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ON SOME TORUS KNOT GROUPS AND SUBMONOIDS OF THE

BRAID GROUPS

THOMAS GOBET

Dedi
ated to the memory of Patri
k Dehornoy.

Abstra
t. The submonoid of the 3-strand braid group B3 generated by σ1 and σ1σ2

is known to yield an exoti
 Garside stru
ture on B3. We introdu
e and study an in-

�nite family (Mn)n≥1 of Garside monoids generalizing this exoti
 Garside stru
ture,

i.e., su
h that M2 is isomorphi
 to the above monoid. The 
orresponding Garside

group G(Mn) is isomorphi
 to the (n, n + 1)-torus knot group�whi
h is isomorphi


to B3 for n = 2 and to the braid group of the ex
eptional 
omplex re�e
tion groupG12

for n = 3. This yields a new Garside stru
ture on (n, n+1)-torus knot groups, whi
h
already admit several distin
t Garside stru
tures.

The (n, n+1)-torus knot group is an extension of Bn+1, and the Garside monoidMn

surje
ts onto the submonoid Σn of Bn+1 generated by σ1, σ1σ2, . . . , σ1σ2 · · ·σn, whi
h

is not a Garside monoid when n > 2. Using a new presentation of Bn+1 that is sim-

ilar to the presentation of G(Mn), we nevertheless 
he
k that Σn is an Ore monoid

with group of fra
tions isomorphi
 to Bn+1, and give a 
onje
tural presentation of

it, similar to the de�ning presentation of Mn. This partially answers a question of

Dehornoy�Digne�Godelle�Krammer�Mi
hel.
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1. Introdu
tion

The braid group on n strands is one of the most basi
 example of a Garside group.

Garside groups, originally introdu
ed by Dehornoy and Paris [18℄ following an original

idea of Garside [22℄, are de�ned as groups of fra
tions of 
ertain monoids, 
alled Garside
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monoids, whi
h have enough properties to ensure that every element of the group 
an be

written uniquely as an irredu
ible fra
tion in two elements of the monoid. Computable

normal forms for elements of these monoids 
an be de�ned, allowing one to e�e
tively


ompute su
h fra
tions, whi
h in parti
ular yields a solution to the word problem in

these groups. Garside groups also have many other properties. For example, they

are torsion-free, and have a solvable 
onjuga
y problem�see Se
tion 2 below for basi


de�nitions and properties of Garside monoids and groups, and [17℄ for more on the

topi
.

While the word problem in the n-strand braid group has been known to be solvable

sin
e Artin's original paper [1℄ and several other approa
hes have been shown to be

fruitful in between (see [6, Se
tion 5℄ for a survey), Garside's approa
h allowed him

to get the �rst solution to the 
onjuga
y problem, and his results were generalized to

get a uniform solution to these questions in Artin�Tits groups of spheri
al type [9,

19℄, i.e., Artin�Tits groups atta
hed to �nite Coxeter groups (see [25, Se
tion 6.6℄ for

an introdu
tion to the topi
). It also provides new proofs that Artin�Tits groups of

spheri
al type are torsion-free, and allows one to determine their 
enter. One 
an also

note that Garside normal forms 
an be used to show faithfulness of (linear, and more

re
ently 
ategori
al) representations of Garside groups [26, 8, 24, 27℄. Roughly speaking,

Garside groups are groups satisfying a set of axioms that ensures that generalizations

of the te
hniques of Garside 
an be applied to solve the above-mentioned problems.

In general, the Garside group does not determine an asso
iated Garside monoid, i.e.,

several non-isomorphi
 Garside monoids may have isomorphi
 group of fra
tions (see [2,

Se
tion 6.4, Problem 10℄). Up to now, it seems that very few 
lassi�
ation results of

Garside monoids for a given Garside group are known. In the 
ase of the n-strand

braid group, Garside's original paper yields a so-
alled 
lassi
al Garside monoid, whi
h

is nothing but the positive braid monoid, while Birman, Ko, and Lee [7℄ dis
overed

a se
ond Garside monoid, whi
h stri
tly 
ontains the �rst one. This Garside monoid

is generated by a 
opy of the set of transpositions of the symmetri
 group. Bessis,

Digne, and Mi
hel [5℄ generalized this monoid to Artin�Tits groups of Coxeter type Bn,

and then Bessis gave a generalization of these 
onstru
tions, 
alled dual braid monoid,

whi
h is valid for every Artin�Tits group atta
hed to a �nite Coxeter system [2℄, and

even to braid groups of well-generated 
omplex re�e
tion groups [4℄. Following Bessis'

approa
h, some Artin�Tits groups of non-spheri
al type were also shown to be (quasi-

)Garside groups [20, 21, 3℄.

It is natural to wonder if there exist other Garside monoids for the n-strand braid

group. Birman, Ko and Lee mentioned [7, Remark 2.8℄ that among a family of positive

presentations of Bn introdu
ed by Sergies
u [31℄, only the 
lassi
al and dual presen-

tations have the embedding property of the 
orresponding monoid, as shown in [23℄.

It follows that the other presentations from [31℄ 
annot yield a Garside monoid for

Bn. Bessis asked if it is a frequent phenomenon to have several nonisomorphi
 Gar-

side monoids with isomorphi
 Garside group [2, Se
tion 6.4, Problem 10℄. Birman and

Brendle expli
tly asked the question of the existen
e of other Garside stru
tures for Bn

(see [6, Open Problem 10℄, where it is also 
laimed that it is very likely that the 
lassi
al

and dual presentations of Bn are the only presentations yielding a Garside monoid).

See also [17, Question 29℄. There are several motivations for looking for other Garside

presentations of Bn. In addition to 
lassi�
ation perspe
tives, one 
an 
ite for instan
e

the look for a polynomial algorithm for the 
onjuga
y problem. At the time of writing

of this paper, it seems that the only known Garside monoids whi
h 
an be de�ned for

the n-strand braid group for all n ≥ 1 are still the 
lassi
al and the dual braid monoids.
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Figure 1. The latti
e of simples in the submonoid of B3 generated by a = σ1
and b = σ1σ2.

Nevertheless, for n = 3, several exoti
 Garside monoids for the 3-strand braid

group B3 were dis
overed (see [17, Se
tion IX.2.4℄ for a survey). Two of them are

given by the following presentations :

〈 x, y | x2 = y3 〉 and 〈 a, b | aba = b2 〉

It is natural to wonder whether these monoids admit analogues in higher rank or if

they should be 
onsidered as some sort of sporadi
 monoids only arising in low rank.

For the �rst one, one 
an answer this question as follows: this presentation is in fa
t a

presentation of the torus knot group of the torus knot T2,3: given n,m two relatively

prime integers, the torus knot group G(n,m) is the fundamental group of the 
omple-

ment of the torus knot Tn,m. It has a presentation with two generators x, y and a single

relation xn = ym, and this presentation is known to yield a Garside monoid (see [18,

Example 4℄). One has an isomorphism B3
∼= G(2, 3), while in general for m = n+1 one

only has a surje
tion G(n, n + 1) ։ Bn+1. Note that several other Garside stru
tures

for G(n,m) are known (see Se
tion 3 below). In this paper, we investigate the question

for the se
ond above-mentioned exoti
 Garside stru
ture on B3. In terms of the 
lassi
al

generators, one has a = σ1, b = σ1σ2. It was the �rst example of a Garside monoid

where the l
m of the atoms is not equal to the Garside element (see [14, Exemple 1.5℄).

Indeed, in this Garside monoid, the left-l
m of a and b is b2, while the Garside element

∆ is b3 (the latti
e of divisors of ∆ under left-divisibility is given in Figure 1). In fa
t,

in the original paper [18℄, it was a requirement for the Garside element ∆ to be the

l
m of the atoms, but this 
ondition was slightly relaxed in [14℄, and is not required

anymore in the de�nition of Garside monoid whi
h is used nowadays.

The submonoid of B3 mentioned above admits a natural generalization to Bn+1,

n ≥ 2, given by the submonoid Σn ⊆ Bn+1 generated by σ1, σ1σ2, . . . , σ1σ2 · · · σn.
In [17, Chapter IX, Question 30℄, the following question is raised:

Question 1.1. Does the submonoid Σn admit a �nite presentation ? Is it a Garside

monoid ?

A positive answer to the last question would in parti
ular yield a new Garside stru
-

ture on Bn+1, generalizing the exoti
 Garside stru
ture given by Σ2 on B3. Unfortu-

nately, the submonoid Σn is not a Garside monoid when n > 3: in fa
t, as already

noti
ed by Dehornoy before Question 1.1 was asked, this monoid does not have l
m's

(as follows easily from [15, Example 3.7℄: there it is shown that a monoid 
onje
turally

isomorphi
 to the opposite monoid of Σ3 does not have l
m's, and the same argument
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an be given for Σ3). But we shall show that the (n, n+1)-torus knot group G(n, n+1)
admits a Garside stru
ture generalizing the above mentioned exoti
 Garside stru
ture,

and having as image the submonoid Σn. In other words, the above-mentioned ex-

oti
 Garside monoid admits a generalization Mn, whi
h has as group of fra
tions an

extension of the braid group, isomorphi
 to it in low ranks.

Let us now de�ne our main obje
t of study. Let n ≥ 1 and let Mn be the monoid

de�ned by the presentation

〈 ρ1, ρ2, . . . , ρn | ρ1ρnρi = ρi+1ρn for 1 ≤ i ≤ n− 1 〉

Then our main results 
an be summarized as follows (see Theorem 4.18, Propositions 4.3

and 4.20, and Corollary 4.17 below)

Theorem 1.2. We have

(1) The monoidMn is a Garside monoid, with (
entral) Garside element ∆ = ρn+1
n ,

and (left- or right-) l
m of the atoms ρnn.

