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A FAST HOMOTOPY ALGORITHM FOR GRIDLESS SPARSE
RECOVERY∗

JEAN-BAPTISTE COURBOT AND BRUNO COLICCHIO †

Abstract. In this paper, we study the solving of the gridless sparse optimization problem and
its application to 3D image deconvolution. Based on the recent works of [14] introducing the Sliding
Frank-Wolfe algorithm to solve the Beurling LASSO problem, we introduce an accelerated algorithm,
denoted BSFW, that preserves its convergence properties, while removing most of the costly local
descents. Besides, as the solving of BLASSO still relies on a regularization parameter, we introduce a
homotopy algorithm to solve the constrained BLASSO that allows to use a more practical parameter
based on the image residual, e.g. its standard deviation. Both algorithms benefit from a finite
termination property, i.e. they are guaranteed to find the solution in a finite number of step under
mild conditions. These methods are then applied on the problem of 3D tomographic diffractive
microscopy images, with the purpose of explaining the image by a small number of atoms in convolved
observations. Numerical results on synthetic and real images illustrates the improvement provided by
the BSFW method, the homotopy method and their combination.

Key words. Beurling LASSO, gridless sparse optimization, homotopy algorithm, 3D deconvolu-
tion, tomographic diffractive microscopy

1. Introduction.

1.1. Observation model and work hypothesis. In this paper, we consider the
problem of the deconvolution of some image y containing a small number of components.
Our target application is the 3D deconvolution of Tomographic Diffractive Microscopy
(TDM) images, so we assume without loss of generality that y is a 3D image containing
S pixels, i.e. y ∈ RS .

The components of the image are represented by a Radon measure µw,θ observed
through an imaging operator Φ under an additive noise:

(1.1) y = Φµw,θ + ε

Here and in the following, we consider for the measures µw,θ a weighted Dirac mass

sum of the form
∑N
n=1 wnδθn

, with the weight vector w = {w1, . . . , wN} ∈ RN∗ . θn
locates, for each atom, its parameters within the bounded domain D of dimension D.
The Radon space corresponding to D is denoted M(D) so that µw,θ ∈ M(D), and
then Φ :M(D) 7→ RS . We assume that the representation of each Dirac mass in the
image space is given by some G : D×R 7→ RS . Furthermore, Φ embeds a point spread
function (PSF) H∈ RS×S that blurs the observations of atoms.

Summing up, we can rephrase (1.1) as:

(1.2) y = H ∗
N∑
n=1

G(θn, wn) + ε.

Generally, we assume N is reasonably small, so that µ embeds a compact representation
of the large y. The problem handled here consists in estimating N , and {θn,wn}n=Nn=1

while knowing only y and H.

1.2. Gridless sparse recovery. Inverting (1.2) is typically made using sparsity-
enforcing methods. To do so, we search for the sparser solution being explaining the
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observed y, by solving :

(1.3) min
µ∈M(D)

R(µ) subject to ‖y −Φµ‖2 ≤ e.

where e > 0 can be, e.g., an estimation of the noise level in the data and ‖ · ‖2 is the
Euclidean norm. The regularizer R can take many forms. It is well documented in
the literature that the `0 “norm” of µ directly enforces sparsity [36], at the cost of
making the problem non-convex, non-differentiable and thus difficult to solve. On the
other hand, the relaxation based on the `1 norm provides an interesting framework,
since the resulting problem remains differentiable in almost all points, while a `2 norm
may induce data overfitting.

Besides, we are interested in inverting (1.2) in a continuous fashion: the atoms to
search for do not lie on a pre-established grid or dictionary, which form the conventional
framework for sparse recovery. Indeed, assuming the prior existence of such a grid
leads to practical difficulties, since the choice of the dictionary critically influence the
outcome of many methods.

In [18], the Continuous Basis Pursuit interpolates between parameters defined on
a grid so as to reach subgrid accuracy. Other approaches, seen in [8, 10, 13], rephrase
the problem in a fully continuous formalism. By doing so, the sparsity-promoting `1
norm is replaced by its continuous counterpart, the total variation of measures. The
problem is then referred as Beurling LASSO or BLASSO [2].

