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ON SOME TORUS KNOT GROUPS AND SUBMONOIDS OF THE

BRAID GROUPS

THOMAS GOBET

Dediated to the memory of Patrik Dehornoy.

Abstrat. The submonoid of the 3-strand braid group B3 generated by σ1 and σ1σ2

is known to yield an exoti Garside struture on B3. We introdue and study an in-

�nite family (Mn)n≥1 of Garside monoids generalizing this exoti Garside struture,

i.e., suh that M2 is isomorphi to the above monoid. The orresponding Garside

group G(Mn) is isomorphi to the (n, n + 1)-torus knot group�whih is isomorphi

to B3 for n = 2 and to the braid group of the exeptional omplex re�etion groupG12

for n = 3. This yields a new Garside struture on (n, n+1)-torus knot groups, whih
already admit several distint Garside strutures.

The (n, n+1)-torus knot group is an extension of Bn+1, and the Garside monoidMn

surjets onto the submonoid Σn of Bn+1 generated by σ1, σ1σ2, . . . , σ1σ2 · · ·σn, whih

is not a Garside monoid when n > 2. Using a new presentation of Bn+1 that is sim-

ilar to the presentation of G(Mn), we nevertheless hek that Σn is an Ore monoid

with group of frations isomorphi to Bn+1, and give a onjetural presentation of

it, similar to the de�ning presentation of Mn. This partially answers a question of

Dehornoy�Digne�Godelle�Krammer�Mihel.
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1. Introdution

The braid group on n strands is one of the most basi example of a Garside group.

Garside groups, originally introdued by Dehornoy and Paris [18℄ following an original

idea of Garside [22℄, are de�ned as groups of frations of ertain monoids, alled Garside
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2 THOMAS GOBET

monoids, whih have enough properties to ensure that every element of the group an be

written uniquely as an irreduible fration in two elements of the monoid. Computable

normal forms for elements of these monoids an be de�ned, allowing one to e�etively

ompute suh frations, whih in partiular yields a solution to the word problem in

these groups. Garside groups also have many other properties. For example, they

are torsion-free, and have a solvable onjugay problem�see Setion 2 below for basi

de�nitions and properties of Garside monoids and groups, and [17℄ for more on the

topi.

While the word problem in the n-strand braid group has been known to be solvable

sine Artin's original paper [1℄ and several other approahes have been shown to be

fruitful in between (see [6, Setion 5℄ for a survey), Garside's approah allowed him

to get the �rst solution to the onjugay problem, and his results were generalized to

get a uniform solution to these questions in Artin�Tits groups of spherial type [9,

19℄, i.e., Artin�Tits groups attahed to �nite Coxeter groups (see [25, Setion 6.6℄ for

an introdution to the topi). It also provides new proofs that Artin�Tits groups of

spherial type are torsion-free, and allows one to determine their enter. One an also

note that Garside normal forms an be used to show faithfulness of (linear, and more

reently ategorial) representations of Garside groups [26, 8, 24, 27℄. Roughly speaking,

Garside groups are groups satisfying a set of axioms that ensures that generalizations

of the tehniques of Garside an be applied to solve the above-mentioned problems.

In general, the Garside group does not determine an assoiated Garside monoid, i.e.,

several non-isomorphi Garside monoids may have isomorphi group of frations (see [2,

Setion 6.4, Problem 10℄). Up to now, it seems that very few lassi�ation results of

Garside monoids for a given Garside group are known. In the ase of the n-strand

braid group, Garside's original paper yields a so-alled lassial Garside monoid, whih

is nothing but the positive braid monoid, while Birman, Ko, and Lee [7℄ disovered

a seond Garside monoid, whih stritly ontains the �rst one. This Garside monoid

is generated by a opy of the set of transpositions of the symmetri group. Bessis,

Digne, and Mihel [5℄ generalized this monoid to Artin�Tits groups of Coxeter type Bn,

and then Bessis gave a generalization of these onstrutions, alled dual braid monoid,

whih is valid for every Artin�Tits group attahed to a �nite Coxeter system [2℄, and

even to braid groups of well-generated omplex re�etion groups [4℄. Following Bessis'

approah, some Artin�Tits groups of non-spherial type were also shown to be (quasi-

)Garside groups [20, 21, 3℄.

It is natural to wonder if there exist other Garside monoids for the n-strand braid

group. Birman, Ko and Lee mentioned [7, Remark 2.8℄ that among a family of positive

presentations of Bn introdued by Sergiesu [31℄, only the lassial and dual presen-

tations have the embedding property of the orresponding monoid, as shown in [23℄.

It follows that the other presentations from [31℄ annot yield a Garside monoid for

Bn. Bessis asked if it is a frequent phenomenon to have several nonisomorphi Gar-

side monoids with isomorphi Garside group [2, Setion 6.4, Problem 10℄. Birman and

Brendle explitly asked the question of the existene of other Garside strutures for Bn

(see [6, Open Problem 10℄, where it is also laimed that it is very likely that the lassial

and dual presentations of Bn are the only presentations yielding a Garside monoid).

See also [17, Question 29℄. There are several motivations for looking for other Garside

presentations of Bn. In addition to lassi�ation perspetives, one an ite for instane

the look for a polynomial algorithm for the onjugay problem. At the time of writing

of this paper, it seems that the only known Garside monoids whih an be de�ned for

the n-strand braid group for all n ≥ 1 are still the lassial and the dual braid monoids.
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Figure 1. The lattie of simples in the submonoid of B3 generated by a = σ1
and b = σ1σ2.

Nevertheless, for n = 3, several exoti Garside monoids for the 3-strand braid

group B3 were disovered (see [17, Setion IX.2.4℄ for a survey). Two of them are

given by the following presentations :

〈 x, y | x2 = y3 〉 and 〈 a, b | aba = b2 〉

It is natural to wonder whether these monoids admit analogues in higher rank or if

they should be onsidered as some sort of sporadi monoids only arising in low rank.

For the �rst one, one an answer this question as follows: this presentation is in fat a

presentation of the torus knot group of the torus knot T2,3: given n,m two relatively

prime integers, the torus knot group G(n,m) is the fundamental group of the omple-

ment of the torus knot Tn,m. It has a presentation with two generators x, y and a single

relation xn = ym, and this presentation is known to yield a Garside monoid (see [18,

Example 4℄). One has an isomorphism B3
∼= G(2, 3), while in general for m = n+1 one

only has a surjetion G(n, n + 1) ։ Bn+1. Note that several other Garside strutures

for G(n,m) are known (see Setion 3 below). In this paper, we investigate the question

for the seond above-mentioned exoti Garside struture on B3. In terms of the lassial

generators, one has a = σ1, b = σ1σ2. It was the �rst example of a Garside monoid

where the lm of the atoms is not equal to the Garside element (see [14, Exemple 1.5℄).

Indeed, in this Garside monoid, the left-lm of a and b is b2, while the Garside element

∆ is b3 (the lattie of divisors of ∆ under left-divisibility is given in Figure 1). In fat,

in the original paper [18℄, it was a requirement for the Garside element ∆ to be the

lm of the atoms, but this ondition was slightly relaxed in [14℄, and is not required

anymore in the de�nition of Garside monoid whih is used nowadays.

The submonoid of B3 mentioned above admits a natural generalization to Bn+1,

n ≥ 2, given by the submonoid Σn ⊆ Bn+1 generated by σ1, σ1σ2, . . . , σ1σ2 · · · σn.
In [17, Chapter IX, Question 30℄, the following question is raised:

Question 1.1. Does the submonoid Σn admit a �nite presentation ? Is it a Garside

monoid ?

A positive answer to the last question would in partiular yield a new Garside stru-

ture on Bn+1, generalizing the exoti Garside struture given by Σ2 on B3. Unfortu-

nately, the submonoid Σn is not a Garside monoid when n > 3: in fat, as already

notied by Dehornoy before Question 1.1 was asked, this monoid does not have lm's

(as follows easily from [15, Example 3.7℄: there it is shown that a monoid onjeturally

isomorphi to the opposite monoid of Σ3 does not have lm's, and the same argument
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an be given for Σ3). But we shall show that the (n, n+1)-torus knot group G(n, n+1)
admits a Garside struture generalizing the above mentioned exoti Garside struture,

and having as image the submonoid Σn. In other words, the above-mentioned ex-

oti Garside monoid admits a generalization Mn, whih has as group of frations an

extension of the braid group, isomorphi to it in low ranks.

Let us now de�ne our main objet of study. Let n ≥ 1 and let Mn be the monoid

de�ned by the presentation

〈 ρ1, ρ2, . . . , ρn | ρ1ρnρi = ρi+1ρn for 1 ≤ i ≤ n− 1 〉

Then our main results an be summarized as follows (see Theorem 4.18, Propositions 4.3

and 4.20, and Corollary 4.17 below)

Theorem 1.2. We have

(1) The monoidMn is a Garside monoid, with (entral) Garside element ∆ = ρn+1
n ,

and (left- or right-) lm of the atoms ρnn.

