KeM(m)

where 1 4 is the characteristic function of a given set A, that is L4(y) =1 if y € A, L1 4(y) = 0 otherwise.

Assumed estimates - Some boundedness and compactness assumptions on the sequence of discrete
solutions (h(m), u(m))meN are needed in order to prove the Lax-Wendroff type consistency result. First of
all we assume that h(™) > 0, ¥m € N which can be obtained under uniform versions of the CFL conditions
and , thanks to Lemma Furthermore, we assume that:

— the water height A" and its inverse are uniformly bounded in L>®(Q x (0,T)), i.e. there exists
C’;},[ € R? such that for m € Nand 0 <n < N(m).

* < (W™ <ot vK e M, 32
ch K

10



— the velocity u(™ is also uniformly bounded in L>(2 x (0,7))?, i.e. there exists C* € R* such that
(w™)n| < Cv, Yo eelm. (33)

Theorem 4.1 (Weak consistency of the schemes). Let (M™, &™), cy be a sequence of meshes such that
5t(m) and Ineemy — 0 as m — 400 ; assume that there exists 0 > 0 such that Ongemy < 6 for any m € N (with
Onem) defined by (5)).

Let (h(m),u(m))meN be a sequence of solutions to the scheme @ satisfying and (33)) converging to
(h,@) in L*(2 x (0,T)) x LY (2 x (0,T7))%. Then (h,u) satisfies the weak formulation (30) of the shallow
water equations.

Similarly, if (R, w(™)),, e, (/i\z(m), ﬁ(m))meN are sequences of solutions to the scheme both uniformly
bounded in the sense of and and converging to (h,w) in L'(Q x (0,T)) x L* (2 x (0,T))?, then the
limit (h,w) satisfies (30).

The proof of this theorem is the object of the following paragraphs; it relies on some general consistency
lemmas which generalize the results of [12] to staggered meshes; these results are independent of the problem
at hand and are given in the Appendix [A] The proof of the consistency of the schemes is given in Section
[£1l for the forward Euler time discretization and in Section [£.2] for the Heun time discretization.

Note that because the convergence and boundedness of the approximate solutions are assumed, no CFL
condition is required in Theorem However, recall that a CFL condition is for instance already needed
to show the positivity of the water height, see Lemma

Finally, in Section [£.3] we give some conditions that imply the boundedness and convergence of the
sequence (ﬁ(m), ﬁ(m))meN if the boundedness and convergence of the sequence (h(™) u(™),, cy is assumed.
One of this condition is a rather strong CFL-like condition.

4.1. Proof of consistency of the forward Euler MAC scheme

4.1.1. Consistency, mass equation

Under the assumptions of Theorem |4 the alm here is to prove that the limit (h,u) of the scheme (6)
satisfies the weak form of the mass equatlon In order to do so, we apply the consistency result of
Lemma in the appendix A, with U = (h,u)7 ﬁ(U) =h, f(U) = hu, P = M) §0m) = g(m) and

em (UM™): Qx(0,T)—R,
(,t) > 3 (W™ 4 divge (B™)u™) for 2 € K and t € (ty,tn11) (34)

We first note that the assumptions and imply that holds. Furthermore, the assumption
of Theorem that (h(™), u(™),, ey is a sequence of solutions to the scheme (6] converging to (h, @) in
LY(Q x (0,T)) x L*(Q x (0,T))? implies that holds.

By the initialisation of the scheme, it is clear that

> [ 1 = ha(e)lde =0,

KeM(m)

so that the assumption is satisfied.
Since for any n € [0, N,,, — 1] and K € M, one has (U™ (x,t)) = h} for any (z,t) € K X [tat,4+1) and
(85 = b

Ny —1

n+1
>y / /|h<m> — W™ (x,t))|dx dt = 0,

n=0 KeM(m)
11



and therefore the assumption is also clearly satisfied. Now (FW)g = hZ2u? and, because the velocity
components are piecewise constant on different grids,

FU™ (@, 1)) = (LU (2,1)), f2(U™ (2,1))), with

fiU™ (@, 1)) = {

hpu?, if € € Di,,

. with K = [00'] and where o and o’ L e,
hcug 5 if € € Dk o,

Forx € K, 0 = K|L and t € [t,tpt1),

() = s U™ (@) nico

- \ (s — Bieu + hus — heu(@, 1)) - nico

< C"lhg — hy

Uy — Uy |-

Thanks to Lemma ( |12, Lemma 4.2], recalled in Lemma in the appendix below) we have

S [ et )

n=0 KeM(m)

dx dt — 0 as m — +oo.

so that the assumption is also satisfied.
Hence, by Lemma

T
voecr@x 1), [ [ U ™)ple.t) do dt -
0 Q

f/Qho(w) o(,0) dm/OT/Q[B(a:,t) Brp(z,t) + hz, t)a(z, t) -Vgp(a:,t)}d:c dt as m — +oo.  (35)

From and , we conclude that the limit (h,u) of the approximate solutions defined by the forward
Euler scheme () satisfies (30a)).

4.1.2. Consistency, momentum equation

Let o = (¢1, -+ ,04) € (CZ(Q x [0,7)))¢ be a test function and let cpﬁj;l denote the mean value of ¢;
over 0 X (tp,tnt+1). Multiplying the equation by |Dy|? !, summing the result over o € £®) and then

1,0 )

summing over n € ﬂO,N — lﬂ and ¢ = 1,2 yields:

ZQ&"J) + Q57 + Q5 + Q) = (36)
=1
with (dropping the exponents (m) in the summations for the sake of simplicity)
”m_l
(m) Z 5t(m) Z |D,| ,(h Ui)Z—H, (37)
ce(Em)()
o = Z ot N D divp, (B uu el (38)
ce(Em)H)
”m_l
Nl Z 5t N D] Bp" ol (39)
ce(Em)()
Vn_l
(m) Z ot(m Z |Do|g bt 042 cp"“. (40)

ce(Em) @)

12



The nonlinear convection operator In order to study the limit of the discrete non linear convection
operator defined by Q(m) Q1 .+ Q2 ./, we apply Lemmaw1th U= (h,u), B(U) = hu;, f(U) = huu;,
with P(™) the set of dual cells associated with u; (that is with the cells corresponding to the vertical edges

for 4 = 1 and the horizontal edges for i = 2), with § = gl(m) and with the dual fluxes (G)” defined by (Ig).
The discrete non linear convection operator thus reads

[Con U ™))i = 2% (0,T) 5 R,
(x,t) = 0 (huy)" ™ — divp, (h"u;u™) for € € Dy and t € (ty,tni1) (41)

(again dropping the exponents (m) for the sake of simplicity).
Again, by the initialisation of the scheme and by the definition of (hu)?ﬁ (see (|16)), it is clear that

Ny —1 Lyt
3 / [(h)? , —ho(@)uio(@))dz = 0 and > Z/ /|(hu)za—h(w,t)ui(w,t)|dwdt:0,i:172.
Geg{m) Do n=0 gcg&(m) tn D,

so that the assumptions and are satisfied.
In order to show that the assumption is satisfied, we need to show that

dx dt — 0

((G(m))l1 — h(z, t)u;(x, t)u(z, t)) .

Sy [

n=0 geg(my tn ° ceEm

as m — +oo. (42)
Let us then estimate, for any € € EE”“, n € [0,N, — 1] and x € D, the quantity Y defined by:

Yo (a) = ]((GW)Q - h(:c,t)ui(m,t)u(:c,t)) T

Let L be the (primal) cell such that o = K|L.

(1) If € = o’|o C K, then (G"™) is defined by (I8a). By the triangular inequality and thanks to the

€

assumptions @ . ., and ., we get that

—_

Y () < = (C")?|hg — hp| + = (cu) \hg — hy| + C"C%uy; — ugr i|, YV € Dy,

€

[\

where J is the (primal) cell such that ¢’ = J| K, see Figure [2| left.
(2) If € C K, then (G")" is defined by (I85). Again by the triangular inequality and thanks to the

assumptions @, ,, and , we get that

Y'(z) <

( ) |hK hM| + - (Cu) ‘hK hN| + ChC’”|uM ug/,i|, Ve € D,

N)M—l

where M and N are the two (primal) cells such that 7 = K|M and 7/ = L|N, as depicted on Figure
right.

