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In decision problems involving two dimensions (like several agents in uncertainty) the 
properties of expected utility ensure that the result of a two-stepped procedure evaluation 
does not depend on the order with which the aggregations of local evaluations are 
performed (e.g., agents first, uncertainty next, or the converse). We say that the 
aggregations on each dimension commute. In a previous conference paper, Ben Amor, 
Essghaier and Fargier have shown that this property holds when using pessimistic 
possibilistic integrals on each dimension, or optimistic ones, while it fails when using a 
pessimistic possibilistic integral on one dimension and an optimistic one on the other. This 
paper studies and completely solves this problem when more general Sugeno integrals are 
used in place of possibilistic integrals, leading to double Sugeno integrals. The results 
show that there are capacities other than possibility and necessity measures that ensure 
commutation of Sugeno integrals. Moreover, the relationship between two-dimensional 
capacities and the commutation property for their projections is investigated.
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1. Introduction and Motivation

In various applications where information fusion or multifactorial evaluation is 
needed, an aggregation process is carried out as a two-stepped procedure whereby 
several local fusion operations are performed in parallel and then the partial results 
are merged. It may sometimes be natural to demand that the final result does not 
depend on the order with which we perform the aggregation steps, because there 
may be no reason to perform either of the steps first.



For instance, consider a multi-person decision problem under uncertainty, where 
it is assumed that the same knowledge is shared among the persons and a collective 
decision must be found. Each alternative is evaluated by a matrix of ratings where 
the rows represent evaluations by persons and the columns represent evaluations 
for states of the world. One may, for each row, merge the ratings according to 
each column with some aggregation operation and thus get a rating for each 
person across all states, and then merge the persons opinions into a collective one, 
using another aggregation operation (i.e., follow the so-called ex-ante approach). 
Alternatively, one may decide first to merge the ratings in each column, thus forming 
the collective rating according to each state, and then merge these collective ratings 
across possible states, taking the uncertainty into account (i.e., adopt an ex-post 
approach).

The same considerations apply when we consider multi-criteria multiple-agent 
problems. Should we aggregate the ratings of agents for each fixed criterion first, 
and find the global evaluation, or find the global evaluation for each agent and 
then compute the collective overall rating? Even if we find it natural that the two 
procedures should deliver the same results in any sensible approach, the problem 
is that this natural outcome is not mathematically obvious at all. When the two 
procedures yield the same results, the aggregation operations are said to commute.20

In decision under risk for instance, the ex-ante and ex-post approaches are 
equivalent (the aggregations commute) if and only if the agent preferences are 
merged under a utilitarian view:16,19 this is because the expected utility of a 
sum is equal to the sum of the expected utilities. With an egalitarian collective 
utility function this is no longer the case, which leads to a timing effect: the 
ex-ante approach (minimum of the expected utilities) is not equivalent to the 
ex-post one (the expected utility of the minimum of the utilities). Some authors16,19 

have proposed representation theorems stating that in a classical decision-theoretic 
setting, commutation occurs if and only if the two aggregation are weighted 
averages, that is the weighted average of expected utilities is the same as the 
expected collective utility.

More recently, Ben Amor et al.2,4 have reconsidered the problem in the setting 
of qualitative decision theory under uncertainty. In this framework, utility values 
and plausibility degrees of states belong to a finite bounded chain. These authors 
have pointed out that commuting alternatives to weighted average operations 
exist, namely qualitative possibilistic integrals,10 that is Sugeno integrals with 
respect to possibility or necessity measures, respectively corresponding to optimistic 
and pessimistic possibilistic integrals. Equivalently, they are weighted versions of 
minimum and maximum, first considered by Yager,24 Whalen,23 as well as Dubois 
and Prade.7 Namely pessimistic possibilistic integrals commute, as well as optimistic 
ones, but a pessimistic possibilistic integral generally does not commute with an 
optimistic one.

The question considered in this paper is whether there exist other uncertainty 
measures, in the qualitative setting of Sugeno integrals, for which this commutation



result holds, replacing pessimistic and optimistic utility functionals by Sugeno

integrals with respect to general capacities. In other terms, we consider the

commutation problem in double Sugeno integrals. Moreover we introduce the

concept of decomposable two-dimensional (2D) capacity and we show the

relationship between the decomposability of such a capacity and the commutation

of Sugeno integrals based on its projections.a

The paper is organized as follows. Section 2 recalls commutation results

obtained so-far in the setting of possibilistic integrals for qualitative decision under

uncertainty. Section 3 provides the necessary background on Sugeno integrals,

which are more general aggregation operations than weighted min and max, and

introduces double Sugeno integrals. Section 4 provides necessary and sufficient

condition for their commutation. In particular it lays bare the explicit form of

capacities that commute. Section 5 focuses on decomposable 2D capacities on a

finite space, which can be recovered from their projections. This section shows the

link with the commutation problem, and proves that when two Sugeno integrals

commute, they can be expressed in a symmetric way as a 2D Sugeno integral with

respect to a decomposable 2D capacity.

2. Multiagent Decision Evaluation under Possibilistic Uncertainty

In the framework of possibilistic decision under uncertainty,10 let X = {x1, · · · , xn}

be a set of states and Y = {y1, · · · , yp} be a set of agents. Let L be a finite totally

ordered scale with top 1, bottom 0, equipped with an order-reversing operation

denoted by 1 − (·) (it is involutive and such that 1 − 1 = 0 and 1 − 0 = 1).

A possibility distribution π captures the common knowledge of the agents: the

possibility degree πi represents the plausibility of state xi for the agents.
b A weight

vector w = (w1, · · · , wp) ∈ [0, 1]p represents the importance degrees of agents. It

is also formally modeled as a possibility distribution on Y: the possibility degree

wi represents the importance of agent yj . By definition, a normalization condition

holds, of the form maxni=1 πi = maxni=1 wi = 1.

A potential decisionc is evaluated by a function u: X × Y → L where u(xi, yj)

is the degree of utility of the decision for the agent yj , if the state of the world is

xi. Note that for the sake of simplicity, we make the assumption that L is common

finite scale for utility ratings, agent importance weights and plausibilities of states,

which can be challenged in practice.

aSome results in this paper have been presented at the 2018 MDAI conference.6
bOne might have equivalently considered a multicriteria multiagent setting, interpreting X as a

set of criteria, and πi as the degree of relevance of criterion xi.
cIn this paper, we do not use a special symbol for decisions. In decision under uncertainty, a

decision is a mapping f from a state space S to a set of consequences X . Utilities are attached to
consequences, and the utility of decision f if the state is s is u(x) where x = f(s). In this paper,

we do not distinguish between states and their consequences for decisions, assuming the decision

is fixed, and only use the set X = f(S).



In order to evaluate the merit of a decision for an agent yj under possibilistic 
uncertainty described by the possibility distribution π, two qualitative possibilistic 
integrals have been used10 depending on whether agent yj has a pessimistic or an 
optimistic attitude in the face of uncertainty:

Pessimistic possibilistic integral: U−
j (π, u) = minxi∈X max(1− πi, u(xi, yj))

Optimistic possibilistic integral: U+
j (π, u) = maxxi∈X min(πi, u(xi, yj))

Now fixing the state xi, we consider its collective utility obtained by merging

agent preferences. In the following we consider an egalitarian attitude expressed

by an aggregation operation of the form Umin
i (w, u) = minyj∈Y max(1 −

wj , u(xi, yj)). As a consequence, there are two possible approaches for egalitarian

aggregations of pessimistic decision-makers, and two possible approaches for

egalitarian aggregations of pessimistic decision-makers.2

ex-post pessimistic approach

U−min
post (π,w, u) = U−(π, Umin

i (w, u(xi, ·)))

= min
xi∈X

max(1− πi, min
yj∈Y

max(u(xi, yj), 1− wj)) .

ex-ante pessimistic approach

U−min
ante (π,w, u) = Umin(w,U−

j (π, u(·, yj))

= min
yj∈Y

max(1− wj , min
xi∈X

max(u(xi, yj), 1− πi)) .

ex-post optimistic approach

U+min
post (π,w, u) = U+(π, Umin

i (w, u(xi, ·)))

= max
xi∈X

min(πi, min
yj∈Y

max(u(xi, yj), 1− wj)) .

ex-ante optimistic approach

U+min
ante (π,w, u) = Umin(w,U+

j (π, u(·, yj))

= min
yj∈Y

max(1− wj ,max
xi∈X

min(u(xi, yj), πi)) .

Essghaier et al.2 noticed that the first two quantities are equal to

minxi∈X ,yj∈Y max(1 − πi, u(xi, yj), 1− wj)), so that the two aggregations U−
j and

Umin
i commute.

In the optimistic case, the two integrals do no coincide: Essghaier et al.2 have

shown that we only have an inequality U+min
ante (π,w, u) ≥ U+min

post (π,w, u), with no

equality in general. The following counterexample shows that the latter inequality

can be strict and even extreme in simple cases, even when the rating scale is reduced

to {0, 1}:



Example 1. Counterexample

Let X = {x1, x2}, Y = {y1, y2}. Suppose πi = 1, and wi = 1, ∀i = 1, 2, and a

Boolean utility function u(x1, y1) = u(x2, y2) = 1 and u(x2, y1) = u(x1, y2) = 0.

U+min
post (π,w, u) = 0 since:

max(min(1,min(max(1 − 1, 1),max(1 − 1, 0)),min(1,min(max(1 − 1, 0),max(1 −

1, 1))) = 0.

But U+min
ante (π,w, u) = 1, since computed as

min(max(1− 1,max(max(1, 1),max(0, 1)),max(1− 1,max(max(0, 1),max(1, 1))))

= 1. �

To get insights into these results, we shall study the generalized form of the

weighted minimum and maximum, namely Sugeno integral.

3. Composition of Sugeno Integrals

We first recall definitions and properties of Sugeno integrals and then consider the

composition of Sugeno integrals on two spaces, yielding double Sugeno integrals.

3.1. Sugeno integral

Consider a set X = {x1, · · · , xn} and L a totally ordered scale as previously.

A decision to be evaluated is represented by a function u: X → L where u(xi)

is, for instance, the degree of utility of the decision in state xi.

In the definition of Sugeno integral the relative likelihood of subsets of states is

represented by a capacity (or fuzzy measure), which is a set function µ: 2X → L

that satisfies µ(∅) = 0, µ(X ) = 1 and A ⊆ B implies µ(A) ≤ µ(B). The conjugate

capacity of µ is defined by µc(A) = 1 − µ(Ac) where Ac is the complement of A.

Sugeno integral is originally defined as follows.21,22

Definition 1. The Sugeno integral (S-integral for short) of a function u: X → L

with respect to a capacity µ is defined by:

Sµ(u) = max
α∈L

min(α, µ(u ≥ α))

where µ(u ≥ α) = µ({xi ∈ X |u(xi) ≥ α}).

A Sugeno integral can be equivalently written under various forms,17,21

especially:

Sµ(u) = max
A⊆X

min(µ(A), min
xi∈A

u(xi)) = min
A⊆X

max(µ(Ac),max
xi∈A

u(xi)) . (1)

Recall that a (lattice) polynomial function on L is any map q : Ln → L obtained

as a composition of the lattice operations ∧ and ∨, the projections (here, u(xi)) and

the constant functions λ ∈ L. Here, min and max on a finite chain. As observed by

Marichal,17 Sugeno integrals exactly coincide with those lattice polynomials which



are idempotent, that is, which satisfy q(λ, . . . , λ) = λ, for every λ ∈ L. In fact, it 
suffices to verify this identity for λ ∈ {0, 1}, that is, q(1X ) = 1 and q(1∅) = 0, where 
1A denotes the characteristic function of set A (1A(x) = 1 if x ∈ A and 0 otherwise). 
As shown by Goodstein,12 polynomial functions over bounded distributive lattices 
(in particular, over bounded chains) have very neat normal form representations, 
namely disjunctive and conjunctive normal forms given, for idempotent ones, by 
the above expressions in (1).

In particular, every idempotent polynomial function q : Ln → L is uniquely 
determined by its restriction to {0, 1}n. Also, since every lattice polynomial function 
is order-preserving, the coefficients in the disjunctive normal form are monotone 
increasing as well, i.e., q(1I ) ≤ q(1J ) whenever I ⊆ J , i.e., they yield the capacity 
at work in the S-integral. Moreover, a function f : {0, 1}n → L can be extended to 
a polynomial function over L if and only if it is order-preserving. These results only 
point out that

Sµ(u) = µ(A) if u = 1A .