In this work, we focus on solving the constrained BLASSO problem:

(P1) min
µw,θ∈M(D)

|µw,θ| subject to ‖y −Φµw,θ‖2 ≤ e,

where |µw,θ| denotes the total mass of the measure µw,θ ∈ M(D). In the case

of a sum of Dirac masses (µw,θ =
∑N
n=1 wnδθn

), it is analog to a `1 norm with

|µw,θ| =
∑N
n=1 |wn|. In other words, we search for the best compromise between the

sparsity prior and data fit.
Introducing λ > 0, this trade-off is made apparent in the following equivalent

minimization problem:

(Pλ) min
µw,θ∈M(D)

C(y, λ, µw,θ)
def.
= min
µw,θ∈M(D)

1

2
‖y −Φµw,θ‖22 + λ|µw,θ|.

This unconstrained formulation is generally preferred because it is more closely related
to convex quadratic programming.

To numerically solve the BLASSO problem, several approaches have been proposed.
In [10, 31], the problem is rephrased as a semi-definite program, while the ADCG solver
proposed in [7, 8] relies on an alternating gradient based method which iteratively
adds Dirac masses to the solution. Recently, a variant of the ADCG called Sliding
Frank-Wolfe (SFW) appeared in [14], which is guaranteed to converge in a finite
number of steps under mild assumptions.

1.3. Homotopy. Despite providing a quite appealing way to solve (Pλ), solving
the BLASSO in practice require to set λ at an adequate value. So the choice of λ
is often left to the practitioner, making it a tuning parameter: a large λ yields few
atoms, while a low λ provides a better data fit with a denser solution. However there
is no straight relation between the value of λ and the properties of the solution.

So, in this paper, we are interested in methods to search for the best λ according to
some criterion which can be relevant in practice. This is the purpose of the homotopy
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`1

`2

Fig. 1: Schematic depiction of a Pareto frontier. Points on the line are solution to the
problem at hand, which forms different compromises between the `2 and `1 elements.
Homotopy algorithms follow (a part of) this piecewise linear frontier, starting at a
high `2 norm and evolving towards a high `1 norm. A limit value can be set (red dots)
to stop the homotopy when attained.

algorithms, introduced in [25, 26]. These methods solve the LASSO problem for some
noise level value e, by solving the discretized counterpart of (Pλ) for a sequence of λ.

Such algorithms explore the so-called Pareto frontier, materializing the LASSO
solutions for a set of λ > 0 (see Fig. 1). This frontier is analog to the L-curve, which
is used in the context of `2 regularization [20]. Indeed, decreasing λ while keeping
the same minimizing value of the LASSO criterion moves the `2 objective to the `1
objective. This is why these algorithms are referred to as an homotopy from `2 to `1.
For the LASSO problem, the Pareto frontier forms a polygonal path with a countable
number of vertices [15]: changes only occur at critical values of λ. This important
property helps probing this frontier.

Most homotopy algorithms in the literature are designed for `1-based problems [1,
3, 32, 34, 35], with the exception of [30]. All of them are designed in a discretized
framework based on a dictionary. To our knowledge, there is no work in the literature
on homotopy-based algorithms on the space of measures.

1.4. This paper. In this paper, we aim at bringing together the BLASSO solvers
and the homotopy algorithms. To do so, we first study (in section 2) the unconstrained
BLASSO solving of (Pλ) by SFW [14]. We show that removing some steps of SFW
yield a significantly faster solver, that we name Boosted SFW or BSFW. BSFW
also preserves the convergence properties of SFW. Then, we introduce in section 3 a
homotopy embedding of the unconstrained BLASSO solvers to solve the constrained
BLASSO (P1). We also show that this embedding stops in a finite number of iterations.
Finally, we investigate the numerical behavior of the proposed methods on synthetic
and real images in section 4.

This paper follows the preliminary work published in [11], in which the BSFW
algorithm was briefly introduced, without studying in depth its properties.

Along this paper, we will search for Dirac masses within an image. Without
distinction, these masses will also be referred as atoms, spikes, or components. In
addition, we refer to the measure of interest with µw,θ when w and θ are useful for
the comprehension, and with µ otherwise. Superscript in bracket, as in µ[k], will refer
to the k−th iteration of a solver having K iterations in total, while bracket indexes,
as in µ[t], will indicate the t−th iteration of a homotopy algorithm with T iterations
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in total. Finally, N will generically refer to the number of spikes within µ.