Now recall that the sequence of meshes is assumed to be regular in the sense that (™) < @ with 6(™) defined
by ; therefore, since the sequences h(™) and w("™ converge in L' as m tends to +00, we may again apply
13



Lemma below, to get that holds. Hence, owing to Lemma we get that

T
QM = Qi 4 Q) = /O /Q (U™ o, ) de dt -

/ ! /Q [, )i, 1) Do 1) + e, s, (e 1) - Veplar, )] dee

0

+/ ho(x)u; o(x) o(x,0) de as m — +o0. (43)
Q

Pressure gradient and bathymetry. Let us now study the terms Qg?) and ng)rz) defined by and
(40). By the definition of 0,p and by conservativity, we have (again dropping the exponents (m))

2
ZQ:(}’ - Z st(m) Z Z pn+1/ e ng,
i=1

KeM(m) ce& (K

/ / (z,t) divep(x,t) de dt

Since the sequence (h(™)m € N is bounded in L>(2 x (0,7')) and converges to hin LY(Q x (0,T)), the
sequence (p{™),,en converges to p = $gh? in L}(Q x (0,T)) as m — +oo. Hence we get

2 T
ZQ&L) — / /ﬁ(m,t) divep(x,t) de dt as m — +o0. (44)
i 0o Jao

Let us now turn to the bathymetry term QZ’Z), which may be written

T
Q) = / / R (2,80 2(2)3™ (2, 1) da dt,
0 Q

where
e the function 2(™ : Q x (0,T) — R is defined by h(x,t) = hptt = (R + Ryt for @ € D, and
t € (tn,tny1); the sequence (h(™),,cy is therefore bounded in L (2 x (0,T)) and converges to h in
LY(Q x (0,T));
e the function 3™ : Q x (0,7) — R is defined by 3\"™ (z, 1) = @"*! for & € Dy and t € (ty, tns1); by

the regularity of ¢, the sequence (gEEm))meN converges to ; uniformly.
e by (13), the function 5( )2:Q = R is defined by 5(m)z = Zoe&m Ijljl‘( (xr) — z(xx))lp,. Since
K|L

z is a regular function, the sequence of functions (5§m) )meN converges uniformly to the derivative
0;z of z with respect to the i-th variable as m — +o00.

Hence

(m) %/ / x,t)0;z(x)pi(x, t) de dt as m — co. (45)

Limit of the momentum equation. Passing to the limit in as m — 400, using 44)) and ( .,
we get that the limit (h, @) of the approximate solutions deﬁned by the forward Euler scheme (6) satisfies
(30bf), which concludes first part of the proof of Theorem

4.2. Proof of the weak consistency of the Heun scheme

4.2.1. Mass balance

Under the assumptions of Theorem the aim here is to prove that the limit (h, ) of the scheme (22a))-
(221]) satisfies the weak form of the mass equation (30a)). In order to do so, we consider the equivalent mass
14



equation . Because of the structure of the scheme, we cannot use here Lemma straightforwardly
as in the case of the forward Euler scheme. We apply Lemma with U = (h,u), B(U) = h, f(U) = hu,
Pm) = M), Fm) = &M and then Lemma m twice: once with U = (h,u), f(U) = hu, P =
Mm) g(m) — e(m) and then with U = (/l%, u), f(U) = hai. Thanks to the arguments developed in Section
[411] it is easy to check that in each case, the assumptions of the lemmas are satisfied, so that we can
conclude that (h,u) satisfies ([30a]).

4.2.2. Momentum balance

Still under the assumptions of Theorem now prove that the limit (A, @) of the scheme ([22a)-(221)

satisfies the weak form of the mass equation (30b)). Again we consider the equivalent momentum equation
(24b)). Multiplying the equation (24b]) by \Da|gp?;l, summing the result over ¢ € &% and then summing
over n € HO,N - lﬂ and ¢ = 1,2 yields:

m 1 m S(m m S(m m ~(m
[Qg,i) + 5( g,i) + Qg,i) + Q:(’,,i) + Q:(’,,i)) + Qz(i,i) + Qi,i))} =0, (46)
i=1
where Qgi’;), ceey 4(:3) are defined by —, and @g?z), @é?, AZ?) are defined by —, replacing the

unknowns h, p, u by /f;,f)\, u.

Again, because of the structure of the scheme, we cannot use Lemma directly: we use Lemma
for the time derivative term QYZ) and Lemma for the terms ng;) and @g?), with (™) the set of dual
cells associated with w; (that is with the vertical edges for ¢ = 1 and the horizontal edges for ¢ = 2), with
F = Egm) and with the dual fluxes (G)” defined by (I8). We first apply Lemma with U = (h,u),
B(U) = hu;, f(U) = huu;, and then Lemma once with U = (h,u), 8(U) = hu;, f(U) = huu,; and then
with U = (h, @), B(U) = hii;, f(U) = haid;. Thanks to the arguments developed in Section it is easy
to check that in each case, the assumptions of the lemmas are satisfied, so that

1

T
QY+ 55+ @) = [ [ e (e, dete.t) + e il alat) - Vot 6] do d

+/ ho(x)u; o(x) p(x,0) de as m — +oo0.  (47)
Q

The proof of convergence of the pressure gradient and bathymetry terms QE:Z)), QZ’Z), Ag?z)) and C/Q\ZTZ)

follow the exact same lines as that of the terms Qgrf)) and Q4 in Section [4.1.20 Hence

2 T

1 m ~(m m ~(m _ . T
Z§ (Qg’i) + Qg’i) + QZ(M) + Qfm)) — / / (p(:at) divep(x,t) + h(x,t)Vz(x) - (p(w,t)) dx dt
- 0 Ja

i=1

as m — +oo. (48)

Therefore, owing to and 7 we may pass to the limit in and conclude that (h,u) satisfies
(B0b)). This concludes the proof of Theorem

4.3. A sufficient condition for the convergence of the intermediate solutions

In Theorem we assumed the boundedness and convergence of both sequences (h(™) u(™) and
(h(m)7@(m)). In fact, under a restricted CFL condition, we may prove that the convergence and bound-
edness of the sequence (h("™) u("™)) implies the convergence and boundedness of the sequence (h(™), (™).

Lemma 4.2 (Bound on the intermediate step, Heun scheme). Let n € HO,N — lﬂ, let (Wi )kem C RYL
and (u?)yece C RY be given. Assume that there exists ¢ € (0,1) such that the following restricted CFL-like
15



condition holds (note that it slightly more restrictive than )

20t <( K] for all K € M. (49)
Y lollug - nxl
oc€&(K)
Let C3%, C% and C%; € R*. be such that
ot < O3t mln lo|, (50a)
—— < W <O, Vn € [0,N —1],VK € M, (50b)
M
max [ul| < Cye,Vn € J0,N —1]. (50c¢)

Then the solutions (ﬁ’}(+1)KeM (u,)see of the Heun steps (22al)-(22b)) satisfy:

1-— ~

hC < B <20% VK €M, (51a)
CM
5t (Ch)”
1-¢

Proof. From (22a) and by the definition of the discrete divergence, we have

@t < Cho+ O

(4(C5002 + 9(Ch + 12l1x) ). Vo € &, (51b)

RO = hh — Z (Wi o) hy + Z " with ng—5t|K| Uy MK o
ce&(K) ce&(K)

Thanks to the condition (I0), 3 aX € [0,1] and MX € M such that A2 — % = o (R — A%, ) if Wi o = 0,
and therefore
hy = hi(1+07') — ag bl

o

Hence

R+l = (1 - 3 WE) T+ ) Y @) TR Y el (Wi ) .
o€l (K) occ&(K) oce&(K)
Therefore, thanks to the condition (49, we get (51a).
Let us now prove (51b)); from (22b)) we have

. 1 ot 5t|a| ghy

n+1 n n n n n

Ui n+1(" -7 71D, > P ) - 1D, et (ML~ P+ 2 = 2
hp ol ot D) hp"

S G UL RS R ) ST S
D, ec&(D,) e€&(Dy)
_ ot|o| ghs
Do | hg“(

TIL(+ZL—ZK).