When µ is a possibility measure Π,25 such that Π(A ∪B) = max(Π(A),Π(B)),

i.e., a maxitive capacity, it is is entirely defined by a function π: X → L, called

the possibility distribution associated to Π, by: Π(A) = maxi∈A πi. The conjugate

N(A) = 1−Π(Ac) of a possibility measure is a necessity measure N ,8 i.e., a capacity

such that N(A ∩ B) = max(N(A), N(B)) (minitivity) and it can be expressed in

terms of the possibility distribution as N(A) = mini6∈A 1 − πi. We thus get the

following special cases of the Sugeno integral:

SΠ(u) = max
xi∈X

min(πi, u(xi)) , (2)

SN (u) = min
xi∈X

max(1− πi, u(xi)) . (3)

These are the weighted maximum and minimum operations that are used in the

previous section to model optimistic and pessimistic qualitative utility functionals

respectively.

The S-integral can be expressed in a non-redundant format by means of the

qualitative Möbius transform of µ:13

µ#(T ) =

{

µ(T ) if µ(T ) > maxx∈T µ(T\{x})

0 otherwise

as

Sµ(u) = max
T⊆X :µ#(T )>0

min(µ#(T ), min
xi∈T

u(xi)) .

Indeed, µ# enables the reconstruction of the capacity µ as µ(A) = maxT⊆A µ#(T ).

Subsets T of X for which µ#(T ) > 0 are called focal sets of µ (the set of focal sets

of µ is denoted F(µ)). F(µ) is the minimal family of sets which allow to recover

the capacity (via µ#). By construction, if E,F ∈ F(µ) and E ⊂ F then µ#(F ) >

µ#(E) > 0. As a matter of fact, it is clear that the qualitative Möbius transform



of a possibility measure coincides with its possibility distribution: Π#(A) = π(s) if

A = {s} and 0 otherwise.9

Lastly, the S-integral can be expressed in terms of Boolean capacities (i.e., of

capacities that take their values in {0, 1}), namely to the λ-cuts of µ. Given a

capacity µ on X , for all λ > 0, λ ∈ L, let µλ: 2
X → {0, 1} (the λ-cut of µ) be the

Boolean capacity defined by

µλ(A) =







1 if µ(A) ≥ λ ,

0 otherwise.

for all A ⊆ X . It is clear that the capacity µ can be reconstructed from the µλ’s as

follows:

µ(A) = max
λ>0

min(λ, µλ(A)) .

Observe that the focal sets of a Boolean capacity µλ form an antichain of subsets

(there cannot be any inclusion between them).

We can express S-integrals with respect to µ by means of the cuts of µ:

Proposition 1. Sµ(u) = maxλ>0 min(λ, Sµλ
(u))

Proof:

Sµ(u) = max
A⊆X

min(max
λ>0

min(λ, µλ(A)),min
i∈A

u(xi))

= max
A⊆X

max
λ>0

min(λ, µλ(A),min
i∈A

u(xi))

= max
λ>0

max
A⊆X

min(λ, µλ(A),min
i∈A

u(xi))

= max
λ>0

min(λ,max
A⊆X

min(µλ(A),min
i∈A

u(xi)) ,

which is maxλ>0 min(λ, Sµλ
(u)). �

Note that the expression Sµ(u) = maxα∈L min(α, µ(u ≥ α)) uses cuts of the

utility function. It can be combined with Proposition 1 to yield:

Sµ(u) = max
α,λ∈L

min(α, λ, µλ(u ≥ α)) . (4)

This expression can be simplified as follows:

Proposition 2. Sµ(u) = maxλ∈L min(λ, µλ(u ≥ λ)).

Proof: Note that µλ(u ≥ α) does not increase with α nor λ. Suppose then that

Sµ(u) = min(α∗, λ∗, µλ∗(u ≥ α∗)). If µλ∗(u ≥ α∗) = 1, and α∗ > λ∗, then

notice that µλ∗(u ≥ λ∗) = 1 as well. Likewise, if α∗ < λ∗, µα∗(u ≥ α∗)) = 1.

If µλ∗(u ≥ α∗) = 0, this is also true for µλ(u ≥ α) with α > α∗ and λ > λ∗. So we

can assume α = λ in Eq. (4). �



These results, to our knowledge, have never been highlighted, and will be 
instrumental in the sequel.

3.2. Double Sugeno integrals

Let us now generalize the qualitative setting for multi-agent decision under 
uncertainty using aggregation based on capacities. Consider two sets: X = 
{x1, · · · , xn}, Y = {y1, · · · , yp} and two fuzzy measures µX on X and µY on Y.

Definition 2. The double Sugeno integral of a function u: X × Y → L, denoted 
by SµX (SµY (u)) is the Sugeno integral SµX (f), according to µX of the function f : 
Ln → L defined by f(xi) = SµY (u(xi, ·)).

There are two double S-integrals, according to whether we apply S-integral on X 
first, or on Y first (as presented in Figure 1):

• SµX
(SµY

(u)) denotes the Sugeno integral, according to µX , of the function defined

as xi 7→ SµY
(u(xi, ·)), xi ∈ X .

• SµY
(SµX

(u)) denotes the Sugeno integral, according to µY , of the function defined

as yj 7→ SµX
(u(·, yj)), yj ∈ Y.

y1 . . . yp








x1 u(x1, y1) . . . u(x1, yp)
...

. . .
...

xn u(xn, y1) . . . u(xn, yp)

→
...

→









SµY
(u(x1, ·))
...

SµY
(u(xn, ·))

↓

↓ . . . ↓ SµX
(SµY

(u(x1, ·)), · · · , SµY
(u(xn, ·)))

( )

SµX
(u(·, y1)), · · · , SµX

(u(·, yp)) → SµY
(SµX

(u(·, y1)), · · · , SµX
(u(·, yp))

Fig. 1. Two double Sugeno integrals.

That is to say:

SµX
(SµY

(u)) = max
A⊆X

min(µX (A),min
x∈A

SµY
(u(x, ·)))

= max
A⊆X

min(µX (A),min
x∈A

max
B⊆Y

min(µY(B),min
y∈B

(u(x, y)))) ,

SµY
(SµX

(u)) = max
B⊆Y

min(µY(B),min
y∈B

SµX
(u(·, y)))

= max
B⊆Y

min(µY(B),min
y∈B

max
A⊆X

min(µX (A),min
x∈A

(u(x, y)))) .



When SµX
(SµY

(u)) = SµY
(SµX

(u)), the two double S-integrals are said to

commute for function u. When this commutation property holds for all functions

u, we shall simply say that the two Sugeno integrals commute.

In the terminology of multi-agent decision under uncertainty, the capacity µX

describes knowledge about the actual state of nature and µY on Y evaluates the

importance of groups of agents. The double Sugeno integral SµX
(SµY

(u)) evaluates

the collective worth of a decision under uncertainty, characterized by utility function

u according to all agents whose importance is described by µY , and given some

common knowledge µX about the states of the world.

It is clear that the egalitarian aggregations for pessimistic agents are of the form

U−min
post (π,w, u) = SNX

(SNY
(u)); U−min

ante (π,w, u) = SNY
(SNX

(u)) ,

and the commutation of the two expressions, proved by Ben Amor

et al.2 and recalled in Section 2, can be expressed as SNX
(SNY

(u)) =

SNY
(SNX

(u)). Likewise it can be checked that SΠX
(SΠY

(u)) = SΠY
(SΠX

(u)) =

maxxi∈X ,yj∈Y min(πi, wj , u(xi, yj)).

In the optimistic case, qualitative decision theory prescribes the use of a Sugeno

integral based on a possibility measure on X , and we get

U+min
post (π,w, u) = SΠX

(SNY
(u)); U+min

ante (π,w, u) = SNY
(SΠX

(u)) .

It has been pointed out that SΠX
(SNY

(u)) < SNY
(SΠX

(u)) in general, so that

no commutation result can be obtained when one of the capacity is a necessity

measure and the other one is a possibility measure. In summary, double S-integrals

may commute, e.g., when the two capacities are both necessity measures or both

possibility measures, but generally they do not — the previous example shows that

the difference between the two double S-integrals can be maximal.

The interesting question is then whether commutation of double S-integrals

takes place only when the capacities µX and µY are both necessity measures or

both possibility measures.

4. The Commutation of Sugeno Integrals

In this section, given two capacities on finite sets µX on X and µY on Y, we check for

necessary and sufficient conditions under which commutation takes place, namely

the following identity holds:

SµX
(SµY

(u(x1, ·)), · · · , SµY
(u(xn, ·))) = SµY

(SµX
((u(·, y1)), . . . , SµX

(u(·, yp)))

or for short SµX
(SµY

(u)) = SµY
(SµX

(u)). This question was considered from two

points of view: for which functions u do S-integrals commute for all capacities on

X and Y? For which capacities do the S-integrals commute for all functions u (we

then write SµY
⊥SµX

)?

The first question is considered by Narukawa and Torra18 for more general

fuzzy integrals, and the second one by Behrisch et al.,1 albeit in the larger setting



of distributive lattices, for general lattice polynomials. However, their results are 
not easy to exploit. It is of interest to give an independent proof of these results 
for S-integrals valued on chains, as it is easier to grasp and it enables an explicit 
description of capacities ensuring commutation. Very recently, Halas et al.15 have 
solved the problem on Cartesian products of 2-element spaces. Our proof solves 
the question for S-integrals on any finite sets. Like the one by Behrisch et al.,1 it 
requires several lemmas, but is easier to read and simpler. In particular we can then 
explicitly lay bare pairs of commuting S-integrals, i.e., such that SµY ⊥SµX , based 
on capacities other than possibility measures and necessity measures.

4.1. Necessary and sufficient conditions for commutation

It is easy to see that a double S-integral SµX (SµY (u)) is actually an idempotent 
lattice polynomial p: L|X |+|Y| → L, since it is built using min, max, constants 
and variable terms of the form u(xi, yj ). Moreover, SµX (SµY (1X×Y )) = 1, 
SµX (SµY (1∅)) = 0. Using results on lattice polynomials, we conclude that a double 
S-integral is always an S-integral on X × Y, based on a capacity that maps each 
R ⊆ X × Y to L the value κXY (R) = SµX (SµY (1R)). Namely noticing that 
SµX (SµY (1R)) = SµX (fR), where fR(xi) = µY ({y ∈ Y: xiRy}), is a monotonic 
function of R only, i.e., a capacity κXY on X ×Y, we can write any double S-integral 
as

SµX
(SµY

(u)) = max
R⊆X×Y

min(κXY(R), min
(xi,yj)∈R

u(xi, yj)) . (5)

The double S-integral is thus an S-integral based on the so-defined capacity κXY

on the two dimensional space. This result was independently proved very recently

by Halas et al.,15 but it also straightforwardly follows from considerations by

Goodstein12 and Behrisch et al.1 This capacity, by definition, is unique. Then it is

clear that the commutation of the double S-integrals takes place if and only if the

two capacities κXY and κYX coincide.

From this result, we conclude that commutation holds for all functions u:

X × Y → L whatever the capacities if and only if commutation holds for all

Boolean-valued functions u: X × Y → {0, 1}, that is relations R ⊆ X ×Y, because

double S-integrals are polynomial lattices.

Proposition 3. SµY
⊥SµX

if and only if ∀R ⊆ X × Y, SµX
(SµY

(1R)) =

SµY
(SµX

(1R)).

Proof: We have shown above (Eq. (5)) that any double S-integral SµX
(SµY

(u))

is actually an S-integral associated to a capacity κXY on X × Y, namely

SµX
(SµY

(u)) = SκXY
(u). Likewise SµY

(SµX
(u)) = SκYX

(u) for another capacity

κYX . So SµY
⊥SµX

if and only if SκXY
(u) = SκYX

(u), if and only if κXY = κYX .

And note that SµX
(SµY

(1R)) = κXY(R) = SκXY
(1R), for all R ⊆ X × Y. �



So if commutation holds for all relations, it holds for all functions and conversely.

Now consider relations. In the following we first consider relations in the form of

a Cartesian product A × B,A ⊂ X , B ⊂ Y, then in the form of the union of two

Cartesian products R = (A1×B1)∪ (A2×B2). We shall show that if commutation

occurs for the latter kind of relations, it holds for all functions.

The case of a Cartesian product: Consider the case when R = A×B:

Proposition 4. If R = A×B then SµX
(SµY

(1R)) = min(µX (A), µY(B)) for any

capacities µX and µY .