2. Boosting the SFW BLASSO solver. After recalling the main elements
of the SFW algorithm, we show how it can be accelerated while preserving its finite
termination property.

2.1. The SFW solver. SFW [14] is a greedy solver for the unconstrained
BLASSO problem (Pλ). At each iteration, it adds a Dirac mass to an estimated
measure µ, then fit w in order to quickly approach a minimizer of C, and then both
w and θ are optimized within a local descent in order to finely minimize C.

For a given measure µ ∈ M(D), we can define a certificate that helps ensuring
the solution is attainable. It is defined as:

(2.1) ηλ(µ)
def.
=

1

λ
ΦT (y −Φµ).

Notably, the certificate is said to be non-degenerate when

(2.2)

∣∣∣∣ ∀µ ∈M(D) \
⋃N
n=1{δθn

}, |ηλ(µw,θ)| < 1,
∀n ∈ {1, . . . , N}, ηλ′′(wnδθn

) 6= 0.

This property ensures the stable recovery of the solution µ∗ in low noise regime [17].
We refer the reader to [14] for the complete introduction of certificates relative to the
SFW algorithm.

The certificate ηλ is unknown when handling real-world problems. Nevertheless,
within a step of SFW, it can be approached based on the current estimation of µ,
denoted µ[k] for step k:

(2.3) η[k]
def.
=

1

λ
Φ>

(
y −Φµ[k−1]

)
Informally, it can be seen as the result of the convolution between the residual and
the image of an atom located at one point in D. This forms the first step of SFW.
Besides, the sequence (η[k])k∈N produced by SFW converges (in infinite norm) towards
ηλ. Hence, testing if ‖η[k]‖∞ < 1 forms a stopping condition of SFW1. When this is
not the case, η[k] has low amplitudes where µ[k−1] explains well the observed y, and
high amplitudes elsewhere. Thus, high absolute values locate where mass has to be
appended in order to better explain y, yielding the second step of SFW.

SFW is described in Algorithm 2.1, and Figure 2a depicts the steps encountered
on a 2D toy example. More generally, details on this algorithm can be found in [14].
Notably, SFW is proven to find the solution of (Pλ) in a finite number of steps when
ηλ is non-degenerate.

2.2. Boosting SFW. In addition to its interesting theoretical properties, in
most cases SFW is efficient and retrieves, on synthetic data, the N provided atoms in
exactly N steps. This has already been noted in [14] but has not been proven so far.

Investigating more closely the course of SFW, we observe that:
• most computation time is spent in the local descents of step 4, which handle

all k ×D parameters. Then, all parameters are again updated, so that for all
iterations except the last one, the finely-optimized parameters are modified
afterwards.

1This condition is in fact equivalent to ∇C(y, λ, µ[k]) ≤ 0 on M(D), see e.g. [14, Remark 7] or
[12, Appendix A].
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Algorithm 2.1 Sliding Frank-Wolfe algorithm solving (Pλ)[14]

Input: y, PSF H, λ
Output: µw,θ, solution of (Pλ)

Initialization: µw[0],θ[0] = 0 or an initial guess if available.
repeat(iteration k):

1. Compute maxθ∈D η[k] by local ascent using e.g. L-BFGS-B [9], starting from a
maximum attained on a grid.

if maxθ∈D η[k] > 1 :
2. Expand the support: θ[k]=θ[k−1] ∪ arg maxθ∈D η[k], and let Nk be the current
number of Dirac masses.
3. Adjust weights only (LASSO):

w̃[k] = arg min
w∈RNk∗

C(y, λ, µw,θ[k])

4. Local descent on all parameters using e.g. L-BFGS-B, starting at µw̃[k],θ[k] :

w[k],θ[k] = local descent of
w∈RNk∗ ,θ∈DNk

C(y, λ, µw,θ)

5. Remove zero-weighted masses and update the measure:

µ[k] =
∑Nk

n=1 w
[k]
n δ

θ
[k]
n

else:
µ̂[k−1] is a solution. End of SFW

• this step often marginally decreases the objective criterion C from (Pλ) (this
is the case, e.g. in Fig. 2a). We noted that this is partly due to the result of
step 1: the local ascent maximizing η[k] yields an already relevant result, so
the local descent of step 4 does not decrease C much.