Since the values h"‘|r1 and h% are computed by an equivalent formula to ), they satisfy a discrete dual
mass balance of the type (21 ., and therefore:

1 ot 5t|0| ghy .

Sntl _

ugy —uZU—AnH Dy Z €| F? - mp e (U?’E—u?’g) |D | =~ (h Tf(—kzL—zK).
hp: | E D) hpt
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Thanks to the CFL condition (50al) and to the bounds on 47 and ﬁ%tl for all o (recall that for o = K|L,

h'5t s a convex combination of A%t and A7)

)

1| ot 4C H(CEN2(Ch)?
_ F". e no_,mn < M M M .
hn+1 |Da'| Z |6| € n ’ (UZ,E ul,a’) = 1 —C
D
<4 e€&(D,)
Furthermore, since 2hy . = h + h} and agina owing to (50a)),
6t|0| gh’gﬁ n n ot (C’Jf\L/[)2 n C?V%(Cji\af)2g h
D] e (W 20— ) < Ol 2 (mase (i) + o (21c) ) < 2EFEL O+ el o)
Therefore,
o 406 t(c«u )2(Ch )2 Cét (Ch )29
7537 < Og + =20 4 0 IOt el ).
which concludes the proof that (51b]) holds. O

Lemma 4.3 (L! convergence of the intermediate step, Heun scheme). Let (M(m), 8(m))meN be a sequence
of meshes such that 5t™ and Sygmy — 0 as m — 400 ; assume that (M), ™) is uniformly regular,
in the sense that there exists 6 > 0 such that Opmy < 0 for any m € N (with Oyem) defined by )

Let (h(m),u(m))meN be a sequence of solutions to the scheme @ satisfying and converging to
(h, @) in L' (Q x (0,T)) x L*(Q x (0,T))2.

Assume that there exists ¢ € (0,1) such that the following restricted CFL-like condition holds:

LY
Y lollw™)g nkl

c€&(K)

2 6t < ¢ , VK e M ¥m € N, (52)

and assume that there exists C°t € R% not depending on m such that

5tm < ¢t min) lo],Vm € N. (53)

oce&lm

Then there exists 6’“, Cch e R such that

1 . N
an < (R < Ot YK e MM, (54a)
@™\ < C*, Voeem. (54b)
Furthermore, the sequence (ﬁ(m),ﬁ(m))meN converges to (h,w) in L'(2 x (0,7)) x L*(Q x (0,7))2.

Proof. Under the above assumptions, the hypotheses (49)) and hold uniformly with respect to m, so
that the bounds are a direct consequence of Lemma
Now, from equation (22a)), we get that

~ St St
hrtl g = TR > loful-nko (b —hj) — ] > o b ulnk., VK € MU,
ce&(K) oce&(K)

For K € M) let us denote by o, and o, the edges of K in the direction i € [1,2], so that

_—
K = [0k 0% ] for i € [1,2]; noting that ng s, = —ng o, and that |og ;| = |0 |, and owing to 32,
we get that

d
> lolh ul ke <CMY lokllul,,, — 'y |, VK € M,
oc&(K) i=1
17




Since h, is a convex combination of hx and hr, with K and L such that o = K|L, we get:

- §t(m)

il < 2 TRyl ol 10 - \+0h2‘”|m o = W | VI €20,
ce&(K) ’
o=K|L

§t(m)
Noting that implies that |o| <1 and thanks to the condition , we thus get that there exists

| K
C € R, depending on C", C*, C%* such that

d

B =Bl < CL Y0 W= Bl + D [l — ey 1], VE € M)

ceE(K) i=1
oc=K|L

Multiplying this latter inequality by |K|6t(™) and summing over K € M(™) and n € HO,NH, using the
uniform regularity of the mesh and owing again to the convergence result on the space translates given in
Lemma we conclude that

T
/ / [h™) — h(™)| d dt — 0 as m — +oo.
0o Ja

Let us now turn to the intermediate velocities. Owing to , and since u satisfies a dual mass
balance of the form (21]), we have for o = K|L € (8(1))(’”) i€ ﬂl 2]:

int

n N n A'I’L n n 5t n n n n
h +1( z :1 ul’,a) = 7(th1 - hD(,)ui,o - m Z Fe : no,eui,s — 0t gho,c((afh ) + (802’))
7' ce&(Dy)
ot el ., n n otle| ., n n
- _ Z [ D || F’ .nc,’e(ui’6 — uivg) + D |9ha,c(hL —hix + 20 — zK)]
cc&(D,) 7

Hence, owing to , , and to the fact that for € = o|o’, u?*, is a convex combination of u?, and

?,€

u;' s, there exists C eRy dependlng only on C", C*, C% and g such that
@~ < O[3 fuly —ul |+ IhE — B+ [ — 2], for i =1,2
e€&(D,)

e=olo’

Multiplying this latter inequality by |DU|5t(m) and summing over o € M) and n € HO,N ﬂ, using the
uniform regularity of the mesh and again thanks to Lemma [B.2] we conclude that

T
/ / |ﬁgm) 7ul(m)| da dt — 0 as m — +o0, for i=1,2.
o Jo

5. WEAK ENTROPY CONSISTENCY OF THE FORWARD EULER- MAC SCHEME

Theorem 5.1 (Weak entropy consistency of the forward Euler MAC scheme). Let (M) (M), cy be a

sequence of meshes such that 5™ and Sypmy — 0 as m — 400 ; assume that there exists 6 > 0 such that

Oy < 0 for any m € N (with Oypony defined by () ). Let (R, (™), e be a sequence of solutions to the
18



scheme (6) converging to (h,w) in L'(Q x (0,T)) x L*(Q x (0,T))?, such that (32), [B3) hold. Assume the
following CFL-like condition:

n+1
5t(m) < |DU|hD(,

) ldFn

ecED,
Flng >0

(55)

Assume furthermore that

ICpve €Ry = Y IK|[(R) R = (AUl > KA = (W) k| < Cyi Vm €N, (56a)
Kemm) Kemm)
Np—1

§t(m)
Z — 0 as m = +00., (56b)
=0

inf g cppom) diam(K)

and that the coefficients Ak o and g in @D and satisfy:

1
)\K,O' S [5,1] . ifFU "NMKo > 0, (57)

1
Po,e € [5, 1]: if Fy -ng,o > 0. (58)

Then (h,w) satisfies the entropy inequality (31)).

Note also that the condition @D implies that

VK eM, Vo =K|L € &y (K) with K such that F, - ng , >0,

1 1 1
ho = §<th + hL) + ()\K,O' - 5)(]7‘1( - hL)’ with )\K)U - 5 > 0. (59)

Also Note that the condition is rather restrictive. Indeed, it is satisfied by the usual two slopes
minmod limiter [15] only in the case of a uniform Cartesian mesh [27], and it is not satisfied by the three
slopes minmod limiter.