(2) The Garside group G(Mn) obtained as group of frations of Mn is isomorphi

to the (n, n + 1)-torus knot group. In partiular for n = 1 and n = 2 we have

G(Mn) ∼= Bn+1, while for n > 2 it is a proper extension of Bn+1.

(3) The image of Mn in Bn+1 under the above-mentioned surjetion onto Bn+1 is

the submonoid Σn. In partiular M2 = Σ2 holds.

The enter ofG(Mn) (whih is known to be in�nite yli) is generated by the Garside
element ∆ = ρn+1

n for n ≥ 2 and by ρ1 for n = 1.
It is known that the (3, 4)-torus knot group is isomorphi to the braid group of the

omplex re�etion group G12. Irreduible omplex re�etion groups whih are well-

generated admit a so-alled dual braid monoid by work of Bessis [4℄. The omplex

re�etion group G12 is not well-generated but sine it is isomorphi to the (3, 4)-torus
knot group, it admits several Garside strutures, inluding, in some sense, a lassial

and a dual one (see Setion 3 below). The above theorem speialized at n = 3 yields

an additional Garside struture for its braid group (and a new presentation of G12 an

be derived). Note that, at the time of writing, the only irreduible omplex re�etion

group for whih is it not known whether the orresponding braid group is a Garside

group or not is G31 (see Remark 4.22 below).

Coming bak to Question 1.1, one an de�ne a presentation of the braid group Bn+1

whih is losely related to that of Mn. Let H+
n be the quotient of Mn de�ned by the

presentation

(1.1) 〈 ρ1, ρ2, . . . , ρn | ρ1ρjρi = ρi+1ρj for 1 ≤ i < j ≤ n 〉

Then we show (see Propositions 5.2 and 5.5)

Proposition 1.3. We have

(1) The submonoid Σn of Bn+1 is an Ore monoid with group of frations isomorphi

to Bn+1.

(2) The group with presentation 1.1 is isomorphi to Bn+1 via ρi 7→ σ1σ2 · · · σi.
The image of H+

n inside Bn+1 is Σn.

We then onjeture the following (see Conjeture 5.7 below for a more preise state-

ment)

Conjeture 1.4. The monoid H+
n is anellative. As a orollary, we have H+

n
∼= Σn,

and Σn admits a �nite presentation.
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This would positively answer the �rst part of Question 1.1. Note that in the parti-

ular ase n = 3, Dehornoy asked whether H+
3 is (right-)anellative and embeds into

its group of frations (see [15, Question 3.8℄�note that the monoid de�ned there is the

opposite monoid of H+
3 ).

The paper is organized as follows: Setion 2 is devoted to realling de�nitions and

properties of Garside monoids and groups, and olleting a few general results whih are

used later on. In Setion 3 we reall some basi fats about torus knot groups and their

Garside strutures. In Setion 4 we introdue the monoids Mn, give several presenta-

tions of them, and show that they are Garside monoids (with Garside group G(Mn)
isomorphi to the (n, n + 1)-torus knot group) using the so-alled reversing approah.

In Setion 5 we explore the link between G(Mn) and Bn+1 and give a few properties as

well as a onjetural presentation of the submonoid Σn of Bn+1. Setion 6 is devoted

to showing that Artin�Tits groups of odd dihedral type an be endowed with a Garside

struture that is analogous to the one given by Mn.

Aknowledgements. The author thanks Ivan Marin, Jean Mihel, Matthieu Pi-

antin, and Baptiste Rognerud for useful disussions. He also thanks an anonymous

referee for pointing out that the groups studied in the paper were in fat torus knot

groups, and for many relevant omments and suggestions.

2. Garside monoids and groups

The aim of this setion is to reall a few basi results on Garside monoids and

Garside goups for later use. We mostly adopt the de�nitions and onventions from [17℄.

Note that, while lo. it. introdues most of the results used in this paper in the

general framework of Garside ategories, we will only need them in the ase of presented

monoids, and therefore reprodue them here in this less general ontext for the omfort

of the reader. We also inlude proofs of a few basi results.

2.1. De�nitions and properties. Every monoid has a unit element 1. Let M be a

monoid.

De�nition 2.1 (Divisors and multiples). Let a, b, c ∈M . If ab = c holds, we say that a

is a left-divisor (respetively, that b is a right-divisor) of c and that c is a right-multiple

of a (respetively a left-multiple of b).

De�nition 2.2 (Canellativity). We say that M is left-anellative (respetively right-

anellative) if for all a, b, c ∈ M , the equality ab = ac (resp. ba = ca) implies b = c.

If M is both left- and right-anellative then we simply say that M is anellative.

Theorem 2.3 (Ore's Theorem). IfM is anellative, and if any two elements a, b ∈M

admit a ommon left-multiple, that is, if there is c ∈M satisfying a′a = c = b′b for some

a′, b′ ∈M , then M admits a group of frations G(M) in whih it embeds. Moreover, if

〈S,R〉 is a presentation of the monoid M , then 〈S,R〉 is a presentation of G(M).

A proof of this Theorem an be found for instane in [11, Setion 1.10℄.

De�nition 2.4 (Ore monoid). A monoid satisfying the assumptions of Theorem 2.3 is

an Ore monoid.

It is straighforward to prove the following (but a proof an also be found in [14,

Lemme 1.1℄):

Lemma 2.5. If M is left-anellative (respetively right-anellative) and 1 is the only

invertible element in M , then the left-divisibility (resp. right-divisibility) relation on M

is a partial order.
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De�nition 2.6 (Noetherian divisibility). We say that the divisibility in M is Noether-

ian if there exists a funtion λ :M → Z≥0 satisfying ∀a, b ∈M , λ(ab) ≥ λ(a)+λ(b) and
a 6= 1 ⇒ λ(a) 6= 0. We say that M is right-Noetherian (respetively left-Noetherian)

if every stritly inreasing sequene of divisors with respet to left-divisibility (resp.

right-divisibility) is �nite. Note that if the divisibility in M is Noetherian, then M is

both left- and right-Noetherian.

Note that it implies that the only invertible element in M is 1 and that M is in�nite

forM 6= {1}. In partiular, by Lemma 2.5, in a anellative monoidM with Noetherian

divisibility, both left-divisiblity and right-divisibility indue a partial order on M .

De�nition 2.7 (Garside monoid). A Garside monoid is a pair (M,∆) where M is a

monoid and ∆ is an element of M , satisfying the following �ve onditions

(1) M is left- and right-anellative,

(2) the divisibility in M is Noetherian,

(3) any two elements in M admit a left- and right-lm, and a left- and right-gd,

(4) the left- and right-divisors of the element ∆ oinide and generate M ,

(5) the set of (left- or right-)divisors of ∆ is �nite.

Note that under these assumptions, the restritions of left- and right-divisibility to

the set of divisors of ∆ yield two lattie strutures on this set.

In general, heking the above �ve onditions is a nontrivial task, espeially for the

left- and right-anellativity. But these onditions have strong impliations. We list

some of them below, and refer the reader to [17℄ for omplete proofs.

Let M be a Garside monoid. Firstly, by Ore's Theorem, we have that M embeds

into its group of frations G(M).

De�nition 2.8 (Garside group). A group G is a Garside group if G = G(M) holds for
some Garside monoid M .

Seondly, one an de�ne normal forms for elements ofM as produts of divisors of the

Garside element: let a ∈M . AsM has gd's, let x1 = gcd(a,∆) (we onsider left-gd's
here). Hene a = x1y1, and x1 is the greatest divisor of ∆ whih also left-divides a. By

anellativity, the element y1 is uniquely determined, and one an go on, onsidering

the greatest left-divisor x2 of y1 whih also divides ∆. We then write a = x1x2y2. In

this way, we get a uniquely de�ned sequene of divisors of ∆, and as the divisibility

is Noetherian in M , this sequene is �nite. At the end we get a uniquely de�ned

expression a = x1x2 · · · xk as produt of divisors of ∆. This normal form is alled the

(left-)Garside normal form of a. It an be e�etively omputed provided that left-gd's

of the form gcd(xy,∆), where x and y are divisors of ∆, an be omputed. Indeed, one

an show that for x, y ∈ M , one has gcd(xy,∆) = gcd(x(gcd(y,∆)),∆); this allows
one to ompute the normal from of a starting from any expression of a as a produt of

divisors of ∆ (whih generate M). Namely if a is equal to a1a2 · · · ak with ai dividing

∆ for all i, then an iterated appliation of the above formula redues the omputation

of the �rst fator of the Garside normal form to an iterated omputation of gd's of

the above form. Similarly, one an de�ne a right-Garside normal form.