Proof:

SµX
(SµY

(1R)) stands for:

max
C⊆X

min(µX (C),min
x∈C

max
C′⊆Y

min(µY(C
′), min

y∈C′
1R(x, y))) .

Because 1R(x, y) = 1 if (x, y) ∈ A×B, and 1R(x, y) = 0 otherwise, we get:

SµX
(SµY

(u)) = maxC⊆A min(µX (C),minx∈C maxC′⊆B min(µY(C
′),miny∈C′ 1))

Then

SµX
(SµY

(u)) = maxC⊆A min(µX (C),minx∈C maxC′⊆B min(µY(C
′), 1))

= maxC⊆A min(µX (C),minx∈C µY(B)))

= maxC⊆A min(µX (C), µY(B))) = min(µX (A), µY(B))). �

This is a Fubini theorem for S-integrals, which is a special case of a result proved

by Narukawa and Torra.18 As a consequence we can identify a family of functions

u: X × Y → L for which commutation holds whatever the capacities involved.

Corollary 1. If u(x, y) = min(uX (x), uY(y)), commutation holds for any pair of

capacities, i.e.,

SµX
(SµY

(u)) = SµY
(SµX

(u)) = min(SµX
(uX ), SµY

(uY)) .

Proof: Note that by assumption R = {(x, y) :u(x, y) ≥ λ} is of the form, Sλ × Tλ,

where Sλ = {x :uX ≥ λ} and Tλ = {y :uY ≥ λ}. Then we can use the fact that a

double S-integral is a simple one on X × Y (Eq.(5) in the form of Definition 1):

SµY
(SµX

(u)) = max
λ∈L

min(κYX (u ≥ λ), λ)

= max
λ∈L

min(µX (Sλ), µY(Tλ), λ) (by Prop. 4)

= min(max
λ∈L

min(µX (Sλ), λ),max
λ∈L

min(µY(Tλ), λ))

= min(SµX
(uX ), SµY

(uY)) .

�



The case of the union of two Cartesian products: Now let us consider 
relations R = (A1 × B1) ∪ (A2 × B2). Let us compute κXY (R) = SµX (SµY (1R)) in 
that case:

Lemma 1.

SµX
(SµY

(1R)) = max



























min(µX (A1 ∩A2), µY(B1 ∪B2))

min(µX (A1), µY(B1))

min(µX (A2), µY(B2))

min(µX (A1 ∪A2), µY(B1), µY(B2)) .

Proof: First note that if R = (A1 × B1) ∪ (A2 × B2), then xR = {y ∈ Y :xRy} is

of the form

• xR = B1 if x ∈ A1 \A2 and xR = B2 if x ∈ A2 \A1

• xR = B1 ∪B2 if x ∈ A1 ∩A2

• xR = ∅ otherwise.

Now SµX
(SµY

(1R)) = maxS⊆X min(µX (S),minx∈S µY(xR)) = maxS⊆X φ(S) for

short. We compute the term minx∈S µY(xR) according to the position of S with

respect to A1 and A2:

• If S ⊆ A1 ∩A2 then minx∈S µY(xR) = µY(B1 ∪B2) so,

maxS⊆A1∩A2
φ(S) = min(µX (A1 ∩A2), µY(B1 ∪B2)).

• If S ⊆ A1 and S 6⊆ A2, then minx∈S µY(xR) = µY(B1), so,

maxS⊆A1,S 6⊆A2
φ(S) = min(µX (A1), µY(B1)).

• If S ⊆ A2 and S 6⊆ A1, then minx∈S µY(xR) = µY(B2), so,

maxS⊆A2,S 6⊆A1
φ(S) = min(µX (A2), µY(B2)).

• If S ⊆ A1 ∪ A2 and S 6⊆ A1, S 6⊆ A2, then minx∈S µY(xR) = min(µY(B1),

µY(B2)), so, maxS⊆A1∪A2,S 6⊆A1,S 6⊆A2
φ(S)=min(µX (A1 ∪A2), µY(B1), µY(B2)).

• If S 6⊆ A1 ∪A2, then minx∈S µY(xR) = 0 and maxS 6⊆A1∪A2
φ(S) = 0. �

We denote by g(A1, A2, B1, B2) the expression obtained for SµX
(SµY

(1R)) when

R = (A1 × B1) ∪ (A2 × B2). We get a counterpart of Lemma 3.4 in the paper by

Behrisch et al.:1

Lemma 2. SµX
(SµY

(1R)) = SµY
(SµX

(1R)) for R = (A1 ×B1)∪ (A2 ×B2) if and

only if the equality

g(A1, A2, B1, B2) = g(B1, B2, A1, A2)

holds. This is called the 2-rectangle condition.



Proof: It is obvious that computing SµY
(SµX

(1R)) by the method of Lemma 1

comes down to swapping terms A1 and B1, and A2 and B2, in the expression of

SµX
(SµY

(1R)). �

The following is a counterpart of Lemma 3.6 in the paper by Behrisch et al.:1

Lemma 3. The 2-rectangle condition of Lemma 2 implies the two following
properties

min(µX (A1), µX (A2), µY (B1 ∪B2)) = max







min(µX (A1 ∩A2), µY (B1 ∪B2)),

min(µX (A1), µX (A2),max(µY (B1), µY (B2)))

min(µX (B1), µX (B2), µY (A1 ∪A2)) = max







min(µX (B1 ∩B2), µY (A1 ∪A2)),

min(µX (B1), µX (B2),max(µY (A1), µY (A2)))

Proof: To get the first equality the idea (from Behrisch et al.1) is to compute the

conjunction of each side of the 2-rectangle condition with min(µX (A1), µX (A2))

(applying distributivity). Indeed consider each factor of the 2-rectangle condition

conjuncted with this term:

• On the left-hand side (as in Lemma 1), the conjunction of the first term with

min(µX (A1), µX (A2)) is still min(µX (A1∩A2), µY(B1∪B2)) since µX (A1∩A2)) ≤

min(µX (A1), µX (A2)) by monotonicity of µX .

• The 2d term becomes min(µX (A1), µX (A2), µY(B1)).

• The 3d term becomes min(µX (A1), µX (A2), µY(B2)).

• The 4th term becomes min(µX (A1), µX (A2), µX (A1 ∪A2), µY(B1), µY(B2)), but

this term is less than the above second and third terms and subsumed via

maximum.

The right hand side of the 2-rectangle condition is handled similarly, exchanging

A1 and B1, A2 and B2 in the expression in Lemma 1.

• The first term becomes min(µY(B1 ∩B2), µX (A1), µX (A2)) due to monotonicity

again.

• The second and third terms on the right-hand side are the same as in the left-hand

side, but here they are less than the first term.

• The last term remains the same, i.e., min(µY(B1 ∪ B2), µX (A1), µX (A2)) but is

greater the first term, so it is the maximum.

We thus get the first equality. The second equality is obtained likewise, by

conjunction of each side of the equality with the term min(µY(B1), µY(B2)). �

The following lemma simplifies the two obtained equalities into simpler

inequalities.



Lemma 4. The two equalities in Lemma 3 are equivalent to the two inequalities

max(µX (A1 ∩A2), µY(B1), µY(B2)) ≥ min(µX (A1), µX (A2), µY(B1 ∪B2)) , (6)

max(µY(B1 ∩B2), µX (A1), µX (A2)) ≥ min(µY(B1), µY(B2), µX (A1 ∪A2)) . (7)

Proof: Let us apply distributivity to the right-hand side of the first equality in

Lemma 3: We get a conjunction of four disjunctive terms of the form:

• max(µX (A1 ∩ A2),min(µX (A1), µX (A2))) = min(µX (A1), µX (A2)) (monotoni-

city).

• max(µX (A1 ∩A2), µY(B1), µY(B2))

• max(µY(B1 ∪B2),min(µX (A1), µX (A2)))

• max(µY(B1 ∪B2), µY(B1), µY(B2)) = µY(B1 ∪B2) (monotonicity).

It is clear that the conjunction of these terms absorbs the third one, and

the first equality in Lemma 3 reduces to the equality min(λ,max(µX (A1 ∩

A2), µY(B1), µY(B2))) = λ, where λ = min(µX (A1), µX (A2), µY(B1 ∪ B2)), which

is equivalent to the first inequality. The second inequality is proved likewise,

exchanging A and B, X and Y. �

The case of a union of more than two Cartesian products: It turns out

that the two inequalities (6) and (7) imply similar ones for more than two pairs of

sets (Ai, Bi), forming a union R = ∪n
i=1Ai ×Bi of Cartesian products, namely:

Lemma 5. (6) and (7) imply:

max(µX (∩k
i=1Ai),

ℓ
max
j=1

µY(Bj)) ≥ min(
k

min
i=1

µX (Ai), µY(∪
ℓ
j=1Bj)) , (8)

max(µY(∩
ℓ
j=1Bj),

k
max
i=1

µX (Ai)) ≥ min(
ℓ

min
j=1

µY(Bj), µX (∪k
i=1Ai)) . (9)

Proof: Inequality (8) holds for k = ℓ = 2 (this is (6)). Suppose that inequality (8)

holds for i = 1, . . . k − 1 and ℓ = 2. We can write, by assumption:

max(µX (∩k−1
i=1 Ai), µY(B1), µY(B2)) ≥ min(

k−1
min
i=1

µX (Ai), µY(B1 ∪B2)) . (10)

Moreover we can write (6) for A = ∩k−1
i=1 Ai, Ak, B1, B2. So we can write the

inequality

max(µX (∩k
i=1Ai), µY(B1), µY(B2)) ≥ min(µX (∩k−1

i=1 Ai), µX (Ak), µY(B1 ∪B2)) .

(11)

Suppose µX (∩k−1
i=1 Ai) ≥ max(µY(B1), µY(B2)). So the first inequality (10) reduces

to

µX (∩k−1
i=1 Ai) ≥ min(

k−1
min
i=1

µX (Ai), µY(B1 ∪B2)) .



Then we can replace µX (∩k−1
i=1 Ai) by min(mink−1

i=1 µX (Ai), µY(B1 ∪ B2)) in the

second inequality (11), and get (8).

Otherwise, µX (∩k−1
i=1 Ai) ≤ max(µY(B1), µY(B2)), and the first inequality (10)

reads

max(µY(B1), µY(B2)) ≥ min(
k−1
min
i=1

µX (Ai), µY(B1 ∪B2))

so we have

max(µX (∩k
i=1Ai), µY(B1), µY(B2)) ≥ min((

k−1
min
i=1

µX (Ai)), µX (Ak), µY(B1 ∪B2)) ,

which is (8) again. Proving that the inequality (8) holds for any (k, ℓ) is similar,

knowing it holds for (k, 2), assuming it holds until (k, ℓ− 1). The inequality (9) is

proved in a similar way, exchanging A and B, X and Y . �

Lemma 6. If µX and µY satisfy the two inequalities (8) and (9), then SµX
⊥SµY

.

Proof: First notice that the inequalities (8) and (9) can be written in the style of

Lemma 3. The first one reads:

min(
k

min
i=1

µX (Ai), µY(∪
ℓ
j=1Bj)) = max







min(µX (∩k
i=1 Ai), µY(∪

ℓ
j=1Bj)),

min(minki=1 µX (Ai),maxℓj=1 µY(Bj)) .

We first prove that

max
S⊆X

min(µX (S),min
x∈S

µY(xR)) ≥ max
T⊆Y

min(µY(T ),min
y∈T

µX (Ry)) .

Consider the term min(µY(T ),miny∈T µX (Ry)) that we identify with the left-hand

side of the above equality (letting T = ∪ℓ
j=1Bj , Bj = {yj}, k = ℓ = |T |, Ai = Ryi).

This equality then reads:

min(min
yi∈T

µX (Ryi), µY(T ))

= max(min(µX (∩yi∈TRyi), µY(T )),min(min
yi∈T

µX (Ryi),max
yj∈T

µY({yj})))

= max(min(µX (ST ), µY(T )),max
t∈T

min(min
y∈T

µX (Ry), µY({t}))) .

where ST = ∩y∈TRy. Now we can prove that

• µY(T ) ≤ minx∈ST
µY(xR). Indeed ST = ∩y∈TRy if and only if ST × T ⊆ R if

and only if T = ∩x∈ST
xR. So, the term min(µX (ST ), µY(T )) is upper bounded

by maxS⊆X min(µX (S),minx∈S µY(xR)).

• The same holds for the term min(miny∈T µX (Ry), µY({t})). Indeed

— as t ∈ T , miny∈T µX (Ry) ≤ µX (Rt), choosing y = t.

— Let x ∈ Rt. Then µY({t}) ≤ µY(xR) since t ∈ xR as well.