Proof. Let ¢ € C(Q x [0,T),R,), and for a given discretization (M), €(™) let ¢% (resp. ¢7) denote
the mean value of ¢ on K X (tn,tni1) (tesp. Dy X (tp,tni1)), for any K € M™ (resp. o € £(™) and
n e HO, Ny, — 1ﬂ. Let us multiply the discrete kinetic energy balance by 0t ! and sum over o € elm)
and i € {1,2}; let us then multiply the discrete potential energy balance by §t|K|¢% and sum over
K e M), Summing the two resulting equations and summing over n € HO,Nm - 1“, we get, owing to

lemmas [3:3] and [3.4]

T
/ / CUR (U ™) (. t) daz dt + / / COmk (U™ (a, t) dae dt + PU™) + 20 = —R{™ — R0 - (60)
0
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with

m . 3 m n (UELG)Q n
eun (U ZG;TN” U)|p, with &G (U ™)|p, = @Br)5 ™ + Y lel—5—F - no,

ec&(Dy)

1
and (Ey)g = 5}%0 (ui',)?,

CUBR (U™ = 5 @ehk)" + divic (5900w,

Np—
P = 3 gt [ > Do |up o p et 4 Y |K|p;;divKu“ga;;],
= oe&(m) KeM(m)

N, —1
2m) — Z 5t(m)[ Z D, |hn+1 n+15 z<p"+1+ Z g(zK(athK)n +gdeivK(h”u")>ap?(},
n=0

oe&lm) Kemm)
2 Np-—1 1 |D |
(m) _ (m) - ol pn+l/, n+l _ , n\2
Ry, _Z Z ot Z {2 5t(m)hDa (ugy uy)
i=1 n=0 Uegi(:tm)
1
Y FE (= =) (e — ) (s =) ) [en
ec€W(D,)
Np—1
REW = Y 6t Y [_,g S ol (b= i) uponice + >0 lolg(hi = hi) B k- nico | e
n=0 KeM(m) ce&(K) oc€é(K)

Kinetic energy convection term

Let us check that the above defined convection operator GKIN satisfies the hypotheses (80)—(82) of Lax-
Wendroff type consistency Lemma m given in the appendix which we apply here with d = 2 fP(m) and
§™) the i-th dual mesh and its set of edges, U = (h,u), B(U) = Ej;(U) = Shu?, for i = 1,2.

Let us start with the assumption . For a given function v € L*(), and any subset A of Q) we denote
by ()4 the mean value of ¢ on A. By definition of the kinetic energy, we have (Ej ;)3 = 1A, |uf |* =
2(ho)p, (|{ui0)p,|)* and Ey,;(Uo) = Ey,i(ho, uo) = %houio . Therefore, owing to the assumptions (32)-(33)
on the functions A" and w(™ and to the fact that these sequences converge in L'

3 / (3% — BU(@)dz = 5 / (Era)° = Epa(ho, wo)|de
PcPim) occé&lm)
1
oeé&(m)
— 0 as m — +o0.

o[ (ho) D, (ui0)D, — (houio)p,

The assumption is thus satisfied.

Let us then note that the assumption , which reads

Np—1 .
Z Z / / |E ) — By (U™ (2, t))|da dt — 0 as m — +o0,

n=0 geg&(m)

is satisfied, again thanks to the assumptions — on the functions h("™) and u(™ and to the fact that
these sequences converge in L.
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Let us now turn to the assumption , which reads

Sy [ D) S (e g0 n) e

n=0 geg&(m) tn 7 ec&(m)

dx dt — 0 as m — +oo,

with (F(™)n = L (ujen)?F? and f(U) = $h|u|?u;. This assumption is indeed satisfied since F" is a convex

combination of h,u, and hy u,s for € = o|o’, and thanks to the boundedness and convergence assumptions
on the sequences (h(™),,cy and (u(m))meN.

By Lemma we thus get that

/ / C) (N o, t) de, dt — — /Ek (O s(z,0) das — / /E;” 8t<p+2Ek,(U)ai8inp dz dt

with Ek}i(U) = %gﬁﬂ%; summing over ¢ = 1,2, we get that

T
| [ et t) do a -
0o Jo
1 _
/ Epr(UOp(z,0) da 7/ / Ek 7)0sp + Ek(U)u : Vgo] dx dt as m — +o00. (61)

with Ey(U) = Lg|ul?.

Potential energy convection terms
Let us now check that the above defined convection operator GéO)T satisfies the hypotheses . 82) of
Lemma which we now apply with d = 2, P(™ and §) the primal mesh and its set of edges, U = (h,u),

BU) = igh2 and f(U) = %gh2u.
Indeed,

Z/‘ Yk — h(x,0) ‘daz—>0asm—>+oo
KeM

so that the hypothesis is satisfied. Next,
tnt1
Z/ Z/‘h" tht)‘dwdt%Oasm—%i—oo
n KeM

thanks to the boundedness and convergence assumptions on the sequence (h(m))meN. so that the hypothesis
is satisfied. Finally, the left hand side of reads

Xp = Z T ) TS (A - Lo ) | e
tn KeMm |K| ce&(K) 2
Z /n+1 Z dlam ‘ Z | | (1 (hn)2_1 (hn )2) n, d dt
P | a Dy 2g o 29 K U, "MK o T
tn eEM ce&(K) o

—0asm— 4+

thanks to the fact that h? is a convex combination of A and h7 for o = K|L, and thanks to the boundedness
and convergence assumptions on the sequences (h("™),,cn and (u(™),,cn. Therefore, the assumption
is also satisfied.
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Hence by Lemma

T
/ /CéTS)T(U(m))ga(w,t) dx dt — —7/ gh?(z,0)p(z,0) d:c—/ / U)o + B, (U)a.w} de dt,
o Ja
_ _ (62)
with E,(U) = %gh?
Pressure terms
Let us rewrite P(™) as

Pl = Z st (At 4 Bty — 5t BY,

with A" = Z |Dy|undsp™ ey, and B™ = Z | K |pkdivi (u™) k.
see(m) KeMOm

int

o=K|L
By Lemma [5.2] below,

n n+1
An+1+Bn+1 _ Z Z |D ’U|pn+1 n+1 | ‘(@K — Y5 )nK,g

0’
KeM(m) ce&(K)

lo|(ef ! — ont)

|D K,0|
quotient of ¢ between xx and x,, in the direction i if ¢ € €®, which uniformly converges to d;pe; in the
case of a rectangular grid, and therefore,

On each subcell Dk , the quantity

Nk o is, up to higher order terms, a discrete differential

m—1 T
Z St (A" 4 Bty _/ /p(gg,t) u(x,t) - Vo(x,t)de dt as m — +oo.
Q

Now, since we assume ug € WH1(€),

ét(m)|BO|:§t(m)‘ > IK|pgdivic(u <PK‘

KeM((m)
< g6t hollZllellee D K |Idive (uf)]
Kemm)
§t(m)
< 2g- . IholZliellse > loldolluolloo,

inf g eppom) diam(K) e

Ny, —1
so that, by the assumption (56b| , Z 6t™ B — 0 as m — +oo; and therefore,

n=0
T
Pplm) —/ / p(x,t) u(x,t) - Vo(z,t)de dt as m — +oo. (63)
o Ja
In the above bound, we used the assumption ([56b)); this could be avoided if we assume ug € W(£2) )or

ug € L1(0,T; BV(R))); indeed, in this case we have

|B%| < gllhol 3o llelloc luollwa ()

However, the assumption seems unavoidable to deal with the remainder term appearing in the discrete
potential energy, see below.
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Bathymetry terms
Let us introduce the following piecewise constant functions:

e 1™ is the piecewise constant function equal to hptt = %(h?{“ + R on each set Dy X (tn, tni1),
forc = K|L € 81(:;) and n €€ ﬂO,Nm — 1ﬂ;
lo|

Do |

e V(™M) is the piecewise constant function equal to (21 — zK) on each set D, for 0 = K|L €

8("”)

int

) (m) is the piecewise constant function equal to ¢, on each set on each set D, X (t,,t,41), for
U:K|L€8( ) and n €€ [0, Ny, — 1];

int

With these notations, we get that

N,,—1
Z st N Dy h 5, 2t / R (2, ) u'™ (2, t) - V20 (x) 3 (2, t) dee dt as n — +o0
seeim) @

— | h(z,t)u(x,t) - Vz(x) p(x,t) de dt as m — +oo, (64)
Q

thanks to the convergence assumptions on A and u(™) and owing to the strong convergence of the discrete
gradient V(™) (which would be only a weak convergence in the case of a non rectangular mesh, see [12, Lemma
3.1]).

Now let T% = g ;1" 2k and Z7 = o|h2u’ zk. Using a discrete summation by parts in
K g K K g oc"K,o

‘K| c€&(K)
time and thanks to the convergence assumption on ("™ we get that

Npp—1
Z §tm) Z |K|TE — —/ gz(x)h(x,0)p(x,0) de —/ /gz h(zx,t)0yp(x,t) de dt. (65)
= Q

KeM(m)

Using next a discrete summation by parts in space, we get

Yo IKIZE= )Y e ) lolhuk ook

KeMim) KeM(m) ce&(K)
= > lolhpule 5 (zroftt = 27t
0681(:5)
oc=K|L
== Y IDolhpul - (VU ()t
see)
oc=K|L

where V(™) (z¢) is the piecewise constant discrete gradient defined by:

Vo = K|L e &, vn e [0,N,, — 1], ¥(®,t) € Dy X [tn, tnt1),

int

V) ) = (7 a))o =1 B e = 21 e
which converges to V(zp) uniformly in the case of a rectangular mesh, and weakly in the case of a general
mesh, see |12, Lemma 3.1].