Thirdly, the important point about (left-)normal forms in M is that they an be

used, in the ase where M and G(M) are de�ned by generators and relations, to give

a solution to the word problem in G(M). We say that the word problem in a (�nitely

generated) group G is solvable if there is an algorithm whih allows one to determine in

�nite time whether a word in the generating set represents the identity or not. If G(M)
is a Garside group, then it an be heked that every element of G(M) an be written
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uniquely as an irreduible fration x−1y with x, y ∈ M , whih an be omputed using

the left-normal form in M . The normal form an also be used to give a solution to the

onjugay problem in Garside groups.

Finally, it an also be shown that every Garside group G(M) is torsion-free, and

that a power of ∆ is entral in G(M)�hene in partiular, that the enter of G(M) is
nontrivial.

In Setions 2.2 and 2.3, we will reall a few existing tools for heking some of the

onditions of De�nition 2.7 in the ase of presented monoids.

Example 2.9. The seminal example is given by braid groups, or more generally Artin�

Tits groups of spherial type (i.e., attahed to a �nite Coxeter system). Let n ≥ 1.
Reall that the (n+ 1)-strand braid group Bn+1 has a presentation

〈

σ1, σ2, . . . , σn

∣
∣
∣
∣

σiσi+1σi = σi+1σiσi+1 for 1 ≤ i < n,

σiσj = σjσi for |i− j| > 1.

〉

A possible Garside monoid M satisfying G(M) ∼= Bn+1 is given by the positive braid

monoid B+
n+1 de�ned by the same presentation (but as monoid) as the one given above.

The element ∆ is given by the half-twist, i.e., the lift of the longest permutation

of Sn+1 in B+
n+1. This is the lassial Garside struture on Bn+1. An alternative

Garside monoid M ′
suh that G(M ′) ∼= Bn+1 is given by the Birman�Ko�Lee braid

monoid [7℄ (or dual braid monoid [2℄). In this ase, the monoid M ′
ontains M , and

the element ∆ is given by σ1σ2 · · · σn. Both the lassial and dual Garside strutures

generalize to Artin�Tits groups of spherial type, leading to two distint and uniform

solutions to the word problem in these groups.

Example 2.10. The two Garside strutures (lassial and dual) given in Example 2.9

are the only known Garside strutures on Bn+1 whih an be de�ned for all n ≥ 1.
Whether there exist other Garside strutures that an be de�ned for all n ≥ 1 or not

is an open problem. For n = 2, a few exoti Garside strutures are known (see [17,

Setion X.2.4℄). In this ase, the lassial braid monoid B+
3 has generators σ1, σ2 and

element ∆ given by σ1σ2σ1 = σ2σ1σ2 = ∆ (the half-twist). The dual braid monoid B∗
3

has generators σ1, σ2, σ1σ2σ
−1
1 and element ∆ given by σ1σ2. An exoti Garside monoid

is given by the submonoid Σ2 with generators ρ1 = σ1, ρ2 = σ1σ2 and element ∆ given

by (σ1σ2σ1)
2 = ρ32. A presentation of Σ2 is given by the single relation ρ1ρ2ρ1 = ρ22.

Another exoti Garside monoid for B3 is given by the monoid with generators x, y and

a single relation x2 = y3: in fat, this is a presentation of the knot group of the trefoil

knot (whih is a torus knot); by [18, Example 4℄, torus knot groups are known to be

Garside groups. In terms of the lassial generators we have x = σ21σ2, y = σ1σ2.

2.2. Canellativity riteria for presented monoids. This setion is devoted on

realling some known anellativity riteria for presented monoids whih will be used

in Setion 4. We reall them from [17, Setion II.4℄ (extending approahes from [14℄;

see also [16℄ for more reent results). Most of the de�nitions given in this setion are

also borrowed from [17℄.

Assume that M is a monoid de�ned by a presentation 〈S,R〉, where S is a �nite set

of generators and R a set of relations between words in S∗
, i.e., words with letters in

the generating set S.

De�nition 2.11 (Right-omplemented presentation). The presentation 〈S,R〉 is right-
omplemented if R ontains no relation where one side is equal to the empty word, no

relation of the form s · · · = s · · · with s ∈ S, and if for s 6= t ∈ S, there is at most one

relation of the form s · · · = t · · · in R.
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Example 2.12. The lassial presentation of the (n+1)-strand braid group that we re-

alled in Example 2.9 is right-omplemented. More generally, the standard presentation

of any Artin�Tits group is right-omplemented.

Given a right-omplemented presentation 〈S,R〉 of a monoid M , there is a uniquely

determined partial map θ : S × S −→ S∗
suh that θ(s, s) = 1 holds for all s ∈ S and

suh that for s 6= t ∈ S, the words θ(s, t) and θ(t, s) are de�ned whenever there is a

relation s · · · = t · · · in R, and are suh that this relation is given by sθ(s, t) = tθ(t, s).
The map θ is the syntati right-omplement attahed to the right-omplemented pre-

sentation 〈S,R〉.
If 〈S,R〉 is right-omplemented, then by [17, Lemma II.4.6℄, the map θ admits a

unique minimal extension to a partial map from S∗ ×S∗
to S∗

whih we still denote θ,

and satisfying

θ(s, s) = 1, ∀s ∈ S,(2.1)

θ(bc, a) = θ(c, θ(b, a)), ∀a, b, c ∈ S∗,(2.2)

θ(a, bc) = θ(a, b)θ(θ(b, a), c), ∀a, b, c ∈ S∗,(2.3)

θ(1, a) = a and θ(a, 1) = 1, ∀a ∈ S∗.(2.4)

We illustrate some of these relations in the diagram given in Figure 2.

• • •

• • •

a

b

θ(a, b)

θ(b, a)

c

θ(θ(b, a), c)

θ(c, θ(b, a))

Figure 2. Commutative diagram illustrating the relations θ(bc, a) = θ(c, θ(b, a))
and θ(a, bc) = θ(a, b)θ(θ(b, a), c). Arrows represent elements of the monoid and

omposition of arrows orresponds to the produt in Mop
.

De�nition 2.13 (Cube ondition). Given a right-omplemented presentation 〈S,R〉
of a monoid M with syntati right-omplement θ, we say that the θ-ube ondition

holds (respetively that the sharp θ-ube ondition holds) for a triple (a, b, c) ∈ (S∗)3

if either both θ(θ(a, b), θ(a, c)) and θ(θ(b, a), θ(b, c)) are de�ned and represent words

in S∗
that are equivalent under the set of relations R (resp. that are equal as words),

or neither of them is de�ned.

De�nition 2.14 (Conditional lm). We say that a left-anellative (respetively right-

anellative) monoid M with no nontrivial invertible element admits onditional right-

lms (resp. admits onditional left-lms) if any two elements ofM that admit a ommon

right-multiple (resp. left-multiple) admit a ommon right-lm (resp. left-lm).

Proposition 2.15 (see [17, Proposition II.4.16℄). If 〈S,R〉 is a right-omplemented

presentation of a monoid M with syntati right-omplement θ, and if M is right-

Noetherian and the θ-ube ondition holds for every triple of pairwise distint elements

of S, then M is left-anellative, and admits onditional right-lms. More preisely, u

and v admit a ommon right-multiple if and only if θ(u, v) exists and, then, uθ(u, v) =
vθ(v, u) represents the right-lm of these elements.
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b

b b

b b

b

1

σ1

σ1σ2

σ1σ2σ1

σ2

σ2σ1

b

b b b

b

1

σ1σ2σ
−1

1
σ1 σ2

σ1σ2

b

b

b

b b

b

b

b

1

σ1

σ1σ1σ2

(σ1σ2)
2

(σ1σ2σ1)
2

σ1σ2

σ1σ2σ1

σ1σ2σ1σ1σ2

Figure 3. The lattie of simples (for left-divisibility) in three di�erent Garside

monoids for B3, expressed in terms of the lassial Artin generators of B3. The

lattie for the lassial Garside struture is on the left, the one for the dual

Garside struture in the middle, and the one for the exoti Garside struture

given by the monoid Σ2 disussed in Example 2.10 on the right.

The lassial presentation of the braid group (given in Example 2.9) again satis�es

the assumptions of the above proposition: for more details and an expliit hek of the

θ-ube ondition, we refer the reader to [17, Example II.4.20℄.

For later use we also state the following result:

Lemma 2.16 (see [17, Lemma II.2.22℄). If M is anellative and admits onditional

right-lms (respetively left-lms), then any two elements of M that admit a ommon

left-multiple (resp. right-multiple) admit a right-gd (resp. left-gd).

2.3. Garside elements and indued latties. This setion is devoted on realling

the de�nition and a few properties of Garside elements. A proof of the following lemma

an be found in [14, Lemme 1.8℄.

Lemma 2.17. Let M be a anellative monoid with no nontrivial invertible element

(so that left- and right-divisibility relations are partial orders on M). Assume that M

has onditional (left- and right-) lms, and that M has an element ∆ satisfying the

following assumptions

• the sets of left- and right-divisors of M oinide, and form a �nite set,

• the set of divisors of ∆ generate M .

