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Double Sugeno Integrals and the Commutation

Problem

Didier Dubois Hélène Fargier Agnès Rico

February 1, 2018

1 Introduction and Motivation: collective decision making
under possibilistic uncertainty

In various applications where information fusion or multifactorial evaluation is needed, an
aggregation process is carried out as a two-stepped procedure whereby several local fusion
operations are performed in parallel and then the results are merged into a global result.
It may sometimes be natural to demand that the result does not depend on the order with
which we perform the aggregation steps because there is no reason to perform either of the
steps first.

For instance, in a multi-person multi-aspect decision problem, each alternative is eval-
uated by a matrix of ratings where the rows represent evaluations by persons and the
columns represent evaluations by criteria. One may, for each row, merge the ratings ac-
cording to each column with some aggregation operation and form as such the global rating
of each person, and then merge the persons opinions using another aggregation operation.
On the other hand, one may decide first to merge the ratings in each column using the
aggregation operation, thus forming the global ratings according to each criterion, and then
merge these social evaluations across the criteria with aggregation operation. The same
considerations apply when we consider several agents under uncertainty and sharing the
same knowledge. Should we average out the uncertainty for each agent prior to merging
the personal evaluations (i.e., follows the so-called ex-ante approach), or should we average
out the common uncertainty after merging the personal evaluations for each possible state
of affairs (i.e., adopt an ex-post approach)?

Even if we find it natural that the two procedures should deliver the same results in any
sensible approach, the problem is that this natural outcome is not mathematically obvious
at all. When the two procedures yield the same results, the aggregation operations are
said to commute.

In decision under risk for instance, the ex-ante and ex-post approaches are equivalent
(the aggregations commute) iff the preferences are considered with an utilitarian view [?][?]:
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the expected utility of the sum is equal to the sum of the sum of the expected utilities. With
an egalitarian collective utility function this is no longer the case, which leads to a timing
effect: the ex-ante approach (minimum of the expected utilities) is not equivalent to the ex-
post one (the expected utility of the minimum of the utilities). [?][?] prove representation
theorems stating that in a classical decision-theoretic setting commutation occurs if and
only if the two aggregation are weighted averages, that is the weighted average of expected
utilities is the same as the expected collective utility.

More recently, Ben Amor et al. [?] [?] have reconsider the problem in the setting of qual-
itative decision theory under uncertainty. They have proved that commuting alternatives
to weighted average operations exist, namely qualitative possibilistic integrals [?], that is
Sugeno integrals with respect to possibility or necessity measures, respectively correspond-
ing to optimistic and pessimistic possibilistic integrals. Namely pessimistic possibilistic
integrals commute, as well as optimistic ones, but a pessimistic possibilistic integral gen-
erally does not commute with an optimistic one.

The question considered in this paper is whether there exist other uncertainty measures,
in the qualitative setting of Sugeno integrals, for which this commutation result holds,
replacing pessimistic and optimistic utility functionals by Sugeno integrals with respect
to general capacities. In other terms, we care considering the problem of commutation in
double Sugeno integrals.

The paper is organized as follows. plan re ecrire, Section ?? provides necessary and
sufficient condition for the commutation Sugeno integrals and finally lays bare the form of
capacities that ensure commutation.

2 Background

Consider a set X = {x1, · · · , xn} and L a totally ordered scale with top 1, bottom 0, and
the order-reversing operation denoted by 1 − (·) (it is involutive and such that 1 − 1 = 0
and 1− 0 = 1). A decision u to be evaluated is represented by a function u : X → L where
u(xi) is, for instance, the degree of utility of the decision in state xi.

2.1 A refresher on 1D Sugeno integral

In the definition of Sugeno integral the relative likelihood or importance of subsets of states
is represented by a capacity (or fuzzy measure), which is a set function µ : 2X → L that
satisfies µ(∅) = 0, µ(X ) = 1 and A ⊆ B implies µ(A) ≤ µ(B). The conjugate capacity of
µ is defined by µc(A) = 1− µ(Ac) where Ac is the complement of A. The Sugeno integral
is originally defined in [?, ?].

Definition 1 The Sugeno integral (S-integral for short) of function u with respect to a
capacity µ is defined by:

Sµ(u) = maxα∈L min(α, µ(u ≥ α)), where µ(u ≥ α) = µ({xi ∈ X |u(xi) ≥ α}).
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For instance, suppose that µ is a necessity measure N , i.e., a capacity such that N(A∩
B) = min(N(A), N(B)). N is entirely defined by a function π : X → L, called the
possibility distribution associated to N , namely by: N(A) = mini 6∈A 1− πi. The conjugate
of a necessity measure is a possibility measure Π: Π(A) = maxi∈A πi. We have Π(A∪B) =
max(Π(A),Π(B)) and Π(A) = 1−N(A) where A is the complementary of A. We thus get
the following special cases of the Sugeno integral:

SΠ(u) = MAXΠ(u) = max
xi∈X

min(πi, u(xi)) (1)

SN (u) = MINΠ(u) = min
xi∈X

max(1− πi, u(xi)). (2)

These are the weighted maximum and minimum operations that are used in qualitative
decision making under uncertainty (they are called optimistic and pessimistic qualitative
utility respectively). In this interpretation, π(xi) measures to what extent xi is a possible
state, SN (u) (resp. SΠ(u)) evaluates to what extent it is certain (resp. possible) that u is
a good decision.

A Sugeno integral can be equivalently written under various forms [?, ?], especially:

Sµ(u) = max
A⊆X

min(µ(A), min
xi∈A

u(xi)) = min
A⊆X

max(µ(Ac),max
xi∈A

u(xi)) (3)

The S-integral can be expressed in a non-redundant format by means of the qualitative
Möbius transform of µ:

µ#(T ) =

{
µ(T ) if µ(T ) > maxx∈T µ(T\{x}) (focal sets)

0 otherwise

as
Sµ(~u) = max

T⊆X :µ#(T )>0
min(µ#(T ), min

(xi∈T
u(xi))

Indeed, µ# contains the minimal information to reconstruct the capacity µ as µ(A) =
maxT⊆A µ#(T ). Subsets T of X for which µ#(T ) > 0 are called focal sets of µ (the set of
focal sets of µ is denoted F(µ)). As a matter of fact, it is clear that the qualitative Moebius
transform of a possibility measure coincides with its possibility distribution: Π#(A) = π(s)
if A = {s} and 0 otherwise.

Lastly, the S-integral can be expressed with respect by Boolean capacities (i.e., of
capacities that take their values in {0, 1}), namely to the λ-cut of µ. Given a capacity µ
on X , for all λ > 0, λ ∈ L, let µλ : 2X → {0, 1} (the λ-cut of µ) be a Boolean capacity
defined by

µλ(A) =

{
1 if µ(A) ≥ λ
0 otherwise.

,
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for all A ⊆ X . It is clear that the capacity µ can be reconstructed from the µλ’s as follows:

µ(A) = max
λ>0

min(λ, µλ(A)).

Observe that the focal sets of a Boolean capacity µλ form an antichain of subsets (there is
no inclusion between them).

We can express S-integrals with respect to µ by means of the cuts of µ:

Proposition 1 Sµ(u) = maxλ>0 min(λ, Sµλ(u))

Proof:

Sµ(u) = max
A⊆X

min(max
λ>0

min(λ, µλ(A)),min
i∈A

u(xi))

= max
A⊆X

max
λ>0

min(λ, µλ(A),min
i∈A

u(xi))

= max
λ>0

max
A⊆X

min(λ, µλ(A),min
i∈A

u(xi))

= max
λ>0

min(λ,max
A⊆X

min(µλ(A),min
i∈A

u(xi))

Note that the expression Sµ(u) = maxα∈L min(α, µ(u ≥ α)) uses cuts of the utility
function. It can be combined with Proposition ?? to yield:

Sµ(u) = max
α,λ∈L

min(α, λ, µλ(u ≥ α)). (4)

This expression can be simplified as follows

Proposition 2 Sµ(u) = maxλ∈L min(λ, µλ(u ≥ λ)).

Proof: Note that µλ(u ≥ α) does not increase with α nor λ. Suppose then that Sµ(u) =
min(α∗, λ∗, µλ∗(u ≥ α∗)). If µλ∗(u ≥ α∗) = 1, and α∗ > λ∗, then notice that µα∗(u ≥
α∗) = 1 as well. Likewise, if α∗ < λ∗, µλ∗(u ≥ λ∗)) = 1. If µλ∗(u ≥ α∗) = 0, this is also
true for µλ(u ≥ α) with α > α∗ and λ > λ∗. So we can assume α = λ in equation (??). �

2.2 Sugeno integrals as (lattice) polynomial functions

Recall that a (lattice) polynomial function on L is any map p : Ln → L which can be
obtained as a composition of the lattice operations ∧ and ∨, the projections u(xi) and the
constant functions c ∈ L. As observed in [?], Sugeno integrals exactly coincide with those
polynomial functions q : Ln → L which are idempotent polynomial functions, that is, which
satisfy q(c, . . . , c) = c, for every c ∈ Y . In fact, it suffices to verify this identity for c ∈ {0, 1},
that is, q(1X) = 1 and q(1∅) = 0 where 1A denotes characteristic functions. As shown
by Goodstein [?], polynomial functions over bounded distributive lattices (in particular,
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over bounded chains) have very neat normal form representations, namely disjunctive and
conjunctive normal forms given, for idempotent ones, by (??).

In particular every idempotent polynomial function p : Ln → L is uniquely deter-
mined by its restriction to {0, 1}n. Also, since every lattice polynomial function is order-
preserving, the coefficients in the disjunctive normal form are monotone increasing as well,
i.e., p(1I) ≤ p(1J) whenever I ⊆ J , i.e., they yield the capacity at work in the S-integral.
Moreover, a function f : {0, 1}n → L can be extended to a polynomial function over Y if
and only if it is order-preserving. These results only point out that

Sµ(u) = µ(A) if u = 1A.