(2) The Garside group G(Mn) obtained as group of fra
tions of Mn is isomorphi


to the (n, n + 1)-torus knot group. In parti
ular for n = 1 and n = 2 we have

G(Mn) ∼= Bn+1, while for n > 2 it is a proper extension of Bn+1.

(3) The image of Mn in Bn+1 under the above-mentioned surje
tion onto Bn+1 is

the submonoid Σn. In parti
ular M2 = Σ2 holds.

The 
enter ofG(Mn) (whi
h is known to be in�nite 
y
li
) is generated by the Garside
element ∆ = ρn+1

n for n ≥ 2 and by ρ1 for n = 1.
It is known that the (3, 4)-torus knot group is isomorphi
 to the braid group of the


omplex re�e
tion group G12. Irredu
ible 
omplex re�e
tion groups whi
h are well-

generated admit a so-
alled dual braid monoid by work of Bessis [4℄. The 
omplex

re�e
tion group G12 is not well-generated but sin
e it is isomorphi
 to the (3, 4)-torus
knot group, it admits several Garside stru
tures, in
luding, in some sense, a 
lassi
al

and a dual one (see Se
tion 3 below). The above theorem spe
ialized at n = 3 yields

an additional Garside stru
ture for its braid group (and a new presentation of G12 
an

be derived). Note that, at the time of writing, the only irredu
ible 
omplex re�e
tion

group for whi
h is it not known whether the 
orresponding braid group is a Garside

group or not is G31 (see Remark 4.22 below).

Coming ba
k to Question 1.1, one 
an de�ne a presentation of the braid group Bn+1

whi
h is 
losely related to that of Mn. Let H+
n be the quotient of Mn de�ned by the

presentation

(1.1) 〈 ρ1, ρ2, . . . , ρn | ρ1ρjρi = ρi+1ρj for 1 ≤ i < j ≤ n 〉

Then we show (see Propositions 5.2 and 5.5)

Proposition 1.3. We have

(1) The submonoid Σn of Bn+1 is an Ore monoid with group of fra
tions isomorphi


to Bn+1.

(2) The group with presentation 1.1 is isomorphi
 to Bn+1 via ρi 7→ σ1σ2 · · · σi.
The image of H+

n inside Bn+1 is Σn.

We then 
onje
ture the following (see Conje
ture 5.7 below for a more pre
ise state-

ment)

Conje
ture 1.4. The monoid H+
n is 
an
ellative. As a 
orollary, we have H+

n
∼= Σn,

and Σn admits a �nite presentation.
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This would positively answer the �rst part of Question 1.1. Note that in the parti
-

ular 
ase n = 3, Dehornoy asked whether H+
3 is (right-)
an
ellative and embeds into

its group of fra
tions (see [15, Question 3.8℄�note that the monoid de�ned there is the

opposite monoid of H+
3 ).

The paper is organized as follows: Se
tion 2 is devoted to re
alling de�nitions and

properties of Garside monoids and groups, and 
olle
ting a few general results whi
h are

used later on. In Se
tion 3 we re
all some basi
 fa
ts about torus knot groups and their

Garside stru
tures. In Se
tion 4 we introdu
e the monoids Mn, give several presenta-

tions of them, and show that they are Garside monoids (with Garside group G(Mn)
isomorphi
 to the (n, n + 1)-torus knot group) using the so-
alled reversing approa
h.

In Se
tion 5 we explore the link between G(Mn) and Bn+1 and give a few properties as

well as a 
onje
tural presentation of the submonoid Σn of Bn+1. Se
tion 6 is devoted

to showing that Artin�Tits groups of odd dihedral type 
an be endowed with a Garside

stru
ture that is analogous to the one given by Mn.

A
knowledgements. The author thanks Ivan Marin, Jean Mi
hel, Matthieu Pi-


antin, and Baptiste Rognerud for useful dis
ussions. He also thanks an anonymous

referee for pointing out that the groups studied in the paper were in fa
t torus knot

groups, and for many relevant 
omments and suggestions.

2. Garside monoids and groups

The aim of this se
tion is to re
all a few basi
 results on Garside monoids and

Garside goups for later use. We mostly adopt the de�nitions and 
onventions from [17℄.

Note that, while lo
. 
it. introdu
es most of the results used in this paper in the

general framework of Garside 
ategories, we will only need them in the 
ase of presented

monoids, and therefore reprodu
e them here in this less general 
ontext for the 
omfort

of the reader. We also in
lude proofs of a few basi
 results.

2.1. De�nitions and properties. Every monoid has a unit element 1. Let M be a

monoid.

De�nition 2.1 (Divisors and multiples). Let a, b, c ∈M . If ab = c holds, we say that a

is a left-divisor (respe
tively, that b is a right-divisor) of c and that c is a right-multiple

of a (respe
tively a left-multiple of b).

De�nition 2.2 (Can
ellativity). We say that M is left-
an
ellative (respe
tively right-


an
ellative) if for all a, b, c ∈ M , the equality ab = ac (resp. ba = ca) implies b = c.

If M is both left- and right-
an
ellative then we simply say that M is 
an
ellative.

Theorem 2.3 (Ore's Theorem). IfM is 
an
ellative, and if any two elements a, b ∈M

admit a 
ommon left-multiple, that is, if there is c ∈M satisfying a′a = c = b′b for some

a′, b′ ∈M , then M admits a group of fra
tions G(M) in whi
h it embeds. Moreover, if

〈S,R〉 is a presentation of the monoid M , then 〈S,R〉 is a presentation of G(M).

A proof of this Theorem 
an be found for instan
e in [11, Se
tion 1.10℄.

De�nition 2.4 (Ore monoid). A monoid satisfying the assumptions of Theorem 2.3 is

an Ore monoid.

It is straighforward to prove the following (but a proof 
an also be found in [14,

Lemme 1.1℄):

Lemma 2.5. If M is left-
an
ellative (respe
tively right-
an
ellative) and 1 is the only

invertible element in M , then the left-divisibility (resp. right-divisibility) relation on M

is a partial order.
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De�nition 2.6 (Noetherian divisibility). We say that the divisibility in M is Noether-

ian if there exists a fun
tion λ :M → Z≥0 satisfying ∀a, b ∈M , λ(ab) ≥ λ(a)+λ(b) and
a 6= 1 ⇒ λ(a) 6= 0. We say that M is right-Noetherian (respe
tively left-Noetherian)

if every stri
tly in
reasing sequen
e of divisors with respe
t to left-divisibility (resp.

right-divisibility) is �nite. Note that if the divisibility in M is Noetherian, then M is

both left- and right-Noetherian.

Note that it implies that the only invertible element in M is 1 and that M is in�nite

forM 6= {1}. In parti
ular, by Lemma 2.5, in a 
an
ellative monoidM with Noetherian

divisibility, both left-divisiblity and right-divisibility indu
e a partial order on M .

De�nition 2.7 (Garside monoid). A Garside monoid is a pair (M,∆) where M is a

monoid and ∆ is an element of M , satisfying the following �ve 
onditions

(1) M is left- and right-
an
ellative,

(2) the divisibility in M is Noetherian,

(3) any two elements in M admit a left- and right-l
m, and a left- and right-g
d,

(4) the left- and right-divisors of the element ∆ 
oin
ide and generate M ,

(5) the set of (left- or right-)divisors of ∆ is �nite.

Note that under these assumptions, the restri
tions of left- and right-divisibility to

the set of divisors of ∆ yield two latti
e stru
tures on this set.

In general, 
he
king the above �ve 
onditions is a nontrivial task, espe
ially for the

left- and right-
an
ellativity. But these 
onditions have strong impli
ations. We list

some of them below, and refer the reader to [17℄ for 
omplete proofs.

Let M be a Garside monoid. Firstly, by Ore's Theorem, we have that M embeds

into its group of fra
tions G(M).

De�nition 2.8 (Garside group). A group G is a Garside group if G = G(M) holds for
some Garside monoid M .

Se
ondly, one 
an de�ne normal forms for elements ofM as produ
ts of divisors of the

Garside element: let a ∈M . AsM has g
d's, let x1 = gcd(a,∆) (we 
onsider left-g
d's
here). Hen
e a = x1y1, and x1 is the greatest divisor of ∆ whi
h also left-divides a. By


an
ellativity, the element y1 is uniquely determined, and one 
an go on, 
onsidering

the greatest left-divisor x2 of y1 whi
h also divides ∆. We then write a = x1x2y2. In

this way, we get a uniquely de�ned sequen
e of divisors of ∆, and as the divisibility

is Noetherian in M , this sequen
e is �nite. At the end we get a uniquely de�ned

expression a = x1x2 · · · xk as produ
t of divisors of ∆. This normal form is 
alled the

(left-)Garside normal form of a. It 
an be e�e
tively 
omputed provided that left-g
d's

of the form gcd(xy,∆), where x and y are divisors of ∆, 
an be 
omputed. Indeed, one


an show that for x, y ∈ M , one has gcd(xy,∆) = gcd(x(gcd(y,∆)),∆); this allows
one to 
ompute the normal from of a starting from any expression of a as a produ
t of

divisors of ∆ (whi
h generate M). Namely if a is equal to a1a2 · · · ak with ai dividing

∆ for all i, then an iterated appli
ation of the above formula redu
es the 
omputation

of the �rst fa
tor of the Garside normal form to an iterated 
omputation of g
d's of

the above form. Similarly, one 
an de�ne a right-Garside normal form.