Based on these observations, we propose a boosted version of the SFW algorithm,
denoted BSFW, which removes most of the local descents. As in SFW, the certificate
η[k] locates new atoms and indicates when the algorithm should stop. Then, at iteration
k, either:

• maxθ∈D η[k] > 1, and a new Dirac mass is added, then only w[k] is adjusted,
• maxθ∈D η[k] < 1, and a local descent is made to adjust (w[k],θ[k]). Afterwards,

if we still have maxθ∈D η[k] < 1 then BSFW stops, otherwise BSFW continues.
To summarize, BSFW performs local descent when needed, and not systematically,
thanks to the insights given by maxθ∈D η[k]. The procedure is described in Algo-
rithm 2.2. and Figure 2b depicts the BSFW steps on a toy case.

2.3. BSFW convergence and time complexity analysis.
Convergence analysis. The following proposition expands the finite termination

property of SFW to the BSFW algorithm introduced in the previous section.

Proposition 2.1 (Finite termination of BSFW). Let µ∗ be the unique solution
of (Pλ). Assuming that ηλ is non-degenerate (2.2), then the BSFW algorithms recovers
µ∗ after a finite number of steps.

The proof of this proposition is given in Appendix A, and is mostly based on the proof
established for the SFW solver in [14, Sec. 4.2]. The main difference lies in the fact
that the local descent of step 5 is not performed at all iterations, but at least once
during BSFW.

Time complexity. In order to study the time complexity of SFW and BSFW, let
us denote K the number of atoms in a given image y, L = D + 1 the number of
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(a) SFW. In the first line, of the central block, a new atom is appended. In the second line, the
weights w are adjusted, and in the third line, both θ and w are adjusted.
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(b) BSFW. In the first line of the central block, a new atom is appended. In the second line, the
weights w are adjusted. The only local descent over w and θ occurs In the last column.

Fig. 2: Depiction of SFW and BSFW on a 2D toy example, where each column
represent an iteration of the algorithms. The positive and negative intensities are
coded in red and blue respectively. In this example, BSFW obtains a result similar to
SFW while avoiding all but one local descents.

parameter per atom, and S the size of y. Let us assume that we are at an iteration
containing, at its end, k atoms. All local descents are performed using L-BFGS-B [9],
because the parameter to search for lie in the bounded domain D. Table 1 summarizes
the time complexities of the different steps involved an iteration of SFW and BSFW.

From this table, we can see that an iteration containing k atoms has the following
complexity:

• O
(
k2S(L+ 1) + 2kLS logS

)
for SFW,

• O
(
k2S + 2LS logS

)
for an iteration of BSFW if maxθ∈D η(k) > 1,

• O
(
k2LS + 2kLS logS + 2LS logS

)
otherwise.

Given an image y containing K atoms, let us assume that K iterations are needed
to find the solution, i.e. no Dirac mass was removed in the process. Then, summing
from k = 1 to K yields, for SFW, the following best-case time complexity:

(2.4) O
(
K3

3
LS +K2LSlogS

)
.

For BSFW, depending on the values reached by ‖η[k]‖∞, two scenario can be
considered. In the worst case, there is an alternance of steps 2–4 and 5–6 until the
solution contains K atoms. Here, the time complexity of BSFW is the same as SFW.
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Algorithm 2.2 Boosted Sliding Frank-Wolfe solving (Pλ)

Input: y, PSF H, λ
Output: Estimated minimizer µ̂w,θ of (Pλ)

repeat (iteration k):
1. Compute maxθ∈D η[k] by local ascent using e.g. L-BFGS-B, starting from a
maximum attained on a grid.

if maxθ∈D η[k] > 1 :
2. Expand the support: θ[k]=θ[k−1] ∪ arg maxθ∈D η[k]

3. Adjust weights only (LASSO):

w̃[k] = arg min
w∈Rk

∗

C(y, λ, µw,θ[k])

4. Remove zero-weighted masses, update the measure:

µ[k] =
∑k
n=1 w̃

[k]
n δ

θ
[k]
n

else:
5. Local descent on all parameters using e.g. L-BFGS-B, starting at µw̃[k],θ[k] :

w[k],θ[k] = local descent of
w∈Rk

+,θ∈Dk
C(y, λ, µw,θ)

6. Remove zero-weighted masses, update the measure:

µ[k] =
∑k
n=1 w

[k]
n δ

θ
[k]
n

7. Compute maxθ∈D η[k+1].
if maxθ∈D η[k+1] > 1 :
continue

else:
µw[k],θ(k] is a solution. End of BSFW

Table 1: Time complexity of the operations involved in SFW and BSFW over k atoms.