3 2D capacities

A 2D fuzzy measure is simply a fuzzy measure µ on X ×Y. The definition of a (simple) S
integral on such a capacity follows directly

Sµ(u) = max
T⊆X×Y

min(µ(T ), min
(i,j)∈T

u(xi, yj))

A Sugeno integral based on a 2D capacity will be called a 2D integral. Before exploring
the properties of this type of integral we need to explore 2D capacities, an int particular
the conditions under which the 2D-measure can be reconstructed via its projections.

3.1 Projection of a 2D capacities

We can define the projections of a 2D fuzzy measure µ on Y and on Xas follows:

Definition 2 (µ)↓X (A) = µ(A× Y). (µ)↓Y(B) = µ(X ×B).

Let R↓Y = {y ∈ Y,∃x ∈ X , s.t.(x, y) ∈ R be the projection of R ⊆ X × Y on Y.
One may try to compute the focal sets of the projections.

Proposition 3 The focal sets of (µ)↓Y are among the projections on Y of the focal sets of
µ.

Proof: Consider a set R ⊆ X ×Y which is not a focal set of µ. Then there is a focal T ⊂ R
such that µ(T ) = µ(R), and then T ↓Y ⊆ R↓Y . So (µ)↓Y(T ↓Y) ≤ (µ)↓Y(R↓Y). So R↓Y is not focal

for (µ)↓Y . By contraposition, the focal sets of (µ)↓Y are projections of the focal sets of µ. �

Note that the projection of a focal set of µ on Y is not always focal for (µ)↓Y .
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Example 1 For instance, suppose µ has only two focal sets, say R = {(x2, y1), (x2, y2)}
and T = {(x1, y1), (x2, y1)}, with µ(T ) > µ(R). R and T are not nested but T ↓Y = {y1} ⊂
R↓Y == {y1, y2}. µ↓Y(T ↓Y) = µ(X times{y1}) = µ({(x1, y1), (x2, y1)}) = µ(T ) and µ↓Y(R↓Y) =
µ(X times{y1, y2}) = µ(X × Y) = max(µ(R), µ(T )) = µ(T ). So, there is a strict subset of

T ↓Y which receives the same µ value: T ↓Y is the projection of a focal set of µ, but is not a
focal set of the projection of µ.

In fact the projection of µ can be defined from the focal sets of µ as

(µ)↓Y(B) = µ(X ×B) = max
R∈F(µ):R↓Y⊆A

µ#(R)

Let us call a sufficient fragment of µ a weighted set {(Ri, µ∗(Ri)), i = 1, . . . , } such that
µ(R) = maxRi⊆R µ

∗(Ri). Clearly F(µ) is (the smallest) sufficient fragment of µ and any

family S ⊃ F , with µ∗(Ri) = µ(Ri), Ri ∈ S is sufficient. The projections R↓Y of focal sets

of µ are a sufficient fragment of (µ)↓Y .b One gets the focal sets of (µ)↓Y by deleting from it
the sets B′ for which there is a subset B ( B′ such that µ(X ×B) = µ(X ×B′).

3.2 Joint capacities

Let us now the reverse way, and build a joint capacity of X × Y from the knowledge of
two local capacities, γ and δ on X and Y respectively, it is always possible to build a 2D
capacity µ on X × Y from µX and µY as follows: for any A ∈ X , B × Y, µ(A × B) =
µX (A) ⊗ µY (B), where it is expected to have (in view of the definition of projection),
0⊗0 = 1⊗0 = 0⊗1 = 0, 1⊗1 and ⊗ is increasing for each argument so ⊗ is a conjunction.
Because we work in a qualitative context (which motivates the use of Sugeno integrals), ⊗
is the minimum. So, we define the joint capacity obtained from γ on X and δ on Y by

µγ×δ(R) = max
A,B:A×B⊆R

min(γ(A), δ(B)).

definition alternative :

µγ×δ(R) = min(γ(R↓X ), δ(R↓Y)).

ca ne changerat pas grand chose ?
Note that µγ×δ(A × B) = min(γ(A), δ(B)). It is clear that the focal sets of µγ×δ are

Cartesian products, and they are among the Cartesian products A×B where A is a focal
of γ and B is a focal set of δ. But the Cathesian product of a focal set A of γ and a focal
set B of δ is not necessarilty a focal set of µγ×δ. It can indeed contain the product of two
other focals sets A′ and B′ of γ and δ, respectively.

Proposition 4 Any focal set of γ × δ is the Cartesian product of a focal set of γ and a
focal set of δ
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Proof:
missing �

Example 2 Suppose γ and δ are necessity measures with focal sets {A,X} and {B,Y}
respectively, with γ(A) = a and δ(B) = b where a > b (i.e. N(A) = a and N(B) = b).
γ × δ is the necessity measure s.t. N(A×B) = min(a, b) = b, N(A×Y) = min(a, 1) = a,
N(X ×B) = min(1, b) = b and of course N(X ×Y) = min(1, b) = 1. Then µγ×δ has focal
sets A × B with weight b, A × Y with weight a and X × Y with weight 1, while X × B is
not focal (it contains the focal set A×B) which as the same µγ×δ.

It can be checked (µγ×δ)
↓
X = γ, (µγ×δ)

↓
Y = δ.

The carthesian products of the focal elements of for a family {(A×B,min(γ(A), δ(B)) :
A ∈ F(γ), B ∈ F(δ)} which contains the focal sets of γ × δ, and maybe more sets - i.e. it
is sufficient for µγ×δ.

It is easy to check that the product is performed without any modification of the
information contained in γ and δ

Proposition 5 The projections of µγ×δ are γ and δ

Proof: First let γ(2X ) = {1 > a1 · · · > ap} and γ(2Y) = {1 > b1 · · · > bq}. The weights
of the joint capacity are {min(ai, bj) : i = 1, . . . p, j = 1, . . . q} = γ(2X ) ∪ γ(2Y) since
both sets contain 1. No information about weights is lost. Now it is easy to see that
(µγ×δ)

↓
Y(Bj) = µγ×δ(X × Bj) = min(1, bj) = bj , and so on. So we recover δ# on Y and it

is a sufficient fragment of the projection (due to Proposition ??). �

3.3 Separable 2D capacities

Now we consider the opposite problem: When does a capacity contain the same amount
of information as its projections?

Definition 3 µ is a separable capacity if it is the joint of its projections, namely, µ =
µ

(µ)↓X×(µ)↓Y

Conjecture 1 if µ is a separable capacity then for any R, µ(R) = min((µ)↓X (R↓X ), (µ)↓Y(R↓Y)

Let us try to find separability conditions.

Proposition 6 If µ is separable then all its focal sets are Cartesian products.
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This is a direct consequence of Proposition ?? that shows that the focal elements of a joint
are Cartesian products

The converse of Proposition ?? is false. The fact that the EF of µ are Cartesian products
(and even disjoint products) does not guarantee the separability of µ

Example 3 Suppose F(µ) has just three focal sets A × B, A′ × B, A × B′, A′ × B′ with
A 6= A′ and B 6= B′ with no inclusion. All are Cartesian products.

Let us denote µ#(A×B) = α1 µ#(A′×B) = β1 and µ#(A×B′)) = β2, µ#(A′×B′) = α2

and suppose that both alpha1 and alpha2 are than β1 and β2 (max(α1, α2) ≤ min(β1, β2).
For instance, with A = {x1}, A′ = {x2}, B = {y1}, B′ = {y2} and µ, is the possibility
measure defined by 0 < π((x1, y1)) = π((x2, y2)) < π((x2, y1)) = π((x1, y2)) = 1.

Because there is no inclusion, the focal sets of (µ)↓X are A (µ# = β1) and A′ (µ# = β2)

and the focal sets of (µ)↓Y are B (µ# = β1) and B′ (µ# = β2). For the same reason, the
focal sets of µ

(µ)↓X×(µ)↓Y
are A × B (β1) A′ × B’ (β2), A × B′ (min(β1, β2)) and A′ × B

(min(β1, β2)). We recover the same focal elements, and they are products, but

µ
(µ)↓X×(µ)↓Y

(A×B) > µ(A×B).

So, µ
(µ)↓X×(µ)↓Y

6= µ.

We can also show that

Proposition 7 If µ is separable then µ(A×B) = min((µ)↓X (A), (µ)↓Y(B)) for all focal sets
A×B ∈ X × Y of µ.

But the converse is also false

Example 4 Suppose that µ has two focals R and X × Y, with µ(R) = a < 1 and ↓X = X
and R↓Y = Y. For instance the necessity measure µ({(x1, y1), (x1, y2), (x2, y2)} = a < 1
(and of course µ(X × Y) = 1).

It is clear that the only focal set of (µ)↓X is X (with weight 1) and the only focal set of

(µ)↓Y is Y (with weight 1) . Then of course µ(A×B) = min((µ)↓X (A), (µ)↓Y(B)) for all focal
sets A×B ∈ X × Y of µ.

But µ is not separable. Indeed, since one of its focal sets, R is not a Cartesian product:
the joint capacity obtained from its projections (µ

(µ)↓X×(µ)↓Y
) is not equal to µ. In particular,

µ
(µ)↓X×(µ)↓Y

(R) = 0.

However, if none of the ( necessary) conditions above is sufficent for defining separable
capacities, their conjunction is equivalent to define capacities which are the joint of their
projection, i.e. separable capacities:
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Proposition 8 A 2D capacity µ is separable if and only if all its focal sets are Cartesian
products and µ(A×B) = min((µ)↓X (A), (µ)↓Y(B)) for all focal sets A×B ∈ X × Y of µ.

Proof: We know that the projections of the focal sets are sufficient fragments of the projec-
tions of µ. So we can write µ

(µ)↓X×(µ)↓Y
(R) = maxA×B∈F(µ):A×B⊆R min((µ)↓X (A), (µ)↓Y(B)) =

maxA×B∈F(µ):A×B⊆R = µ(R) since all focal sets of µ are Cartesian products. �

It is an open problem to describe the constraints on weights of focal sets of µ that are
characteristic of its separability. We can do it in the special case of Boolean capacities.