Thirdly, the important point about (left-)normal forms in M is that they 
an be

used, in the 
ase where M and G(M) are de�ned by generators and relations, to give

a solution to the word problem in G(M). We say that the word problem in a (�nitely

generated) group G is solvable if there is an algorithm whi
h allows one to determine in

�nite time whether a word in the generating set represents the identity or not. If G(M)
is a Garside group, then it 
an be 
he
ked that every element of G(M) 
an be written
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uniquely as an irredu
ible fra
tion x−1y with x, y ∈ M , whi
h 
an be 
omputed using

the left-normal form in M . The normal form 
an also be used to give a solution to the


onjuga
y problem in Garside groups.

Finally, it 
an also be shown that every Garside group G(M) is torsion-free, and

that a power of ∆ is 
entral in G(M)�hen
e in parti
ular, that the 
enter of G(M) is
nontrivial.

In Se
tions 2.2 and 2.3, we will re
all a few existing tools for 
he
king some of the


onditions of De�nition 2.7 in the 
ase of presented monoids.

Example 2.9. The seminal example is given by braid groups, or more generally Artin�

Tits groups of spheri
al type (i.e., atta
hed to a �nite Coxeter system). Let n ≥ 1.
Re
all that the (n+ 1)-strand braid group Bn+1 has a presentation

〈

σ1, σ2, . . . , σn

∣
∣
∣
∣

σiσi+1σi = σi+1σiσi+1 for 1 ≤ i < n,

σiσj = σjσi for |i− j| > 1.

〉

A possible Garside monoid M satisfying G(M) ∼= Bn+1 is given by the positive braid

monoid B+
n+1 de�ned by the same presentation (but as monoid) as the one given above.

The element ∆ is given by the half-twist, i.e., the lift of the longest permutation

of Sn+1 in B+
n+1. This is the 
lassi
al Garside stru
ture on Bn+1. An alternative

Garside monoid M ′
su
h that G(M ′) ∼= Bn+1 is given by the Birman�Ko�Lee braid

monoid [7℄ (or dual braid monoid [2℄). In this 
ase, the monoid M ′

ontains M , and

the element ∆ is given by σ1σ2 · · · σn. Both the 
lassi
al and dual Garside stru
tures

generalize to Artin�Tits groups of spheri
al type, leading to two distin
t and uniform

solutions to the word problem in these groups.

Example 2.10. The two Garside stru
tures (
lassi
al and dual) given in Example 2.9

are the only known Garside stru
tures on Bn+1 whi
h 
an be de�ned for all n ≥ 1.
Whether there exist other Garside stru
tures that 
an be de�ned for all n ≥ 1 or not

is an open problem. For n = 2, a few exoti
 Garside stru
tures are known (see [17,

Se
tion X.2.4℄). In this 
ase, the 
lassi
al braid monoid B+
3 has generators σ1, σ2 and

element ∆ given by σ1σ2σ1 = σ2σ1σ2 = ∆ (the half-twist). The dual braid monoid B∗
3

has generators σ1, σ2, σ1σ2σ
−1
1 and element ∆ given by σ1σ2. An exoti
 Garside monoid

is given by the submonoid Σ2 with generators ρ1 = σ1, ρ2 = σ1σ2 and element ∆ given

by (σ1σ2σ1)
2 = ρ32. A presentation of Σ2 is given by the single relation ρ1ρ2ρ1 = ρ22.

Another exoti
 Garside monoid for B3 is given by the monoid with generators x, y and

a single relation x2 = y3: in fa
t, this is a presentation of the knot group of the trefoil

knot (whi
h is a torus knot); by [18, Example 4℄, torus knot groups are known to be

Garside groups. In terms of the 
lassi
al generators we have x = σ21σ2, y = σ1σ2.

2.2. Can
ellativity 
riteria for presented monoids. This se
tion is devoted on

re
alling some known 
an
ellativity 
riteria for presented monoids whi
h will be used

in Se
tion 4. We re
all them from [17, Se
tion II.4℄ (extending approa
hes from [14℄;

see also [16℄ for more re
ent results). Most of the de�nitions given in this se
tion are

also borrowed from [17℄.

Assume that M is a monoid de�ned by a presentation 〈S,R〉, where S is a �nite set

of generators and R a set of relations between words in S∗
, i.e., words with letters in

the generating set S.

De�nition 2.11 (Right-
omplemented presentation). The presentation 〈S,R〉 is right-

omplemented if R 
ontains no relation where one side is equal to the empty word, no

relation of the form s · · · = s · · · with s ∈ S, and if for s 6= t ∈ S, there is at most one

relation of the form s · · · = t · · · in R.
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Example 2.12. The 
lassi
al presentation of the (n+1)-strand braid group that we re-


alled in Example 2.9 is right-
omplemented. More generally, the standard presentation

of any Artin�Tits group is right-
omplemented.

Given a right-
omplemented presentation 〈S,R〉 of a monoid M , there is a uniquely

determined partial map θ : S × S −→ S∗
su
h that θ(s, s) = 1 holds for all s ∈ S and

su
h that for s 6= t ∈ S, the words θ(s, t) and θ(t, s) are de�ned whenever there is a

relation s · · · = t · · · in R, and are su
h that this relation is given by sθ(s, t) = tθ(t, s).
The map θ is the synta
ti
 right-
omplement atta
hed to the right-
omplemented pre-

sentation 〈S,R〉.
If 〈S,R〉 is right-
omplemented, then by [17, Lemma II.4.6℄, the map θ admits a

unique minimal extension to a partial map from S∗ ×S∗
to S∗

whi
h we still denote θ,

and satisfying

θ(s, s) = 1, ∀s ∈ S,(2.1)

θ(bc, a) = θ(c, θ(b, a)), ∀a, b, c ∈ S∗,(2.2)

θ(a, bc) = θ(a, b)θ(θ(b, a), c), ∀a, b, c ∈ S∗,(2.3)

θ(1, a) = a and θ(a, 1) = 1, ∀a ∈ S∗.(2.4)

We illustrate some of these relations in the diagram given in Figure 2.

• • •

• • •

a

b

θ(a, b)

θ(b, a)

c

θ(θ(b, a), c)

θ(c, θ(b, a))

Figure 2. Commutative diagram illustrating the relations θ(bc, a) = θ(c, θ(b, a))
and θ(a, bc) = θ(a, b)θ(θ(b, a), c). Arrows represent elements of the monoid and


omposition of arrows 
orresponds to the produ
t in Mop
.

De�nition 2.13 (Cube 
ondition). Given a right-
omplemented presentation 〈S,R〉
of a monoid M with synta
ti
 right-
omplement θ, we say that the θ-
ube 
ondition

holds (respe
tively that the sharp θ-
ube 
ondition holds) for a triple (a, b, c) ∈ (S∗)3

if either both θ(θ(a, b), θ(a, c)) and θ(θ(b, a), θ(b, c)) are de�ned and represent words

in S∗
that are equivalent under the set of relations R (resp. that are equal as words),

or neither of them is de�ned.

De�nition 2.14 (Conditional l
m). We say that a left-
an
ellative (respe
tively right-


an
ellative) monoid M with no nontrivial invertible element admits 
onditional right-

l
ms (resp. admits 
onditional left-l
ms) if any two elements ofM that admit a 
ommon

right-multiple (resp. left-multiple) admit a 
ommon right-l
m (resp. left-l
m).

Proposition 2.15 (see [17, Proposition II.4.16℄). If 〈S,R〉 is a right-
omplemented

presentation of a monoid M with synta
ti
 right-
omplement θ, and if M is right-

Noetherian and the θ-
ube 
ondition holds for every triple of pairwise distin
t elements

of S, then M is left-
an
ellative, and admits 
onditional right-l
ms. More pre
isely, u

and v admit a 
ommon right-multiple if and only if θ(u, v) exists and, then, uθ(u, v) =
vθ(v, u) represents the right-l
m of these elements.
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b

b b

b b

b

1

σ1

σ1σ2

σ1σ2σ1

σ2

σ2σ1

b

b b b

b

1

σ1σ2σ
−1

1
σ1 σ2

σ1σ2

b

b

b

b b

b

b

b

1

σ1

σ1σ1σ2

(σ1σ2)
2

(σ1σ2σ1)
2

σ1σ2

σ1σ2σ1

σ1σ2σ1σ1σ2

Figure 3. The latti
e of simples (for left-divisibility) in three di�erent Garside

monoids for B3, expressed in terms of the 
lassi
al Artin generators of B3. The

latti
e for the 
lassi
al Garside stru
ture is on the left, the one for the dual

Garside stru
ture in the middle, and the one for the exoti
 Garside stru
ture

given by the monoid Σ2 dis
ussed in Example 2.10 on the right.

The 
lassi
al presentation of the braid group (given in Example 2.9) again satis�es

the assumptions of the above proposition: for more details and an expli
it 
he
k of the

θ-
ube 
ondition, we refer the reader to [17, Example II.4.20℄.

For later use we also state the following result:

Lemma 2.16 (see [17, Lemma II.2.22℄). If M is 
an
ellative and admits 
onditional

right-l
ms (respe
tively left-l
ms), then any two elements of M that admit a 
ommon

left-multiple (resp. right-multiple) admit a right-g
d (resp. left-g
d).

2.3. Garside elements and indu
ed latti
es. This se
tion is devoted on re
alling

the de�nition and a few properties of Garside elements. A proof of the following lemma


an be found in [14, Lemme 1.8℄.