Optimization algorithm Complexity of a single
function evaluation

Algorithm time
complexity

LASSO over k < S
parameters with coordinate
descent.

O(S) O(k2S)

Local descent over v
variables using L-BFGS-B.

O(S) O(vS)

Local descent over L− 1
parameters for estimating
maxθ∈D η

[k] using
L-BFGS-B.

Convolution (FFT and
IFFT) and 2 elementary
operations: O(2S logS)

O(2(L− 1)S logS)

Local descent over k × L
parameters using
L-BFGS-B.

Convolution (FFT and
IFFT) and k + 1
elementary operations:
O(kS + 2S logS)

O(k2LS + 2kLS logS)

In the best case, BSFW go through steps 2–4 K times and through steps 5–6 only
once, and no Dirac mass is removed in the process. Then the best-case time complexity
for BSFW is:

(2.5) O
(
K3

3
S + 3KLSlogS

)
.
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Fig. 3: Time complexity for a fixed L = 6, S = 1003 and a varying K (left) and for
a fixed L = 6, K = 10 (right). SFW is depicted in orange and BSFW in blue. The
hatched region cover the interval between the worst and best case for BSFW.

Fig. 3 depicts the time complexity of BSFW and SFW. While the complexity order is
the same (cubic in K for instance), BSFW offers room for reducing the time complexity
of SFW without dropping its finite termination property.

3. Homotopy embedding of BLASSO solvers.

3.1. Motivation. We have seen that SFW and BSFW provide a solution for the
BLASSO problem stated in (Pλ). However, this require to choose the regularization
parameter λ before solving the problem. In practice, this choice is difficult to make,
because there is no direct link between λ and properties of the solution. On the other
hand, the solution of (P1) can be related to the residual of the image, which is easily
interpretable.

In this section, we introduce a homotopy algorithm solving (P1) by embedding
the BLASSO solvers seen in the previous section. The purpose is not to explore the
full regularization path, but only its first segment (higher values of λ) until the `2
condition of (P1) is satisfied (see Fig. 1). This condition is equivalent to bounding the
standard deviation of the residual, so we will work from this point of view which is
more useful for practitioners.

The homotopy algorithms existing in the literature rely on the fact that the
regularization path is piecewise linear (see e.g. [23]). These algorithms are stated over
a discretized space, but this property also holds for the space of measure. Indeed, let
us consider λ1 and λ2, and µ1, µ2 solutions of (Pλ1

), (Pλ2
) respectively, such that

ηλ1
(µ1) = ηλ2

(µ2). Then we can see that ∀a ∈ [0, 1], aµ1 + (1− a)µ2 is a solution of
(Paλ1+(1−a)λ2

). So when two solutions µ1 and µ2 have the same certificate value for
λ1 6= λ2, the regularization path between λ1 and λ2 is a linear segment.

3.2. Homotopy for BLASSO solvers. The purpose of our approach is to
solve (Pλ) for a decreasing sequence of λ until the solution also solves (P1). Let
{λ0, λ1, . . . , λT } be the decreasing sequence of regularization parameters, and {µ̂[0], µ̂[1],
. . . , µ̂[T ]} the sequence of corresponding solutions provided by the BLASSO solvers
(SFW or BSFW), such that µ̂[T ] is also solution to (P1). When designing a homotopy
algorithm, one must state what is the starting value of λ, how to account for the past
knowledge, and also how λ will evolve.