Proposition 9 A Boolean 2D capacity µ is separable if and only if its focal sets are pq
Cartesian products of the form {Ai × Bj : i = 1 . . . p, j = 1 . . . p} such that both families
{Ai : i = 1 . . . p} and {Bj : j = 1 . . . q} are antichains.

Proof: If the requested conditions are required it is clear that {Ai × Bj : i = 1 . . . p, j =

1 . . . p} form an anti-chain as well, so they are indeed focal sets for µ. The focals of (µ)↓X
are clearly all of {Ai : i = 1 . . . p}, and those of (µ)↓Y are clearly all of {Bj : j = 1 . . . q}.
Now, µ

(µ)↓X×(µ)↓Y
(Ai × Bj) = min((µ)↓X (Ai), (µ)↓Y(Bj)) = 1. The joint capacity has clearly

no other focal sets than {Ai ×Bj : i = 1 . . . p, j = 1 . . . p}. So it is µ.
Conversely suppose {Ai : i = 1 . . . p} is not an antichain. Then there are i, k with Ai ⊂ Ak.
Then Ai is not a focal for (µ)↓X and so there is no Cartesian product of the form Ai × Bj
that is focal for µ

(µ)↓X×(µ)↓Y
. So the joint of the projections of µ is not µ. �

TODO Donner la preuve de ce qui suit Finally, we can notice that a 2D capacity is
separable if and only if its cuts are separable Boolean 2D capacities.

4 Double Sugeno integrals

In the previous section, S-integrals are assumed to be defined on one-dimensional sets. In
the present section we consider the case of an S-integral on a Cartesian product of two
sets X and Y. There are two ways of computing them: either we start from two capacities
µX and µY compute a double S-integral, or we define a unique integral based on a two-
dimensional capacity, i.e., a capacity on the Cartesian product X × Y. In the first case,
there is a commutation problem, according to whether we start integrating over X or over
Y - this is the topic of the second part of this report. In the second case it is interesting
to compare the 2D S-integral based on a 2D capacity with the double S-integrals obtained
using the projections of the 2D capacity. This topic is developed in the following sections.

4.1 Definition

We consider two sets: X = {x1, · · · , xn}, Y = {y1, · · · , yp} We have two fuzzy measures:
µX on X and µY on Y. Consider a function u : X × Y → L.
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In the context of decision under uncertainty, the set X is a set of possible states of
nature, equipped with a capacity µX describing knowledge about the actual state of nature.
The other set Y is a set of agents sharing this knowledge. Then the value u(x, y) is the
worth of decision u according to agent y when the state of nature is x.

In the context of multiple criteria decision making, the set of possible states of nature is
replaced by a finite set of criteria C = {1, · · · , n} and alternatives are evaluated according to
each criterion: by vectors (u1, · · · , un) ∈ Ln of local evaluations, where L is the evaluation
scale which is a bounded totally ordered set. Then in the multiagent setting, the same
question arises, whether we aggregate across criteria first or across agents first. Then the
value u(x, y) is the worth of u according to agent y and criterion x. The capacity µX
describes the importance of each group of criteria.

In both cases the capacity µY on Y evaluates the importance of groups of agents. We
use the terminology of decision under uncertainty in the following - as a running example,
suppose that we evaluate the collective worth of a decision characterized by function u
according to all agents and given some common knowledge µX about the states of the
world.

For each agent yj , we denote by u(·, yj) = (u(x1, yj), · · · , u(xn, yj)) the vector of utilities
of yj in the different states and for each state xi, u(xi, ·) = (u(xi, y1), · · · , u(xi, yp)) the
vector assigning to each agent its utility value if the state of nature is xi.

There are two types of combination, according to whether we apply S-integral on X
first, or on Y first (as presented in Figure ??):

• SµX (SµY (u)) is the Sugeno integral, according to µX of the vector
SµY = (SµY (u(x1, ·)), . . . , SµY (u(xn, ·)))

• SµY (SµX (u)) is the Sugeno integral, according to µY of the vector
~SµX = (SµX (u(·, y1)), . . . , SµX (u(·, yp)))

That is to say:

SµX (SµY (u)) = max
A⊆X

min(µX (A),min
x∈A

SµY (u(x, ·)))

= max
A⊆X

min(µX (A),min
x∈A

max
B⊆Y

min(µY(B),min
y∈B

(u(x, y))))

SµY (SµX (u)) = max
B⊆Y

min(µY(B),min
y∈B

SµX (u(·, y)))

= max
B⊆Y

min(µY(B),min
y∈B

max
A⊆X

min(µX (A),min
x∈A

(u(x, y))))

We call integrals of the form SµX (SµY (u)) and SµY (SµX (u)) double S-integrals.

A result worth mentioning is a Fubini theorem for S-integrals, which is a special case
of a result proved in [?] :
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Proposition 10 If R = A×B then SµX (SµY (1R)) = min(µX (A), µY(B))

Proof: 1R is the characteristic function of A × B. The double integral then reads
SµX (SµY (1R)) = maxC⊆X min(µX (C),minx∈C maxC′⊆Y min(µY(C ′),miny∈C′(1R(x, y))))

because 1R(x, y) = 1 if (x, y) ∈ A×B, u(x, y) = 0 we get.:
SµX (SµY (u)) == maxC⊆A min(µX (C),minx∈C maxC′⊆B min(µY(C ′),miny∈C′(1)))

Then
SµX (SµY (u)) = maxC⊆A min(µX (C),minx∈C maxC′⊆B min(µY(C ′), 1))
= maxC⊆A min(µX (C),minx∈C µY(B)))
= maxC⊆A min(µX (C), µY(B))) = min(µX (A), µY(B))) �

y1 . . . yp x1 u(x1, y1) . . . u(x1, yp)
...

. . .
...

xn u(xn, y1) . . . u(xn, yp)

→
...
→

 SµY (u(x1, ·))
...

SµY (u(xn, ·))

↓
↓ . . . ↓ SµX (SµY (u(x1, ·)), · · · , SµY (u(xn, ·)))

( )SµX (u(·, y1)), · · · , SµX (u(·, yp)) → SµY (SµX (u(·, y1)), · · · , SµX (u(·, yp))

Figure 1: Two double utility functionals with Sugeno integral

The natural question is to find the conditions under which the equality SµY (SµX (u)) =
SµX (SµY (u)) holds. As a matter of fact, let us first study it in the context of possibilistic
measures.

4.2 Possibilistic double S-integrals

Consider the cases when µX and µY are possibility or necessity measures. In the frame-
work of possibilistic decision under uncertainty, X = {x1, · · · , xn} is a set of states, and
a possibility distribution π captures the common knowledge of the agents: πi is the pos-
sibility degree to be in state xi. Y = {y1, · · · , yp} is the set of agents. The weight vector
w = (w1, · · · , wp) ∈ [0, 1]p is modeled as a possibility distribution on Y where wj is the
importance of agent yj . The attractiveness of decision u for agent yj in the different states
is captured by utility function u(·, yj) : X → [0, 1].
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There are two possible approaches for egalitarist aggregations of pessimistic decision-
makers, and two possible approaches for egalitarist aggregations of pessimistic decision-
makers [?].

ex-post pessimistic approach

U−minpost (π,w, u) = min
xi∈X

max(1− πi, min
yj∈Y

max(u(xi, yj), 1− wj)).

ex-ante pessimistic approach

U−minante (π,w, u) = min
j∈Y

max(1− wj , min
xi∈X

max(u(xi, yj), 1− πi)).

ex-post optimistic approach

U+min
post (π,w, u) = max

xi∈X
min(πi, min

yj∈Y
max(u(xi, yj), 1− wj)).

ex-ante optimistic approach

U+min
ante (π,w, u) = min

j∈Y
max(1− wj ,max

xi∈X
min(u(xi, yj), πi)).

It can be checked that the first two quantities are of the form

U−minpost (π,w, u) = SNX (SNY (u))

U−minante (π,w, u) = SNY (SNX (u))

Essghaier et al. [?] show that the two expressions are equal to minxi∈X ,yj∈Y max(1 −
πi, u(xi, yj), 1− wj)), i.e., SNX (SNY (u)) = SNY (SNX (u)).

In the optimistic case, qualitative decision theory prescribes the use of a Sugeno integral
based on a possibility measure on X

U+min
post (π,w, u) = SΠX (SNY (u))

U+min
ante (π,w, u) = SNY (SΠX (u)).

The two integrals do no coincide: [?] have shown that we only have the inequality U+min
ante (π,w, u) ≥

U+min
post (π,w, u) with no equality in general The following counter example shows that the

latter inequality can be strict - no commutation result can be obtained when one of the
capacity is a necessity measure and the other one a possibility measure:

12



Example 5 Counterexample
Let X = {x1, x2}, πi = 1, and wi = 1,∀i = 1, 2, Y = {y1, y2}, u(x1, y1) = u(x2, y2) = 1

and u(x2, y1) = u(x1, y2) = 0.
We have U+min

post as

max(min(1,min(max(1−1, 1),max(1−1, 0)),min(1,min(max(1−1, 0),max(1−1, 1))) =
0.

But U+min
ante (π,w, u) is computed as

min(max(1− 1,max(max(1, 1),max(0, 1)),max(1− 1,max(max(0, 1),max(1, 1)))) = 1.

In summary, double S-integrals may commute, e.g. when the two capacities are ne-
cessity measures (and the same commutation result is obtained if we consider possibility
measures, namely, SΠX (SΠY (u)) = SΠY (SΠX (u))), but not always - the previous example
shows that the difference between the two double S-integrals can be maximal.