So, min(miny∈T µX (Ry), µY({t})) ≤ min(µX (Rt), µY(xR)), ∀x ∈ Rt. Hence,

min(min
y∈T

µX (Ry), µY({t})) ≤ min(µX (Rt), min
x∈Rt

µY(xR))

that is also upper bounded by maxS⊆X min(µX (S),minx∈S µY(xR)). We thus

get SµX
(SµY

(1R)) ≥ SµY
(SµX

(1R)).

The converse inequality SµX
(SµY

(1R)) ≤ SµY
(SµX

(1R)) can be proved likewise, by

symmetry, using (9). �

The above Lemmas yield a necessary and sufficient condition expressed in the

following theorem for the commutation of two S-integrals.

Theorem 1. Consider two capacities µX on X and µY on Y. SµY
⊥SµX

if and

only if ∀A1, A2 ⊆ X , ∀B1, B2 ⊆ Y,:

max(µX (A1 ∩A2), µY(B1), µY(B2)) ≥ min(µX (A1), µX (A2), µY(B1 ∪B2)) ,

max(µY(B1 ∩B2), µX (A1), µX (A2)) ≥ min(µY(B1), µY(B2), µX (A1 ∪A2)) .

Proof: Proposition 3 shows we can restrict to Boolean functions (relations R) on

X × Y without loss of generality. Then we show that commutation is equivalent

to a certain identity for relations R of the form (A1 × B1) ∪ (A2 × B2) (Lemma

2). We show this identity implies the two inequalities of the theorem (Lemmas 3

then 4). For the sufficiency , we have shown these inequalities can be extended

to more than just pairs of sets (Lemma 5). Finally we show that these extended

inequalities imply the commutation condition (Lemma 6). As any relation on a

finite Cartesian product can be expressed as a finite union of Cartesian products,

the two inequalities of the theorem are necessary and sufficient conditions for the

commutation of Sugeno integrals. �

4.2. Commuting capacities

As an S-integral is entirely characterized by its underlying capacity, we will say that

the two capacities commute when the corresponding S-integrals commute. Theorem

1 does not clearly explain what are the capacities that commute. We already know

that two possibility measures, as well as two necessity measures commute, while a

possibility measure does not commute with a necessity measure. In this subsection,

we try to explicitly describe all pairs of commuting capacities.

The case of Boolean capacities is of interest as it will be instrumental to address

the general case:

Lemma 7. If µX and µY are Boolean capacities and the two inequalities (6) and

(7) hold for all A1, A2 ⊆ X and for all B1, B2 ⊆ Y, then µX and µY are both

necessity measures or possibility measures or one of them is a Dirac measure.



Proof: Suppose µX is not a necessity measure and µY is not a possibility

measure. Then ∃A1, A2 ⊆ X , µX (A1∩A2) < min(µX (A1), µX (A2)), and ∃B1, B2 ⊆

Y, µY(B1 ∪ B2) > max(µY(B1), µX (B2)). In the Boolean case it reads µX (A1 ∩

A2) = 0, µX (A1) = µX (A2) = 1, µY(B1 ∪ B2) = 1, µY(B1) = µY(B2) = 0.

Then inequality (6) is violated as max(µX (A1 ∩ A2), µY(B1), µY(B2)) = 0 and

min(µX (A1), µX (A2), µY(B1 ∪ B2)) = 1. The second inequality (7) is violated by

choosing A1, A2 ⊆ X , B1, B2 ⊆ Y, such that µY(B1 ∩B2) = 0, µY(B1) = µY(B2) =

1, µX (A1∪A2) = 1, µX (A1) = µX (A2) = 0, assuming µY is not a necessity measure

and µX is not a possibility measure. Obeying the two inequalities (6) and (7)

enforces the following constraints in the Boolean case

µY possibility measure or µX necessity measure

and

µY necessity measure or µX possibility measure.

It enforces possibility measures on both sets X and Y, or necessity measures (known

cases where commuting occurs). Alternatively, if we enforce µY to be at the same

time a possibility measure and a necessity measure, it is a Dirac function on Y, and

it can be any capacity on the other space. �

Corollary 2. S-integrals with respect to Boolean capacities µX and µY commute if

and only if they are both necessity measures or possibility measures or one of them

is a Dirac measure.

We can extend the result to the case when only one of the capacities is Boolean:

Proposition 5. If one of µX and µY is Boolean, S-integrals commute if and only

if they are both necessity measures or possibility measures or one of them is a Dirac

measure.

Proof: Suppose µX is Boolean and is not a necessity measure and µY is not a

possibility measure. Then ∃A1, A2 ⊆ X , µX (A1 ∩A2) < min(µX (A1), µX (A2)), and

∃B1, B2 ⊆ Y, µY(B1∪B2) > max(µY(B1), µX (B2)). For µX , it reads µX (A1∩A2) =

0, µX (A1) = µX (A2) = 1. Then the first inequality in Theorem 1 reduces to

max(µY(B1), µX (B2)) ≥ µY(B1 ∪ B2), which implies that µY is a possibility

measure. It contradicts the assumption on µY . The rest of the reasoning is as

above. �

Note that to violate (6) it is enough that neither µX nor µY are possibility and

necessity measures, and moreover for A1, A2, B1, B2 where, say µX violates the

axiom of necessities and µY violates the axiom of possibilities, i.e., we have µX (A1)

and µX (A2) both greater than each of µY(B1), µY(B2) and moreover µY(B1∪B2) >

µY(A1 ∩A2). Then the integrals will not commute.

In the non-Boolean case, we can give examples of commuting graded capacities

that are neither only possibility measures, nor only necessity measures nor a Dirac

function contrary to the Boolean case of Corollary 2.



Suppose µY is a possibility measure. Then inequality (6) trivially holds. Let 
Bi = {yi}, i = 1, 2. In this case, the other inequality (7) reads

∀y1 6= y2 ∈ Y, max(µX (A1), µX (A2)) ≥ min(µY ({y1}), µY ({y2}), µX (A1 ∪ A2)) .

as µY (B1 ∩B2) = 0 in this case.d The most demanding case is when µY (y1) = 1 and 
µY (y2) is the possibility degree π2 of the second most plausible element in µY . It is 
then equivalent to max(µX (A1), µX (A2)) ≥ min(π2, µX (A1 ∪ A2)), which enforces 
a possibility measure for µX only if π2 ≥ µX (A) for all A ⊆ X , namely π2 = 1.

Example 2. (See also Halas et al.15) Let X = {x1, x2}; Y = {y1, y2}. Then let 
µX (x1) = α, µX (x2) = α, µY (y1) = 1, µY (y2) = α, so a constant capacity µX and a 
possibility measure µY .

We have max(µX (A1 ∩ A2), µY (B1), µY (B2)) ≥ min(µX (A1), µX (A2), µY (B1 ∪ 
B2)) because the possible values are α or 1. The right-hand side is equal to 1 if and 
only if A1 = A2 = X ; in this case µX (A1 ∩ A2) = 1.

We have max(µY (B1 ∩ B2), µX (A1), µX (A2)) ≥ min(µY (B1), µY (B2), µX (A1 ∪ 
A2)) because the possible values are α or 1. The right-hand side is equal to 1 if and 
only if y1 ∈ B1 and y2 ∈ B2 = X ; in this case µY (B1 ∩ B2) = 1. So SµX ⊥SµY . �

In the following, we lay bare the pairs of capacities that commute by applying 
the result of Corollary 2 to cuts of the capacities. We first prove that for Boolean 
functions on X × Y, the double S-integrals are completely defined by the cuts of 
the involved capacities, thus generalizing Proposition 1 to double S-integrals. First, 
we show an inequality in the general case of L-valued functions.

Lemma 8. ∀u, SµX (SµY (u)) ≥ maxλ>0 min(λ, SµXλ (SµYλ (u))).

Proof: For simplicity we denote µX by µ and µY by ν

Sµ(Sν(u)) = max
A⊆X

min(µ(A),min
x∈A

Sν(u(x, ·)))

= max
A⊆X

min(max
λ>0

min(λ, µλ(A)),min
x∈A

max
α>0

min(α, Sνα
(u(x, ·)))) .

Note that

min
x∈A

max
α>0

min(α, Sνα
(u(x, ·))) ≥ max

α>0
min
x∈A

min(α, Sνα
(u(x, ·))) .

Then we have

Sµ(Sν(u)) ≥ max
A⊆X

min(max
λ>0

min(λ, µλ(A)),max
α>0

min
x∈A

min(α, Sνα
(u(x, ·))))

= max
λ>0

max
A⊆X

min(min(λ, µλ(A)),max
α>0

min
x∈A

min(α, Sνα
(u(x, ·))))

= max
λ>0

min(λ,max
A⊆X

min(µλ(A)),max
α>0

min(α,min
x∈A

Sνα
(u(x, ·))))

dWhen y1 = y2 then Eq. (6) becomes max(µY ({y1}), µX (A1), µX (A2)) ≥ min(µY ({y1}), µX (A1∪

A2)) and this inequality is trivial.



= max
λ>0,α>0

min(λ, α,max
A⊆X

min(µλ(A),min
x∈A

Sνα
(u(x, ·))))

= max
λ>0,α>0

min(λ, α, Sµλ
(Sνα

(u)) .

Suppose the maximum is attained for α∗ 6= λ∗ then since α ≥ β ⇒ να(A) ≤

νβ(A), decreasing α to min(α∗, λ∗) will increase Sνα
(u(x, ·)), and decreasing λ to

min(α∗, λ∗) will increase Sµλ
(Sνα

(u)). So we can assume α∗ = λ∗. �

Now we prove that this inequality is an equality for Boolean functions on X ×Y.

Proposition 6. ∀R ⊆ X × Y, SµX
(SµY

(1R)) = maxλ>0 min(λ, SµXλ
(SµYλ

(1R))).

Proof: Let us restrict to the case when u(x, y) in Lemma 8 is Boolean

and is thus a relation R ⊆ X × Y. In this case SµX
(SµY

(1R)) =

maxA⊆X min(µX (A),minx∈A µY(xR)) and we are led to study conditions for the

equality minx∈A maxα>0 min(α, να(xR)) = maxα>0 minx∈A min(α, να(xR)). Let

α∗, x̂ be optima for min(α, να(xR)) on the right hand side, that is,

max
α>0

min
x∈A

min(α, να(xR)) = min(α∗, να(x̂R)) .

It means that ∀x ∈ A, να∗(xR) = 1, and due to monotonicity, ∀x ∈ A, ∀α ≤

α∗, να(xR) = 1. However, ∀α > α∗, ∃x ∈ A, να(xR) = 0.

Hence minx∈A maxα>0 min(α, να(xR)) = minx∈A maxα∗≥α>0 min(α, να(xR)) ≤

α∗.

So minx∈A maxα>0 min(α, να(xR)) ≤ maxα>0 minx∈A min(α, να(xR)), and we

get the equality since we already have the converse inequality in the general case

due to Lemma 8. �

We know that commutation between integrals holds for functions u(x, y) if it

holds for relations. The above result shows that commutation between capacities

will hold if and only if it will hold for their cuts, to which we can apply Corollary 2.

Corollary 3. Capacities µX and µY commute if and only if their cuts µXλ and

µYλ commute for all λ ∈ L.

Proof: Suppose µX and µY commute. It means that SµX
(SµY

(1R)) and

SµX
(SµY

(1R)) use the same 2D capacity κ on X × Y, namely SµX
(SµY

(1R)) =

SµX
(SµY

(1R)) = κ(R). It is then clear that using Proposition 2,:

κλ(R) = SµX
(SµY

(1R))λ = SµY
(SµX

(1R))λ

= SµXλ
(1[µY(R(x1,·))≥λ], · · · ,1[µY(R(xn,·))≥λ])

= SµYλ
(1[µX (R(·,y1))≥λ], · · · ,1[µX (R(·,yn))≥λ])

= SµXλ
(SµYλ

(R(x1, ·)), . . . , SµYλ
(R(xn, ·)))

= SµYλ
(SµXλ

(R(·, y1)), . . . , SµYλ
(R(·, yn)))

= SµXλ(SµYλ
(1R)) = SµYλ(SµXλ

(1R)) .