Then any two elements x, y ∈M admit a left-lm and a right-lm.

De�nition 2.18 (Garside element). If M and ∆ satisfy the assumptions of the above

lemma, we say that ∆ is a Garside element in M . In this ase we denote by Div(∆)
the set of left-divisors of ∆ (whih is equal to the set of right-divisors of ∆). We all

its elements the simples of (M,∆).

Note that if the onditions in Lemma 2.17 are satis�ed, then the set of divisors of the

Garside element ∆, endowed with the restrition of the left-divisibility relation (whih

is a partial order by Lemma 2.5), forms a lattie. In Figure 3, we represented (the

Hasse diagram of) the lattie indued by left-divisiblity on the set of simples in three

di�erent Garside monoids for B3 given in Example 2.10.

The same holds for the restrition of right-divisibility. In general these two latties

are not isomorphi. We shall see an example of this phenomenon in Remark 4.19
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below (note that in the three examples depited in Figure 3, they are isomorphi).

Nevertheless, we have the following, whih is well-known and straightforward to hek:

Lemma 2.19. Let M and ∆ satisfying the assumptions of Lemma 2.17. Let ≤L (re-

spetively ≤R) be the partial order indued by left-divisibility on Div(∆) (respetively by

right-divisibility). Then the map x 7→ ∆x−1
is an isomorphism of latties (Div(∆),≤L

) ∼= (Div(∆),≤R)
op
. In other words, the lattie (Div(∆),≤L) is isomorphi to the dual

of the lattie (Div(∆),≤R).

Proposition 2.20. Let ∆ be a Garside element in M . Then

(Div(∆),≤L) is self-dual ⇔ (Div(∆),≤L) ∼= (Div(∆),≤R) ⇔ (Div(∆),≤R) is self-dual.

3. Garside strutures on torus knot groups

Let n,m be two relatively prime positive integers. The torus knot group G(n,m) is
de�ned as the knot group of the torus knot Tn,m, i.e., as the fundamental group of the

omplement of the torus knot Tn,m (see [30, Chapter 3℄). As Tn,m ∼= Tm,n, one has

G(n,m) ∼= G(m,n). The most basi presentation of G(n,m) is given by two generators

x, y and a single relation xn = ym. By [18, Example 4℄, the monoid with the same

presentation is known to be a Garside monoid with ∆ = xn = ym. In partiular, the

group G(n,m) is a Garside group. Its enter is known to be in�nite yli, generated

by xn = ym.

Another Garside presentation of G(n,m) is given by

(3.1) 〈x1, x2, . . . , xn | x1x2 · · ·
︸ ︷︷ ︸

m fators

= x2x3 · · ·
︸ ︷︷ ︸

m fators

= · · · = xnx1 · · ·
︸ ︷︷ ︸

m fators

〉,

where in the relations the indies are taken modulo n if n < m. The monoid with

the same presentation is indeed a Garside monoid by [18, Example 5℄. Note that,

as observed in [2, Setion 6.4, Problem 10℄, this yields in fat two distint Garside

strutures on G(n,m), sine G(n,m) ∼= G(m,n). As suggested in lo. it., for n < m,

we may all the monoid de�ned by the presentation (3.1) the lassial Garside monoid

for G(n,m), and the monoid with the same presentation but with the roles of n and

m reversed the dual Garside monoid for G(n,m). Indeed, in the ases where G(n,m)
is an Artin�Tits group, that is, for n = 2 and m odd where it is isomorphi to the

Artin�Tits group of type I2(m), one reovers the lassial and dual braid monoids.

An alternative Garside struture for G(n,m), whih is similar to the one given

by (3.1) but distint in general, an be found in [29, Proposition 4.1℄. Additional

Garside strutures for some spei� torus knot groups an also be found in Setion 5

of lo. it..

For m = n + 1, we will onstrut a new Garside struture on G(n,m) in the next

setion. We will explain how the various presentations above are related in Setion 4.4

below.

4. A new Garside struture on (n, n+ 1)-torus knot groups

We now de�ne our main objet of study.

4.1. De�nition and several presentations of the monoid.

De�nition 4.1. Let n ≥ 1. Consider the monoid Mn de�ned by the presentation

(4.1) 〈 ρ1, ρ2, . . . , ρn | ρ1ρnρi = ρi+1ρn for 1 ≤ i < n 〉.

We will denote the set of generators by S, and the above set of relations by R, omitting

the dependeny on n.
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The group with the same presentation is in fat isomorphi to the torus knot group

G(n, n+ 1); it is indeed straightforward to hek the following:

Proposition 4.2. The map ρi 7→ xiy−i
for 1 ≤ i ≤ n extends to a group isomorphism

between the group with presentation (4.1) and the (n, n+ 1)-torus knot group G(n, n+
1) = 〈 x, y |xn = yn+1 〉.

Note that M2 = Σ2, the exoti Garside monoid for B3 given in Example 2.10.

It is well-known that the group G(n, n+ 1) is an extension of Bn+1. In terms of the

above presentation the map is de�ned as follows:

Proposition 4.3. The assignment ρi 7→ σ1σ2 · · · σi, for i = 1, . . . , n, extends to a

surjetive group homomorphism ϕn : G(n, n + 1) −→ Bn+1.

Proof. It su�es to show that the elements Si := σ1σ2 · · · σi ∈ Bn+1 (i = 1, . . . , n)
satisfy the de�ning relations of (4.1). We show that S1SnSi = Si+1Sn for all i =
1, . . . , n− 1 by indution on 1 ≤ i ≤ n− 1. We have

S1SnS1 = σ1(σ1σ2 · · · σn)σ1 = σ1σ1σ2σ1(σ3σ4 · · · σn)

= σ1σ2(σ1σ2σ3 · · · σn) = S2Sn,

hene the result holds for i = 1. Now let 1 < i ≤ n− 1. By indution we have

S1SnSi = S1SnSi−1σi = SiSnσi = Si(σ1σ2 · · · σn)σi

= Si(σ1σ2 · · · σiσi+1)σi(σi+2 · · · σn)

= Si(σ1σ2 · · · σi−1)σi+1(σiσi+1 · · · σn) = Siσi+1Sn = Si+1Sn,

whih onludes the proof. �

Lemma 4.4. The map λ : {ρ1, ρ2, . . . , ρn} −→ Z≥0, ρi 7→ i extends to a uniquely

de�ned length funtion λ on Mn satisfying λ(ab) = λ(a) + λ(b) for all a, b ∈ Mn.

In partiular, the divisibility in Mn is Noetherian, and Mn is both left- and right-

Noetherian.

Proof. It su�es to show that the extension of λ to S∗
takes the same value on eah side

of any given relation inR, in other words, that the relations in R are homogeneous with

respet to λ. This is lear, as λ(ρ1ρnρi) = n+i+1 = λ(ρi+1ρn) for all 1 ≤ i ≤ n−1. �

Unfortunately, the anellativity riteria that we realled in Subsetion 2.2 do not

work with the presentation 〈S,R〉 of Mn. We need to enlarge the set R of relations,

thereby making it redundant, to be able to apply suh riteria. We will need two

distint enlarged sets of relations, one to show left-anellativity, the other one to show

right-anellativity. We introdue them in the following two Lemmata.

Lemma 4.5. Let 1 ≤ i < j ≤ n. In Mn (and hene in G(n, n + 1)), we have

ρiρ
i
nρj−i = ρjρ

i
n.

Proof. Note that when i = 1, the relations are just the de�ning relations ofMn. Assume

i > 1. As ρkρn = ρ1ρnρk−1 holds for 2 ≤ k ≤ n, we have

ρiρ
i
n = ρ1ρnρi−1ρ

i−1
n = ρ1ρnρ1ρnρi−2ρ

i−2
n = . . . = (ρ1ρn)

i.(4.2)

Hene we get

ρiρ
i
nρj−i = (ρ1ρn)

iρj−i.(4.3)

Similarly, as j > i, we have

ρjρ
i
n = ρ1ρnρj−1ρ

i−1
n = ρ1ρnρ1ρnρj−2ρ

i−2
n = . . . = (ρ1ρn)

iρj−i.(4.4)
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Putting (4.3) and (4.4) together we get ρiρ
i
nρj−i = (ρ1ρn)

iρj−i = ρjρ
i
n. This onludes

the proof. �

Lemma 4.6. Let 1 ≤ i < j ≤ n. In Mn (and hene in G(n, n + 1)), we have

(ρ1ρn)
n−j+1ρi = ρn−j+i+1(ρ1ρn)

n−jρj .

Proof. Note that when j = n, the laimed relations are just the de�ning relations of

Mn. Assume j < n. As ρ1ρnρk = ρk+1ρn holds for 1 ≤ k < n, we have

(4.5)

(ρ1ρn)
n−j+1ρi = (ρ1ρn)

n−jρi+1ρn = (ρ1ρn)
n−j−1ρi+2ρ

2
n = . . . = ρn−j+i+1ρ

n−j+1
n .