4.3 From double Sugeno integrals to 2D Sugeno integrals

Let us now consider the problem of relating double Sugeno integrals and 2D S-integral:,
i.e. Sugeno integrals based on a two dimensional capacity:

Sµ(u) = max
T⊆X×Y

min(µ(T ), min
(i,j)∈T

u(xi, yj))

In the current section, we investigate the relationships between Sµ(u) and 2D S-integrals
SµX (SµY (u)) and SµY (SµX (u)). In particular, we study to what extent a double S-integral
based on capacities µX and µY can be understood as a 2D S-integral build on a particular
two dimensional capacity the projections of which are µX and µY . We also show that even
if SµX (SµY (u)) and SµY (SµX (u)) are equal for some function u these double S-integrals
may differ from the S-integral based on the joint 2D capacity µX × µY .

Double integrals are 2D S-integrals

It is easy to see that a double S-integral is actually an idempotent lattice polynomial
p : L|X |+|Y| → L, since it is made using min,max, constants and variable terms of the
form u(xi, xj), and SµX (SµY (1X×Y)) = 1, SµX (SµY (1∅)) = 0. Using results on lattice
polynomials, we conclude that a double S-integral is always a 2D S-integral, based on a
capacity that maps each R ⊆ X ×Y to L defined by µ(R) = p(1R). Namely noticing that

SµX (SµY (1R)) = SµX (SµY (1R(x1, ·)), · · · , SµY (1R(xn, ·))) = SµX (fR)
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where fR(xi) = µY({y ∈ Y : xiRy}), is a monotonic function of R only, i.e. a 2D capacity
κ, we can write any double S-integral as

SµX (SµY (u)) = max
R⊆X×Y

min(κ(R), min
(xi,yj)∈R

u(xi, yj)) (5)

with κ(R) = SµX (fR) for each R ⊆ X ×Y. The double S-integral is thus the 2D S-integral
based on the so-defined 2D capacity κ. This result was independently proved very recently
by Halas et al. [?], but it also straightforwardly follows from considerations in [?, ?].

la µ 2D qui capture la double est elle unique ? yes ?
The following example shows that de 2D capacity κ is not necessarily separable. c ’est

bien a ??

Example 6 (continued): We can lay bare the 2D capacity involved in the definition of
U+min
ante (π,w, u) = SN (SΠ(u)). It is easy to see that SN (SΠ(1R)) = 0 whenever R =
{(xi, yj)}, i, j ∈ {1, 2} (singletons), but SN (SΠ(1R)) = 1 for R = {xi} × Y, i = 1, 2 and for
R = {(x1, y1), (x2, y2)}, {(x1, y2), (x2, y1)} but is 0 for the two other two-elements subsets
of X × Y. So, the 2D capacity underlying SN (SΠ(1R)) has four focal sets.

On the other hand, capacity ΠX ×NY has only two focal sets R = {xi} × Y, i = 1, 2.
Hence, the 2D capacity underlying SN (SΠ(1R)) is not equal to ΠX ×NY .
This shows that the 2D capacity underlying the 2D reprentation of a double integral is

not necessary separable. ????

Are 2D S-integrals Double Sugeno integrals ?

We have seen that Double Sugeno integrals can be captured by 2D integrals. Can 2D
S-integrals also be captured by double Sugeno integrals ? The answer is no in the general
case. It is indeed easy to find that some 2D capacity the integrals on which cannot be
represented by a Double integral

Proposition 11 There exists some 2D capacities µ and some functions u such that ∀µX , µY , SµXSµY (u) 6=
Sµ(u)

Proof: Consider the 2D capacity with only three focal elements, {x1, y1}, {x1, y2} and
{x2, y1} which all receive the degree 1, and suppose that there exist µX and µY such as
∀u, SµXSµY (u) = Sµ(u).

Consider first the utility function u(x, y) = 1 if x = x2 and y = y2 and u(x, y) =
0 otherwise (the caracteristic function of {(x2, y2)}. Sµ(u) = µ({(x2, y2)}) = 0 be-
cause no focal element is contained in {(x2, y2)}. On the other hand, SµXSµY (u) =
max(min(µX (x1), 0),min(µX ({x2}), 1),min(µX ({x1, x2}, 0))) = muX (x2). So, µX ({x2}) =
0.
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Consider now function u′(x, y) = 1 if x = x2 and y = y1 and u(x′, y) = 0 otherwise.
Sµ(u′) = µ({(x2, y1)}) = 1 because {(x2, y1)} is a focal elements of degree 1. On the
other hand, SµXSµY (u′) = max(min(µX (x1), 0),min(µX ({x2}), 1),min(µX ({x1, x2}, 0))) =
muX (x2). So, µX ({x2}) = 1, which contradicts µX ({x2}) = 0.

By symmery, there exist no µX µY such as ∀u, SµY SµX (u) = Sµ(u).

�

Of course, for some µ, the representation by a double integral is possible, e.g. when
µ is the product of two possibility measures. In this example, µ is separable. But it is
not always the case - example ?? presents a 2D integral that can be represented by a 2D
integral but is not separable. We can nevertheless show that:

Proposition 12 If there exists µX on X and µY on Y such that ∀u, SµX (SµY (u)) = Sµ(u),
then µX and µY are the projections of µ on X and Y, respectively, and ∀A,B, µ(A×B) =
min(µX (A), µY(B))

Proof: Suppose that there exist µX and µY such as ∀u, SµXSµY (u) = Sµ(u). Consider
any pair of subsets A ∈ X and B of Y and let u′ be its caracteristic the function of A×B,
i.e. u(x, y) = 1 if (x, y) ∈ A×B, u(x, y) = 0 otherwise

First of all, Sµ(u) = µ(A×B). From proposition ?? SµX (SµY (u)) = min(µX (A), µY(B)))
So, SµXSµY (u) = Sµ(u) implies µ(A×B) = min(µX (A), µY(B).
Setting A = X we get µ(A× Y) = min(µX (A), µY (X )) = µX (A) µX ) is the projection

of µ on X . Setting B = Y we get µ(X × B) = min(µX (X ), µY (B)) = µY(B) µY is the
projection of µ on Y.

�

Conjecture 2 If there exists µX and µY such that ∀u, Sµ(u) = SµX (SµY (u)) = SµY (SµX (u)),
then µ is separable

Conjecture 3 If there exists µX and µY such that ∀u, SµX (SµY (u)) = SµY (SµX (u)), then
SµX (SµY (u)) = SµY (SµX (u)) = Sµ

Of course, separability is not a sufficient condition : we have shall see in example ?? a
separable capacity the 2D integral on which cannot be represented by a double integral.

2D S-integrals for separable capacities

If µ is a separable capacity we have that

Sµ(u) = max
(A×B)∈F(µ)

min(min(µX (A), µY(B), min
(i,j)∈A×B

u(xi, yj))
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The question is whether any 2D S-integral with respect to a separable capacity can be
expressed in the form of a double S-integral as proposed above on figure 1 ? The following
results answer by the negative.

Proposition 13 We consider µ a separable fuzzy measure on X × Y. We denote (µ)↓X
and (µ)↓Y the projections on Y and X respectively.

We have Sµ(u) ≤ SµX (SµY ((u(x1, ·)), . . . , SµX (u(xn, ·)))).

Proof: Note that G is a focal set of (µ)↓Y and F a focal set of (µ)↓X , if and only if G× F
is a focal set of µ.

Sµ(u) = maxC⊆X×Y min(µ(C),min(i,j)∈C u(xi, yj))

= maxA,B min(µY(A), µY(B),mini∈A,j∈B u(xi, yj))
= maxA min(µX (A),maxB min(µY(B),mini∈A,j∈B u(xi, yj)))
= maxA min(µX (A),maxB mini∈A min(µY(B),minj∈B u(xi, yj)))
≤ maxA min(µX (A),mini∈A maxB min(µY(B),minj∈B u(xi, yj)))
= SµX (SµY ((u(x1, ·)), . . . , SµX (u(xn, ·)))).

Note that we have turned maxB mini∈A into mini∈A maxB, which induces the inequality. �

Symmetrically, we get Sµ(u) ≤ SµY (SX (u(·, y1)), · · · , SY(u(·, yp))).
The inequalities in Proposition ?? may be strict, and this even if µ is separable (see

examples ?? and ?? in the following).
Let us exemplify the above situation in the setting of possibility and necessity measures.

Consider the case of a 2D capacity on Y ×X whose projection on Y is a necessity measure
NY with possibility distribution w, and whose projection on X is a possibility measure ΠX
with possibility distribution π.

This captures for instance the problem of multigent decision making under uncertainty,
with n agents and n states, with two possibility distributions w1 = 1 ≥ w2 · · · ≥ wn
(importance weights) and π1 = 1 ≥ π2 · · · ≥ πn (plausibilities). Let Bj = {y1, . . . , yj} ⊆ Y
and αj = NY(Bj), i.e., αj = 1− wj+1. Note that NY(B) = maxBj⊆B αj = minyj 6∈B 1− wj
and the marginal S-integral on Y takes the two forms:

SN (u(xi, ·)) = max
Bj⊆B

min(αj , min
yk∈Bj

u(xi, yk)) = min
i=1,...,n

max(1− wj , u(xi, yj)).

The joint necessity-possibility function µ = ΠX×NY is defined by the focal sets {xi}×Bj
and Moebius masses µ#({xi} ×Bj) = min(πi, αj), i, j = 1, . . . , n.

It can be checked that (µ)↓Y = NY and (µ)↓X = ΠX , as prescribed by Proposition ?? .

Indeed, (µ)↓Y(B) = µ(X × B) = maxBi⊆B maxxi∈X min(πi, αj) = maxBj⊆B αj . Idem for
the other.

The 2D S-integral reads:

Sµ(u) = max
i,j=1,...,n

min(min(πi, αj), min
yk∈Bj

u(xi, yk))
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and also be expressed as

Sµ(u) = max
j=1,...,n

min(αj , max
i=1,...,n

min(πi, min
yk∈Bj

u(xi, yk))) (6)

or as

Sµ(u) = max
i=1,...,n

min(πi, max
j=1,...,n

min(αj , min
yk∈Aj

u(xi, yk))) = S
(µ)↓X

(~S
(µ)↓Y

(u))

Thus, if a 2D capacity µ is the joint of a possibility measure on X and a necessity
measure on Y, then Sµ(u) = S

(µ)↓X
(S

(µ)↓Y
(u)), which is the value U+min

post for u.