Conversely, using Proposition 6 if SµXλ (SµYλ (1R)) = SµYλ (SµXλ (1R)) for all λ ∈ L 
and R ⊆ X ×Y it implies SµX (SµY (1R)) = SµY (SµX (1R)) for all R ⊆ X ×Y, which 
by Proposition 3, is equivalent to the commutation of S-integrals w.r.t. µX and µY 

for all 2-place functions u. �

For instance, in the above Example 2, the commutation is clear because when 
λ > α the λ-cut of µX is a necessity measure (with focal set X ) and µY is a Dirac 
function focused on y1. And when 0 < λ ≤ α, the λ-cut of µX is the vacuous 
possibility measure, and so is the λ-cut of µY . More generally we can claim that

Corollary 4. Capacities µX and µY commute if and only if their cuts µXλ and 
µYλ are two possibility measures, two necessity measures, or one of them is a Dirac 
measure, for each λ ∈ L.

It is useful to describe capacities whose cuts are Boolean possibility of necessity 
measures using the focal sets of the cuts of a capacity µ on X . First, recall that:

Lemma 9. If F(µ) denotes the focal sets of µ, then the focal sets of µλ form the 
family

F(µλ) = min
⊆

{E ⊆ X :µ#(E) ≥ λ}

containing the least sets for inclusion in the family of focal sets of µ with weight at

least λ.

Indeed the focal sets of a Boolean capacity form an antichain, that is, they are not

nested, and if µ#(E) > µ#(F ) ≥ λ, while F ⊂ E, then E is not focal for µλ. In

particular, a Boolean necessity measure has a single focal set, while focal sets of a

(Boolean) possibility measure are singletons.

Lemma 10. For any capacity µ on X ,

(1) µλ is a necessity measure if and only if there is a single focal set E with µ#(E) ≥

λ such that for all focal sets F in F(µ) with weights µ#(F ) ≥ λ, we have E ⊂ F .

(2) µλ is a possibility measure if and only if there is a set S of singletons with

µ#(xi) ≥ λ such that for all focal sets F in F(µ) with weights µ#(F ) ≥ λ, we

have S ∩ F 6= ∅.

(3) µλ is a Dirac measure if and only if there is a focal singleton {x} with

µ#({x}) ≥ λ such that for all focal sets F in F(µ) with weights µ#(F ) ≥ λ,

we have x ∈ F .

Proof:

(1) The condition does ensure that E is the only focal set of µλ hence it is a

necessity measure. If the condition does not hold it is clear that µλ has more

than one focal set, hence is a not a necessity measure.



(2) The condition does ensure that the focal sets of µλ are the singletons in S,

hence it is a possibility measure. If the condition does not hold it is clear that

µλ has a focal set that is not a singleton, hence is not a possibility measure.

(3) The condition implies that µλ is both a possibility and a necessity measure,

hence a Dirac measure. If it is not satisfied, either µλ has more than one focal

set or its focal set is not a singleton.
�

We call a possibility or a necessity measure non-trivial when they are not Dirac

functions. Note that, when µλ is a possibility measure, and µα is a non-trivial

necessity measure, then α > λ:

Proposition 7. If ∀λ > 0, µλ is a possibility measure or a necessity measure, and

∃θ > 0, µθ is a possibility measure, then ∀λ ≤ θ, µλ is a possibility measure.

Proof: Suppose µθ is a possibility measure whose focal sets are the singletons of a

subset S. Take λ < θ and suppose µλ is a not a possibility measure. So there is a

focal set E of µ with weight less than θ but at least equal to λ that is focal for µλ.

Clearly the singletons of S are also focal sets of µλ, hence disjoint with E and µλ

is not a necessity measure, which contradicts the assumption about µ. Hence µλ is

a possibility measure when λ < θ. �

We are then in a position to state the main result of this section as pictured on

Fig. 2. Note that x∗ must be contained in all focal sets of µX with weight greater

than θD, and y∗ must be disjoint from all focal sets of µY with weight less than or

equal to θD.

λ µλ
X µλ

Y

1 necessity necessity

θN

θD capacity Dirac on y∗

θΠ Dirac on x∗ capacity

0 possibility possibility

Fig. 2. Commuting capacities.

Theorem 2. Two capacities µX and µY commute if and only if there exist at most

three thresholds θN ≥ θD ≥ θΠ ∈ L such that, up to exchanging µX and µY ,

• For 1 ≥ λ > θN , the λ-cuts of µX and µY are non-trivial necessity measures.



• For θN ≥ λ > θD, the λ-cut of µY is a Dirac measure focused on y∗ contained in

the focal sets of higher weights, µλ
X being any Boolean capacity.

• For θD ≥ λ > θΠ, the λ-cut of µX is a Dirac measure focused on x∗ contained

in the focal sets of higher weights, µλ
Y being any Boolean capacity with focal sets

disjoint from y∗.

• For θΠ ≥ λ, the λ-cuts of µX and µY are non-trivial possibility measures.

Proof: By construction, the if part of the proof is obvious. Now suppose that µX

and µY commute. We apply Corollary 4, and Proposition 7.

First suppose that for λ = 1 the λ-cuts of µX and µY are non-trivial possibility

measures. If the λ-cut of µX is not a possibility measure for some λ < 1, it has

another focal set E and this set is disjoint from the focal singletons of the 1-cut of

µX . So this λ-cut of µX is not commuting with the λ-cut of µY (which is not a Dirac

function). By symmetry, µX and µY are both non-trivial possibility measures. In

this case θN = θD = θΠ = 1.

Now suppose that a threshold θΠ exists such that for λ > θΠ, the λ-cuts of µY

are a Dirac function while for λ ≤ θΠ, the λ-cuts of µY are possibility measures.

The commutation of µX and µY enforces no constraint on the focal sets of µX with

weights greater than θΠ. However the focal sets of µX with weight θΠ say F(µXθΠ)

are singletons such that ∀E ∈ F(µX ), s.t. µX (E) > θΠ, ∃{s} ∈ F(µXθΠ) : s ∈ E.

This makes it sure that for λ ≤ θΠ, the λ-cuts of µX and µY commute because they

are possibility measures. In this case, θN = θD = θΠ < 1

Next, suppose that a threshold θD < 1 exists such that for λ > θD, the λ-cuts of

µX are any Boolean capacity. It enforces a Dirac function focused on some y∗ ∈ Y for

the λ-cuts of µY . As µX and µY commute, there are constraints on their λ-cuts for

λ ≤ θD. If they are possibility measures we are back to the previous case. Suppose

not, and that the λ-cuts of µY are general Boolean capacities for θD ≥ λ > θΠ.

It enforces a Dirac function on the other side, focused on some x∗ ∈ X . There are

additional constraints induced:

• First x∗ must be contained in the focal sets of µX with weights greater than θD
(hence these focal sets must overlap) to make it sure the only focal set of the

λ-cuts of µX is {x∗} for θD ≥ λ > θΠ.

• Moreover, as µY is strictly monotonic on its focal sets, y∗ is necessarily disjoint

from the focal sets of µY with weights θD ≥ λ > θΠ.

In this case, θN = 1 > θD > θΠ ≥ 0. If θΠ = 0, µX and µY are two-tiered capacities

the cut of one being a Dirac above θD the cut of the other being a Dirac below θD.

Otherwise, the λ-cuts of µX and µY are possibility measures for λ ≤ θΠ.

Finally, suppose that for λ = 1, the λ-cuts of µX and µY are non-trivial necessity

measures. Let θN be the maximal value of λ such that one of the λ-cuts of µX or

µY is not a non-trivial necessity measure. Suppose, it is µX whose θN -cut is not a

non-trivial necessity measure. It can be

• A general capacity. Then the θN -cut of µY must be Dirac function.



• A Dirac function. Then the θN -cut of µY can be any capacity

• A non-trivial possibility measure. Then the θN -cut of µY must be the same.

Clearly, from θN down to 0, we are back to the previous situations. At most we

have 4-tiered capacities when 1 ≥ θN > θD > θΠ > 0 as pictured on Figure 2. But

we can have at the other extreme θN = θD = θΠ = 0 (then µX and µY are necessity

measures). Other noticeable cases are when θN > θD = θΠ > 0 (then one of µX , µY

is a necessity measure on top of a possibility measure), or yet θN > θD > θΠ = 0

(eliminating the bottom non-trivial possibility layer). �

Example 3. (See also Halas et al.15) We can apply Theorem 2 to find the

condition for commutation on {x1, x2} × {y1, y2} where, without loss of generality,

µX (x1) = α1 > µX (x2) = α2, µY(y1) = β1 > µY(y2) = β2. Note that cuts of

capacity on two-element sets can only be Boolean possibility or necessity measures.

So the capacities will commute except if there is λ ∈ L such that the cut of µX is a

non-trivial possibility measure and the cut of µY is a non-trivial necessity measure.

It is easy to check that, up to a permutation of µX and µY :

• θN = max(α1, β1) since for λ > max(α1, β1) the λ-cuts of µX and µY are vacuous

necessity measures

• θΠ = min(α2, β2) since for λ ≤ min(α2, β2) the λ-cuts of µX and µY are vacuous

possibility measures

• Suppose α1 > β1 > α2 > β2. Then θD = α2 since for α1 ≥ λ > α2 the λ-cuts

of µX are a Dirac function on x1 and for α2 ≥ λ > β2 the λ-cuts of µX are the

vacuous possibility measure, while the λ-cuts of µY are a Dirac function on y1
• Suppose α1 > α2 > β1 > β2. Then, for α2 ≥ λ > β1 the λ-cuts of µX are the

vacuous possibility measure, while the λ-cuts of µY are still the vacuous necessity

measure, which prevents commutation.

It can thus be seen that the only cases when the two capacities do not commute

are when max(α1, α2) < min(β1, β2) or max(β1, β2) < min(α1, α2) (take λ in the

interval).

Note that this is the case in Example 1 since then α1 = α2 = 1 and β1 = β2 = 0.

However the commutation condition is clearly satisfied in Example 2, since it

verifies the commutation condition max(α1, α2) ≥ min(β1, β2) and max(β1, β2) ≥

min(α1, α2) (the pairs (α1, α2) and (β1, β2) must be intertwined). �

We can express commuting capacities in closed form, in terms of underlying

possibility, necessity and Dirac functions.

Corollary 5. Two commuting capacities µX and µY can be put in the following

form (up to a swap between µX and µY):

µX (A) =max(NX (A),min(θN , κX (A)),min(θD, δX (A)),min(θΠ,ΠX (A))) , (12)

µY(B) =max(NY(A),min(θN , δY(A)),min(θD, κY(A)),min(θΠ,ΠY(A))) , (13)



for suitable choices of thresholds θN ≥ θD ≥ θΠ ∈ L, non-trivial necessity measures 
NX , NY and possibility measures ΠX , ΠY , capacities κX , κY , and Dirac functions 
δX , δY .

Proof: Suppose two capacities µX and µY commute and let θN ≥ θD ≥ θΠ ∈ L 
be the thresholds defined in the proof of Theorem 2, which ensures that there is 
y∗ ∈ Y such that µY ({y

∗}) = θN , x∗ ∈ Y such that µX ({x
∗}) = θD. Define the 

following set functions

• NX (A) =

{

µX (A) if µX (A) > θN

0 otherwise
;

NY(B) =

{

µX (B) if µY(B) > θN ,

0 otherwise.

They are necessity measures by definition of θN

• κX (A) =















µX (A) if θN ≥ µX (A) > θD ,

1 if A = X ,

0 otherwise

and δY(B) =

{

1 if y∗ ∈ B

0 otherwise
.

δY is a Dirac function focused on y∗.

• δX (A) =

{

1 if x∗ ∈ A ,

0 otherwise
and κY(B) =















µY(B) if θD ≥ µY(B) > θΠ ,

1 if B = Y ,

0 otherwise.

δX is a Dirac function focused on x∗.

• πX (x) =















µX ({x}) if µX ({x}) ≤ θΠ

1 if x = x∗

0 otherwise

;

πY(y) =















µY({y}) if µY({y} ≤ θΠ ,

1 if y = y∗ ,

0 otherwise.

Possibilitity measures ΠX ,ΠY are those induced by possibility distributions πX

and πY .

It is then easy to check that µX and µY can be put in the form (12) and (13) �

These results make it easy to construct capacities that commute.

Example 4. Consider the commuting capacities in Example 3. Suppose α1 >

β1 > α2 > β2. We can check that θN = α1, θD = α2 ≥ θΠ = β2. Necessity

measures are vacuous ones N?
X and N?

Y with focal sets X and Y respectively. There



is a Dirac function δx1

X focused on x1 that can be used for the range of values

(α2, α1], and a Dirac function δ
y1

Y focused on y1 that can be used for the range of

values (β2, α2]. Consider the capacities κX which is the possibility measure with

distribution π(x1) = 1, π(x2) = α2 and κY which is the necessity measure with

focals Y (weight 1) and {y1} with weight β1. Finally let Π?
X and Π?