Therefore, thanks to the convergence assumptions on h and wu,

Ny —1

T
> oot > |K|Zg - 7/ /gﬁ(m,t)a(m,t) -V (zp)(,t) dz dt as m — +oo. (66)
n=0 0 Q

KeM(m)



Owing to , and 7 we thus get that

Z(m) _y _ /gz h(x,0)p(x,0) dmf//gz h(z,t)0;p(x,t) de dt

- / / gh(z,t)z(z)u(z,t) - Vip(z, t) de dt as m — +oo.
0 Jo

Remainder terms
The remainder term fR,(;n) in satisfies

R = REW 4 R 4 R

with
2 Np—
Z Z §t(m Z |D | n+1 (uziliuza) SOZJrlv
=1 n=0 065,(“2
1 2 N,—1
Ry =52 2 6 YT Y e Fl e (ul —ul,) et
i=1 n=0 oeel!) ec€(D,)
Ry = Z Z ot YT D el Flmge(ufle —ufl,) (ufdt —ully ) e
i=1 n=0 cee® ee€0G)(D,)
int

The term fR,(€ 5 satisfies
(m) (m) (m)
ka,s 2 :Rk,B,l + Rk,3,2
with

m

2
R = s SN S S B () e

i=1 n=0 Ueg(%) 568(’)(D )
F!n, >0
- (m) n n n n+l
k: 3 2= = E E 575 le| F¢ '"a,e(“i,e - ui,o) Po
i=1 n=0 0'63(1) Eeg(z)(D )

Thanks to the CFL condition (55)), we get that
RV + R > 0.

Let us now study the term

Ry = Ry + R Z Z 6 3T 3 el Flmo (ufl —ull,) @bt
i=1 n=0 oceell) ec€(D,)
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which we decompose as: 5%,&";) > igg)l + 5%2”;)2, with

GIONEE 2B SR SRS DR TF A TN LP
i=1 n=0 JEEUEGE()(D )
F!n, >0
B 2 Np,—1
R == 2 0 30 DT [l Fonoe (uf—ul) (0 = o3,
i=1 n=0 ‘Teei(:.)t EEE(“(DG)
and, by conservativity,
2 Np—1 )
:Rg,r;),l 2 Z Z 5t(m) Z ‘ | F? ‘Mg e [(uZe — Uy o) - (u:e - u?a’) :|<)0::l+1
=1 n=0 e=olo’ Eﬁmt
F!n, >0
2 Np—1
2 Z Z 5t(m)”“i”oo Z 1 De| (2ui,e = wi,o — tior)(Uior — Uiyor)-
i=1 n=0 e=olo’ E(‘ll(;)t
Flng >0
Therefore, thanks to and ,
2 N,,—1 )
R =3NSt STl FPng e (uoe — 1)l — ) @l >0, (71)
=1 n=0 e=olo’ ESmt
F!n, >0
Let us then write that, thanks to the regularity of
g y ol p,
. 2 Npy— 9
RS, < Cp > Z st S N D |FY ng | (o — ul,)
=1 n=0 o) ec€()(D,)
2 Np—1
< Collhllocluloc - D~ 6t > 3" (Dl ule = ully|

i=1 n=0 oeel!) eec€((D,)

so that, thanks to the L' convergence of u("™) and to the regularity of the mesh, we may again apply Lemma

to obtain

|9€k22|—>0a5m—>—|—oo (72)
Thefore, owing to —
lim R™ > 0. (73)
m——+oo

Let us now turn to the remainder le(,m). We have IR,(,m) > fRz(ﬁ) + 321(:';), with

m 5(7n)
R =3 S S o (g whmacol

n=0 KeM(m) oeé&(K)
Npp—1

RY = 30 6 ST S folg(it — h) b ug ok
n=0 KeM(m) ce&(K)
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Note that if h” is the upwind choice for any o € (™) then IRI(JE) > 0. In the general case, we may write
that

Ryt = Ryt + Ry
with
. 5t (m) n n
RO, = — — Y. g > ol (h} —hR)? ul-nk.0h
n=0 Kem(m) oe&(K)
Ry == > = 3" g > ol (hE = hR)? ulnko(k — ¢))
n=0 Kem(m) oce&(K)

By conservativity,

Y

(m) = (St(m) n n \2 n n\2 n n
:Rp,l,l -9 T Z |U| [(ha - hK) - (h’a’ - L) ] Uy " NMK,cPs
n=0 o=K|Le&
ulnK ;>0

N L 54(m)
— Y. ol (A = hE)) 2Ry — W — hi) uf - nio0;

n=0 o=K|L€eE
UG nK,o>0

I
|
Q

Owing to the assumption @D, one has

(b7 — hg))(2hg — W — hf) = —2Ak o (A — )
and since by , AK,o > % ifu) ngq, >0,
m 1 n n n n
Ry5 =29 Z 5137 ol (ke = 5) (= i) - mue a2 0.

oc=K|Le&
ul -ng >0

Now
et 6t(m) n n
R, | < 5 > glhllcollullnCo Y 1Dkl W] =B = 0 as m — 400
n=0 KeM((m) occé(K)
so that
lim .'R 1 2
m——+00

LY
inf gepe diam(K)
Non 1 51(m)

RIS < gllblloo lulloo 2]l . . KRt — (b)) |
nzz:o inf g e ppom) diam(K nz:o ng[:(m) K

Let us now turn to 5%;7;). Since for all K € M and ¢ € £(K) we have |o| < , we have

— 0 as m — 400,

thanks to the assumption . Hence
lim R(m (74)

m——+oo

Conclusion of the proof

meg to and (| ., passing to the limit in as m — +oo yields, together with (| ., ,

and (67)), that the limit (h, ) satisfies the weak entropy inequality . D
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The next lemma, used to pass to the limit in the pressure terms of the entropy is the discrete equivalent,

on a staggered grid, of the formal equality / (u-Vp p+pdivu p) de = — / pu-Vo dr.
Q Q

Lemma 5.2 (Pressure terms). Let (M, &) be a MAC discretization of Q in the sense of Definition [2.1] ;
Let (pr)renm C R and (ug)see C RY be some discrete unknowns associated to M and & respectively. Let
p € CX(Q), and let i (resp. ,) denote the mean value of ¢ on K (resp. D,), for any K € M (resp.
oe &™), Then

. o — Yo
S Dol to 8o g+ 3 1K pic diview o = 303 [Dicol pic g - 1LEEZ )

D
TEEim KeMm KeM oct(K) 1Dk o]
oc=K|L

Proof. Let us denote by A and B the first and second terms of the right hand side. Then, with the notations
of Definition [2.1

A= Z Z |DK,G' Uy Ogp 900) = Z Z ‘DK,0| uK,U%hﬂ Po

KeM(m oc&(K) KeMm) océ(K)
o=K|L

- Z Z ‘DK,0|“K,JP|UD_TPK|U| o

KeM(m) ce&(K) R
o=K|L

where p, is defined by Do —PK _ PL —PK

. By conservativity, Z Z UK,oDo|0|pe = 0, so that

Dol |De | KeM(m) ce&(K)
oc=K]|L
K
A== 3" N Dxoluke ol ¢o
|DKJ|
KeM(m) 0€&(K) ,

o=K|L

Now
B = Z |K| px divgu o = Z Z lo| pr |Dk,o| o k-
KeMm) KeMm(m) oc&(K)
Adding the results for A and B concludes the proof. O

6. NUMERICAL RESULTS

This section is devoted to numerical tests: we first check the order of convergence of the proposed scheme
on a two-dimensional regular solution (Section [6.1]); then we turn to one-dimensional and two-dimensional
shock solutions on a plane topography (Sections and ; in Section we address a two-dimensional
dam-break problem in a closed computational domain with a variable topography, which, in particular, shows
tha ability of staggered scheme to ”"natively” cope with reflection boundary conditions; finally, we compute
the motion of a liquid slug over a partly dry support .