But what about S
(µ)↓Y

(S
(µ)↓X

(u)), i.e., of the U+min
ante utility of u ? Essghaier et al. [?]

have shown that U+min
post (π,w, u) ≤ U+min

ante (π,w, u), which can be retrieved as particular
case of Proposition ??. These authors have shown that the inequality can be strict and
even extreme. Let us reconsider it in the light of 2D S-integrals.

Example 7 : X = {x1, x2}, πi = 1, and wi = 1,∀i = 1, 2, Y = {y1, y2}, u(x1, y1) =
u(x2, y2) = 1 and u(x2, y1) = u(x1, y2) = 0. So u = 1{(x1,y1),(x2,y2)}, which is the charac-
teristic function of the set {(x1, y1), (x2, y2)}

The joint capacity, µ, is a capacity whose projections are the vacuous necessity measure
on Y and the vacuous possibility measure on X . Note that on Y there is a single focal
set Y while focal sets on X are all singletons. Hence focal sets of µ are of the form
{xi} × Y, xi ∈ X . Since u is the characteristic function of the set {(1, 1), (2, 2)} that
contains none of them Sµ(u) = µ({(x1, y1), (x2, y2)}) = 0.

We have seen that U+min
post is equal to

SΠ(SN (u)) = Sµ(u) = max(min(min(1, 1),min(1, 0)),min(min(1, 1),min(0, 1))) = 0,

which coincides with value of Sµ(u).
On the other hand, U+min

ante (π,w, u) = 1 as already seen.
Since U+min

ante (π,w, u) = SNY (SΠX (u)), and U+min
post = SΠ(SN (u)) = Sµ(u)), it indicates

that it may happen that Sµ(u)) < SµX (SµY (u))

We can even give an example where two double Sugeno integrals of a Boolean function
on X×Y are equal but strictly greater than the corresponding 2D integral, using a separable
2D capacity. but the two double Sugeno integrals of a Boolean function on X ×Y are equal
and strictly greater than the 2D integral.

Example 8 Consider |X | = |Y| = 3. Let R = {(x1, y3), (x1, y2), (x2, y2), (x2, y1), (x3, y1)}.
Note that R is symmetric. Now consider the 2D Boolean capacity µ with the 4 focal sets
{x1, x2}×{y1, y2}, {x1, x2}×{y2, y3}, {x2, x3}×{y2, y3}, {x2, x3}×{y1, y2}. Note that it is

separable, and (µ)↓X has focals {x1, x2} and {x2, x3}, (µ)↓Y has focals {y1, y2} and {y2, y3}.
They are the same capcity on the two sets X and Y
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It is clear that µ(R) = 0 (R contains no focal sets). However, consider the double
integrals S

(µ)↓X
(S

(µ)↓Y
(1R)) and S

(µ)↓Y
(S

(µ)↓X
(1R)). They are equal because they are the same

capacity and R is symmetric.
Note that Ry1 = {x2, x3}, Ry2 = {x1, x2}, Ry3 = {x1}. We have

S
(µ)↓Y

(S
(µ)↓X

(1R)) = max
B∈F(Y)

min((µ)↓Y(B), min
yi∈B

(µ)↓X (Ryi))

= max(min((µ)↓Y({y1, y2}),min((µ)↓X ({x2, x3}), (µ)↓X ({x1, x2})),

min((µ)↓Y({y2, y3}),min((µ)↓X ({x1, x2}), (µ)↓X ({x1})))
= max(min(1,min(1, 1)),min(1,min(1, 0))) = 1.

So we have a case where

S
(µ)↓X

(S
(µ)↓Y

(1R)) = S
(µ)↓Y

(S
(µ)↓X

(1R)) = 1 > µ(R) = 0.

dans l’exemple precedent (ex ??) , on n’a pas SX (SY)(u) = SY(SX )(u) pour tout u ; il
ne s’oppose pas aux conjectures

5 Commutation of Sugeno integrals

In this section, given two capacities on finite sets µX on X and µY on Y, we check for
necessary and sufficient conditions under the following identity holds, namely:

SµX (SµY (u(x1, ·)), · · · , SµY (u(xn, ·))) = SµY (SµX ((u(·, y1)), . . . , SµX (u(·, yp)))

Or for short SµX (SµY (u)) = SµY (SµX (u)).
We then say that the S-integrals commute and write SµY⊥SµX . This question can

be considered from two points of view: for which functions u do S-integrals commute
for all capacities on X and Y ? For which capacities do the S-integrals commute for all
functions u ? The first question is considered by Narukawa and Torra [?] for more general
fuzzy integrals, and the second one by Behrisch et al. [?], albeit in the larger setting
of distributive lattices, for general lattice polynomials. However it is of interest to prove
these results for S-integrals valued on chains, as they become more palatable and an explicit
description of capacities ensuring commutation is obtained. In particular the question is
whether commutation holds for other pairs of capacities than possibility measures and
necessity measures, a case handled in [?].

5.1 Necessary and sufficient conditions for commutation

We first show that commutation holds for all functions u : X × Y → L whatever the
capacities if and only if commutation holds for all Boolean-valued functions u : X × Y →
{0, 1}, that is relations R ⊆ X × Y.
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Proposition 14 SµY⊥SµX if and only if ∀R ⊆ X × Y,

SµX (µY(x1R), · · · , µY(xnR)) = SµY (µX (Ry1), . . . , µX (Ryp))

where xiR = {y ∈ Y : xiRy}, Ryj = {x ∈ Y : xRyj}.

Proof: We have shown above (equation (??)) that any double S-integral SµX (SµY (u)) is
actually a 2D S-integral associated to the capacity µXY defined by

µXY(R) = SµX (µY(x1R), . . . , µY(xnR))

Likewise SµY (SµX (u)) is actually a 2D S-integral associated to the capacity µYX defined
by

µYX (R) = SµY (µX (Ry1), . . . , µX (Ryp))

So it becomes clear that the equality SµX (SµY (u)) = SµY (SµX (u)) holds if and only if
SµX (µY(x1R), . . . , µY(xnR)) = SµY (µX (Ry1), . . . , µX (Ryp)) for all R ⊆ X × Y.

�
So if commutation holds for all relations, it holds for all functions and conversely.

Another result worth mentioning is a Fubini theorem for S-integrals, which s a special
case of a result proved in :

Proposition 15 If R = A×B, commutation always holds, i.e.,

SµX (SµY (1R)) = SµY (SµX (1R)) = min(µX (A), µY(B))

Proof: Indeed it then reads SµX (SµY (1R)) = ∨S∈XµX (S)∧∧x∈SµY(xR) = ∨S⊆AµX (S)∧
∧x∈SµY(B) = min(µX (A), µY(B)). �

In that case there is coincidence between µXY and µYX with the 2D capacity µX∧µY(R)
on such Cartesian products. As a consequence we have the following decomposability result,
where double S-integrals based on marginal capacities are equal to the 2D S-integral:

Corollary 1 If u(x, y) = min(uX (x), uY(y)), commutation holds, i.e.,

SµX (SµY (u)) = SµY (SµX (u)) = min(SµX (uX ), SµY (uY)) = Smin(µX ,µY )(u).

Proof: Note that by assumption R = {(x, y) : u(x, y) ≥ λ} = is of the form, Sλ × Tλ,
where Sλ = {x : uX ≥ λ} and Tλ = {y : uY ≥ λ}. Hence

SµY (SµX (u)) = ∨λ∈L min(µX (Sλ), µY(Tλ), λ)

= min(∨λ∈L min(µX (Sλ), λ),∨λ∈L min(µY(Tλ), λ))

= min(SµX (uX ), SµY (uY)

�

Finally we shall prove the main theorem of this section, that is

19



Theorem 1 SµY⊥SµX if and only if ∀A1, A2 ⊆ X ,∀B1, B2 ⊆ Y,:

µX (A1 ∩A2) ∨ µY(B1) ∨ µY(B2) ≥ µX (A1)µX (A2)µY(B1 ∪B2)

µY(B1 ∩B2) ∨ µX (A1) ∨ µX (A2) ≥ µY(B1)µY(B2)µX (A1 ∪A2).

Proof:[Outline] The proof is inspired by a paper on the commutation of polynomials on
distributive lattices [?], and requires several lemmas. Our proof is easier to read and sim-
pler, though. First we use Proposition ?? to restrict to Boolean functions (relations R)
on X × Y without loss of generality. Then we show that commutation is equivalent to a
certain identity for relations R of the form (A1 ×B1) ∪ (A2 ×B2) (Lemma ??). We show
this identity implies the two inequalities of the theorem (Lemmas ?? then ??), then that
these inequalities can be extended to more than just pairs of sets (Lemma ??). Finally
we show that these extended inequalities imply the commutation condition (Lemma ??). �

First, we prove a counterpart of Lemma 3.4 in [?]:

Lemma 1 SµX (SµY (1R)) = SµY (SµX (1R)) for R = (A1 × B1) ∪ (A2 × B2) if and only if
the 2-rectangle condition holds, i.e.

µX (A1 ∩A2)µY(B1 ∪B2) ∨ µX (A1)µY(B1) ∨ µX (A2)µY(B2) ∨ µX (A1 ∪A2)µY(B1)µY(B2)

=

µY(B1 ∩B2)µX (A1 ∪A2) ∨ µX (A1)µY(B1) ∨ µX (A2)µY(B2) ∨ µY(B1 ∪B2)µX (A1)µX (A2)

(were we omit the sign ∧, for convenience)

Proof: First note that if R = (A1 ×B1) ∪ (A2 ×B2), then xR is of the form

• xR = B1 if x ∈ A1 \A2 and xR = B2 if x ∈ A2 \A1

• xR = B1 ∪B2 if x ∈ A1 ∩A2

• xR = ∅ otherwise.