Y be vacuous

necessity and possibility measures. Then it can be checked that

µX (A) = max(N?
X (A),min(α1, δ

x1

X (A)),min(α2, κX (A)),min(β2,Π
?
X (A)))

and

µY(B) = max(N?
Y(B),min(α1, κY(B)),min(α2, δ

y1

Y (B)),min(β2,Π
?
Y(B))) .

Finally in Example 2 we have µX (x1) = α, µX (x2) = α, and µY(y1) = 1, µY(y2) =

α. Then θN = θΠ = α, we can write µX as max(N?
X ,min(α,Π?

X )), and µY as

max(δy1

Y ,min(α,Π?
Y)). �

Note that the corresponding Sugeno integrals are pessimistic on plausible events

and optimistic on implausible ones. The pessimism and optimism of commuting

set functions are controlled by the two parameters θN ≥ θΠ ∈ L, which may make

qualitative decision theory more flexible. This way of controlling the pessimism and

optimism of a decision criterion could be compared with an alternative proposal

based on uninorms.11

5. 2D Capacities and Commutation

We have seen that a double Sugeno integral comes down to a Sugeno integral with

respect to a 2D capacity obtained from two 1D capacities. A Sugeno integral based

on a 2D capacity will be called a 2D S-integral.

It is interesting to compare the 2D S-integral based on a 2D capacity with the

double S-integrals obtained using the projections of the 2D capacity and see if the

commutation of these projections affects this issue. When the 1D capacities on X

and Y commute, the 2D capacities on X × Y each of them induces are the same.

The results in this section enable to express commuting double S-integrals in a

symmetric form, as a 2D S-integral based on this 2D capacity.

A 2D fuzzy measure is simply a fuzzy measure µ on X ×Y. The definition of a

(simple) 2D S-integral with respect to such a capacity is defined by

Sµ(u) = max
T⊆X×Y

min(µ(T ), min
(i,j)∈T

u(xi, yj)) .

Before exploring the properties of this type of integral in connection with the

commutation problem, we need to study 2D capacities, and, in particular, conditions

under which a 2D-measure can be reconstructed via its projections.

5.1. Projections of 2D capacities

We can define the projections of a 2D fuzzy measure µ on Y and on X as follows:

Definition 3. µ
↓
X (A) = µ(A× Y); µ

↓
Y(B) = µ(X ×B).



Without loss of generality, we focus on the projection on Y. Let R↓
Y = {y ∈ Y : ∃x ∈

X , s.t. (x, y) ∈ R} be the projection of R ⊆ X × Y on Y. Note that µ
↓
Y(B) =

max
R:B=R

↓

Y

µ(R) because this maximum is reached for R = X ×B. In other words,

µ
↓
Y is the “shadow” of µ on Y. This definition of projection is the same as for joint

probability measures.

One may try to compute the focal sets of the projections in terms of projections

of the focal sets of the 2D capacity.

Proposition 8. The focal sets of µ
↓
Y are among the projections on Y of the focal

sets of µ: F(µ↓
Y) ⊆ {R↓

Y :R ∈ F(µ)}.

Proof: Suppose B ∈ F(µ↓
Y) and µ

↓
Y(B) = b > 0. Then, ∀C ⊂ B,µ

↓
Y(C) < µ

↓
Y(B).

This is equivalent to µ(X × C) < b, ∀C ⊂ B. So there is a focal set R ⊆ X × B of

µ with weight b, and none with weight greater than b. Clearly, R↓
Y ⊆ B. Suppose

there is a focal set of µ, say S ⊂ X ×B with weight b, and S
↓
Y ⊂ B. Then B would

not be focal for µ↓
Y . So all focal sets of µ, the projections on Y of which are strict

subsets of B have weights less than B. So there is some focal set of µ with weight

b such that R↓
Y = B. �

Note that the projection of a focal set of µ on Y is not always focal for µ↓
Y .

Example 5. For instance, suppose µ has only two focal sets, say R =

{(x2, y1), (x2, y2)} and T = {(x1, y1), (x2, y1)}, with µ(T ) = 1 > µ(R). R and

T are not nested but T ↓
Y = {y1} ⊂ R

↓
Y = {y1, y2}. So,

• µ
↓
Y(T

↓
Y) = µ

↓
Y({y1}) = µ(X × {y1}) = µ({(x1, y1), (x2, y1)}) = µ(T ) = 1.

• µ
↓
Y(R

↓
Y) = µ

↓
Y(Y) = 1.

So, the projection of R on Y is not focal for µ↓
Y . �

In fact the projection of µ can be defined from the focal sets of µ as

µ
↓
Y(B) = µ(X ×B) = max

R∈F(µ):R↓

Y
⊆B

µ#(R)

Let us call a sufficient fragment of µ a weighted set {(Ri, µ
∗(Ri)), i = 1, . . . } such

that µ(R) = maxRi⊆R µ∗(Ri). Clearly F(µ) is (the smallest) sufficient fragment of

µ and any family S ⊃ F , with µ∗(Ri) = µ(Ri), Ri ∈ S is sufficient. The projections

R
↓
Y of focal sets of µ form a sufficient fragment of µ↓

Y . One gets the focal sets of µ↓
Y

by deleting from this fragment the sets B′ for which there is a subset B ( B′ such

that µ(X ×B) = µ(X ×B′).

It is easy to check that the projections of the α-cuts of a 2D-capacity are equal

to the α-cuts of their projections. Indeed, by definition, (µα)
↓
Y(B) = µα(X ×B) =

(µ↓
Y)α(B).



5.2. Product 2D capacities

In the other way around, consider building a joint capacity of X × Y from the

knowledge of two local capacities, γ and δ on X and Y respectively. It is always

possible to build a 2D capacity µ on X × Y from γ and δ as follows: for any

A ⊆ X , B ⊆ Y, µ(A× B) = γ(A) ⊗ δ(B), where it is expected to have (in view of

the definition of projection), 0 ⊗ 0 = 1 ⊗ 0 = 0 ⊗ 1 = 0, 1 ⊗ 1 and ⊗ is increasing

for each argument. Clearly, ⊗ is a generalized conjunction. Because we work in the

qualitative context of bounded chains (which motivates the use of Sugeno integrals),

let ⊗ be the minimum. So, we define the joint capacity γ × δ obtained from γ on

X and δ on Y by the expression:

[γ × δ](R) = max
A,B:A×B⊆R

min(γ(A), δ(B)) .

Note that [γ × δ](A×B) = min(γ(A), δ(B)). In the sequel, we show that the focal

sets of γ × δ are Cartesian products, and they are among the Cartesian products

A×B where A is a focal set of γ and B is a focal set of δ.

Proposition 9. Any focal set of γ × δ is the Cartesian product of a focal set of γ

and a focal set of δ.

Proof: If R is not a Cartesian product, it is clear that there exists A,B such that

[γ× δ](R) = min(γ(A), δ(B)) where A×B ⊂ R. So R is not focal. Consider a focal

set A×B of γ × δ. Suppose A is not focal for γ, then γ(A) = γ#(Â) where Â ⊂ A.

Clearly, [γ× δ](A×B) = [γ× δ](Â×B). Hence A×B cannot be focal. So if A×B

is focal for γ × δ then, A is focal for γ and B for δ. �

But the Cartesian product of a focal set A of γ and a focal set B of δ is not

necessarily a focal set of γ × δ. It can indeed contain the product of another focal

set A′ ⊂ A of γ and B, such that min(γ(A′), δ(B)) = min(γ(A), δ(B)).

Example 6. Suppose γ and δ are necessity measures with focal sets {A,X} and

{B,Y} respectively, with γ(A) = a and δ(B) = b where a > b. γ × δ is a necessity

measure s.t. [γ × δ](A × B) = min(a, b) = b, [γ × δ](A × Y) = min(a, 1) = a,

[γ × δ](X ×B) = min(1, b) = b and of course [γ × δ](X ×Y) = min(1, 1) = 1. Then

γ × δ has focal sets A × B with weight b, A × Y with weight a and X × Y with

weight 1, while X × B is not focal (it contains the focal set A × B, which has the

same weight b). �

Remark 1. An alternative definition could be found natural such as

[γ ⊙ δ](R) = min(γ(R↓
X ), δ(R↓

Y)) .

But this would not be the same definition as above because R ⊂ R
↓
X × R

↓
Y . If we

let {Ai×Bi : i = 1, . . . p} be the maximal Cartesian products inside R, we may find

that [γ × δ](R) = maxpi=1 min(γ(Ai), δ(Bj)) < min(γ(R↓
X ), δ(R↓

Y)).



X × µ
↓
Y

The Cartesian products of the focal sets of γ and δ form a family {(A × 
B, min(γ(A), δ(B)) : A ∈ F(γ), B ∈ F(δ)} which contains the focal sets of γ × δ, 
and maybe more sets — i.e., it is a sufficient fragment for γ × δ.

It is easy to check that the product is performed without any modification of 
the information contained in γ and δ

Proposition 10. The projections of γ × δ are γ and δ

Proof: First let γ(2X ) = {1 > a1 · · · > ap} and γ(2Y ) = {1 > b1 · · · > bq}. 
The weights of the joint capacity are {min(ai, bj ) : i = 1, . . . p, j = 1, . . . q} = 
γ(2X ) ∪ γ(2Y ) since both sets contain 1. No information about weights is lost. 
Indeed, it is easy to see that ([γ × δ])↓Y (Bj ) = [γ × δ](X × Bj ) = min(1, bj ) = bj , 
and so on. So we recover δ# on Y and it is a sufficient fragment of the projection 
(due to Proposition 8). �

5.3. Decomposable 2D capacities

Now we consider the opposite problem: When does a capacity contain the same 
amount of information as its projections? This issue is important to consider, 
since, as we shall see, the 2D capacity induced by a commuting double S-integral 
is decomposable in the following sense:

Definition 4. A 2D capacity µ is said to be decomposable if it is the product of
its projections, namely, µ = µ↓ .

Note that in the case of possibility measures decomposability is also called

non-interactivity by Zadeh.8,25 Let us try to find decomposability conditions. There

is a direct consequence of Proposition 9 that shows that the focal sets of a joint

capacity are Cartesian products:

Lemma 11. If a 2D capacity µ is decomposable then all its focal sets are Cartesian

products.

The converse of Corollary 11 is false. The fact that the focal sets of µ

are Cartesian products (and even disjoint products) does not guarantee the

decomposability of µ

Example 7. Suppose F(µ) has just three focal sets A×B (with weight 1), A′×B

(with weight a < 1), A × B′ (with weight b < a), where A 6= A′ and B 6= B′ with

no inclusion. All are Cartesian products. It is clear that the focal sets of µ↓
X are A

(with weight 1) and A′ (with weight a) and those of µ↓
Y are B (with weight 1) and

B′ (with weight b). But µ
↓
X × µ

↓
Y has four focal sets, namely, the ones of µ, i.e.,

A × B (with weight 1), A′ × B (with weight a < 1), A × B′ (with weight b < a),

plus A′ ×B′ with weight b. The latter is focal as it contains none of the former. So

[µ↓
X × µ

↓
Y ](A

′ ×B′) > µ(A′ ×B′) = 0. �



It is also clear that

Lemma 12. If a 2D capacity µ is decomposable then µ(A × B) = min(µ↓
X (A),

µ
↓
Y(B)) for all focal sets A×B ∈ X × Y of µ.

But the converse is also false, since all 2D necessity measures satisfy N(A×B) =

min(N↓
X (A), N↓

Y(B)), but not all of them are decomposable.

Example 8. Suppose that µ has two focals R = {(x1, y1), (x1, y2), (x2, y2)} and

X × Y, with µ#(R) < 1. Hence R
↓
X = {x1, x2} and R

↓
Y = {y1, y2}. Then µ is

a necessity measure (of course µ({x1, x2} × {y1, y2}) = 1). Like for all necessity

measures,

µ(A×B) = µ((A× Y) ∩ (X ×B)) = min(µ↓
X (A), µ↓

Y(B))

for all Cartesian products A×B ∈ X × Y of µ.