Starting point. By construction of SFW and BSFW, if ‖η[0]‖∞ < 1, the algorithms
stop. Because η[0] = 1

λΦTy, SFW and BSFW find at least one spike in the solution
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Algorithm 3.1 Homotopy algorithm for the BLASSO

Input: y, PSF H, σtarget, c > 0
Output: Estimation µ̂w,θ, solution of (P1)

Initialization: λ0 = ‖ΦTy‖∞ and µ[0] = 0.
repeat (iteration t)

1. Starting from µ̂[t−1], solve the BLASSO problem (Pλt
) to obtain µ̂[t], using

either SFW (Alg. 2.1) or BSFW (Alg. 2.2).
2. Compute σt from the residual y −Φµ̂[t]

if σt < σtarget : µ̂[t] is a solution. End of the algorithm.
else:

3. Compute maxθ∈D η[t] by local ascent.

4. Update λt+1 =
λt max η[t]

1+c

for λ0 < ‖ΦTy‖∞ and the solution remains empty for λ0 ≥ ‖ΦTy‖∞. In other words,
‖ΦTy‖∞ is the lowest λ0 value for which µ̂[0] = 0. Note that a similar starting point
is used in the discretized case [23][26, Remark 2.3].

Continuation. By construction, the solution to (Pλt+1
) contains at least as much

atoms as the solution of (Pλt
). Hence, instead of solving Pλt+1

starting from an empty

µ
[0]
[t+1] = 0, we use the previous estimation as a warm start. So the initialization of

SFW and BSFW within the homotopy algorithm is,∀t > 0

(3.1) µ
[0]
[t+1] = µ̂[t]

This approach is referred as the continuation between steps [19, 32], and significantly
speeds up the numerical computations.

Jumping to the next step. Besides, both BSFW and SFW are guided and stopped
by successive computations of η[k] (2.3). Notably, when ‖η[k]‖∞ < 1, the algorithms
stop. If the resulting solution of (Pλ) does not solve (P1), a lower value of λ has to be
found. In order to ensure that at least one step of SFW or BSFW is made in a new
homotopy iteration, it is necessary to have ‖η[k]‖∞ greater than one at the next step.

Since µ
(0)
t+1 = µ̂λt , by construction of SFW and BSFW it is sufficient to set ∀t > 0

(3.2) λt+1 =
λt‖η[k][t] ‖∞

1 + c

with c any positive real value. Using this approach guarantees that each homotopy
step happens on a different linear segment of the regularization path.

To summarize, the homotopy algorithm for BLASSO requires the definition of
some c > 0 and of the target standard deviation σtarget. The latter is easily available
on practical problems, while the former rules the speed of the algorithm but not its
output. In the following, we will set c = 1. In the remaining of the paper, we will refer
as Homotopy-SFW (H-SFW) and Homotopy-BSFW (H-BSFW) for the respecting
embedding of SFW and BSFW into Alg. 3.1.

3.3. Convergence and time complexity analysis.

Proposition 3.1. The homotopy method (Alg. 3.1) for the BLASSO problem has
the finite termination property, i.e. there exists some T ∈ N satisfying σT < σtarget,
such that µ̂T is a solution to (P1).
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This proposition is proved in Appendix B, and relies on the fact that ∀t, ‖y−Φµ[t]‖22 >
‖y −Φµ[t+1]‖22.

Time complexity. We are interested in the first T segments of the regularization
path, not in its full exploration. Hence, the complexity is no longer exponential
as could be expected from [23] in the discretized case. Let us consider an image y
containing K atoms.

Regarding H-SFW, we study two situations :
• worst case: each homotopy iteration adds exactly one atom to the solution,

so the stopping condition is attained in at least T = K homotopy iterations.
Then each homotopy iteration corresponds to one SFW iteration.
• best case : the first homotopy iteration is sufficient to attain the stopping

criterion, so T = 1. Hence SFW is run once but has K steps.
So in both case, H-SFW has the same complexity as SFW.

However, H-BSFW may be faster:
• in the worst case: one homotopy step corresponds to two BSFW step, hence

the complexity is the same as in the SFW case.
• in the best case: BSFW is run once over K + 1 steps. So the complexity of

H-BSFW is the complexity of BSFW.
Note that as in the previous section, we did not account for the time complexity

caused by the possible removal of zero-weighted Dirac masses. Indeed, it is impossible
to know in advance if this step will happen, or not. In practice, it occurs seldomly,
but helps reducing the dimension of the solution when necessary.

4. Numerical results. This section presents the experimental results obtained
in the case of 3D deconvolution by SFW, BSFW and their homotopy embedding.