Lemma 2.17. Let M be a 
an
ellative monoid with no nontrivial invertible element

(so that left- and right-divisibility relations are partial orders on M). Assume that M

has 
onditional (left- and right-) l
ms, and that M has an element ∆ satisfying the

following assumptions

• the sets of left- and right-divisors of M 
oin
ide, and form a �nite set,

• the set of divisors of ∆ generate M .

Then any two elements x, y ∈M admit a left-l
m and a right-l
m.

De�nition 2.18 (Garside element). If M and ∆ satisfy the assumptions of the above

lemma, we say that ∆ is a Garside element in M . In this 
ase we denote by Div(∆)
the set of left-divisors of ∆ (whi
h is equal to the set of right-divisors of ∆). We 
all

its elements the simples of (M,∆).

Note that if the 
onditions in Lemma 2.17 are satis�ed, then the set of divisors of the

Garside element ∆, endowed with the restri
tion of the left-divisibility relation (whi
h

is a partial order by Lemma 2.5), forms a latti
e. In Figure 3, we represented (the

Hasse diagram of) the latti
e indu
ed by left-divisiblity on the set of simples in three

di�erent Garside monoids for B3 given in Example 2.10.

The same holds for the restri
tion of right-divisibility. In general these two latti
es

are not isomorphi
. We shall see an example of this phenomenon in Remark 4.19
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below (note that in the three examples depi
ted in Figure 3, they are isomorphi
).

Nevertheless, we have the following, whi
h is well-known and straightforward to 
he
k:

Lemma 2.19. Let M and ∆ satisfying the assumptions of Lemma 2.17. Let ≤L (re-

spe
tively ≤R) be the partial order indu
ed by left-divisibility on Div(∆) (respe
tively by

right-divisibility). Then the map x 7→ ∆x−1
is an isomorphism of latti
es (Div(∆),≤L

) ∼= (Div(∆),≤R)
op
. In other words, the latti
e (Div(∆),≤L) is isomorphi
 to the dual

of the latti
e (Div(∆),≤R).

Proposition 2.20. Let ∆ be a Garside element in M . Then

(Div(∆),≤L) is self-dual ⇔ (Div(∆),≤L) ∼= (Div(∆),≤R) ⇔ (Div(∆),≤R) is self-dual.

3. Garside stru
tures on torus knot groups

Let n,m be two relatively prime positive integers. The torus knot group G(n,m) is
de�ned as the knot group of the torus knot Tn,m, i.e., as the fundamental group of the


omplement of the torus knot Tn,m (see [30, Chapter 3℄). As Tn,m ∼= Tm,n, one has

G(n,m) ∼= G(m,n). The most basi
 presentation of G(n,m) is given by two generators

x, y and a single relation xn = ym. By [18, Example 4℄, the monoid with the same

presentation is known to be a Garside monoid with ∆ = xn = ym. In parti
ular, the

group G(n,m) is a Garside group. Its 
enter is known to be in�nite 
y
li
, generated

by xn = ym.

Another Garside presentation of G(n,m) is given by

(3.1) 〈x1, x2, . . . , xn | x1x2 · · ·
︸ ︷︷ ︸

m fa
tors

= x2x3 · · ·
︸ ︷︷ ︸

m fa
tors

= · · · = xnx1 · · ·
︸ ︷︷ ︸

m fa
tors

〉,

where in the relations the indi
es are taken modulo n if n < m. The monoid with

the same presentation is indeed a Garside monoid by [18, Example 5℄. Note that,

as observed in [2, Se
tion 6.4, Problem 10℄, this yields in fa
t two distin
t Garside

stru
tures on G(n,m), sin
e G(n,m) ∼= G(m,n). As suggested in lo
. 
it., for n < m,

we may 
all the monoid de�ned by the presentation (3.1) the 
lassi
al Garside monoid

for G(n,m), and the monoid with the same presentation but with the roles of n and

m reversed the dual Garside monoid for G(n,m). Indeed, in the 
ases where G(n,m)
is an Artin�Tits group, that is, for n = 2 and m odd where it is isomorphi
 to the

Artin�Tits group of type I2(m), one re
overs the 
lassi
al and dual braid monoids.

An alternative Garside stru
ture for G(n,m), whi
h is similar to the one given

by (3.1) but distin
t in general, 
an be found in [29, Proposition 4.1℄. Additional

Garside stru
tures for some spe
i�
 torus knot groups 
an also be found in Se
tion 5

of lo
. 
it..

For m = n + 1, we will 
onstru
t a new Garside stru
ture on G(n,m) in the next

se
tion. We will explain how the various presentations above are related in Se
tion 4.4

below.

4. A new Garside stru
ture on (n, n+ 1)-torus knot groups

We now de�ne our main obje
t of study.

4.1. De�nition and several presentations of the monoid.

De�nition 4.1. Let n ≥ 1. Consider the monoid Mn de�ned by the presentation

(4.1) 〈 ρ1, ρ2, . . . , ρn | ρ1ρnρi = ρi+1ρn for 1 ≤ i < n 〉.

We will denote the set of generators by S, and the above set of relations by R, omitting

the dependen
y on n.
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The group with the same presentation is in fa
t isomorphi
 to the torus knot group

G(n, n+ 1); it is indeed straightforward to 
he
k the following:

Proposition 4.2. The map ρi 7→ xiy−i
for 1 ≤ i ≤ n extends to a group isomorphism

between the group with presentation (4.1) and the (n, n+ 1)-torus knot group G(n, n+
1) = 〈 x, y |xn = yn+1 〉.

Note that M2 = Σ2, the exoti
 Garside monoid for B3 given in Example 2.10.

It is well-known that the group G(n, n+ 1) is an extension of Bn+1. In terms of the

above presentation the map is de�ned as follows:

Proposition 4.3. The assignment ρi 7→ σ1σ2 · · · σi, for i = 1, . . . , n, extends to a

surje
tive group homomorphism ϕn : G(n, n + 1) −→ Bn+1.

Proof. It su�
es to show that the elements Si := σ1σ2 · · · σi ∈ Bn+1 (i = 1, . . . , n)
satisfy the de�ning relations of (4.1). We show that S1SnSi = Si+1Sn for all i =
1, . . . , n− 1 by indu
tion on 1 ≤ i ≤ n− 1. We have

S1SnS1 = σ1(σ1σ2 · · · σn)σ1 = σ1σ1σ2σ1(σ3σ4 · · · σn)

= σ1σ2(σ1σ2σ3 · · · σn) = S2Sn,

hen
e the result holds for i = 1. Now let 1 < i ≤ n− 1. By indu
tion we have

S1SnSi = S1SnSi−1σi = SiSnσi = Si(σ1σ2 · · · σn)σi

= Si(σ1σ2 · · · σiσi+1)σi(σi+2 · · · σn)

= Si(σ1σ2 · · · σi−1)σi+1(σiσi+1 · · · σn) = Siσi+1Sn = Si+1Sn,

whi
h 
on
ludes the proof. �

Lemma 4.4. The map λ : {ρ1, ρ2, . . . , ρn} −→ Z≥0, ρi 7→ i extends to a uniquely

de�ned length fun
tion λ on Mn satisfying λ(ab) = λ(a) + λ(b) for all a, b ∈ Mn.

In parti
ular, the divisibility in Mn is Noetherian, and Mn is both left- and right-

Noetherian.

Proof. It su�
es to show that the extension of λ to S∗
takes the same value on ea
h side

of any given relation inR, in other words, that the relations in R are homogeneous with

respe
t to λ. This is 
lear, as λ(ρ1ρnρi) = n+i+1 = λ(ρi+1ρn) for all 1 ≤ i ≤ n−1. �

Unfortunately, the 
an
ellativity 
riteria that we re
alled in Subse
tion 2.2 do not

work with the presentation 〈S,R〉 of Mn. We need to enlarge the set R of relations,

thereby making it redundant, to be able to apply su
h 
riteria. We will need two

distin
t enlarged sets of relations, one to show left-
an
ellativity, the other one to show

right-
an
ellativity. We introdu
e them in the following two Lemmata.

Lemma 4.5. Let 1 ≤ i < j ≤ n. In Mn (and hen
e in G(n, n + 1)), we have

ρiρ
i
nρj−i = ρjρ

i
n.

Proof. Note that when i = 1, the relations are just the de�ning relations ofMn. Assume

i > 1. As ρkρn = ρ1ρnρk−1 holds for 2 ≤ k ≤ n, we have

ρiρ
i
n = ρ1ρnρi−1ρ

i−1
n = ρ1ρnρ1ρnρi−2ρ

i−2
n = . . . = (ρ1ρn)

i.(4.2)

Hen
e we get

ρiρ
i
nρj−i = (ρ1ρn)

iρj−i.(4.3)

Similarly, as j > i, we have

ρjρ
i
n = ρ1ρnρj−1ρ

i−1
n = ρ1ρnρ1ρnρj−2ρ

i−2
n = . . . = (ρ1ρn)

iρj−i.(4.4)
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Putting (4.3) and (4.4) together we get ρiρ
i
nρj−i = (ρ1ρn)

iρj−i = ρjρ
i
n. This 
on
ludes

the proof. �

Lemma 4.6. Let 1 ≤ i < j ≤ n. In Mn (and hen
e in G(n, n + 1)), we have

(ρ1ρn)
n−j+1ρi = ρn−j+i+1(ρ1ρn)

n−jρj .