But µ is not decomposable. It is clear that the only focal set of µ↓
X is X (with

weight 1) and the only focal set of µ↓
Y is Y (with weight 1). Since one of its focal

sets, R is not a Cartesian product, it is not focal for µ
↓
X × µ

↓
Y , the joint capacity

obtained from its projections. The latter is not equal to µ as its only focal set is

X × Y. In particular, [µ↓
X × µ

↓
Y ](R) = 0. �

However, if none of the (necessary) conditions above is alone sufficient for

defining decomposable capacities, their conjunction does characterizes capacities

that are the joint of their projection, i.e., decomposable capacities:

Theorem 3. A 2D capacity µ is decomposable if and only if all its focal sets are

Cartesian products and, for all focal sets A × B ∈ X × Y of µ, µ(A × B) =

min(µ↓
X (A), µ↓

Y(B)).

Proof: We know that the projections of the focal sets are sufficient fragments

of the projections of µ. So we can write [µ↓
X × µ

↓
Y ](R) = maxA×B∈F(µ):A×B⊆R

min(µ↓
X (A), µ↓

Y(B)) = maxA×B∈F(µ):A×B⊆R µ(A × B) = µ(R) since all focal sets

of µ are Cartesian products. �

As a special case it is clear that if µ is a possibility measure the condition

in Proposition 3 reduces to the usual non-interactivity condition π(x, y) =

min(π↓
X (x), π↓

Y(y)) since all focal sets of µ are singletons {(x, y)}, i.e., special

Cartesian products {x} × {y}. In the case of a necessity measure N , the condition

N(A×B) = min(N↓
X (A), N↓

Y(B)) is always true, so all we need for decomposability

is that the (nested) focal sets of N are Cartesian products.

It is useful to describe the constraints on weights of focal sets of µ that are

characteristic of its decomposability. We can first do it in the special case of Boolean

capacities.



X are clearly all of Ai : i = 1 . . . p , and those of µ↓
Y

Proposition 11. A Boolean 2D capacity µ is decomposable if and only if its focal 
sets are all Cartesian products of the form {Ai × Bj : i = 1 . . . p, j = 1 . . . q} such 
that both families {Ai : i = 1 . . . p} and {Bj : j = 1 . . . q} are antichains.

Proof: If the requested conditions are required it is clear that {Ai × Bj : i = 
1 . . . p, j = 1 . . . q} form an anti-chain as well, so they are indeed focal sets for
µ. The focals of µ↓ { } are clearly
all of {Bj : j = 1 . . . q}. Now, [µ↓

X × µ
↓
Y ](Ai ×Bj) = min(µ↓

X (Ai), µ
↓
Y(Bj)) = 1. The

joint capacity has clearly no other focal sets than {Ai ×Bj : i = 1 . . . p, j = 1 . . . p}.

So it is µ.

Conversely suppose {Ai : i = 1 . . . p} is not an antichain. Then there are i, k with

Ai ⊂ Ak. Then Ai is not a focal for µ
↓
X and so there is no Cartesian product of

the form Ai × Bj that is focal for µ↓
X × µ

↓
Y . So the joint of the projections of µ is

not µ. �

The following result shows that decomposability is cut-worthy:

Proposition 12. A 2D capacity is decomposable if and only if its α-cuts are

decomposable.

Proof: (i) Suppose µ is decomposable. Then µ(R) = min(µ↓
X (A), µ↓

Y(B)) for

some A × B ⊆ R, Hence µα(R) = min((µ↓
X )α(A), (µ↓

Y)α(B)) = min((µα)
↓
X )(A),

(µα)
↓
Y(B)).

(ii) Conversely suppose µα is decomposable for all α > 0. Then, for some A×B ⊆

R, µ(R) = maxα>0 min(α, µα(R)) = maxα>0 min(α,min((µα)
↓
X (A), (µα)

↓
Y(B))).

The maximum is attained for α = µ(R), which implies µ
↓
X (A) ≥ µ(R) and

µ
↓
X (B) ≥ µ(R). Moreover µα(R) = 0 for all α > µ(R), hence (µα)

↓
X (A) = 0

or (µα)
↓
Y(B) = 0. In consequence µ

↓
X (A) = µ(R) or µ

↓
X (B) = µ(R). Hence

µ(R) = min(µ↓
X (A), µ↓

Y(B)). �

Finally, one can see that the decomposability criterion for 2D capacities puts

together the decomposability condition for necessity and for possibility measures:

Corollary 6. A 2D capacity µ is decomposable if and only if the family of sets

F(µ↓
X )×F(µ↓

Y) = {A×B :A ∈ F(µ↓
X ), B ∈ F(µ↓

Y)}

is a sufficient fragment for µ, and µ(A×B) = min(µ↓
X (A), µ↓

Y(B)).

It is obvious that the double condition in the Corollary is sufficient for

decomposability and the assumption that focal sets are Cartesian products is

necessary. If we consider µ as a possibility distribution on F(µ↓
X ) × F(µ↓

Y), the

second equality expresses that it is non-interactive in the sense of possibility theory.



5.4. The symmetric form of commuting double S-integrals

Let us now consider the problem of expressing 2D S-integrals as double Sugeno

integrals SµX
(SµY

(u)) and SµY
(SµX

(u)). In particular, we study to what extent

a 2D S-integral can be viewed as a double Sugeno integral with respect to its

projections.

We have seen that a double S-integral SµX
(SµY

(u)) is a 2D S-integral based on

a capacity that maps each R ⊆ X × Y to L, defined by κXY(R) = SµX
(SµY

(1R))

SµX
(SµY

(u)) = max
R⊆X×Y

min(κXY(R), min
(xi,yj)∈R

u(xi, yj))

The following example shows that the 2D capacity κXY is not necessarily

decomposable.

Example 9. (continued from Example 1): Let Y = {y1, y2}, π1 = π2 = 1 on X =

{x1, x2}, there is a necessity measure N with focal Y on the other set. We can lay

bare the 2D capacity involved in the definition of U+min
ante (π,w, u) = SNY

(SΠX
(u)).

It is easy to see that SNY
(SΠX

(1R)) = 0 whenever R = {(xi, yj)}, i, j ∈ {1, 2}

(singletons), but SNY
(SΠX

(1R)) = 1 for R = {xi} × Y, i = 1, 2 and for R =

{(x1, y1), (x2, y2)}, {(x1, y2), (x2, y1)} but is 0 for the two other two-elements subsets

of X × Y. So, the 2D capacity underlying SNY
(SΠX

(1R)) has four focal sets some

of which are not Cartesian products. On the other hand, the joint capacity Π×N

has only two focal sets R = {xi} × Y, i = 1, 2. Hence, the 2D capacity underlying

SNY
(SΠX

(1R)) is not equal to ΠX ×NY and is not decomposable. �

Can 2D S-integrals also be captured by double S-integrals ? The answer is

no in the general case. It is indeed easy to find 2D capacities µ underlying

S-integrals which cannot be represented by a double S-integral, i.e., ∃µ such that

∄µX , µY :SµX
(SµY

(u)) = Sµ(u), ∀u.

Example 10. Consider the 2D capacity with only three focal sets, {(x1, y1)},

{(x1, y2)} and {(x2, y1)} which all receive the degree 1, and suppose that there

exist µX and µY such as ∀u, SµX
(SµY

(u)) = Sµ(u).

Consider first the utility function u(x, y) = 1 if x = x2 and y = y2 and u(x, y) = 0

otherwise (the characteristic function of {(x2, y2)}. Sµ(u) = µ({(x2, y2)}) = 0

because {(x2, y2)} is not focal. But

SµX
(SµY

(u)) = max(min(µX (x1), 0),min(µX ({x2}), 1),min(µX ({x1, x2}, 0))) =

µX (x2). So, µX ({x2}) = 0 is needed for the equality with the 2D integral.

Let now function u′(x, y) = 1 if x = x2 and y = y1 and u(x′, y) = 0 otherwise.

Sµ(u
′) = µ({(x2, y1)}) = 1 because {(x2, y1)} is a focal set of weight 1. Finally,

SµX
(SµY

(u′)) = max(min(µX (x1), 0),min(µX ({x2}), 1),min(µX ({x1, x2}, 0))) =

µX (x2) again. So, we need µX ({x2}) = 1, which contradicts µX ({x2}) = 0. �

Of course, for some µ, the representation by a double S-integral is possible, e.g.,

when µ is the product of two possibility measures. In this case, µ is decomposable.

But it is not always the case — Example 9 presents a non-decomposable 2D



X (A), µ↓
Y

S-integral that can be represented by a double S-integral. We can nevertheless 
show that:

Proposition 13. If there exists µX on X and µY on Y such that 
∀u, SµX (SµY (u)) = Sµ(u), then µX and µY are the projections of µ on X and 
Y, respectively, and ∀A, B, µ(A × B) = min(µX (A), µY (B)).

Proof: Suppose that there exist µX and µY such as ∀u, SµX (SµY (u)) = Sµ(u). 
Consider any pair of subsets A of X and B of Y and let u be the characteristic 
function of A × B, i.e., u(x, y) = 1 if (x, y) ∈ A × B, u(x, y) = 0 otherwise.

First of all, Sµ(u) = µ(A × B). From Proposition 4 SµX (SµY (u)) = 
min(µX (A), µY (B))). So, SµX (SµY (u)) = Sµ(u) implies µ(A × B) = min(µX (A), 
µY (B)).

Setting A = X we get µ(A × Y) = min(µX (A), µY (Y)) = µX (A), i.e., µX is the 
projection of µ on X . Setting B = Y we get µ(X × B) = min(µX (X ), µY (B)) = 
µY (B), i.e., µY is the projection of µ on Y. �

The above proposition does not say that the equality ∀u, SµX (SµY (u)) = Sµ(u) 
implies that µ is decomposable. However it is so if µX and µY commute, as shown in 
the following major result that puts commuting double S-integrals in a symmetric 
format:

Theorem 4. If µX and µY commute, then there exists a decomposable 2D capacity 
µ such that ∀u, SµX (SµY (u)) = SµY (SµX (u)) = Sµ(u), and µ = µX × µY .

Proof: The composition of two Sugeno integrals is a Sugeno integral so: 
SµX (SµY (u)) = SκXY (u) and SµY (SµX (u)) = SκYX (u). Since we assume com-

mutation, it implies κXY = κYX = µ since the double S-integrals viewed as 2D ones 
are characterized by a single 2D capacity. This is the case of commuting capacities. 

Now, using Corollary 4, we know that cuts µXλ and µYλ are two possibility 
measures, two necessity measures, or one of them is a Dirac measure, for each
λ ∈ L. From Proposition 13, µ(A × B) = min(µ↓ (B)). From Theorem 3, it
remains to show that the focals of µ are Cartesian products:

• If µλ
X and µλ

Y are two necessities then µλ(A × B) = 1: A × B is a focal element

of µλ.

• If µλ
X is a Dirac function on {a} and µλ

Y is a capacity then

Sµλ
X
(Sµλ

Y
)(R) = Sµλ

Y
(aR) =







1 if ∃B ∈ F(µλ
Y), B ⊆ aR ,

0 otherwise.
= Sµλ(R)

where µλ has focal sets {a} ×B,B ∈ F(µλ
Y). It is clearly decomposable.

• If µλ
X and µλ

Y are two possibility functions then the focal sets are of the form

{(xi, yj)} for focal sets {xi} of µ
λ
X and {yj} focal sets of µ

λ
Y . So it is decomposable.



As the cuts of µ are decomposable, so is µ, according to Proposition 12. Moreover,

according to Proposition 13, µX and µY are the projections of µ, so µ = µX × µY .

�

Finally, we are in a position to provide the explicit form of two commuting

double S-integrals in terms of an underlying 2D S-integral. First note that Sugeno

integrals with respect to commuting capacities simplify, namely, it is easy to see

that, using Corollary 5:

Lemma 13. If µY = max(NY ,min(θN , δY),min(θD, κY),min(θΠ,ΠY)), then

SµY
(f) = max(SNY

(f),min(θN , f(y∗))min(θD, SκY
(f)),min(θΠ, SΠY

(f))).

Proof: The focal sets of µY can be shared in three groups: FN (nested sets with

weights above threshold θN ), a singleton {y∗} with weight θN , FD (focal sets with

weights between θD and θΠ), FΠ (focal singletons with weights not greater than

θΠ) — see Corollary 5. So we can write

SµY
(f) = max



































maxE∈FN
,min(µY#(E),minyi∈E f(yi)) ,

min(µY#({y
∗}), f(y∗))

maxE∈FD∪{Y},min(µY#(E),minyi∈E f(yi)) ,

max{yi}∈FΠ
,min(µY#({yi}), f(yi)) .

If E ∈ FN , µY(E) = NY(E). If E ∈ FD, NY#(E) = 0, and µY(E) = min(θD,

κY(E)) since κY(E) > θΠ. Finally if {yi} ∈ FΠ, µY({yi}) = min(θΠ, πY(yi))) since

NY#({yi})) = κY#({yi})) = 0.