In this section, we compare three schemes: the second-order scheme developed here, the scheme referred to
in Section as the segregated forward Euler scheme (combining a segregated forward Euler scheme in time
and the proposed MUSCL-like discretization of the convection fluxes) and a first order scheme which still
features the segregated forward Euler scheme in time but with first-order upwind convection fluxes. These
schemes are referred to in the following as the second-order, segregated and first-order scheme respectively.

The schemes have been implemented within the CALIF3S open-source software [7] of the French Institut
de Sireté et de Radioprotection Nucléaire (IRSN); this software is used for the following tests.
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6.1. A smooth solution

‘We begin here by checking the accuracy of the scheme on a known regular solution consisting in a travelling
vortex. This solution is obtained through the following steps: we first derive a compact-support H? solution
consisting in a standing vortex which becomes time-dependent by adding a constant velocity motion. The
velocity field of the standing vortex and the pressure are sought under the form:

T

a=1© 72|, s=v

with € = 2% + 3. A simple derivation of these expressions yields:

€2

@ Va=—f(¢)? M

and

Vi =2¢/(¢) [?] :
2

Using the relation p = % gh?, we thus obtain a stationary solution of the shallow water equations with a
topography z = 0 if p satisfies 8 g p = (F + ¢)?, where F is such that F' = f2, F(0) = 0 and c is a positive
real number. For the present numerical study, we choose f(&) = 10£2(1 — £)? if £ € (0,1), f = 0 otherwise,
which indeed yields an H?(R?) velocity field (note that as a consequence, the pressure and the water height
are also regular), and ¢ = 1. The problem is made unsteady by a time translation: given a constant vector
field a, the pressure p and the velocity uw are deduced from the steady state solution p and w:

h(z,t) = h(z — at), u(x,t) = u(x — at) + a.

The center of the vortex is initially located at @y = (0,0), the translation velocity a is set to @ = (1,1),
the computational domain is Q = (—1.2, 2.)? and the computation is run on the time interval (0, 0.8).

Computations are performed with successively refined meshes with square cells, and the time step is
dt = 0 /8, and corresponds to a Courant (or CFL) number with respect to the celerity of the fastest waves
close to 1/3. The discrete L'-norm of the difference between the exact solution and the solution obtained by
the second-order scheme is given in Table[Il The observed order of convergence over the whole sequence is
2 for the water height and 1.5 for the velocity. Results with the first-order scheme are given in Table |2} one
observes that the second-order scheme is much more accurate. Finally, the segregated scheme yields good
results on coarse meshes (it is the most accurate scheme on the 32 x 32 mesh); unfortunately, when refining
the mesh, oscillations appear, and the convergence is lost. This results confirms a behaviour already observed
for the transport operator in [27]: for multi-dimensional problems, the smoothing produced by the Heun
time-stepping seems to be necessary to compensate the oscillatory character of the MUSCL scheme (which,
for the transport operator, does not lead, of course, to violate the local maximum principle warranted by
construction of the limitation process).

mesh error(h) | ord(h) | error(u) | ord(u)
32 x32 |3.611073 / 2.93107! /
64 x64 |1.151073 1.65 1.14107¢ 1.36
128 x 128 | 2.5810~* 2.16 | 4.06102 1.49
256 x 256 | 5.85107° 2.14 1.4910~2 1.45
512 x 512 | 1.5310~° 1.93 | 4.671073 1.68

TABLE 1. Measured numerical errors for the travelling vortex — Discrete L'-norm of the
difference between the numerical and exact solution at ¢ = 0.8, for the height and the
velocity, and corresponding order of convergence.
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mesh error(h) | ord(h) | error(u) | ord(u)

32 x32 | 8041073 / 6.551071 /

64 x64 |5561073| 0.53 |4.8410~' | 0.44
128 x 128 | 3.531073 | 0.66 |3.2210~'| 0.59
256 x 256 | 2.081073 | 0.76 | 1.9610"' | 0.72
512 x 512 | 1.151073 | 0.85 | 1.16107'| 0.76

TABLE 2. Measured numerical errors for the travelling vortex with the first order scheme -
Discrete L'-norm of the difference between the numerical and exact solution at ¢t = 0.8, for
the height and the velocity, and corresponding order of convergence.

mesh error(h) | error(u)

32 x32 2061073 | 2.3310°!
64 x64 |1.371073 | 1.1810° !
128 x 128 | 1.241073 | 8.5010~2
256 x 256 | 1.261072 | 6.16 102
512 x 512 | 1.561073 | 4.851072

TABLE 3. Measured numerical errors for the travelling vortex with the segregated scheme -
Discrete L'-norm of the difference between the numerical and exact solution at ¢t = 0.8, for
the height and the velocity.

6.2. A Riemann problem

We now turn to a one-dimensional shock solution, corresponding to a Riemann problem posed over
Q= (0,1). The initial height is h =1 if < 0.5 and h = 0.2 otherwise, and the topography z is set to zero
over the computational domain; the fluid is initially at rest. The solution consists in a l-rarefaction wave
and a 2-shock.

We plot on Figure [3] and Figure [ the results obtained a ¢ = 0.1 with the second-order scheme, the
segregated scheme and the first-order scheme. The space step is dz = 1/200 and the time step is chosen
as 0t = 0x/10, which corresponds to a CFL number lower than 0.5 with respect to the waves celerity (the
maximal speed of sound is close to 3 and the maximal velocity is close to 2). As expected, the first order
scheme is more diffusive than the other ones. As in the previous test, the segregated forward Euler scheme
(with MUSCL fluxes) exhibits some oscillations, which are damped by the Heun time discretization (see the
Figure . In this test case, for both the second-order and the segregated scheme, the shock is captured with
only one intermediate cell between the left and the right state.

6.3. A circular dam break problem

The objective of this test-case is to check the capability of the scheme to capture a multi-dimensional
shock solution. The fluid is initially at rest and the height is given by:

h=2.5if r < 2.5, h=0.5 otherwise, with r? = 2% + 3.

The computational domain is 2 = (—20,20) x (—20,20) and the final time is T = 4.7.

We plot on Figure [5] the results obtained with a 800 x 800 uniform mesh, with the second-order scheme.
The time-step is 6t = hy/10 (with a maximal velocity in the range of 3.5 and a maximal speed of sound
in the range of 5). In addition, to cure some oscillations (see Figure , we add a slight stabilization in the
momentum balance equation which consists in adding to the dicrete momentum equation associated to an
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FIGURE 3. Riemann problem. Top: flow height — Bottom: velocity.

edge o included in a cell K the following flux through a dual edge ¢ = D, |D,:

Fstab,o,e = C hx diam(K)d_l (ua —u )7

g
where ( is a user-defined parameter. Here, ( = 0.1, which is significantly lower than the diffusion generated
by the use of an upwind scheme in the momentum balance equation; indeed, the upwind scheme may be seen
as the centered one complemented by a diffusion taking the same expression as Fitab,o,c With ( hx replaced
by |Fy.|/2. The interest of this stabilization stems from the fact that the numerical diffusion introduced
in the present family of schemes depends on the material velocity (and not on the waves celerity as, for
instance, in colocated schemes based on Riemann solvers), and is sometimes too low in the zones where
the fluid is almost at rest . Note that, as a counterpart, the scheme does not become overdiffusive for
low-Mach number flows. For the same computation, we give on Figure [] the height and the radial velocity
along the axis x5 = 0 (i.e. the first component of the velocity) at different times.
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FIGURE 4. Riemann problem. Details of the flow height.

This computation is also used as "reference computation” on Figure [7] where we compare the results
obtained at ¢ = 37'/5 with a 200 x 200 mesh with the second-order scheme, the second-order scheme with
stabilization and the first-order scheme. This latter is significantly more diffusive, and we observe how
the stabilization (even if added to the momentum balance only and not on the mass balance) damps the
oscillations obtained with the second-order scheme for both the flow height and the velocity.