Now SµX (SµY (1R)) = ∨S⊆XµX (S)∧∧x∈SµY(xR) = ∨S⊆Xφ(S) for short. We compute the
term ∧x∈SµY(xR) according to the position of S with respect to A1 and A2:

• If S ⊆ A1 ∩A2 then ∧x∈SµY(xR) = µY(B1 ∪B2) so,
∨S⊆A1∩A2φ(S) = µX (A1 ∩A2) ∧ µY(B1 ∪B2).

• If S ⊆ A1 and S 6⊆ A2, then ∧x∈SµY(xR) = µY(B1), so,
∨S⊆A1,S 6⊆A2φ(S) = µX (A1) ∧ µY(B1).

• If S ⊆ A2 and S 6⊆ A1, then ∧x∈SµY(xR) = µY(B2), so,
∨S⊆A2,S 6⊆A1φ(S) = µX (A2) ∧ µY(B2).
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• If S ⊆ A1 ∪A2 and S 6⊆ A1, S 6⊆ A2, then ∧x∈SµY(xR) = µY(B1) ∧ µY(B2), so,
∨S⊆A1∪A2,S 6⊆A1,S 6⊆A2φ(S) = µX (A1 ∪A2) ∧ µY(B1) ∧ µY(B2).

• If S 6⊆ A1 ∪A2, then ∧x∈SµY(xR) = 0 and ∨S 6⊆A1∪A2φ(S) = 0.

This is the left-hand side of the 2-rectangle condition. The other side is obtained in the
same way when computing SµY (SµX (1R)). �

The following is a counterpart of Lemma 3.6 in [?]

Lemma 2 The 2-rectangle condition of Lemma ?? implies the two following properties

µX (A1 ∩A2)µY(B1 ∪B2) ∨ [µX (A1)µX (A2)(µY(B1) ∨ µY(B2))] = µX (A1)µX (A2)µY(B1 ∪B2)

µY(B1 ∩B2)µX (A1 ∪A2) ∨ [µY(B1)µY(B2)(µX (A1) ∨ µX (A2))] = µY(B1)µY(B2)µX (A1 ∪A2).

Proof: To get the first equality the idea (from [?]) is to compute the conjunction of each
side of the 2-rectangle condition with µX (A1) ∧ µX (A2) (applying distributivity). Indeed
consider each factor of the 2-rectangle condition conjuncted with µX (A1)µX (A2) (omitting
∧):

• On the left-hand side, we get µX (A1)µX (A2)µX (A1∩A2)µY(B1∪B2) which is µX (A1∩
A2)µY(B1 ∪B2) since µX (A1 ∩A2) ≤ µX (A1) ∧ µX (A2) by monotonicity of µX .

• The second term becomes µX (A1)µX (A2)µY(B1).

• The third term becomes µX (A1)µX (A2)µY(B2).

• The fourth term becomes µX (A1)µX (A2)µX (A1 ∪A2)µY(B1)µY(B2) equal to
µX (A1)µX (A2)µY(B1)µY(B2) from monotonicity again, but this term is subsumed
via disjunction with the above second and third terms.

• The right hand side of the 2-rectangle condition is handled similarly. The first term
becomes µY(B1 ∩B2)µX (A1)µX (A2) due to monotonicity again.

• The second and third terms on the right-hand side are the same as in the left-hand
side, but here they subsumed by the first term.

• The last term remains the same, i.e., µY(B1∪B2)µX (A1)µX (A2) but it subsumes the
first term.

We thus get the first equality. The second equality is obtained likewise, by conjunction of
each side of the equality with the term µY(B1) ∧ µY(B2). �

The following lemma simplifies the two obtained equalities into simpler inequalities.
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Lemma 3 The two equalities in Lemma ?? are equivalent to the two inequalities

µX (A1 ∩A2) ∨ µY(B1) ∨ µY(B2) ≥ µX (A1)µX (A2)µY(B1 ∪B2) (7)

µY(B1 ∩B2) ∨ µX (A1) ∨ µX (A2) ≥ µY(B1)µY(B2)µX (A1 ∪A2). (8)

Proof: Let us apply distributivity to the right-hand side of the first equality in Lemma
??:
[µX (A1∩A2)∧µY(B1∪B2)]∨ [(µX (A1)µX (A2))∧(µY(B1)∨µY(B2))]. We get a conjunction
of disjunctive terms of the form

• µX (A1 ∩A2) ∨ (µX (A1)µX (A2)) = µX (A1)µX (A2) (monotonicity).

• µX (A1 ∩A2) ∨ µY(B1) ∨ µY(B2)

• µY(B1 ∪B2) ∨ µX (A1)µX (A2)

• µY(B1 ∪B2) ∨ µY(B1) ∨ µY(B2) = µY(B1 ∪B2) (monotonicity).

It is clear that the conjunction of these terms absorbs the third term, and the first equality
in Lemma ?? reduces to the equality
µX (A1)µX (A2)µY(B1∪B2)(µX (A1∩A2)∨µY(B1)∨µY(B2)) = µX (A1)µX (A2)µY(B1∪B2),
which is equivalent to the inequality

µX (A1 ∩A2) ∨ µY(B1) ∨ µY(B2) ≥ µX (A1)µX (A2)µY(B1 ∪B2).

The second inequality is proved likewise, exchanging A and B, X and Y. �

The two inequalities (??) and (??) extend to more than two pairs of sets, namely:

Lemma 4 (??) and (??) imply:

µX (∩ki=1Ai) ∨ ∨`j=1µY(Bj) ≥ ∧ki=1µX (Ai) ∧ µY(∪`j=1Bj) (9)

µY(∩`j=1Bj) ∨ ∨ki=1µX (Ai) ≥ ∧`j=1µY(Bj) ∧ µX (∪ki=1Ai). (10)

Proof: Inequality (??) holds for k = ` = 2 (this is (??)). Suppose that inequality (??)
holds for i = 1, . . . k − 1 and ` = 2. We can write, by assumption:

µX (∩k−1
i=1Ai) ∨ µY(B1) ∨ µY(B2) ≥ ∧k−1

i=1 µX (Ai) ∧ µY(B1 ∪B2)

Moreover we can write (??) for A = ∩k−1
i=1Ai, Ak, B1, B2. So we can write the inequality

µX (∩ki=1Ai) ∨ µY(B1) ∨ µY(B2) ≥ µX (∩k−1
i=1Ai) ∧ µX (Ak) ∧ µY(B1 ∪B2)

Suppose µX (∩k−1
i=1Ai) ≥ µY(B1) ∨ µY(B2). So the first inequality reduces to

µX (∩k−1
i=1Ai) ≥ ∧

k−1
i=1 µX (Ai) ∧ µY(B1 ∪B2).
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Then we can replace µX (∩k−1
i=1Ai) by ∧k−1

i=1 µX (Ai) ∧ µY(B1 ∪ B2) in the second inequality,
and get (??). Otherwise, µX (∩k−1

i=1Ai) ≤ µY(B1) ∨ µY(B2), and the first inequality reads

µY(B1) ∨ µY(B2) ≥ ∧k−1
i=1 µX (Ai) ∧ µY(B1 ∪B2)

so we have

µX (∩ki=1Ai)∨µY(B1)∨µY(B2) = µY(B1)∨µY(B2) ≥ (∧k−1
i=1 µX (Ai))∧µX (Ak)∧µY(B1∪B2),

which is (??) again. Proving that the inequality (??) holds for k = 2, ` > 2 is similar. We
can write (??) for B = ∩`−1

i=1Bj , B`, A1, A2. So we can write the two inequalities

µX (A1 ∩A2) ∨ ∨`−1
j=1µY(Bj) ≥ µX (A1)µX (A2)µY(∪`−1

j=1Bj)

µX (A1 ∩A2) ∨ µY(∪`−1
j=1Bj) ∨ µY(B`) ≥ µX (A1)µX (A2)µY(∪`j=1Bj)

If µY(∪`−1
j=1Bj) ≤ µX (A1)µX (A2) then the first inequality reduces to µX (A1∩A2)∨∨`−1

j=1µY(Bj) ≥
µY(∪`−1

j=1Bj), and replacing the latter term by its upper bound in the second inequality gives

the expected result. If µY(∪`−1
j=1Bj) > µX (A1)µX (A2) then the first inequality reduces to

µX (A1 ∩A2) ∨ ∨`−1
j=1µY(Bj) ≥ µX (A1)µX (A2),

which implies (??), adding the disjunction with term µY(B`) on the left-hand side, and
conjuncting with term µY(∪`j=1Bj) on the right-hand side. So, the inequality (??) holds
for any k > 2, ` > 2. The inequality (??) is proved in a similar way, exchanging A and B,
X and Y �

Lemma 5 If µX and µY satisfy the two inequalities (??) and (??), then SµX⊥SµY
Proof: First notice that the inequalities (??) and (??) can be written in the style of
Lemma ??. The first one reads:

[µX (∩ki=1Ai)µY(∪`j=1Bj)] ∨ [∧ki=1µX (Ai) ∨`j=1 µY(Bj)] = ∧ki=1µX (Ai)µY(∪`j=1Bj).

We have to prove that

∨S⊆XµX (S) ∧ ∧x∈SµY(xR)) ≥ ∨T⊆YµY(T ) ∧ ∧y∈TµX (Ry)).

Consider the term µY(T ) ∧ ∧y∈TµX (Ry)) that we identify with the right-hand side of the
above equality. This equality then reads:

µY(T ) ∧ ∧y∈TµX (Ry) = [µX (ST )µY(T )] ∨ [∧y∈TµX (Ry) ∧ ∨t∈TµY({t})]
= [µX (ST )µY(T )] ∨ ∨t∈T [∧y∈TµX (Ry) ∧ µY({t})].

where ST = ∩y∈TRy. Now we can prove that

23



• µY(T ) ≤ ∧x∈STµY(xR). Indeed ST = ∩y∈TRy if and only if ST × T ⊆ R if and only
if T = ∩x∈ST xR. So, the term µX (ST )µY(T ) is upper bounded by ∨S⊆XµX (S) ∧
∧x∈SµY(xR)).