Hence SµY
(f) = max



































maxE∈FN
,min(NY#(E),minyi∈E f(yi)),

min(θN , f(y∗))

maxE∈FD∪{Y},min(θD, κY#(E),minyi∈E f(yi))

maxE∈FΠ
,min(θΠ, πY(yi), f(yi))

So, SµY
(f) = max(SNY

(f),min(θN , f(y∗))min(θD, κY(f)),min(θΠ, SΠY
(f))). �

In order to extend this result to double integrals that commute, first notice that

the set of focal sets of a capacity is the set of focal sets of its cuts:

Lemma 14. F(µ) = ∪λ>0F(µλ)

Proof: Suppose E ∈ F(µ), then it is clear that E ∈ F(µλ) for λ = µ(E).

Conversely, if E ∈ F(µλ), let λ∗ = max{λ :E ∈ F(µλ)}. Clearly, λ∗ = µ(E)

since if λ > λ∗ then E 6∈ F(µλ) and µ(E) ≥ λ∗. Now suppose there is F ⊂ E with

µ(F ) = λ∗, then E 6∈ F(µλ∗) which is a contradiction. So, E ∈ F(µ). �



Now we can obtain a simple symmetric form for the commuting double Sugeno 
integral:

Theorem 5. If µX and µY commute, the double integral of function u : X ×Y → L 
is of the form

SµX (SµY (u)) = SµY (SµX (u)) =
max(SN (u), min(θN , SκY (u(·, y∗))), min(θD, SκY (u(x

∗, ·))), min(θΠ, SΠ(u)))

with N = NX × NY , Π = ΠX × ΠY .

Proof: Under the assumption of commuting capacities, cuts of min(µX , µY ) are

• Boolean necessity measures for λ > θN with focal sets Eλ × Fλ where Eλ (resp.

Fλ) is the focal set of the λ-cut of µX (resp. µY).

• Capacities with focal sets Eλ × {y∗} where Eλ are all focal sets of the λ-cuts of

µX for θN ≥ λ > θD.

• Capacities with focal sets {x∗} × Fλ where Fλ are all focal sets of the λ-cuts of

µY for θD ≥ λ > θΠ.

• Boolean possibility measures for θΠ ≥ λ with focal singletons {xi} × {yj} where

µX ({xi}) ≥ λ and µY({yj}) ≥ λ.

All focal sets of min(µX , µY) are Cartesian products of this form due to Lemma 14.

We can reconstruct this capacity and get its expression from its cuts, in the style

of Corollary 5, as min(µX , µY) = max(NX ×NY ,min(θN , κX × δ
y∗

Y ),min(θD, δx
∗

X ×

κY ),min(θΠ,ΠX ×ΠY).

Now we can apply Theorem 4 (SµX
(SµY

(u)) is a 2D S-integral with respect to

min(µX , µY)) and Lemma 13 (applied to the 2D S-integral) and get the symmetric

form of the double Sugeno integral in four terms. �

5.5. Do decomposable 2D-capacities induce commuting

1D-capacities?

Decomposability is not a sufficient condition for a 2D S-integral to be expressible

as a double S-integral. If µ is a decomposable capacity we have that

Sµ(u) = max
(A×B)∈F(µ)

min(min(µ↓
X (A), µ↓

Y(B)), min
(x,y)∈A×B

u(x, y)) .

The question is whether any 2D S-integral with respect to a decomposable

capacity can be expressed in the form of a double S-integral. The following

proposition and examples answer by the negative.

Proposition 14. Let µ be a decomposable fuzzy measure on X × Y.

We have Sµ(u) ≤ S
µ
↓

X

(S
µ
↓

Y

((u(x1, ·)), . . . , Sµ
↓

Y

(u(xn, ·)))) and Sµ(u) ≤

S
µ
↓

Y

(S
µ
↓

X

(u(·, y1)), · · · , Sµ
↓

Y

(u(·, yp))).



Proof: Note that G is a focal set of µ↓
Y and F a focal set of µ↓

X , if and only if

G×F is a focal set of µ. We show the result for one inequality; the other is proved

likewise.

Sµ(u) = maxC⊆X×Y min(µ(C),min(x,y)∈C u(x, y))

= maxA,B min(µ↓
Y(A), µ

↓
Y(B),minx∈A,y∈B u(x, y))

= maxA min(µ↓
X (A),maxB min(µ↓

Y(B),minx∈A,y∈B u(x, y)))

= maxA min(µ↓
X (A),maxB minx∈A min(µ↓

Y(B),miny∈B u(x, y)))

≤ maxA min(µ↓
X (A),minx∈A maxB min(µ↓

Y(B),miny∈B u(x, y)))

= S
µ
↓

X

(S
µ
↓

Y

((u(x1, ·)), . . . , Sµ
↓

Y

(u(xn, ·)))) .

Note that we have turned maxB mini∈A into mini∈A maxB , which induces the

inequality. �

The inequalities in Proposition 14 may be strict, and this even if µ is

decomposable. This should not be surprizing since commuting capacities have a very

special form and their product yields only a subclass of decomposable capacities,

with focal sets having a specific structure (nested Cartesian products with high

weights, singletons with small weights and one-dimensional subsets of the form

{x} × B, for a fixed element x ∈ X , with medium weights, as suggested by the

proof of Theorem 4).

In the following example two double Sugeno integrals of a Boolean function

on X × Y are equal for a class of functions but they are strictly greater than the

corresponding 2D S-integral, using a decomposable 2D capacity.

Example 11. Consider |X |= |Y|=3. Let R= {(x1, y3), (x1, y2), (x2, y2), (x2, y1),

(x3, y1)}. Note that R is symmetric. Now consider the 2D Boolean capacity µ

with the 4 focal sets {x1, x2} × {y1, y2}, {x1, x2} × {y2, y3}, {x2, x3} × {y2, y3},

{x2, x3} × {y1, y2}. Note that it is decomposable, and µ
↓
X has focals {x1, x2} and

{x2, x3}, µ
↓
Y has focals {y1, y2} and {y2, y3}. They are the same capacity on the

two sets X and Y

It is clear that µ(R) = 0 (R contains no focal sets). However, consider the double

S-integrals S
µ
↓

X

(S
µ
↓

Y

(1R)) and S
µ
↓

Y

(S
µ
↓

X

(1R)). They are equal because they use the

same capacity and R is symmetric.

Note that Ry1 = {x2, x3}, Ry2 = {x1, x2}, Ry3 = {x1}. We have

S
µ
↓

Y

(S
µ
↓

X

(1R)) = max
B∈F(Y)

min(µ↓
Y(B), min

yi∈B
µ
↓
X (Ryi))

= max(min(µ↓
Y({y1, y2}),min(µ↓

X ({x2, x3}), µ
↓
X ({x1, x2})),

min(µ↓
Y({y2, y3}),min(µ↓

X ({x1, x2}), µ
↓
X ({x1})))

= max(min(1,min(1, 1)),min(1,min(1, 0))) = 1 .

�



So we have a case where S
µ
↓

X

(S
µ
↓

Y

(u)) = S
µ
↓

Y

(S
µ
↓

X

(u)) = 1 > Sµ(u) = 0.

for a class of symmetric functions on X × Y. However, we do not claim that

SµX
(SµY

)(u) = SµY
(SµX

)(u) for all functions u. In particular, if u(xi, yj) 6=

u(xj , yi), the two double S-integrals may differ.

Let us exemplify the discrepancy between double S-integrals and 2D ones in the

setting of possibility and necessity measures that first motivated this paper.

Consider the case of a 2D capacity on Y × X whose projection on Y is a

necessity measure NY with possibility distribution w, and whose projection on

X is a possibility measure ΠX with possibility distribution π.

Let the focal sets of NY be of the form Bj = {y1, . . . , yj} ⊆ Y and αj =

NY#(Bj), i.e., αj = 1−wj+1, so that NY(B) = maxBj⊆B αj = minyj 6∈B 1−wj and

the marginal S-integral on Y takes the two forms:

SN (u(xi, ·)) = max
Bj⊆B

min(αj , min
yk∈Bj

u(xi, yk)) = min
i=1,...,n

max(1− wj , u(xi, yj)).

The joint necessity-possibility function µ = ΠX × NY is defined by the focal sets

{xi} ×Bj and Möbius masses µ#({xi} ×Bj) = min(πi, αj), i, j = 1, . . . , n.

It can be checked that µ
↓
Y = NY and µ

↓
X = ΠX , as prescribed by Proposition 10.

Indeed, µ↓
Y(B) = µ(X × B) = maxBi⊆B maxxi∈X min(πi, αj) = maxBj⊆B αj =

NY(B) and likewise for the other projection µ
↓
X (A) = µ(A× Y) = ΠX (A).

The 2D S-integral reads:

Sµ(u) = max
i,j=1,...,n

min(min(πi, αj), min
yk∈Bj

u(xi, yk))

= max
j=1,...,n

min(αj , max
i=1,...,n

min(πi, min
yk∈Bj

u(xi, yk)))

= max
i=1,...,n

min(πi, max
j=1,...,n

min(αj , min
yk∈Aj

u(xi, yk)))

= S
µ
↓

X

(S
µ
↓

Y

(u)) = SΠX
(SNY

(u)) .

Thus, if a 2D capacity µ is the joint of a possibility measure on X and a necessity

measure on Y, then Sµ(u) = S
µ
↓

X

(S
µ
↓

Y

(u)), ∀u, which is the value U+min
post for u. But,

as seen earlier, SNX
(SΠY

(u)) > SΠX
(SNY

(u)) in general, and the difference can be

1 as seen in Examples 1 and 9, continued below.

Example 12. X = {x1, x2}, πi = 1, and wi = 1, ∀i = 1, 2, Y = {y1, y2},

u(x1, y1) = u(x2, y2) = 1 and u(x2, y1) = u(x1, y2) = 0. The projections of the joint

capacity, µ, are the vacuous necessity measure on Y and the vacuous possibility

measure on X . Note that on Y there is a single focal set Y while focal sets on

X are all singletons. Hence focal sets of µ are of the form {xi} × Y, xi ∈ X .

Since u is the characteristic function of the set {(x1, y1), (x2, y2)} that contains

none of them, it yields Sµ(u) = µ({(x1, y1), (x2, y2)}) = 0. We have seen that

U+min
post = SΠY

(SNX
(u)) = Sµ(u) = 0, which coincides Sµ(u). On the other hand,

U+min
ante (π,w, u) = SNX

(SΠY
(u)) = 1 as already seen. So we have a very simple

example where Sµ(u) = S
µ
↓

X

(S
µ
↓

Y

(u)) < S
µ
↓

Y

(S
µ
↓

X

(u)). �



We have seen that when µX is a possibility measure ΠX and µY is a necessity

measure NX , the double S-integral SΠX
(SNY

(u)) is equal to the 2D S-integral

Smin(ΠX ,NY), while it differs from SNY
(SΠX

(u)). The latter is also a 2D S-integral,

albeit with respect to a 2D capacity that is not decomposable. This state of facts

suggests that to evaluate a collective utility function, the functional SΠX
(SNY

(u))

is better behaved since the 2D capacity associated to this double S-integral is built

from ΠX and NY only. This line of thought needs further investigation.

6. Conclusion

In this paper, we have found necessary and sufficient conditions for two Sugeno

integrals on distinct universes to commute. We have seen that even if we do not have

to restrict to pairs of possibility or of necessity measures, the commuting capacities

are essentially built from gluing possibility and necessity measures, except when the

cut of one of them trivializes into a Dirac measure. This paper also offer insights into

the counterpart of probabilistic independence and possibilistic non-interactivity for

2D capacities, we call decomposability. Characteristic criteria of decomposability

have been proposed for 2D capacities, as well as some links between these criteria

and the commutation of the projections of the 2D capacities.

An essential lesson is that, like with fuzzy sets under the max-min operations,

we can reason about qualitative capacities using cuts, and that the double fuzzy

integrals are cutworthy in the sense of De Baets and Kerre.5 These results open

the way to a generalization of the qualitative counterpart of Harsanyi16 theorem

for expected utility,3 namely provide axioms over acts or possibilistic lotteries that

justify a commuting double Sugeno integral to evaluate social utility. It is also

interesting to apply this result to qualitative game theory since the commutation

can be used to define a kind of qualitative counterpart to Nash equilibrium.

Finally, it would be of interest to relate our results to the literature on commuting

aggregation functions.20
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