6.4. A so-called partial dam-break problem

We now turn to a test consisting in a partial dam-break problem with reflection phenomena, and with
a non-flat bathymetry. In this test, the computational domain is Q = (0,200) x (0,200) \ Q,, with Q,, =
(95,105) x (0,95)U (95, 105) x (170,200). The fluid is supposed to be initially at rest, the initial water height
is h =10 for z; < 100 and h = 5 — 0.04 (x; — 100) otherwise, and the bathymetry is z = 0 if 3 < 100 and
z = 0.04 (1 — 100) otherwise. A zero normal velocity is prescribed at all the boundaries of the computational
domain. The computation is performed with a mesh obtained from a 1000 x 1000 regular grid by removing
the cells included in Q,,. The time step is 6t = d¢/40 (the maximal speed of sound and the maximal velocity
are both close to 10). A stabilization with ¢ = 0.25 (so two orders of magnitude lower than the artificial
viscosity generated by the upwind scheme in high momentum zones) is added to damp oscillations appearing
in the zones at rest, where no numerical diffusion is generated by our schemes. Results obtained at t = 20
with the first order in time and space and the present scheme are compared on Figure |8l One can observe
that the second-order scheme is clearly less diffusive. In addition, these results illustrate the capacity of the
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staggered scheme to deal with reflection conditions by simply imposing the normal velocity to the boundary
at zero.

6.5. Uniform circular motion in a paraboloid

We address in this section a classical test which admits a closed-form solution and corresponds to the
uniform rotation of a drop of liquid on a paraboloid-shaped support. The solution is very regular (at a given
time, the velocity field is constant and h 4 z is affine outside the dry zones), and the essential interest of
this test is to check whether the scheme is able to cope with dry zones, i.e. zones where the height is zero
(in the continuous setting) or very close to zero, as we shall use numerically. The computational domain is
Q=1(0,L) x (0,L) and the topography is given by

s= (@D - - ),

a? 2
with hg and a parameters which are given below. The height is:
- - h L L
h = max(0,h) with h = n—g (2 (x — 5) cos(wt) +2(y — 5) sin(wt) — 77) -z,
a
with 1 a parameter and w (the angular rotation velocity of the drop) given by

~ (2gho)'/?
=

w—nw [— sin(wt)} _

cos(w)t

Finally, the velocity is

The computation is run up to 7' = 6 7/w, so the drop is supposed to perform 3 turns and to lie at the final
time at its initial position. The parameters are fixed here to L =4, hyp = 0.1, a =1 and n = 0.5.

For numerical tests, we bound A from below by 1078, i.e. we set h = max(lO 8 h), in particular to avoid
divisions by zero in the averaging steps of the Heun scheme (Equations (22¢] and . The computation
are performed with a uniform 100 x 100 mesh, with 6t = /16, without changlng anything to the numerical
fluxes to cope with dry zones. This is clearly dangerous, since a non-upwind approximation of the water
height at a face separating two cells with a large ratio of water height may lead to a huge outflow mass flux
in view of the cell mass inventory (or, in other words, a very large CFL number). This probably explains
the rather small time step used here (the CFL number with repect to the celerity of the fastest waves is in
the range of 1/8); the first-order scheme, which uses upwind fluxes, works with time steps four times larger.
This problem would be probably cured by a more careful limitation of the mass fluxes outward an almost
dry cell.

Results obtained with the first order, the segregated and the second order scheme at t = 6 7 /w are plotted
on Figure[] All schemes give good results, which, for the first-order scheme, is probably due to the regularity
of the solution. For the momentum, one observes that the second-order scheme is less accurate than the
other ones; this seems to be due to the time-stepping procedure, which perhaps generates some diffusion at
the interface between dry and wet zones, especially in the last averaging step, since the segregated scheme
is the most accurate one (and superimposed to the exact solution on Figure E[)

APPENDIX A. CONSISTENCY OF NUMERICAL NON LINEAR CONVECTION FLUXES ON
STAGGERED MESHES

We give here some general lemmas which generalise the Lax-Wendroff theorem to multidimensional stag-
gered meshes, and which we state for any space dimension d = 1,2 or 3. The well-known Lax-Wendroff
theorem [25] states that, on uniform 1D grids, a flux-consistent and conservative cell-centered finite-volume
scheme for a system of conservation laws is weakly consistent, in the sense that the limit of any a.e. conver-
gent sequence of L°°-bounded numerical solutions, obtained with a sequence of grids with mesh and time
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steps tending to zero, is a weak solution of the conservation law; it is also stated in a different form [26 Sec-
tion 12.10], with a BV bound assumption on the scheme It is generalised to non uniform 1D or Cartesian
meshes in |11, Theorem 21.2]. In a recent work [4], the Lax-Wendroff theorem is extended to obtain some
error estimates for higher order schemes on uniform 1D meshes. The case of general (and, in particular, un-
structured) discretizations has been also been tackled over the past decades: [24], |15, Section 4.2.2] [10], [12].
In this latter work, the quasi-uniformity assumption that is required in [10] is relaxed, but while in [10] the
flux is only required to be continuous, it is supposed to be Lipschitz continuous or at least “lip-diag”. In all
these works, the scheme is supposed to be colocated, in the sense that the discrete unknowns are associated
to the cells of the mesh; these results may not be used directly on staggered meshes, and for instance, in [23],
the consistency of an explicit staggered scheme for the full compressible Euler equations is proven recovering
the kinetic energy inequality on the primal mesh.

The consistency result that we give here is valid for general polygonal or polyhedral grids with a colocated
or staggered arrangement of the unknowns. The main new idea is that in the proof of consistency, rather
than using a convergence result for the discrete gradient, which is only weak and demands some regularity
on the mesh, we use the actual mean value of the gradient of the test function on each cell, which converges
strongly to the gradient, and does not require any regularity of the mesh. As in |12], the proof also relies on
the control of some residual terms, involving the difference between the numerical solution and a space or
time translate of this latter, and we use the estimate on the translates given [12, Lemma 4.2] to this purpose,
which we recall in the appendix [B| for the sake of completeness.

Let us suppose that:

QCcRY d=1,2,3, T € (0,+00), (75a)
peN*, 3 C'(R",R), f € C'(R*,R?), U € L>®(Q x (0,T),R?), (75b)

and consider the conservative convection operator defined (in the distributional sense) by:

eU): Qx(0,T) =R,
(@, t) = 0 (B(U)) (@, 1) + div(f(U))(, ). (76)

Lemma A.1 (Weak consistency for a multi-dimensional conservative convection operator). Under the as-
sumptions (75), let (U™)men C L®(Q x (0,T),RP) be a sequence of functions such that:

ICUeRL : |[UM| < C* Vm €N, (77)
30 € L=2(Qx (0,T),RP) : [|[U™ — U|| 11 0x(0,7),0) — 0 as m — +oc. (78)

Let (P)men be a sequence of polygonal or polyhedral conforming mesh of ) such that

0(Pm) = max diam(P) — 0 as m — +o0.
EPm

Let ™) denote the set of faces (or edges) of the mesh, and for a given polyhedron (or polygon) P € P(™),
let 3™ (P) be the set of faces (or edges) of P. For m € N, let t(()m) =0< tgm) <. < t%zl) =T be a
discretization of (0,T) with §t(™) = t,(:i)l — t,(cm) — 0 as m — 400, and consider the discrete convection
operator

em@Wwmy: Qx(0,T) =R,

1
(@, ) = 0 (B + Pl > KIFETE npe forz e P andt € (ty,tnsr)  (79)
CEFMI(P)
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with 3,(B™)% = L ((B™) 5t — (BM™)%) and where the families {(8™)%, P € P™, n e [0,N,, — 1]} of
real numbers and {(F(m)) ,C€F™, ne [0,N,, — 1]} of real vectors are such that