Proof. Note that when j = n, the 
laimed relations are just the de�ning relations of

Mn. Assume j < n. As ρ1ρnρk = ρk+1ρn holds for 1 ≤ k < n, we have

(4.5)

(ρ1ρn)
n−j+1ρi = (ρ1ρn)

n−jρi+1ρn = (ρ1ρn)
n−j−1ρi+2ρ

2
n = . . . = ρn−j+i+1ρ

n−j+1
n .

Applying the same relation, we also get

(4.6) (ρ1ρn)
n−jρj = (ρ1ρn)

n−j−1ρj+1ρn = . . . = ρn−j+1
n .

Putting (4.5) and (4.6) together we get

ρn−j+i+1(ρ1ρn)
n−jρj = ρn−j+i+1ρ

n−j+1
n = (ρ1ρn)

n−j+1ρi,

whi
h 
on
ludes the proof. �

Proposition 4.7. The monoid Mn has two presentations 〈S,R′〉 and 〈S,R′′〉, where
S is as before the set {ρ1, ρ2, . . . , ρn} and R′

(respe
tively R′′
) is the set of relations

given in the statement of Lemma 4.5 (respe
tively Lemma 4.6).

Proof. We have seen in Lemmata 4.5, 4.6 that all the relations in R′
, R′′

follow from

the relations in R, and as they 
ontain all the relations in R and Mn = 〈S,R〉, the

laim is immediate. �

4.2. Can
ellativity.

4.2.1. Left-
an
ellativity. In order to show that the monoid Mn is left-
an
ellative, we

will apply Proposition 2.15 using the presentation 〈S,R′〉 de�ned above, whi
h is right-


omplemented. The presentation 〈S,R〉 is also right-
omplemented, but it is easy to

see that the θ-
ube 
ondition fails for this presentation.

Note that in the presentation 〈S,R′〉, we have pre
isely one relation for ea
h pair

of indi
es i, j ∈ {1, 2, . . . , n}, i < j, namely ρiρ
i
nρj−i = ρjρ

i
n. Hen
e θ is de�ned over

all S × S, and for i < j we have

θ(ρi, ρj) = ρinρj−i, θ(ρj, ρi) = ρin.

Lemma 4.8. The presentation 〈S,R′〉 satis�es the sharp θ-
ube 
ondition for every

triple (ρi, ρj , ρk) of pairwise distin
t generators in S.

Proof. We need to 
he
k that either both θ(θ(ρi, ρj), θ(ρi, ρk)) and θ(θ(ρj, ρi), θ(ρj , ρk))
are de�ned and equal as words in S∗

, or neither is de�ned.

It is su�
ient to distinguish three 
ases: the 
ase i < j < k, the 
ase i < k < j, and

the 
ase k < j < i. The three remaining 
ases are indeed obtained for free by swapping

the roles of i and j.

• Case i < j < k. We have

θ(θ(ρi, ρj), θ(ρi, ρk)) = θ(ρinρj−i, ρ
i
nρk−i) = θ(ρj−i, ρk−i) = ρj−i

n ρk−j,

where for the middle equality we used the fa
t that for all a, b, c ∈ S∗
, we have

θ(ab, ac) = θ(b, c) (whi
h is an easy 
onsequen
e of the relations (2.1)-(2.4)).

We also have

θ(θ(ρj, ρi), θ(ρj, ρk)) = θ(ρin, ρ
j
nρk−j) = θ(1, ρj−i

n ρk−j) = ρj−i
n ρk−j.
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• Case i < k < j. We have

θ(θ(ρi, ρj), θ(ρi, ρk)) = θ(ρinρj−i, ρ
i
nρk−i) = θ(ρj−i, ρk−i) = ρk−i

n ,

and

θ(θ(ρj, ρi), θ(ρj , ρk)) = θ(ρin, ρ
k
n) = θ(1, ρk−i

n ) = ρk−i
n .

• Case k < j < i. We have

θ(θ(ρi, ρj), θ(ρi, ρk)) = θ(ρjn, ρ
k
n) = θ(ρj−k

n , 1) = 1,

and

θ(θ(ρj, ρi), θ(ρj , ρk)) = θ(ρjnρi−j, ρ
k
n) = θ(ρj−k

n ρi−j, 1) = 1.

Hen
e in all 
ases we have θ(θ(ρi, ρj), θ(ρi, ρk)) = θ(θ(ρj, ρi), θ(ρj , ρk)), whi
h 
on
ludes
the proof. �

Proposition 4.9. The monoid Mn is left-
an
ellative and admits 
onditional right-

l
ms. When it exists, the right-l
m of u and v ∈Mn is given by uθ(u, v) = vθ(v, u).

Proof. Sin
e Mn is right-Noetherian (Lemma 4.4) and the presentation 〈S,R′〉 satis-
�es the (sharp) θ-
ube 
ondition for every triple of pairwise distin
t generators in S
(Lemma 4.8), Proposition 2.15 ensures that Mn is left-
an
ellative and admits 
ondi-

tional right-l
ms. �

Corollary 4.10. Let 1 ≤ i < j ≤ n. The right-l
m of ρi and ρj is given by

ρiρ
i
nρj−i = ρjρ

i
n.

Proof. This follows immediately from the proposition above, as θ(ρi, ρj) is de�ned and

equal to ρinρj−i. �

4.2.2. Right-
an
ellativity. Unlike many 
lassi
al examples of Garside monoids (like

the positive braid monoid, or more generally Artin�Tits monoids of spheri
al type),

the de�ning presentation 〈S,R〉 of the monoid Mn is not symmetri
 for n ≥ 3. We

therefore 
annot dedu
e right-
an
ellativity from left-
an
ellativity. To show thatMn is

right-
an
ellative, we will show the equivalent statement that the opposite monoidM
op
n

is left-
an
ellative. This monoid has the same set of generators asMn but we will denote

them T = {τi}i=1,...,n to distinguish them (with τi 
orresponding to ρi for all i), and

relations Rop
whi
h are obtained from R by reversing all the words.

Re
all the presentations 〈S,R〉, 〈S,R′〉 and 〈S,R′′〉 of Mn (see Se
tion 4.1). As for

left-
an
ellativity, it is not hard to see that the θ-
ube 
ondition fails with the right-


omplemented presentation 〈T ,Rop〉 of Mop
n , hen
e one 
annot apply Proposition 2.15

with this 
hoi
e of presentation. Moreover, the presentation 〈T , (R′)op〉 whi
h is the

opposite of the presentation 〈S,R′〉 that we used to show left-
an
ellativity is not right-


omplemented as in general there is more than one relation of the form τi · · · = τj · · ·
for i 6= j (for instan
e τ1τ3τ1 = τ3τ2 and τ

3
3 = τ1τ

2
3 τ2 for n = 3), hen
e again Propo-

sition 2.15 
annot be applied with this 
hoi
e of presentation. But the presenta-

tion 〈T , (R′′)op〉 of Mop
n is right-
omplemented. The set of relations (R′′)op is indeed

given by

τi(τnτ1)
n−j+1 = τj(τnτ1)

n−jτn−j+i+1, for 1 ≤ i < j ≤ n.

The synta
ti
 right-
omplement η atta
hed to the right-
omplemented presenta-

tion 〈T , (R′′)op〉 is then given by

η(τi, τj) = (τnτ1)
n−j+1

and η(τj , τi) = (τnτ1)
n−jτn−j+i+1 for 1 ≤ i < j ≤ n.

Lemma 4.11. The presentation 〈T , (R′′)op〉 satis�es the sharp η-
ube 
ondition for

every triple (τi, τj , τk) of pairwise generators in T .
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Proof. We pro
eed as in Lemma 4.8. It is su�
ient to distinguish three 
ases: the


ase i < j < k, the 
ase i < k < j, and the 
ase k < j < i.

• Case i < j < k. We have

η(η(τi, τj), η(τi, τk)) = η((τnτ1)
n−j+1, (τnτ1)

n−k+1) = η((τnτ1)
k−j, 1) = 1,

and

η(η(τj , τi), η(τj , τk)) = η((τnτ1)
n−jτn−j+i+1, (τnτ1)

n−k+1)

= η((τnτ1)
k−j−1τn−j+i+1, 1) = 1.

• Case i < k < j. We have

η(η(τi, τj), η(τi, τk)) = η((τnτ1)
n−j+1, (τnτ1)

n−k+1) = η(1, (τnτ1)
j−k) = (τnτ1)

j−k,

and

η(θ(τj , τi), η(τj , τk)) = η((τnτ1)
n−jτn−j+i+1, (τnτ1)

n−jτn−j+k+1)

= η(τn−j+i+1, τn−j+k+1) = (τnτ1)
j−k.

• Case k < j < i. We have

η(η(τi, τj), η(τi, τk)) = η((τnτ1)
n−iτn−i+j+1, (τnτ1)

n−iτn−i+k+1)

= η(τn−i+j+1, τn−i+k+1) = (τnτ1)
i−j−1τn−j+k+1,

and

η(η(τj , τi), η(τj , τk)) = η((τnτ1)
n−i+1, (τnτ1)

n−jτn−j+k+1)

= η(1, (τnτ1)
i−j−1τn−j+k+1) = (τnτ1)

i−j−1τn−j+k+1.

�

Proposition 4.12. The monoid M
op
n is left-
an
ellative and admits 
onditional right-

l
ms. Equivalently, the monoid Mn is right-
an
ellative and admits 
onditional left-

l
ms.