Applying the same relation, we also get

(4.6) (ρ1ρn)
n−jρj = (ρ1ρn)

n−j−1ρj+1ρn = . . . = ρn−j+1
n .

Putting (4.5) and (4.6) together we get

ρn−j+i+1(ρ1ρn)
n−jρj = ρn−j+i+1ρ

n−j+1
n = (ρ1ρn)

n−j+1ρi,

whih onludes the proof. �

Proposition 4.7. The monoid Mn has two presentations 〈S,R′〉 and 〈S,R′′〉, where
S is as before the set {ρ1, ρ2, . . . , ρn} and R′

(respetively R′′
) is the set of relations

given in the statement of Lemma 4.5 (respetively Lemma 4.6).

Proof. We have seen in Lemmata 4.5, 4.6 that all the relations in R′
, R′′

follow from

the relations in R, and as they ontain all the relations in R and Mn = 〈S,R〉, the
laim is immediate. �

4.2. Canellativity.

4.2.1. Left-anellativity. In order to show that the monoid Mn is left-anellative, we

will apply Proposition 2.15 using the presentation 〈S,R′〉 de�ned above, whih is right-

omplemented. The presentation 〈S,R〉 is also right-omplemented, but it is easy to

see that the θ-ube ondition fails for this presentation.

Note that in the presentation 〈S,R′〉, we have preisely one relation for eah pair

of indies i, j ∈ {1, 2, . . . , n}, i < j, namely ρiρ
i
nρj−i = ρjρ

i
n. Hene θ is de�ned over

all S × S, and for i < j we have

θ(ρi, ρj) = ρinρj−i, θ(ρj, ρi) = ρin.

Lemma 4.8. The presentation 〈S,R′〉 satis�es the sharp θ-ube ondition for every

triple (ρi, ρj , ρk) of pairwise distint generators in S.

Proof. We need to hek that either both θ(θ(ρi, ρj), θ(ρi, ρk)) and θ(θ(ρj, ρi), θ(ρj , ρk))
are de�ned and equal as words in S∗

, or neither is de�ned.

It is su�ient to distinguish three ases: the ase i < j < k, the ase i < k < j, and

the ase k < j < i. The three remaining ases are indeed obtained for free by swapping

the roles of i and j.

• Case i < j < k. We have

θ(θ(ρi, ρj), θ(ρi, ρk)) = θ(ρinρj−i, ρ
i
nρk−i) = θ(ρj−i, ρk−i) = ρj−i

n ρk−j,

where for the middle equality we used the fat that for all a, b, c ∈ S∗
, we have

θ(ab, ac) = θ(b, c) (whih is an easy onsequene of the relations (2.1)-(2.4)).

We also have

θ(θ(ρj, ρi), θ(ρj, ρk)) = θ(ρin, ρ
j
nρk−j) = θ(1, ρj−i

n ρk−j) = ρj−i
n ρk−j.
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• Case i < k < j. We have

θ(θ(ρi, ρj), θ(ρi, ρk)) = θ(ρinρj−i, ρ
i
nρk−i) = θ(ρj−i, ρk−i) = ρk−i

n ,

and

θ(θ(ρj, ρi), θ(ρj , ρk)) = θ(ρin, ρ
k
n) = θ(1, ρk−i

n ) = ρk−i
n .

• Case k < j < i. We have

θ(θ(ρi, ρj), θ(ρi, ρk)) = θ(ρjn, ρ
k
n) = θ(ρj−k

n , 1) = 1,

and

θ(θ(ρj, ρi), θ(ρj , ρk)) = θ(ρjnρi−j, ρ
k
n) = θ(ρj−k

n ρi−j, 1) = 1.

Hene in all ases we have θ(θ(ρi, ρj), θ(ρi, ρk)) = θ(θ(ρj, ρi), θ(ρj , ρk)), whih onludes
the proof. �

Proposition 4.9. The monoid Mn is left-anellative and admits onditional right-

lms. When it exists, the right-lm of u and v ∈Mn is given by uθ(u, v) = vθ(v, u).

Proof. Sine Mn is right-Noetherian (Lemma 4.4) and the presentation 〈S,R′〉 satis-
�es the (sharp) θ-ube ondition for every triple of pairwise distint generators in S
(Lemma 4.8), Proposition 2.15 ensures that Mn is left-anellative and admits ondi-

tional right-lms. �

Corollary 4.10. Let 1 ≤ i < j ≤ n. The right-lm of ρi and ρj is given by

ρiρ
i
nρj−i = ρjρ

i
n.

Proof. This follows immediately from the proposition above, as θ(ρi, ρj) is de�ned and

equal to ρinρj−i. �

4.2.2. Right-anellativity. Unlike many lassial examples of Garside monoids (like

the positive braid monoid, or more generally Artin�Tits monoids of spherial type),

the de�ning presentation 〈S,R〉 of the monoid Mn is not symmetri for n ≥ 3. We

therefore annot dedue right-anellativity from left-anellativity. To show thatMn is

right-anellative, we will show the equivalent statement that the opposite monoidM
op
n

is left-anellative. This monoid has the same set of generators asMn but we will denote

them T = {τi}i=1,...,n to distinguish them (with τi orresponding to ρi for all i), and

relations Rop
whih are obtained from R by reversing all the words.

Reall the presentations 〈S,R〉, 〈S,R′〉 and 〈S,R′′〉 of Mn (see Setion 4.1). As for

left-anellativity, it is not hard to see that the θ-ube ondition fails with the right-

omplemented presentation 〈T ,Rop〉 of Mop
n , hene one annot apply Proposition 2.15

with this hoie of presentation. Moreover, the presentation 〈T , (R′)op〉 whih is the

opposite of the presentation 〈S,R′〉 that we used to show left-anellativity is not right-

omplemented as in general there is more than one relation of the form τi · · · = τj · · ·
for i 6= j (for instane τ1τ3τ1 = τ3τ2 and τ

3
3 = τ1τ

2
3 τ2 for n = 3), hene again Propo-

sition 2.15 annot be applied with this hoie of presentation. But the presenta-

tion 〈T , (R′′)op〉 of Mop
n is right-omplemented. The set of relations (R′′)op is indeed

given by

τi(τnτ1)
n−j+1 = τj(τnτ1)

n−jτn−j+i+1, for 1 ≤ i < j ≤ n.

The syntati right-omplement η attahed to the right-omplemented presenta-

tion 〈T , (R′′)op〉 is then given by

η(τi, τj) = (τnτ1)
n−j+1

and η(τj , τi) = (τnτ1)
n−jτn−j+i+1 for 1 ≤ i < j ≤ n.

Lemma 4.11. The presentation 〈T , (R′′)op〉 satis�es the sharp η-ube ondition for

every triple (τi, τj , τk) of pairwise generators in T .
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Proof. We proeed as in Lemma 4.8. It is su�ient to distinguish three ases: the

ase i < j < k, the ase i < k < j, and the ase k < j < i.

• Case i < j < k. We have

η(η(τi, τj), η(τi, τk)) = η((τnτ1)
n−j+1, (τnτ1)

n−k+1) = η((τnτ1)
k−j, 1) = 1,

and

η(η(τj , τi), η(τj , τk)) = η((τnτ1)
n−jτn−j+i+1, (τnτ1)

n−k+1)

= η((τnτ1)
k−j−1τn−j+i+1, 1) = 1.

• Case i < k < j. We have

η(η(τi, τj), η(τi, τk)) = η((τnτ1)
n−j+1, (τnτ1)

n−k+1) = η(1, (τnτ1)
j−k) = (τnτ1)

j−k,

and

η(θ(τj , τi), η(τj , τk)) = η((τnτ1)
n−jτn−j+i+1, (τnτ1)

n−jτn−j+k+1)

= η(τn−j+i+1, τn−j+k+1) = (τnτ1)
j−k.

• Case k < j < i. We have

η(η(τi, τj), η(τi, τk)) = η((τnτ1)
n−iτn−i+j+1, (τnτ1)

n−iτn−i+k+1)

= η(τn−i+j+1, τn−i+k+1) = (τnτ1)
i−j−1τn−j+k+1,

and

η(η(τj , τi), η(τj , τk)) = η((τnτ1)
n−i+1, (τnτ1)

n−jτn−j+k+1)

= η(1, (τnτ1)
i−j−1τn−j+k+1) = (τnτ1)

i−j−1τn−j+k+1.

�

Proposition 4.12. The monoid M
op
n is left-anellative and admits onditional right-

lms. Equivalently, the monoid Mn is right-anellative and admits onditional left-

lms.

Proof. Sine M
op
n is right-Noetherian (as Mn is left-Noetherian by Lemma 4.4) and

the presentation 〈T , (R′′)op〉 satis�es the (sharp) θ-ube ondition for every triple of

pairwise distint generators in T (Lemma 4.11), Proposition 2.15 ensures that M
op
n is

left-anellative and admits onditional right-lms. �

We also note:

Corollary 4.13. Let 1 ≤ i < j ≤ n. The left-lm of ρi and ρj is given by

(ρ1ρn)
n−j+1ρi = ρn−j+i+1(ρ1ρn)

n−jρj .