4.1. Experimental setting. The observation model is set so as to reflect a
tomographic diffractive microscopy setup [29] under the Born approximation, which
linearizes the problem linking the optical index to the electric field. In this framework,
several holograms are acquired under varying illumination conditions. Their combina-
tion in the Fourier space forms a synthetic aperture, which acts similarly to an Optical
Transfer Function (OTF) [28]. The OTF, and the corresponding PSF, are depicted in
Figure 4 and are known prior to the processing, thanks to the theory behind the data
acquisition.We consider only transparent objects, i.e. there is no absorption and the
real-valued voxel intensity is a measure of the Refractive Index (RI).

In order to capture smooth and sharp objects as well, we choose to use generalized
isotropic Gaussians as atoms, yielding ∀1 ≤ n ≤ N and ∀s ∈ R3:

(4.1) G(θn, wn; s) = wn exp

(
− 1

2σdnn
‖mn − s‖dn2

)
so that θn = {mn, σn, dn} ∈ D ⊂ R3 × R2

+∗. The dn parameter allows to fit object
with different intensity gradient : a greater dn yields a sharper object than a usual
Gaussian.

Implementation. Several implementation points have been leveraged to improve
the speed of both SFW and BSFW:

• convolutions are made in the Fourier domain,
• ∇C is computed analytically, so as to avoid a costly numerical approximation.

For completeness, its analytical form is reported in Appendix C,
• the computations of C and ∇C are parallelized across atoms,
• a lookup table for convolution in D is computed once in order to accelerate

the grid initialization for the local ascent of η[k] (2.3).
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Fig. 4: Slices of the OTF (left) and PSF (right) of the considered observation model.
The first line depicts slices along the optical axis (vertical axis) and the second line
depicts slices in the perpendicular plane. The PSF and OTF are axisymmetric, yielding
a ”missing cone” in the Fourier space along the said axis.

Alternative. In the context of image reconstruction, a popular criterion is based
on regularization by the total variation (TV) between pixels [5]. Its unconstrained
formulation is:

(PTVp
) min

x∈RS
TVp(x) subject to ‖y −Hx‖2 ≤ e,

and it constrained counterpart is

(PλTVp
) min

x∈RS

1

2
‖y −Hx‖22 + λTVp(x),

where x is the noiseless image prior to convolution. We choose to use p = 1 or p = 2 for

TV regularization, with TVp(x) =
∑
i∈S

(∑
j∈N (i)(xi − xj)p

) 1
p

where for any voxel

i, N (i) represents its neighboring voxels. Using p = 1 is expected to provide sharp
edges and flat intensities, whereas using p = 2 should promote a smoother solution.

To solve (PλTVp
), we use a solver based on the Accelerated Proximal Gradient

(APG) (with an inverse square convergence rate [33]) whose description is given in
Appendix D. Using this approach as a counterpart of SFW and BSFW, we can compare
its output x̂ with the estimations Φµ̂SFW and Φµ̂BSFW. Besides, the TV solver can
be also used within a modified homotopy algorithm denoted H-TV, which is reported
in Appendix D.
In the following, we study two synthetic cases:

A. A 3D Gaussian mixtures with randomly-chosen parameters (see Fig. 5a). In
this case, we will vary the number of atoms K and the number of voxels S.

B. A 3D phantom cell, with a large spherical component (analog to the cytoplasm)
containing several smaller components (see Fig. 5b). On a real image, these
small components could be the cell core, mitochondria, or vacuoles (for lower

11
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(a) Case A: mixture of generalized Gaussians.
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(b) Case B: mixture of 10 generalized Gaussians
over a central atom whose parameters are fixed
for all simulations.

Fig. 5: Examples of the two synthetic cases considered for the numerical study, seen
from their central transversal or longitudinal (along the optical axis) slices. Red (resp.
blue) indicates positive (resp. negative) values. In both cases, the values of θ are
randomly chosen.

index). We keep 10 small components and vary S in the experiments. This
phantom cell model is inspired by [21, 22].

Note that, as in real applications, there is no prior knowledge on the real η and in
particular, if it satisfies the non-degeneracy condition (2.2) or not.

In this experimental section, we are interested in two quantities :
• How far is the solution to the original image x∗. It is evaluated trough the

imaging operator Φ, so that the quantity of interest is ‖Φµ̂ − x∗‖2 when
applying a BLASSO solver and ‖x̂TV − x∗‖2 when applying the TV solver.

• The computation time. Since it is implementation dependent, we will use the
computation time of SFW (or H-SFW) with S = 1003 voxels and K = 10 as
a reference.