Proof. Sin
e M
op
n is right-Noetherian (as Mn is left-Noetherian by Lemma 4.4) and

the presentation 〈T , (R′′)op〉 satis�es the (sharp) θ-
ube 
ondition for every triple of

pairwise distin
t generators in T (Lemma 4.11), Proposition 2.15 ensures that M
op
n is

left-
an
ellative and admits 
onditional right-l
ms. �

We also note:

Corollary 4.13. Let 1 ≤ i < j ≤ n. The left-l
m of ρi and ρj is given by

(ρ1ρn)
n−j+1ρi = ρn−j+i+1(ρ1ρn)

n−jρj .

Proof. By Proposition 2.15, the right-l
m of u and v ∈M
op
n exists if and only if θ(u, v)

is de�ned, and is then given by uθ(u, v) = vθ(v, u). For τi and τj in M
op
n we know that

θ(τi, τj) is de�ned, hen
e the right-l
m of τi and τj is given by τiθ(τi, τj) = τjθ(τj, τi).
It then su�
es to reverse the obtained words to get the left-l
m of ρi and ρj inMn. �

4.3. Garside stru
ture. In this se
tion, we establish the existen
e of a Garside ele-

ment in Mn, and dedu
e from it and from previously shown properties that (Mn, ρ
n+1
n )

is a Garside monoid.

Notation 4.14. Let Mn be the monoid with the presentation 〈S,R〉 as de�ned in

Se
tion 4.1. We set ∆ := ρn+1
n , omitting the dependen
y on n.

Proposition 4.15. The following holds in Mn:
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(1) We have ρ1(ρnρ1)
n−1 = ρnn. Hen
e ∆ = (ρ1ρn)

n = (ρnρ1)
n.

(2) Let 1 ≤ i ≤ n. Set ai := ρin(ρ1ρn)
n−i

. Then ρiai = aiρi = ∆. In parti
ular,

every element in S is both a left- and a right-divisor of ∆ (and the left- and

right-
omplements 
oin
ide), and ∆ is 
entral in Mn.

(3) Let a, b ∈Mn su
h that ab = ∆. Then ba = ∆.

Proof. The �rst 
laim follows from the fa
t that for all 1 ≤ k ≤ n− 1, we have

(4.7) ρ1(ρnρ1)
k = ρk+1ρ

k
n.

Indeed, for k = 1 this is just a relation in R, while the general 
ase is obtained by

indu
tion on k: ρ1(ρnρ1)
k = ρ1ρnρ1(ρnρ1)

k−1 = ρ1ρnρkρ
k−1
n = ρk+1ρ

k
n.

For the se
ond 
laim, using the �rst 
laim and (4.7) me have

∆ = (ρ1ρn)
n = ρ1(ρnρ1)

i−1ρn(ρ1ρn)
n−i = ρiρ

i
n(ρ1ρn)

n−i = ρiai.

Arguing as for (4.7), for all k ≤ n − i, we see that (ρ1ρn)
kρi = ρi+kρ

k
n. Applying this

with k = n− i we get

∆ = ρn+1
n = ρinρnρ

n−i
n = ρin(ρ1ρn)

n−iρi = aiρi,

whi
h shows the se
ond 
laim.

The last 
laim is an immediate 
onsequen
e of the 
an
ellativity of Mn and the

se
ond 
laim, as the property holds for the set S whi
h generates Mn. �

Corollary 4.16. The left and right-divisors of ∆ 
oin
ide, and form a �nite set.

Proof. The fa
t that the left and right-divisors of ∆ 
oin
ide follows immediately from

Point (3) of Proposition 4.15. The fa
t that this set is �nite is 
lear by Lemma 4.4,

sin
e S is �nite. �

Corollary 4.17. Both the left and the right-l
m of the generators ρ1, ρ2, . . . , ρn of Mn

are given by ρnn = ρ1(ρnρ1)
n−1

.

In parti
ular, using also Theorem 4.18 below, the family (Mn)n≥2 yields an example

of a family of Garside monoids where ∆ is not the l
m of the atoms.

Proof. By Corollary 4.10, we have that the right-l
m of ρn and ρn−1 is given by ρnn.

Hen
e to 
on
lude it su�
es to show that ρi left-divides ρ
n
n, for all 1 ≤ i ≤ n− 2. This

is the 
ase, as by Point (1) of the above proposition together with Relation (4.2), we

have

ρn = (ρ1ρn)
i(ρ1ρn)

n−1−iρ1 = ρiρ
i
n(ρ1ρn)

n−1−iρ1.

The proof that ρnn is also the left-l
m of the elements in S is similar. This time,


onsider the left-l
m of ρ1 and ρ2. By Corollary 4.13, it is equal to (ρ1ρn)
n−1ρ1 whi
h,

by the �rst point of Proposition 4.15, is equal to ρnn. Hen
e to 
on
lude the proof, it

su�
es to 
he
k that for all 2 < j ≤ n − 1, the generator ρj is a right-divisor of ρnn.

But using Relation 4.6 (whi
h is valid for all j ≥ 2), we have

ρnn = ρj−1
n ρn−j+1

n = ρj−1
n (ρ1ρn)

n−jρj,

hen
e ρj right-divides ρ
n
n. �

Theorem 4.18. The pair (Mn,∆) is a Garside monoid. The 
orreponding Garside

group G(Mn) is isomorphi
 to the (n, n+ 1)-torus knot group G(n, n + 1).

Proof. The monoidMn is 
an
ellative and admits 
onditional l
m's by Propositions 4.9

and 4.12. It has Noetherian divisibility by Lemma 4.4. Now by Proposition 4.15 and

Corollary 4.16, the element ∆ satis�es the last two 
onditions of De�nition 2.7. We then

get the existen
e of l
m's from the existen
e of 
onditional l
m's, applying Lemma 2.17.
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Figure 4. The latti
e of divisors of the Garside element ∆ = ρ43 in M3 for

left-divisibility.

By Theorem 2.3, we get that G(Mn) has the same presentation as Mn, hen
e by

Proposition 4.2 we have G(Mn) ∼= G(n, n+ 1). �

Remark 4.19. The latti
e of simples of M3 (for left-divisibility) is given in Figure 4.

Re
all that the latti
e of simples of M2 was given in Figure 1. Note that the latti
e in

Figure 4 is not self-dual; in parti
ular, by Proposition 2.20 the latti
e of simples of ∆
for left-divisibility is not isomorphi
 to the latti
e of simples for right-divisibility.

4.4. Link between the various presentations. As mentioned in Se
tion 3, the

presentations

〈 x1, x2, . . . , xn | x1x2 · · · xnx1 = x2x3 · · · xnx1x2 = · · · = xnx1x2 · · · xn 〉(4.8)

〈 x, y | xn = yn+1 〉(4.9)

yield two distin
t Garside stru
tures on the (n, n + 1)-torus knot group G(n, n + 1).
We have already seen in Proposition 4.2 how to pass from the de�ning presentation of

G(Mn) to the presentation (4.9). For the other presentation above we have:
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Proposition 4.20. The map

ρ1 7→ x1, ρ2 7→ xnx1, ρ3 7→ xn−1xnx1, . . . , ρn 7→ x2x3 · · · xnx1

extends to a group isomorphism φ between the group with presentation (4.1) and the

group with presentation (4.8), with inverse ψ given by

x1 7→ ρ1, xn 7→ ρ2ρ
−1
1 , xn−1 7→ ρ3ρ

−1
2 , . . . , x2 7→ ρnρ

−1
n−1.

Proof. The fa
t that the two de�ned maps are inverse to ea
h other is immediate, hen
e

we only need to show that they extend to group homomorphisms. To this end, we �rst

show that the φ(ρi)'s satisfy the de�ning relations of presentation (4.1), whi
h is enough

to 
on
lude that φ is a homomorphism. We have

φ(ρ1)φ(ρn)φ(ρ1) = x1x2 · · · xnx1
︸ ︷︷ ︸

=xnx1x2···xn

x1 = φ(ρ2)φ(ρn).

Now let 1 < i < n. We have

φ(ρ1)φ(ρn)φ(ρi) = x1x2x3 · · · xnx1xn−i+2 · · · xnx1

and

φ(ρi+1)φ(ρn) = xn−i+1 · · · xnx1x2x3 · · · xnx1

= (xn−i+1 · · · xnx1x2x3 · · · xn−i+1)
︸ ︷︷ ︸

=x1x2···xnx1

xn−i+2 · · · xnx1 = φ(ρ1)φ(ρn)φ(ρi),

hen
e φ is a homomorphism.

Similarly, we have to show that the ψ(xi) satisfy the de�ning relations of Presenta-

tion (4.8). We have

ψ(xn)ψ(x1)ψ(x2) · · ·ψ(xn) = ρ2ρnρ
−1
1 = ρ1ρn = ψ(x1)ψ(x2) · · ·ψ(xn)ψ(x1).

Now let 1 < i < n. We have

ψ(xi)ψ(xi+1) · · ·ψ(xn)ψ(x1) · · ·ψ(xi)

= (ρn+2−iρ
−1
n+1−i)(ρn+1−iρ

−1
n−i) · · · (ρ2ρ

−1
1 )ρ1(ρnρ

−1
n−1)(ρn−1ρ

−1
n−2) · · · (ρn+2−iρ

−1
n+1−i)

= ρn+2−iρnρ
−1
n+1−i = ρ1ρnρn+1−iρ

−1
n+1−i = ρ1ρn = ψ(xn)ψ(x1)ψ(x2) · · ·ψ(xn),

hen
e ψ is also a homomorphism. This 
on
ludes the proof. �

4.5. Link with braid groups of 
omplex re�e
tion groups. The ex
eptional 
om-

plex re�e
tion group G12 has three generators s, t, u and relations s2 = t2 = u2 = 1,
stus = tust = ustu. Its braid group B(G12) has generators σ, τ, υ subje
t to the same

relations as s, t, u ex
ept the quadrati
 ones (see [10℄). We 
an dedu
e the following

from Proposition 4.20:

Corollary 4.21. The 
omplex re�e
tion group G12 has a presentation with generators

r1, r2, r3 and relations

r1r3r1 = r2r3, r1r3r2 = r23, r
2
1 = 1.