Proof. By Proposition 2.15, the right-lm of u and v ∈M
op
n exists if and only if θ(u, v)

is de�ned, and is then given by uθ(u, v) = vθ(v, u). For τi and τj in M
op
n we know that

θ(τi, τj) is de�ned, hene the right-lm of τi and τj is given by τiθ(τi, τj) = τjθ(τj, τi).
It then su�es to reverse the obtained words to get the left-lm of ρi and ρj inMn. �

4.3. Garside struture. In this setion, we establish the existene of a Garside ele-

ment in Mn, and dedue from it and from previously shown properties that (Mn, ρ
n+1
n )

is a Garside monoid.

Notation 4.14. Let Mn be the monoid with the presentation 〈S,R〉 as de�ned in

Setion 4.1. We set ∆ := ρn+1
n , omitting the dependeny on n.

Proposition 4.15. The following holds in Mn:
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(1) We have ρ1(ρnρ1)
n−1 = ρnn. Hene ∆ = (ρ1ρn)

n = (ρnρ1)
n.

(2) Let 1 ≤ i ≤ n. Set ai := ρin(ρ1ρn)
n−i

. Then ρiai = aiρi = ∆. In partiular,

every element in S is both a left- and a right-divisor of ∆ (and the left- and

right-omplements oinide), and ∆ is entral in Mn.

(3) Let a, b ∈Mn suh that ab = ∆. Then ba = ∆.

Proof. The �rst laim follows from the fat that for all 1 ≤ k ≤ n− 1, we have

(4.7) ρ1(ρnρ1)
k = ρk+1ρ

k
n.

Indeed, for k = 1 this is just a relation in R, while the general ase is obtained by

indution on k: ρ1(ρnρ1)
k = ρ1ρnρ1(ρnρ1)

k−1 = ρ1ρnρkρ
k−1
n = ρk+1ρ

k
n.

For the seond laim, using the �rst laim and (4.7) me have

∆ = (ρ1ρn)
n = ρ1(ρnρ1)

i−1ρn(ρ1ρn)
n−i = ρiρ

i
n(ρ1ρn)

n−i = ρiai.

Arguing as for (4.7), for all k ≤ n − i, we see that (ρ1ρn)
kρi = ρi+kρ

k
n. Applying this

with k = n− i we get

∆ = ρn+1
n = ρinρnρ

n−i
n = ρin(ρ1ρn)

n−iρi = aiρi,

whih shows the seond laim.

The last laim is an immediate onsequene of the anellativity of Mn and the

seond laim, as the property holds for the set S whih generates Mn. �

Corollary 4.16. The left and right-divisors of ∆ oinide, and form a �nite set.

Proof. The fat that the left and right-divisors of ∆ oinide follows immediately from

Point (3) of Proposition 4.15. The fat that this set is �nite is lear by Lemma 4.4,

sine S is �nite. �

Corollary 4.17. Both the left and the right-lm of the generators ρ1, ρ2, . . . , ρn of Mn

are given by ρnn = ρ1(ρnρ1)
n−1

.

In partiular, using also Theorem 4.18 below, the family (Mn)n≥2 yields an example

of a family of Garside monoids where ∆ is not the lm of the atoms.

Proof. By Corollary 4.10, we have that the right-lm of ρn and ρn−1 is given by ρnn.

Hene to onlude it su�es to show that ρi left-divides ρ
n
n, for all 1 ≤ i ≤ n− 2. This

is the ase, as by Point (1) of the above proposition together with Relation (4.2), we

have

ρn = (ρ1ρn)
i(ρ1ρn)

n−1−iρ1 = ρiρ
i
n(ρ1ρn)

n−1−iρ1.

The proof that ρnn is also the left-lm of the elements in S is similar. This time,

onsider the left-lm of ρ1 and ρ2. By Corollary 4.13, it is equal to (ρ1ρn)
n−1ρ1 whih,

by the �rst point of Proposition 4.15, is equal to ρnn. Hene to onlude the proof, it

su�es to hek that for all 2 < j ≤ n − 1, the generator ρj is a right-divisor of ρnn.

But using Relation 4.6 (whih is valid for all j ≥ 2), we have

ρnn = ρj−1
n ρn−j+1

n = ρj−1
n (ρ1ρn)

n−jρj,

hene ρj right-divides ρ
n
n. �

Theorem 4.18. The pair (Mn,∆) is a Garside monoid. The orreponding Garside

group G(Mn) is isomorphi to the (n, n+ 1)-torus knot group G(n, n + 1).

Proof. The monoidMn is anellative and admits onditional lm's by Propositions 4.9

and 4.12. It has Noetherian divisibility by Lemma 4.4. Now by Proposition 4.15 and

Corollary 4.16, the element ∆ satis�es the last two onditions of De�nition 2.7. We then

get the existene of lm's from the existene of onditional lm's, applying Lemma 2.17.
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Figure 4. The lattie of divisors of the Garside element ∆ = ρ43 in M3 for

left-divisibility.

By Theorem 2.3, we get that G(Mn) has the same presentation as Mn, hene by

Proposition 4.2 we have G(Mn) ∼= G(n, n+ 1). �

Remark 4.19. The lattie of simples of M3 (for left-divisibility) is given in Figure 4.

Reall that the lattie of simples of M2 was given in Figure 1. Note that the lattie in

Figure 4 is not self-dual; in partiular, by Proposition 2.20 the lattie of simples of ∆
for left-divisibility is not isomorphi to the lattie of simples for right-divisibility.

4.4. Link between the various presentations. As mentioned in Setion 3, the

presentations

〈 x1, x2, . . . , xn | x1x2 · · · xnx1 = x2x3 · · · xnx1x2 = · · · = xnx1x2 · · · xn 〉(4.8)

〈 x, y | xn = yn+1 〉(4.9)

yield two distint Garside strutures on the (n, n + 1)-torus knot group G(n, n + 1).
We have already seen in Proposition 4.2 how to pass from the de�ning presentation of

G(Mn) to the presentation (4.9). For the other presentation above we have:
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Proposition 4.20. The map

ρ1 7→ x1, ρ2 7→ xnx1, ρ3 7→ xn−1xnx1, . . . , ρn 7→ x2x3 · · · xnx1

extends to a group isomorphism φ between the group with presentation (4.1) and the

group with presentation (4.8), with inverse ψ given by

x1 7→ ρ1, xn 7→ ρ2ρ
−1
1 , xn−1 7→ ρ3ρ

−1
2 , . . . , x2 7→ ρnρ

−1
n−1.

Proof. The fat that the two de�ned maps are inverse to eah other is immediate, hene

we only need to show that they extend to group homomorphisms. To this end, we �rst

show that the φ(ρi)'s satisfy the de�ning relations of presentation (4.1), whih is enough

to onlude that φ is a homomorphism. We have

φ(ρ1)φ(ρn)φ(ρ1) = x1x2 · · · xnx1
︸ ︷︷ ︸

=xnx1x2···xn

x1 = φ(ρ2)φ(ρn).

Now let 1 < i < n. We have

φ(ρ1)φ(ρn)φ(ρi) = x1x2x3 · · · xnx1xn−i+2 · · · xnx1

and

φ(ρi+1)φ(ρn) = xn−i+1 · · · xnx1x2x3 · · · xnx1

= (xn−i+1 · · · xnx1x2x3 · · · xn−i+1)
︸ ︷︷ ︸

=x1x2···xnx1

xn−i+2 · · · xnx1 = φ(ρ1)φ(ρn)φ(ρi),

hene φ is a homomorphism.

Similarly, we have to show that the ψ(xi) satisfy the de�ning relations of Presenta-

tion (4.8). We have

ψ(xn)ψ(x1)ψ(x2) · · ·ψ(xn) = ρ2ρnρ
−1
1 = ρ1ρn = ψ(x1)ψ(x2) · · ·ψ(xn)ψ(x1).

Now let 1 < i < n. We have

ψ(xi)ψ(xi+1) · · ·ψ(xn)ψ(x1) · · ·ψ(xi)

= (ρn+2−iρ
−1
n+1−i)(ρn+1−iρ

−1
n−i) · · · (ρ2ρ

−1
1 )ρ1(ρnρ

−1
n−1)(ρn−1ρ

−1
n−2) · · · (ρn+2−iρ

−1
n+1−i)

= ρn+2−iρnρ
−1
n+1−i = ρ1ρnρn+1−iρ

−1
n+1−i = ρ1ρn = ψ(xn)ψ(x1)ψ(x2) · · ·ψ(xn),

hene ψ is also a homomorphism. This onludes the proof. �

4.5. Link with braid groups of omplex re�etion groups. The exeptional om-

plex re�etion group G12 has three generators s, t, u and relations s2 = t2 = u2 = 1,
stus = tust = ustu. Its braid group B(G12) has generators σ, τ, υ subjet to the same

relations as s, t, u exept the quadrati ones (see [10℄). We an dedue the following

from Proposition 4.20:

Corollary 4.21. The omplex re�etion group G12 has a presentation with generators

r1, r2, r3 and relations

r1r3r1 = r2r3, r1r3r2 = r23, r
2
1 = 1.