• The same holds for the term ∧y∈TµX (Ry) ∧ µY({t}). Indeed

– as t ∈ T , ∧y∈TµX (Ry) ≤ µX (Rt), choosing y = t.

– Let x ∈ Rt. Then µY({t}) ≤ µY(xR) since t ∈ xR as well.

So, ∧y∈TµX (Ry)∧µY({t}) ≤ µX (Rt)∧µY(xR), ∀x ∈ Rt. So, ∧y∈TµX (Ry)∧µY({t}) ≤
µX (Rt) ∧ ∧x∈RtµY(xR) that is also upper bounded by ∨S⊆XµX (S) ∧ ∧x∈SµY(xR)).
We thus get SµX (SµY (1R)) ≥ SµY (SµX (1R))

the converse inequality ∨S⊆XµX (S) ∧ ∧x∈SµY(xR)) ≤ ∨T⊆YµY(T ) ∧ ∧y∈TµX (Ry)) can be
proved likewise, by symmetry, using (??). �

The above Lemmas yield a necessary and sufficient condition expressed in Theorem
1 for the commutation of two S-integrals applied to any function u : X × Y → L, and
based on capacities µX and µY . As these S-integrals are entirely characterized by these
capacities, we will say that the two capacities commute.

5.2 Commuting capacities

In this subsection, we try to characterize all pairs of commuting capacities. We already
know that two possibility measures, as well as two necessity measures commute, while a
possibility measure does not commute with a necessity measure.

The case of Boolean capacities is of interest as it will be instrumental to address the
general case:

Lemma 6 If µX and µY are Boolean capacities and the two inequalities (??) and (??)
hold for all A1, A2 ⊆ X and for all B1, B2 ⊆ Y, then µX and µY are are both necessity
measures or possibility measures or one of them is a Dirac measure.

Proof: Suppose µX is not a necessity measure and µY is not a possibility measure. Then
∃A1, A2 ⊆ X , µX (A1∩A2) < µX (A1)∧µX (A2), and ∃B1, B2 ⊆ Y, µY(B1∪B2) > µY(B1)∨
µX (B2). In the Boolean case it reads µX (A1 ∩ A2) = 0, µX (A1) = µX (A2) = 1, µY(B1 ∪
B2) = 1, µY(B1) = µY(B2) = 0. Then inequality (??) is violated as µX (A1∩A2)∨µY(B1)∨
µY(B2) = 0 and µX (A1)µX (A2)µY(B1 ∪ B2) = 1. The second inequality (??) is violated
by choosing A1, A2 ⊆ X , B1, B2 ⊆ Y, such that µY(B1 ∩ B2) = 0, µY(B1) = µY(B2) =
1, µX (A1 ∪ A2) = 1µX (A1) = µX (A2) = 0, assuming µY is not a necessity measure and
µX is not a possibility measure. Obeying the two inequalities (??) and (??) enforces the
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following constraints in the Boolean case

µY possibility measure or µX necessity measure
and

µY necessity measure or µX possibility measure

It leads to possibility measures on both sets X and Y, or necessity measures (known cases
where commuting occurs). Alternatively, if we enforce µY to be a possibility measure and
a necessity measure, it is a Dirac function on Y, and any capacity on the other space. �

Corollary 2 S-integrals wrt Boolean capacities µX and µY commute if and only if they
are both necessity measures or possibility measures or one of them is a Dirac measure.

We can strengthen the result to the case when only one of the capacities is Boolean:

Proposition 16 If one of µX and µY is boolean, S-integrals commute if and only if they
are both necessity measures or possibility measures or one of them is a Dirac measure.

Proof: Suppose µX is Boolean and is not a necessity measure and µY is not a possibility
measure. Then ∃A1, A2 ⊆ X , µX (A1 ∩A2) < µX (A1)∧µX (A2), and ∃B1, B2 ⊆ Y, µY(B1 ∪
B2) > µY(B1) ∨ µX (B2). For µX , it reads µX (A1 ∩ A2) = 0, µX (A1) = µX (A2) = 1. Then
the 2-rectangle condition fails since it reads 0 ∨ µY(B1) ∨ µX (B2) ∨ µY(B1) ∧ µX (B2) =
µX (B2) ∨ µY(B1) < µY(B1 ∩ B2) ∨ µY(B1) ∨ µX (B2) ∨ µY(B1 ∪ B2) = µY(B1 ∪ B2). The
rest of the reasoning is as above. �

Note that to violate (??) it is enough that neither µX nor µY are possibility and ne-
cessity measures, and moreover for A1, A2, B1, B2 where, say µX violates the axiom of
necessities and µY violates the axiom of possibilities, we have that µX (A1) and µX (A2)
are both greater than each of µY(B1), µY(B2) and moreover µY(B1 ∪B2) > µY(A1 ∩ A2).
Then the integrals will not commute.

In the non-Boolean case, we can give examples of commuting capacities that are neither
only possibility measures, nor only necessity measures nor a Dirac function contrary to the
Boolean case of Corollary ??. Suppose µY is a possibility measure. Then inequality (??)
trivially holds. As µY is a possibility measure, we have µY(B1) = µY(y1) for y1 ∈ B1 and
y2 ∈ B2, and the other inequality reads

∀y1 6= y2 ∈ Y, µX (A1) ∨ µX (A2) ≥ µY(y1)µY(y2)µX (A1 ∪A2).

as µY(B1 ∩ B2) = 0 in this case (when y1 = y2 then the inequality µY(y1) ∨ µX (A1) ∨
µX (A2) ≥ µY(y1)∧µX (A1 ∪A2). is trivial). The most demanding case is when µY(y1) = 1
and µY(y2) is the possibility degree π2 of the second most plausible element in µY . It
is then equivalent to µX (A1) ∨ µX (A2) ≥ π2 ∧ µX (A1 ∪ A2), which enforces a possibility
measure for µX only if π2 ≥ µX (A) for all A ⊆ X , namely π2 = 1.
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Example 9 Let X = {x1, x2};Y = {y1, y2}. Then let µX (x1) = α, µX (x2) = α, µY(y1) =
1, µY(y2) = α, so a constant capacity and a possibility measure.

We can check that

• SµX (SµY (1R)) = µX (x1)µY(x1R) ∨ µX (2)µY(x2R) ∨ µY(x1R)µY(x2R)

• SµY (SµX1R)) = µY(y1)µX (Ry1)) ∨ µY(y2)µY(Ry2) ∨ µY(Ry1)µY(Ry2)

For instance: R = {(x1, y1), (x2, y2)} then
µX (Ry1) = α, µX (Ry2) = α so you get SµY (SµX (1R)) = α.
µY(x1R) = 1, µY(x2R) = α so you get SµX (SµY (1R)) = α. Likewise ifR = {(x1, y1), (x1, y2), (x2, y1)},
then

• µX (Ry1) = µX (X ) = 1;µX (Ry2)) = µX ({x1}) = α;

• µY(x1R)µY(Y) = 1 = µY(x2R) = µY({y1})

Then
SµX (SµY (1R)) = (α ∧ 1) ∨ (α ∧ 1) ∨ (1 ∨ 1) = 1
SµY (SµX (1R)) = (1 ∧ 1) ∨ (α) ∧ α ∨ (1 ∧ α) = 1.
Note that we do have that µX (A1)∨µX (A2) ≥ α∧µX (A1 ∪A2), as µX (A1)∧µX (A2) ≥ α.
So the commutation is expected in this case. �

In the following we lay bare the pairs of capacities that commute by applying the result
of Corollary ?? to cuts of the capacities. We first prove that for Boolean functions on
X ×Y, the double S-integrals are completely defined by the cuts of the involved capacities,
thus generalizing Proposition ?? to double S-integrals.

Proposition 17 SµX (SµY (u)) = maxλ>0 min(λ, SµXλ(SµYλ(u))) when u = 1R.

Proof:: For simplicity we denote µX by µ and µY by ν

Sµ(Sν(u)) = max
A⊆X

min(µ(A),min
x∈A

Sν(u(x, ·)))

= max
A⊆X

min(max
λ>0

min(λ, µλ(A)),min
x∈A

max
α>0

min(α, Sνα(u(x, ·))))

Note that

min
x∈A

max
α>0

min(α, Sνα(u(x, ·))) ≥ max
α>0

min
x∈A

min(α, Sνα(u(x, ·))).
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Then we have

Sµ(Sν(u)) ≥ max
A⊆X

min(max
λ>0

min(λ, µλ(A)),max
α>0

min
x∈A

min(α, Sνα(u(x, ·))))

= max
λ>0

max
A⊆X

min(min(λ, µλ(A)),max
α>0

min
x∈A

min(α, Sνα(u(x, ·))))

= max
λ>0

min(λ,max
A⊆X

min(µλ(A)),max
α>0

min(α,min
x∈A

Sνα(u(x, ·))))

= max
λ>0,α>0

min(λ, α,max
A⊆X

min(µλ(A),min
x∈A

Sνα(u(x, ·))))

= max
λ>0,α>0

min(λ, α, Sµλ(Sνα(u))

Suppose the maximum is attained for α∗ 6= λ∗ then since α ≥ β ⇒ να(A) ≤ νβ(A),
decreasing α to min(α∗, λ∗) will increase Sνα(u(x, ·)), and decreasing λ to min(α∗, λ∗)
will increase Sµλ(Sνα(u)). So we can assume α∗ = λ∗. Let us restrict to the case when
u(x, y) is Boolean and is thus a relation R ⊆ X × Y. In this case SµX (SµY (1R)) =
maxA⊆X min(µX (A),minx∈A µY(xR)) and we are led to study conditions for the equality
minx∈A maxα>0 min(α, να(xR)) = maxα>0 minx∈A min(α, να(xR)).

Let α∗, x̂ be optima for min(α, να(xR)) on the right hand side, that is,

max
α>0

min
x∈A

min(α, να(xR)) = min(α∗, να(x̂R)).

It means that ∀x ∈ A, να∗(xR) = 1, and due to monotonicity, ∀x ∈ A,∀α ≤ α∗, να(xR) = 1.
However, ∀α > α∗, ∃x ∈ A, να(xR) = 0.