In Corollary 5.3 below, we give analogous presentations for the symmetri
 groups Sn.

Proof. It follows from Proposition 4.20 that G(M3) ∼= B(G12), as B(G12) has the pre-
sentation (4.8) for n = 3 if we set σ = x1, τ = x2, υ = x3. To show the statement,

note that the given relations are exa
tly those of (4.1) (ex
ept that the generators are

denoted by ri instead of ρi), with the additional relation r21 = 1. By the �rst point

G(M3) is isomorphi
 to the braid group of G12. Now G12 is obtained from B(G12) by
adding the relations σ2 = τ2 = υ2 = 1, but sin
e σ, τ and υ are all 
onjugate in B(G12),
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it su�
es to add the relation σ2 = 1 to get a presentation of G12; this translates into

the relation ρ21 = 1. �

Remark 4.22. Corollary 4.21 yields a new Garside stru
ture on B(G12). Note that

the 
omplex re�e
tion group G12 is not well-generated. By work of Bessis [4℄, every

well-generated irredu
ible 
omplex re�e
tion group admits a dual braid monoid, in par-

ti
ular, the 
orresponding braid group is a Garside group. For G12 and as suggested

by Bessis [2, Se
tion 6.4, Problem 10℄ (see also Se
tion 3 above), one 
an nevertheless

still de�ne a dual braid monoid in some sense. Almost all braid groups atta
hed to

irredu
ible 
omplex re�e
tion groups whi
h are not well-generated have been shown

to be Garside groups: see Dehornoy�Paris [18, Proposition 5.2 and Example 5℄ (for

G15, G7, G11, G19, G(2de, 2e, 2) for d > 1, whi
h all have isomorphi
 braid group,

G12, and G22), Pi
antin [28, Exemples 11, 13℄ (for G13, whose braid group is isomor-

phi
 to the Artin�Tits group of type I2(6) = G2), and Corran�Lee�Lee [12℄ (for the

remaining imprimitive groups). See also [17, Example IX.3.25℄. It seems that the only

irredu
ible 
omplex re�e
tion group for whi
h it remains open to determine whether

the 
orresponding braid group is a Garside group or not is G31.

Remark 4.23. In view of the previous remark, it is natural to wonder if G(n, n+1) is
the braid group of a 
omplex re�e
tion group in a natural way. For n = 2 we know that

G(2, 3) ∼= G(M2) is isomorphi
 to the 3-strand braid group, whi
h is the braid group of

several irredu
ible 
omplex re�e
tion groups (obtained by adding the relation ρi1 = 1 for
some i > 1 to the presentation of G(M2)). For i = 2 we get the symmetri
 group S3,

and for i = 3, 4, 5 the ex
eptional groups G4, G8, and G16 respe
tively�note that these

presentations already o

ur in Coxeter's paper [13℄ from 1959. It is easy to 
he
k that

the Garside monoid M2 
an be obtained from the �nite group G4 as an interval group,

another method for produ
ing Garside monoids; see [2, Se
tion 0.5℄ or [17, Chapter VI℄

for more details. Basi
ally this method allows one to show that a monoid M is a

Garside monoid by realizing its latti
e of simples in some (not ne
essarily �nite) group

G whi
h is a quotient of G(M) (typi
ally, for Artin-Tits groups of spheri
al type, both

lassi
al and dual Garside stru
tures are obtained in this way and the group G is the


orresponding Coxeter group). For n ≥ 4, adding the relation ρ21 = 1 to the presentation
of G(Mn) seems to yield an in�nite group, and the same 
an be expe
ted for i > 2.
This suggests the question below.

Question 4.24. Let n ≥ 4 and i > 1. Consider the quotient G(Mn) of G(Mn) by the

relation ρi1 = 1. Does this quotient admit a natural realization as an in�nite 
omplex

re�e
tion group ?

Note that the same question 
an be asked if we repla
e ρ21 = 1 by ρi1 = 1, i ≥ 3
(even for n = 2 and n = 3 in the 
ases whi
h are not 
overed by the above remark or

Corollary 4.21).

5. Link with the braid group on n strands

In this se
tion, we give a new presentation of the braid group Bn+1, obtained by

adding suitable relations to the presentation 〈S,R〉 of G(Mn). Using it we show that

the submonoid Σn of Bn+1 generated by σ1, σ1σ2, . . . , σ1σ2 · · · σn is an Ore monoid

with group of fra
tions isomorphi
 to Bn+1, and 
onje
ture that this monoid admits an

expli
it �nite presentation.

De�nition 5.1. Let H+
n be the monoid de�ned by the presentation

(5.1) 〈 ρ1, ρ2, . . . , ρn | ρ1ρjρi = ρi+1ρj for 1 ≤ i < j ≤ n 〉
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Proposition 5.2. There is an isomorphism between the group with presentation (5.1)

and the (n+ 1)-strand braid group Bn+1, given by ρi 7→ σ1σ2 · · · σi for 1 ≤ i ≤ n.

Proof. We show that the assignment ρi 7→ σ1σ2 · · · σi, 1 ≤ i ≤ n, extends to a group

isomorphism f between the two groups. To this end, it su�
es to show that f extends

to a group homomorphism, and that the assignment σi 7→ ρ−1
i−1ρi (with the 
onven-

tion ρ0 = 1) extends to a group homomorphism g between Bn+1 and the group with

presentation (5.1). Indeed both maps are 
learly inverse to ea
h other.

Showing that the f(ρi)'s satisfy the 
laimed relations 
an be 
he
ked by exa
tly the

same 
omputation as the one given in the proof of Proposition 4.3 where it is done in

the 
ase j = n (or just derived from it by invoking the embeddings Bk ⊆ Bk+1). Hen
e

f is a group homomorphism.

Conversely, let us 
he
k that the g(σi)'s satisfy the braid relations. Let 1 ≤ i ≤ n−1.
Using the relations ρ1ρiρi−1 = ρ2i and ρ1ρi+1ρi = ρ2i+1 we get

ρ−1
i−1ρ

−1
i ρ1ρi+1ρi = ρ−2

i ρ1ρ
2
i+1.

Repla
ing ρ−1
i ρ1ρi+1 by ρi+1ρ

−1
i−1 in ea
h side (using the relation ρ1ρi+1ρi−1 = ρiρi+1)

we get the equality

ρ−1
i−1ρi+1ρ

−1
i−1ρi = ρ−1

i ρi+1ρ
−1
i−1ρi+1.

The left hand side of the above equality is equal to g(σi)g(σi+1)g(σi), while the right

hand side is equal to g(σi+1)g(σi)g(σi+1), thus establishing the braid relation

g(σi)g(σi+1)g(σi) = g(σi+1)g(σi)g(σi+1).

It remains to 
he
k that g(σi)g(σj) = g(σj)g(σi) holds whenever 1 ≤ i < j− 1 ≤ n− 1.
Using the relations ρ1ρjρi = ρi+1ρj and ρ1ρj−1ρi−1 = ρiρj−1 we 
an write

ρ−1
i−1ρ

−1
j−1ρ

−1
1 ρi+1ρj = ρ−1

j−1ρ
−1
i ρ1ρjρi.

Repla
ing ρ−1
j−1ρ

−1
1 ρi+1 by ρiρ

−1
j−1 in the left hand side (using the relation ρ1ρj−1ρi =

ρi+1ρj−1) and ρ
−1
i ρ1ρj by ρjρ

−1
i−1 in the right hand side (using the relation ρ1ρjρi−1 =

ρiρj), we get the equality

ρ−1
i−1ρiρ

−1
j−1ρj = ρ−1

j−1ρjρ
−1
i−1ρi.

This equality is nothing but the equality g(σi)g(σj) = g(σj)g(σi). This shows that g is
a group homomorphism, and 
on
ludes the proof. �

Corollary 5.3. The symmetri
 group Sn+1 admits the presentation

〈

r1, r2, . . . , rn

∣
∣
∣
∣

r1
2 = 1,

r1rjri = ri+1rj, for 1 ≤ i < j ≤ n.

〉

where ri 
orresponds to the 
y
le (1, 2, . . . , i+ 1) for 1 ≤ i ≤ n.

Proof. The 
laimed set of relations is given by the relations in (5.1), ex
ept that we

added the relation stating that the square of the �rst generator is equal to one. As all

the σi's are 
onjugate in Bn+1, it su�
es to add to the braid relations the relation σ21 = 1
to get a presentation of the symmetri
 group Sn+1. In view of Proposition 5.2 this is

equivalent to adding the relation ρ21 = 1 to the set of relations given in (5.1). �

Investigating the properties of the monoid H+
n appears as a natural question.

Lemma 5.4. In the monoids Σn and H+
n , every two elements x, y admit both a 
ommon

right-multiple and a 
ommon left-multiple.
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Proof. This follows immediately from the fa
t that both Σn and H+
n are quotients of the

Garside monoid Mn. Indeed, the presentation of H+
n is obtained from the presentation

〈S,R〉 of Mn by adding relations, and under the isomorphism of Proposition 5.2, the

submonoid Σn is pre
isely the submonoid of the group with presentation (5.1) generated

by ρ1, ρ2, . . . , ρn, whi
h is a quotient of H+
n . �

As a 
orollary we get:

Proposition 5.5. The submonoid Σn of Bn+1 is an Ore monoid, with group of fra
tions

isomorphi
 to Bn+1.