In Corollary 5.3 below, we give analogous presentations for the symmetri groups Sn.

Proof. It follows from Proposition 4.20 that G(M3) ∼= B(G12), as B(G12) has the pre-
sentation (4.8) for n = 3 if we set σ = x1, τ = x2, υ = x3. To show the statement,

note that the given relations are exatly those of (4.1) (exept that the generators are

denoted by ri instead of ρi), with the additional relation r21 = 1. By the �rst point

G(M3) is isomorphi to the braid group of G12. Now G12 is obtained from B(G12) by
adding the relations σ2 = τ2 = υ2 = 1, but sine σ, τ and υ are all onjugate in B(G12),
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it su�es to add the relation σ2 = 1 to get a presentation of G12; this translates into

the relation ρ21 = 1. �

Remark 4.22. Corollary 4.21 yields a new Garside struture on B(G12). Note that

the omplex re�etion group G12 is not well-generated. By work of Bessis [4℄, every

well-generated irreduible omplex re�etion group admits a dual braid monoid, in par-

tiular, the orresponding braid group is a Garside group. For G12 and as suggested

by Bessis [2, Setion 6.4, Problem 10℄ (see also Setion 3 above), one an nevertheless

still de�ne a dual braid monoid in some sense. Almost all braid groups attahed to

irreduible omplex re�etion groups whih are not well-generated have been shown

to be Garside groups: see Dehornoy�Paris [18, Proposition 5.2 and Example 5℄ (for

G15, G7, G11, G19, G(2de, 2e, 2) for d > 1, whih all have isomorphi braid group,

G12, and G22), Piantin [28, Exemples 11, 13℄ (for G13, whose braid group is isomor-

phi to the Artin�Tits group of type I2(6) = G2), and Corran�Lee�Lee [12℄ (for the

remaining imprimitive groups). See also [17, Example IX.3.25℄. It seems that the only

irreduible omplex re�etion group for whih it remains open to determine whether

the orresponding braid group is a Garside group or not is G31.

Remark 4.23. In view of the previous remark, it is natural to wonder if G(n, n+1) is
the braid group of a omplex re�etion group in a natural way. For n = 2 we know that

G(2, 3) ∼= G(M2) is isomorphi to the 3-strand braid group, whih is the braid group of

several irreduible omplex re�etion groups (obtained by adding the relation ρi1 = 1 for
some i > 1 to the presentation of G(M2)). For i = 2 we get the symmetri group S3,

and for i = 3, 4, 5 the exeptional groups G4, G8, and G16 respetively�note that these

presentations already our in Coxeter's paper [13℄ from 1959. It is easy to hek that

the Garside monoid M2 an be obtained from the �nite group G4 as an interval group,

another method for produing Garside monoids; see [2, Setion 0.5℄ or [17, Chapter VI℄

for more details. Basially this method allows one to show that a monoid M is a

Garside monoid by realizing its lattie of simples in some (not neessarily �nite) group

G whih is a quotient of G(M) (typially, for Artin-Tits groups of spherial type, both
lassial and dual Garside strutures are obtained in this way and the group G is the

orresponding Coxeter group). For n ≥ 4, adding the relation ρ21 = 1 to the presentation
of G(Mn) seems to yield an in�nite group, and the same an be expeted for i > 2.
This suggests the question below.

Question 4.24. Let n ≥ 4 and i > 1. Consider the quotient G(Mn) of G(Mn) by the

relation ρi1 = 1. Does this quotient admit a natural realization as an in�nite omplex

re�etion group ?

Note that the same question an be asked if we replae ρ21 = 1 by ρi1 = 1, i ≥ 3
(even for n = 2 and n = 3 in the ases whih are not overed by the above remark or

Corollary 4.21).

5. Link with the braid group on n strands

In this setion, we give a new presentation of the braid group Bn+1, obtained by

adding suitable relations to the presentation 〈S,R〉 of G(Mn). Using it we show that

the submonoid Σn of Bn+1 generated by σ1, σ1σ2, . . . , σ1σ2 · · · σn is an Ore monoid

with group of frations isomorphi to Bn+1, and onjeture that this monoid admits an

expliit �nite presentation.

De�nition 5.1. Let H+
n be the monoid de�ned by the presentation

(5.1) 〈 ρ1, ρ2, . . . , ρn | ρ1ρjρi = ρi+1ρj for 1 ≤ i < j ≤ n 〉
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Proposition 5.2. There is an isomorphism between the group with presentation (5.1)

and the (n+ 1)-strand braid group Bn+1, given by ρi 7→ σ1σ2 · · · σi for 1 ≤ i ≤ n.

Proof. We show that the assignment ρi 7→ σ1σ2 · · · σi, 1 ≤ i ≤ n, extends to a group

isomorphism f between the two groups. To this end, it su�es to show that f extends

to a group homomorphism, and that the assignment σi 7→ ρ−1
i−1ρi (with the onven-

tion ρ0 = 1) extends to a group homomorphism g between Bn+1 and the group with

presentation (5.1). Indeed both maps are learly inverse to eah other.

Showing that the f(ρi)'s satisfy the laimed relations an be heked by exatly the

same omputation as the one given in the proof of Proposition 4.3 where it is done in

the ase j = n (or just derived from it by invoking the embeddings Bk ⊆ Bk+1). Hene

f is a group homomorphism.

Conversely, let us hek that the g(σi)'s satisfy the braid relations. Let 1 ≤ i ≤ n−1.
Using the relations ρ1ρiρi−1 = ρ2i and ρ1ρi+1ρi = ρ2i+1 we get

ρ−1
i−1ρ

−1
i ρ1ρi+1ρi = ρ−2

i ρ1ρ
2
i+1.

Replaing ρ−1
i ρ1ρi+1 by ρi+1ρ

−1
i−1 in eah side (using the relation ρ1ρi+1ρi−1 = ρiρi+1)

we get the equality

ρ−1
i−1ρi+1ρ

−1
i−1ρi = ρ−1

i ρi+1ρ
−1
i−1ρi+1.

The left hand side of the above equality is equal to g(σi)g(σi+1)g(σi), while the right

hand side is equal to g(σi+1)g(σi)g(σi+1), thus establishing the braid relation

g(σi)g(σi+1)g(σi) = g(σi+1)g(σi)g(σi+1).

It remains to hek that g(σi)g(σj) = g(σj)g(σi) holds whenever 1 ≤ i < j− 1 ≤ n− 1.
Using the relations ρ1ρjρi = ρi+1ρj and ρ1ρj−1ρi−1 = ρiρj−1 we an write

ρ−1
i−1ρ

−1
j−1ρ

−1
1 ρi+1ρj = ρ−1

j−1ρ
−1
i ρ1ρjρi.

Replaing ρ−1
j−1ρ

−1
1 ρi+1 by ρiρ

−1
j−1 in the left hand side (using the relation ρ1ρj−1ρi =

ρi+1ρj−1) and ρ
−1
i ρ1ρj by ρjρ

−1
i−1 in the right hand side (using the relation ρ1ρjρi−1 =

ρiρj), we get the equality

ρ−1
i−1ρiρ

−1
j−1ρj = ρ−1

j−1ρjρ
−1
i−1ρi.

This equality is nothing but the equality g(σi)g(σj) = g(σj)g(σi). This shows that g is
a group homomorphism, and onludes the proof. �

Corollary 5.3. The symmetri group Sn+1 admits the presentation

〈

r1, r2, . . . , rn

∣
∣
∣
∣

r1
2 = 1,

r1rjri = ri+1rj, for 1 ≤ i < j ≤ n.

〉

where ri orresponds to the yle (1, 2, . . . , i+ 1) for 1 ≤ i ≤ n.

Proof. The laimed set of relations is given by the relations in (5.1), exept that we

added the relation stating that the square of the �rst generator is equal to one. As all

the σi's are onjugate in Bn+1, it su�es to add to the braid relations the relation σ21 = 1
to get a presentation of the symmetri group Sn+1. In view of Proposition 5.2 this is

equivalent to adding the relation ρ21 = 1 to the set of relations given in (5.1). �

Investigating the properties of the monoid H+
n appears as a natural question.