Z / 18, Up(x))|de — 0 as m — +oo, with Uy € L™ (Q,RP), (80)
Pepim)
N -1 [

Z / / (B — BU™ (x,t))|dx dt — 0 as m — +oo, (81)

n= o Pep(m) /in
Nt n+1 diam (P

Z Z / P / ‘ Z |C|((F(m))g - f(Um(:n,t)) -np’C’da: dt — 0 as m — +oo. (82)
n=0 pcPp(m)’tn ‘ | Pl egm

Let ¢ € C(Q2 x [0,t)), then

/T (U™ (x, t)p(x, t) da dt — —/ B(Uo(z))p(x,0) de
0 Q

/ / (e 000l 1) + F(O)(,1)- Vo, 1) )dz dt asm — +oo. (83)

Proof. The result of this lemma is the consequence of the two following lemmas, which prove respectively
the convergence of the time derivative part and the space derivative part. Indeed, let us decompose

T
[ ] em @@ oo de =X + X5, with (84)
Ny —1
XM= st Y |PoyssY o (85)
n= PeP(m)
Ny —1

Z oty Y KIFE™)E npceh (86)

PeP(m) ceg(m)(P)

where ¢ denotes the mean value of ¢ on P X (ty,t,+1). Then, by Lemma below,
T —
xm 7/ B(Us(z)) dx — / / B(U)(a, )0y p(x, t)da dt as m — +oo,
Q 0o Ja
and by Lemma [A73] below,
X(m) — — / / fu ) - Vo(x, t)de dt as m — +oo,
which concludes the proof O

Lemma A.2 (Weak consistency, time derivative). Under the assumptions and notations of Lemma

//3,5 Neo(x, t) de dt — — /BUO ) (x,0) da:f/ /ﬂ ), t)0pp(x, t)de dt



Proof. By definition of 5?65,”1)(& t) and thanks to a discrete integration by parts,
) T
X = [ [ appo(a,t) do de
0o Jo

Y PR - Y IPIBE (@) (8 — 037

PeP(m) n=1  pgp(m)

Thanks to the assumptions , and , we get that

lim X" = /QB(UO)( (z,0) da:—/ / (z,t)0,p0(x, t) dt d. (87)

m——+o0
(]

Lemma A.3 (Weak consistency, space derivative). Under the assumptions and notations of Lemma

T
/ / \<|(F<m))g b t) dw dt — —/0 /Qf(U)(a:,t) Ve(w,t)da dt as m — +oo.

<es<m>

Proof. Let Xém) denote the left-hand-side of the above assertion. Since for a face ¢ separating P and P’,

one has np¢ = —np/ ¢, we may rewrite XQ(m) as
XQ(m) _ / / i |C|(F(m))? -npcp(x,t) de dt
Ce”f(m)
N,,—1
= X a0 N apwhap = S (o - o).
Pepim) CETMI(P)

where @} (resp. ¢f) denotes the mean value of ¢ over P x (tn,tn41) (vesp. ¢ X (tn,tn+1)). Now for any
x € P, tety,tyy1), we can decompose A} as

= Bp(e.1) + Rp(a.0), with Bi(@) = >° [0 (@.0) -npe(oh — o), and

CET™I(P)
Rp(w,t)= Y [CFL = FU (@,0) - npe (o - ¢t ) da.
CeF™(P)
Since Y. czm(py [CIMpc = 0, we have
Bp(m,t)=— > KIFU™ (@, 1) npcpl =—|PIFU™ (@,1)- (Ve)p, (88)
CEF™(P)
_ 1 . 1
with (V)3 = 7| Z ICle¢mp, = ﬁvsﬂ(w) de.
Cegim(P)

Note that the piecewise function V"™ ¢ : Q x (0,T) — R? defined by V™ o(x,t) = (V)b for (x,t) €€
P X (tn,tny1) converges uniformly to Vi in L>(Q x (0,7))%. Integrating over x € P,

/ By (@, t)dz = | P) / FUM (@, 1)) - V(e 1) de,
P P
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1 n+1 n+1
Since A} = o / / B(, t)dzdt + / / RM(z t)da:dt) we get

tnt1 tnl
X = Z S /t /Bpwtdwdwr/t |P|/R” (a, t)dadt)

n=0 pecPpim) n

tn+1
/ /f U™ (x,4) V™ p(x, t) d:cdt—i—z Z / |P|/Rnwtdmdt
tn

n=0 pcpim)

Owing to the boundedness and convergence assumptions on U™ and to the uniform convergence of V(")

to Vi, the first term tends to — / / FU(z,1))Vo(z,t) dedt as m — +o0. Since [pf —pp| < Cpdiam(P),
o Ja
with C, depending only on ¢, the second term tends to 0 thanks to the assumption . Therefore

lim X R / /f x,t)) - V(z,t) dedt. (89)

m——+oo

]

APPENDIX B. FORMER LEMMAS

B.1. A result on a finite volume convection operator

We begin with a property of the convection operator € : p — 9:(p) + div(pu); at the continuous level,
this property may be formally obtained as follows (see [22] for the detailed derivation). Let ¢ be a regular
function from (0, +00) to R; then:

V' (p) Clp) = 0 (¢(p)) + div(v(p)u) + (p¥'(p) — ¥ (p)) diva. (90)

This computation is of course completely formal and only valid for regular functions p and w. The following
lemma states a discrete analogue to , and its proof follows the formal computation which we just
described.

Lemma B.1. [On the discrete convection operator, [21, Lemma A1]] Let P be a polygonal (resp. polyhedral)
bounded set of R? (resp. R?), and let E(P) be the set of its edges (resp. faces). Let 1 be a twice continuously
differentiable function defined over (0,+00). Let pp > 0, pp > 0, 6t > 0; consider three families (p))yce Py C
R4\ {0}, (V) )peepy C R and (Fy)pee(py C R such that

Vn € E(P), Fy=p, V.
Let Rp s be defined by:

Rpst = ['f' (pp — pp) Z F*}

ne&(P)

[Y(pp) =¥ (pp)] + () Ve + by (o vy
ot

ne&(pP) 7]68 P)
Then this quantity may be expressed as follows:
R _1@ _*2//7(1)_12‘/* *_*2// ZV* _ 1 (—(2)
pst =55, (pp = pp)" U7 (Pp7) — 5 o (PP = pp)”0"( Py (PP = Pp) V" (Pp"),
ne&(pP) nEE(P)

where pgg), pgg) ﬂpp,p};ﬂ and ¥ € E(P), p, € ﬂp};,p;ﬂ. We recall that, for a, b € R, we denote by ﬂa,bﬂ

the interval [a,b] = {fa + (1 —6)b, 6 € [0,1]}.
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B.2. A result on the space translates

Lemma B.2 (Convergence of the space translates [12, Lemma 4.2]). For a given mesh M, let

0 = max max ‘Dal.
KeMocex |K|

Let 0 > 0 and (M™),en be a sequence of meshes such that Oygomy < 0 for allm € N and lim,, s 4 o0 hygom) =
0. We suppose that the number of faces of a cell K € M) is bounded by N¢, for anym € N. Let ) € L'(Q),
let (¢)k denote the mean value of ¥ on a cell K. Then,

(1]
2]
3]
(4]
[5]

6
[7

(8]

[9]

(10]
(11]
(12]
(13]

(14]

(15]
[16]
(17]
(18]
(19]
20]

(21]

im > D] () — (¥)r| =0. (91)
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FicUure 5. Circular dam-break problem. Height obtained at ¢t = 0.38, ¢t = 0.705, t = 1.88,
t=3.76,t=4.28 and t =T = 4.7 with the stabilized second-order scheme and a 800 x 800
mesh. The color range corresponds to the (0.1,2.5) interval for the first two plots, and to
the (0.1,1) interval for the last four ones.
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FI1GURE 6. Circular dam-break problem. Height and radial velocity obtained at different
times along the line o = 0 with the stabilized second-order scheme and a 800 x 800 mesh.
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FIGURE 7. Circular dam-break problem. Height obtained at ¢ = 37/5 with the first-order
scheme and the second-order scheme with and without stabilization, with a 200 x 200 mesh.
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FicUure 8. Partial dam-break flow. Top: MUSCL scheme — Bottom: upwind scheme.
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