Proof. For the �rst statement, we need 
an
ellativity and the existen
e of left-multiples.

The last 
ondition is given by Lemma 5.4, while 
an
ellativity immediately follows from

the fa
t that Σn is a submonoid of a group. The se
ond statement follows, as Σn embeds

into Bn+1, with image generating Bn+1 as a group: this ensures that the indu
ed map

G(Σn) −→ Bn+1 is an isomorphism. �

Remark 5.6. It was noti
ed by Dehornoy [15, Example 3.7℄ that the monoid H+
3

does not have l
m's (and the same holds for n > 3). Indeed, both ρ1ρ2ρ1 = ρ22 and

ρ1ρ3ρ1 = ρ2ρ3 are 
ommon right-multiples of ρ1 and ρ2, and it is straightforward to


he
k that none of these two elements left-divides the other one. Similarly, in Σn, both

σ1σ1σ2σ1 and σ1σ1σ2σ3σ1 are 
ommon right-multiples of σ1 and σ1σ2, and it is 
lear

that none of them left-divides the other one in Σn. This implies that neither Σn nor

H+
n are Garside monoids. The answer to the se
ond part of Question 1.1 from the

Introdu
tion is therefore negative.

Dehornoy also asked whether H+
3 is (right-)
an
ellative or not (see [15, Question 3.8℄:

note that Dehornoy works with the opposite monoids of H+
3 and Σ3) and 
onje
tured

that this is the 
ase. More pre
isely he 
onje
tured that H+
3

∼= Σ3. We 
onje
ture

the following more general statement, whi
h would also imply that Σn admits a �nite

presentation (answering the �rst part of Question 1.1).

Conje
ture 5.7. Let n ≥ 3. Then

(1) The monoid H+
n is 
an
ellative,

(2) The monoid H+
n is isomorphi
 to Σn via ρi 7→ σ1σ2 · · · σi. In parti
ular, it

embeds into Bn+1, whi
h is therefore isomorphi
 to its group of fra
tions.

Remark 5.8. Both items of the above 
onje
ture are a
tually equivalent: 
learly

(2) ⇒ (1) as Σn is 
an
ellative. Conversely, assume that H+
n is 
an
ellative. Then by

Lemma 5.4 it is an Ore monoid, embedding into its group of fra
tions G(H+
n ), and by

Ore's Theorem 2.3, we get that G(H+
n ) is isomorphi
 to the group with presentation 5.1,

whi
h by Proposition 5.2 is isomorphi
 to Bn+1. The submonoid H+
n of Bn+1 then

pre
isely 
orresponds under this isomorphism to the submonoid of Bn+1 generated by

σ1, σ1σ2, . . . , σ1σ2 · · · σn, i.e., to Σn.

6. Related Garside stru
tures on dihedral Artin�Tits groups of odd

type

While the exoti
 Garside stru
ture on B3 given by Σ2 (see Example 2.10), whi
h

was generalized in the previous se
tions to the groups (G(Mn))n≥1, does not seem to

generalize to Artin�Tits groups of type An for n ≥ 2 (see the previous se
tion), it is

natural to wonder whi
h Artin�Tits groups of spheri
al type (or more generally braid

groups of 
omplex re�e
tion groups) admit a Garside stru
ture analogous to the one

introdu
ed for G(Mn).
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The 
ase of dihedral Artin�Tits groups appears to us as the �rst family to 
onsider,

as they are the Artin�Tits groups with the most elementary stru
ture, and B3 is an

Artin�Tits group of dihedral type. The aim of this se
tion is to show that dihedral

Artin�Tits groups of odd type admit a Garside stru
ture similar to the one obtained

for G(Mn). These Garside stru
tures are presumably new.

Let m ≥ 3 be odd. Re
all that the dihedral group I2(m) is generated by two

simple re�e
tions s, t subje
t to the relations s2 = 1 = t2 and the braid relation

st · · ·
︸ ︷︷ ︸

m fa
tors

= ts · · ·
︸ ︷︷ ︸

m fa
tors

. The 
orresponding Artin�Tits group B(I2(m)) is generated by

σ, τ , only subje
t to the braid relation of I2(m). Note that B(I2(m)) ∼= G(2,m), the
(2,m)-torus knot group.

Form an integer as above, we denote byM(m) the monoid generated by two elements

ρ1, ρ2, and subje
t to the relation ρ1ρ
(m−1)/2
2 ρ1 = ρ

(m+1)/2
2 . We denote by B(m) the

group de�ned by the same presentation. Note that M(3) =M2.

Lemma 6.1. The group B(m) is isomorphi
 to the dihedral Artin�Tits group B(I2(m)).

Proof. It is straightforward to 
he
k that an isomorphism is given by ρ1 7→ σ, ρ2 7→
στ . �

Note that M(m) is 
an
ellative, as divisibility is Noetherian (sin
e the de�ning re-

lation is homogeneous with λ(ρ1) = 1 and λ(ρ2) = 2) and M(m) is generated by two

elements ρ1, ρ2 with a single relation of the form ρ1 · · · = ρ2 · · · , hen
e the de�ning pre-
sentation is right-
omplemented and the θ-
ube 
ondition (De�nition 2.13) is va
uously

true for triples of distin
t generators.

Setting ∆ := ρm2 , the following Lemma is the analogue forM(m) of Proposition 4.15

established in the 
ase of Mn:

Lemma 6.2. The following holds in M(m):

(1) We have (ρ1ρ
(m−1)/2
2 )2 = (ρ

(m−1)/2
2 ρ1)

2 = ∆.

(2) Let a1 := ρ
(m−1)/2
2 ρ1ρ

(m−1)/2
2 . Then ρ1a1 = a1ρ1 = ∆. In parti
ular, both

generators ρ1 and ρ2 are are left- and right-divisors of ∆ (and the left- and

right-
omplements of a given generator 
oin
ide).

(3) Let a, b ∈M(m) su
h that ab = ∆. Then ba = ∆.

Proof. The �rst 
laim is an immediate 
onsequen
e of the de�ning relation of M(m).
The se
ond 
laim follows immediately from the �rst one. The last 
laim is a 
onsequen
e

of the 
an
ellativity of M(m) and the se
ond 
laim, as the 
laimed property holds for

ρ1 and ρ2 (re
all that ∆ is a power of ρ2), whi
h generate M(m). �

Proposition 6.3. The pair (M(m),∆) is a Garside monoid. The 
orresponding Gar-

side group is B(m).

Proof. The proof is exa
tly the same as for G(Mn) (Theorem 4.18): as noted above, the

divisibility in M(m) is Noetherian and the θ-
ube 
ondition is va
uously true, hen
e

we have 
an
ellativity and the existen
e of 
onditional l
m's in M(m). By Lemma 6.2

above, the element ∆ is a Garside element in M(m), and we then 
on
lude the proof

by applying the same arguments as for G(Mn). �

Of 
ourse, adding the relation ρ21 = 1 to the presentation of B(m) yields a presenta-

tion of the dihedral group I2(m), as there is only one 
onjuga
y 
lass of re�e
tions in

I2(m).
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Remark 6.4. The dihedral Artin�Tits groups of even type do not seem to admit a

similar des
ription. Indeed, let B = B(I2(4)) = B(B2) be the Artin�Tits group of

type B2, with standard generators σ1, σ2 and braid relation σ1σ2σ1σ2 = σ2σ1σ2σ1.

Then setting ρ1 = σ1, ρ2 = σ1σ2, we get a presentation for B by taking this new set

of generators and the relation ρ1ρ
2
2 = ρ22ρ1. This appears to us as the natural analogue

of the presentations 
onsidered in the odd 
ase but in the present 
ase, the monoid

generated by ρ1 and ρ2 and subje
t to the above relation is not a Garside monoid:

indeed, if it was, then the Garside element ∆ would have a power whi
h is 
entral.

Sin
e the 
enter of B is in�nite 
y
li
 generated by (σ1σ2)
2 = ρ22, it is 
lear from the

above de�ning relation that ∆ itself would have to be a power of ρ2 as ρ1's 
annot

be eliminated using the unique de�ning relation, say ∆ = ρm2 . But then ρ1 
ould not

divide ∆ as no relation 
an be applied to the word ρm2 , a 
ontradi
tion.

As a 
on
luding remark, let us note the following. We introdu
ed several monoids in

this paper, whi
h either are Garside monoids (likeMn andM(m)), or 
losely related to

a Garside monoid (like H+
n ). All of them are de�ned by the same kind of presentations.

The 
orresponding groups of fra
tions are braid groups of real or 
omplex re�e
tion

groups in several 
ases, and presentations for these re�e
tion groups 
an be naturally

derived from those of the 
orresponding monoids (as done in Corollaries 4.21, 5.3 and

Remark 4.23). This 
overs the following 
ases: G4, G8, G16, G12, Sn for all n, and

I2(m) for odd m. All these groups have a single 
onjuga
y 
lass of re�e
tions, while the

dihedral groups of even type like I2(4), for whi
h the above remark shows that there

does not seem to exist a Garside monoid similar to the ones introdu
ed in this paper,

have two 
onjuga
y 
lasses of re�e
tions. While we do not have any general statement

at the moment, it would be interesting to investigate whether re�e
tion groups with a

single 
onjuga
y 
lass of re�e
tions, and their braid groups, admit presentations and

monoids similar to those introdu
ed in this work.
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