Hence minx∈A maxα>0 min(α, να(xR)) = minx∈A maxα∗≥α>0 min(α, να(xR)) ≤ α∗.
So minx∈A maxα>0 min(α, να(xR)) ≤ maxα>0 minx∈A min(α, να(xR)), and we get the

equality since we already have the converse inequality. �

We know that commutation between integrals holds for functions u(x, y) if it holds for
relations. The above result shows that commutation between capacities will hold if and
only if it will hold for their cuts, to which we can apply Corollary ??.

Corollary 3 Capacities µX and µY commute if and only if their cuts µXλ and µYλ com-
mute for all λ ∈ L.

This is a clear consequence of Proposition ?? since SµXλ(SµYλ(1R)) = SµYλ(SµXλ(1R))
for all λ ∈ L and R ⊆ X × Y is equivalent to SµX (SµY (1R)) = SµY (SµXλ(1R)) for all
R ⊆ X × Y, which by Proposition ??, is equivalent to commutation of S-integrals w.r.t.
µX and µY for all 2-place functions u.

For instance, in the above example the commutation is obvious because the 1-cut of
µX is a necessity measure (with focal set X ) and µY is a Dirac function on y1. And the
α-cut of µX is the vacuous possibility measure, as well as the α-cut of µY . More generally
we can claim that
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Corollary 4 Capacities µX and µY commute if and only if each their cuts µXλ and µYλ
are two possibility measures, two necessity measures, or one of them is a Dirac measure,
for each λ ∈ L.

It is interesting to define the focal sets of the cuts of a capacity µ on X . Namely:

Proposition 18 If F(µ) denote the focal sets of µ, then the focal sets of µλ from the
family

F(µλ) = min
⊆
{E ⊆ X : µ#(E) ≥ λ}

that is the smallest sets for inclusion in the family of focal sets of µ with weight at least λ.

Indeed the focal sets of a Boolean capacity form an antichain, that is, they are not nested,
and if µ#(E) > µ#(F ) ≥ λ, while F ⊂ E, then E is not focal for µλ.

Proposition 19 For any capacity µ on X ,

1. µλ is a necessity measure if and only if there is a single focal set E with µ#(E) ≥ λ
such that for all focal sets F in F(µ) with weights µ#(F ) ≥ λ, we have E ⊂ F .

2. µλ is a possibility measure if and only if there is a set S of singletons with µ#(xi) ≥ λ
such that for all focal sets F in F(µ) with weights µ#(F ) ≥ λ, we have S ∩ F 6= ∅.

3. µλ is a Dirac measure if and only if there is a focal singleton {x} with µ#({x}) ≥ λ
such that for all focal sets F in F(µ) with weights µ#(F ) ≥ λ, we have x ∈ F .

Proof:

1. The condition does ensure that E is the only focal set of µλ hence it is a necessity
measure. If the condition does not hold it is clear that µλ has more than one focal
set, hence is a not a necessity measure.

2. The condition does ensure that the focal sets of µλ are the singletons in S, hence it
is a possibility measure. If the condition does not hold it is clear that µλ has a focal
set that is not a singleton, hence is not a possibility measure.

3. The condition implies that µλ is both a possibility and a necessity measure, hence a
Dirac measure. If it is not satisfied, either µλ has more than one focal set or its focal
set is not a singleton.

�
Note that if µλ is a possibility measure with focal sets that are the singletons of S and
α < λ then µα cannot be a necessity measure, since if a set E is focal for µα, it must
be disjoint from S so that F(µλ) contains all singletons of S and E at least. So we have
the following claim: if ∀λ ∈ L µλ is either a possibility measure or a necessity measure,
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there is a threshold value θ such that ∀λ ≤ θ µλ is a possibility measure (possibly a Dirac
measure), and ∀λ > θ µλ is a necessity measure. We are then in a position to state the
main result of this section

Theorem 2 Two capacities µX and µY commute if and only if there exist at most two
thresholds θN ≤ θΠ ∈ L such that

• For 1 ≥ λ > θN , the λ-cuts of µX and µY are necessity measures

• For θN ≥ λ > θΠ, the λ-cut of one of µX , µY is a Dirac measure, the other one being
any Boolean capacity.

• For θΠ ≥ λ, the λ-cuts of µX and µY are possibility measures.

Proof: We apply Corollary ??, noticing that if the λ-cut of µX is a possibility measure,
its λ′-cuts for λ′ < λ cannot be necessity measures. �

So, without loss of generality, if µX and µY commute, the set of focal sets F(µX ) is
partitioned in FN (µX ) ∪ FΠ(µX ), where

• FN (µX ) = {E ∈ F(µX ) : µX#(E) > θN} is nested, say Ep ⊂ . . . E1

• FΠ(µX ) = {E ∈ F(µX ) : µX#(E) ≤ θN} contains only singletons,

• ∃x ∈ Ep, µX#({x}) = θN (to ensure that no set in FN (µX ) is focal for the λ-cut of
µX when λ ≤ θN ).

while the set of focal sets F(µY) is partitioned in FN (µY) ∪ FD(µY) ∪ FΠ(µY), where

• FN (µY) = {E ∈ F(µY) : µY#(E) > θN} is nested

• FΠ(µY) = {E ∈ F(µY) : µY#(E) ≤ θΠ} contains only singletons

• ∀E 6∈ FΠ(µY), ∃y ∈ Y, µY#({y}) = θΠ such that y ∈ E (to ensure that no set outside
of FΠ(µY) is focal for the λ-cut of µY when λ ≤ θΠ)

• the focal sets in FD(µY) = are not constrained otherwise.

We can exchange µX and µY above. Moreover, FD(µY) = ∅ if θΠ = θN .
We can try to express commuting capacities in closed form. Let Nµ

X be the neces-
sity measure such that Nµ

X#(E) = µX#(E), E ∈ FN (µX ) (likewise for Nµ
Y), ΠX be the

possibility measure such that

πµX (x) =

{
1 if µX#({x}) = θN ,

µX#({x}) if µX#({x}) < θN .
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Let θD = max{µY#(E) : E ∈ FD(µX )} ≤ θN . Let δµY be the capacity with qualitative
Moebius transform defined by

δµ#(E) =


1 if µY#(E) = θD, E ∈ FD(µX )

µY#(E) if µY#(E) < θDE ∈ FD(µX ),

0 otherwise.

Finally let ΠY be the possibility measure such that

πµY(y) =

{
1 if µX#({y}) = θΠ,

µY#({y}) if µY#({y}) < θπ.

Then (up to an exchange between X and Y) µX and µY commute if they are of the form

µX (A) = max(Nµ
X (A),min(θN ,Π

µ
X (A))); µY(B) = max(Nµ

Y(B),min(θD, δ
µ
Y(A)),min(θΠ,Π

µ
Y(B)))

Example 10 : we can find the condition for commutation on {x1, x2}× {y1, y2} where in
general µX (x1) = α1, µX (x2) = α2, µY(y1) = β1, µY(y2) = β2. Note that cuts of capacity
on two-element sets can only be Boolean possibility or necessity measures. So the capacities
will commute except if there is λ ∈ L such that the cut of µX is a possibility measure and
the cut of µY is a necessity measure. So commutation will hold only if

• µX is a possibility measure with α1 > α2 and µY is a necessity measure with mass
β1 > β2 = 0 with β1 > α2

• µX is a capacity (1 > α1 ≥ α2) and µY a possibility measure with β1 = 1 > β2, where
α1 > β2.

• µX is a capacity (1 > α1 ≥ α2) then µY is a necessity measure with mass β1 > β2 = 0
with β1 ≥ α2.

• µX and µY are genuine capacities (1 > α1 ≥ α2; 1 > β1 ≥ β2), then max(α1, α2) ≥
min(β1, β2) and max(β1, β2) ≥ min(α1, α2).

It can be checked that the latter condition max(α1, α2) ≥ min(β1, β2) and max(β1, β2) ≥
min(α1, α2) covers all 4 cases. To check that this is correct, note that the only cases when
the cuts are a possibility vs. a necessity measure are when max(α1, α2) < min(β1, β2) or
max(β1, β2) < min(α1, α2) (take λ in the interval). Note that this is the case in the coun-
terexample from [?] since then α1 = α2 = 1 and β1 = β2 = 0. However the commutation
condition is clearly satisfied in Example ??.
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6 Conclusion

In this paper, we have found necessary and sufficient conditions for two Sugeno integrals
on distinct universes to commute. We have seen that even if we do not have to restrict
to pairs of possibility or of necessity measures, the commuting capacities are essentially
built from gluing possibility and necessity measures, except when the cut of one of them
trivializes into a Dirac measure. An essential lesson is that, like with fuzzy sets under the
maxmin operations, we can reason about qualitative capacities using cuts, and that the
double fuzzy integrals are cutworthy in the sense of De Baets and Kerre [?]. These results
open the way to a generalization of the qualitative counterpart of Harsanyi [?] theorem for
expected utility studied in [?], namely provide axioms over acts or possibilistic lotteries that
justify a commuting double Sugeno integral to evaluate social utility. It is also interesting
to apply this result to qualitative game theory since the commutation can be used to define
a kind of qualitative counterpart to Nash equilibrium.

It remains to be studied conditions under which where the two double S-integrals are
equal the 2D S-integral based on the joint capacity, and study whether there are examples
where the two double S-integrals are equal but differ from the 2D one based on the joint
capacity. We have seen that when µX is a possibility measure ΠX and µY is a necessity
measure NX , the double S-integral SΠX (SNY (u)) is equal to the 2D S-integral Smin(ΠX ,NY
while it differs from SNY (SΠX (u)). The latter is a 2D S-integral with respect to a 2D capac-
ity that is not a joint one. This state of facts suggests that to evaluate a collective utility
function, SΠX (SNY (u)) is better behaved since the 2D capacity associated to this double
S-integral is built from ΠX and NY only. This line of thought needs further investigation.
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