Lemma 5.4. In the monoids Σn and H+
n , every two elements x, y admit both a ommon

right-multiple and a ommon left-multiple.
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Proof. This follows immediately from the fat that both Σn and H+
n are quotients of the

Garside monoid Mn. Indeed, the presentation of H+
n is obtained from the presentation

〈S,R〉 of Mn by adding relations, and under the isomorphism of Proposition 5.2, the

submonoid Σn is preisely the submonoid of the group with presentation (5.1) generated

by ρ1, ρ2, . . . , ρn, whih is a quotient of H+
n . �

As a orollary we get:

Proposition 5.5. The submonoid Σn of Bn+1 is an Ore monoid, with group of frations

isomorphi to Bn+1.

Proof. For the �rst statement, we need anellativity and the existene of left-multiples.

The last ondition is given by Lemma 5.4, while anellativity immediately follows from

the fat that Σn is a submonoid of a group. The seond statement follows, as Σn embeds

into Bn+1, with image generating Bn+1 as a group: this ensures that the indued map

G(Σn) −→ Bn+1 is an isomorphism. �

Remark 5.6. It was notied by Dehornoy [15, Example 3.7℄ that the monoid H+
3

does not have lm's (and the same holds for n > 3). Indeed, both ρ1ρ2ρ1 = ρ22 and

ρ1ρ3ρ1 = ρ2ρ3 are ommon right-multiples of ρ1 and ρ2, and it is straightforward to

hek that none of these two elements left-divides the other one. Similarly, in Σn, both

σ1σ1σ2σ1 and σ1σ1σ2σ3σ1 are ommon right-multiples of σ1 and σ1σ2, and it is lear

that none of them left-divides the other one in Σn. This implies that neither Σn nor

H+
n are Garside monoids. The answer to the seond part of Question 1.1 from the

Introdution is therefore negative.

Dehornoy also asked whether H+
3 is (right-)anellative or not (see [15, Question 3.8℄:

note that Dehornoy works with the opposite monoids of H+
3 and Σ3) and onjetured

that this is the ase. More preisely he onjetured that H+
3

∼= Σ3. We onjeture

the following more general statement, whih would also imply that Σn admits a �nite

presentation (answering the �rst part of Question 1.1).

Conjeture 5.7. Let n ≥ 3. Then

(1) The monoid H+
n is anellative,

(2) The monoid H+
n is isomorphi to Σn via ρi 7→ σ1σ2 · · · σi. In partiular, it

embeds into Bn+1, whih is therefore isomorphi to its group of frations.

Remark 5.8. Both items of the above onjeture are atually equivalent: learly

(2) ⇒ (1) as Σn is anellative. Conversely, assume that H+
n is anellative. Then by

Lemma 5.4 it is an Ore monoid, embedding into its group of frations G(H+
n ), and by

Ore's Theorem 2.3, we get that G(H+
n ) is isomorphi to the group with presentation 5.1,

whih by Proposition 5.2 is isomorphi to Bn+1. The submonoid H+
n of Bn+1 then

preisely orresponds under this isomorphism to the submonoid of Bn+1 generated by

σ1, σ1σ2, . . . , σ1σ2 · · · σn, i.e., to Σn.

6. Related Garside strutures on dihedral Artin�Tits groups of odd

type

While the exoti Garside struture on B3 given by Σ2 (see Example 2.10), whih

was generalized in the previous setions to the groups (G(Mn))n≥1, does not seem to

generalize to Artin�Tits groups of type An for n ≥ 2 (see the previous setion), it is

natural to wonder whih Artin�Tits groups of spherial type (or more generally braid

groups of omplex re�etion groups) admit a Garside struture analogous to the one

introdued for G(Mn).
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The ase of dihedral Artin�Tits groups appears to us as the �rst family to onsider,

as they are the Artin�Tits groups with the most elementary struture, and B3 is an

Artin�Tits group of dihedral type. The aim of this setion is to show that dihedral

Artin�Tits groups of odd type admit a Garside struture similar to the one obtained

for G(Mn). These Garside strutures are presumably new.

Let m ≥ 3 be odd. Reall that the dihedral group I2(m) is generated by two

simple re�etions s, t subjet to the relations s2 = 1 = t2 and the braid relation

st · · ·
︸ ︷︷ ︸

m fators

= ts · · ·
︸ ︷︷ ︸

m fators

. The orresponding Artin�Tits group B(I2(m)) is generated by

σ, τ , only subjet to the braid relation of I2(m). Note that B(I2(m)) ∼= G(2,m), the
(2,m)-torus knot group.

Form an integer as above, we denote byM(m) the monoid generated by two elements

ρ1, ρ2, and subjet to the relation ρ1ρ
(m−1)/2
2 ρ1 = ρ

(m+1)/2
2 . We denote by B(m) the

group de�ned by the same presentation. Note that M(3) =M2.

Lemma 6.1. The group B(m) is isomorphi to the dihedral Artin�Tits group B(I2(m)).

Proof. It is straightforward to hek that an isomorphism is given by ρ1 7→ σ, ρ2 7→
στ . �

Note that M(m) is anellative, as divisibility is Noetherian (sine the de�ning re-

lation is homogeneous with λ(ρ1) = 1 and λ(ρ2) = 2) and M(m) is generated by two

elements ρ1, ρ2 with a single relation of the form ρ1 · · · = ρ2 · · · , hene the de�ning pre-
sentation is right-omplemented and the θ-ube ondition (De�nition 2.13) is vauously

true for triples of distint generators.

Setting ∆ := ρm2 , the following Lemma is the analogue forM(m) of Proposition 4.15

established in the ase of Mn:

Lemma 6.2. The following holds in M(m):

(1) We have (ρ1ρ
(m−1)/2
2 )2 = (ρ

(m−1)/2
2 ρ1)

2 = ∆.

(2) Let a1 := ρ
(m−1)/2
2 ρ1ρ

(m−1)/2
2 . Then ρ1a1 = a1ρ1 = ∆. In partiular, both

generators ρ1 and ρ2 are are left- and right-divisors of ∆ (and the left- and

right-omplements of a given generator oinide).

(3) Let a, b ∈M(m) suh that ab = ∆. Then ba = ∆.

Proof. The �rst laim is an immediate onsequene of the de�ning relation of M(m).
The seond laim follows immediately from the �rst one. The last laim is a onsequene

of the anellativity of M(m) and the seond laim, as the laimed property holds for

ρ1 and ρ2 (reall that ∆ is a power of ρ2), whih generate M(m). �

Proposition 6.3. The pair (M(m),∆) is a Garside monoid. The orresponding Gar-

side group is B(m).

Proof. The proof is exatly the same as for G(Mn) (Theorem 4.18): as noted above, the

divisibility in M(m) is Noetherian and the θ-ube ondition is vauously true, hene

we have anellativity and the existene of onditional lm's in M(m). By Lemma 6.2

above, the element ∆ is a Garside element in M(m), and we then onlude the proof

by applying the same arguments as for G(Mn). �

Of ourse, adding the relation ρ21 = 1 to the presentation of B(m) yields a presenta-

tion of the dihedral group I2(m), as there is only one onjugay lass of re�etions in

I2(m).
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Remark 6.4. The dihedral Artin�Tits groups of even type do not seem to admit a

similar desription. Indeed, let B = B(I2(4)) = B(B2) be the Artin�Tits group of

type B2, with standard generators σ1, σ2 and braid relation σ1σ2σ1σ2 = σ2σ1σ2σ1.

Then setting ρ1 = σ1, ρ2 = σ1σ2, we get a presentation for B by taking this new set

of generators and the relation ρ1ρ
2
2 = ρ22ρ1. This appears to us as the natural analogue

of the presentations onsidered in the odd ase but in the present ase, the monoid

generated by ρ1 and ρ2 and subjet to the above relation is not a Garside monoid:

indeed, if it was, then the Garside element ∆ would have a power whih is entral.

Sine the enter of B is in�nite yli generated by (σ1σ2)
2 = ρ22, it is lear from the

above de�ning relation that ∆ itself would have to be a power of ρ2 as ρ1's annot

be eliminated using the unique de�ning relation, say ∆ = ρm2 . But then ρ1 ould not

divide ∆ as no relation an be applied to the word ρm2 , a ontradition.

As a onluding remark, let us note the following. We introdued several monoids in

this paper, whih either are Garside monoids (likeMn andM(m)), or losely related to

a Garside monoid (like H+
n ). All of them are de�ned by the same kind of presentations.

The orresponding groups of frations are braid groups of real or omplex re�etion

groups in several ases, and presentations for these re�etion groups an be naturally

derived from those of the orresponding monoids (as done in Corollaries 4.21, 5.3 and

Remark 4.23). This overs the following ases: G4, G8, G16, G12, Sn for all n, and

I2(m) for odd m. All these groups have a single onjugay lass of re�etions, while the

dihedral groups of even type like I2(4), for whih the above remark shows that there

does not seem to exist a Garside monoid similar to the ones introdued in this paper,

have two onjugay lasses of re�etions. While we do not have any general statement

at the moment, it would be interesting to investigate whether re�etion groups with a

single onjugay lass of re�etions, and their braid groups, admit presentations and

monoids similar to those introdued in this work.
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