4.2. Solving the unconstrained BLASSO problem. In this section, we in-
vestigate the numerical behavior of the three studied solvers by themselves, leaving
aside the homotopy embedding which will be investigated in the next section. This
allows to distinguish what is due to each solver from what is due to their interac-
tion with the homotopy method. So in this section, we focus again on solving (Pλ)
and (PλTVp

) respectively. In order to avoid tuning λ, for each experiment its value
was taken from the output of the homotopy method, for which results are reported in
the next section.

The numerical results of the TV, SFW and BSFW solvers are reported in Fig. 6:
• The main observation from case A is that BSFW yields similar results than

SFW, while providing notably reduced computation times: on average BSFW
is 30% to 38% faster than SFW.

• The computation time are mostly linear as a function of K and S over the
investigated ranges. This observation only indicates that over these range, the
linear terms overcome the higher-degree terms seen in (2.4) and (2.5). This
is expected since the linear term originates from the L-BFGS-B algorithm,
which is the computational bottleneck of the methods.
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(a) Numerical results for case A (Fig. 5a). The red vertical line (S = 1003,
K = 10) is shared between the first and the second line.
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(b) Numerical results for case B (Fig. 5b), with the same legend as case A.

Fig. 6: Error rate for the three solvers evaluated in this study. Each point is averaged
over 10 random values of θ.

• The results for case B are quite different from case A: SFW and BSFW results
and speed are similar. This observation is somewhat counter-intuitive, and
the next section will provide additional insights on this point.

• In all cases, the TV1 and TV2 solvers are faster than SFW or BSFW, at the
cost of providing worse results. Note also that TV2 provide slightly better
results than TV1, which is expected from the smoothness of the original
images.

As a partial conclusion, we see that depending on the complexity of the observation,
the use of SFW or BSFW at a fixed value of λ may not be fully satisfying.

4.3. Homotopy solving of the constrained BLASSO. In this section, we
investigate the constrained reconstruction problem as stated in (P1) and (PTVp

) by
the homotopy method in Alg. 3.1. We especially focus on the interaction between
homotopy and the TV, SFW and BSFW solvers whose results are reported in the
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previous section. Here, we set σtarget = 1.05σ where σ is the known noise standard
deviation.
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(a) Case A.
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(b) Case B.

Fig. 7: Example results obtained on the images from Fig. 5, using the same colormap.
We observe that the TV1 regularization enforces some intensity and morphological
flattening, so the solver hardly copes with smooth intensity and spherical shapes. Note
also that the flattening of TV1 follows the voxel grid because of the structure of the
considered local neighborhood. On the contrary, the TV2 regularization is too smooth
to capture small details and sharper edges.

An instance of results obtained by the homotopy algorithm is given in Fig. 7, and
the complete results are reported in Fig. 8:

• The H-TV methods are always the fastest, but provide poor reconstruction
results in all cases. Notably, the results from H-TV2 method are too smooth
as it tends to erase details in the reconstruction, as can be seen in Fig. 7b.

• Unlike H-TV, the H-SFW solver provides the best results but is also the most
time consuming.

• The H-BSFW solver yields, on average, results at least as good as its SFW
counterpart, but the computation time is notably reduced.

• The homotopy embedding makes noticeable the difference between the SFW
and BSFW approaches, in the two considered cases. Let us recall that the
results from figure 6 are obtained with the value of λ found by homotopy. It
follows that SFW and BSFW are sensible to their initialization, and that the
homotopy embedding succeeds in providing an accurate one.

• Besides, by comparing figure 6 and 8, we also observe that the homotopy algo-
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(a) Numerical results for case A , with the same legend as Fig. 6a.
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(b) Numerical results for case B.

Fig. 8: Numerical results for the homotopy embedding of the three studied solvers.
The legend is the same as in Fig. 6.

rithms are a bit slower than their embedded solvers, but that the computation
times remain similar.

Thus, the homotopy algorithm allows a finer exploration of the solution path, while
having moderate additional computational cost with respect to the original solver.

In other words, we provided a way to solve the constrained BLASSO problem (P1)
at a similar speed than its unconstrained counterpart (Pλ), while providing a better
solution and setting a constraint on the result.

4.4. Application on real images. In this section, we present the results ob-
tained on images from a real TDM setup [29]. The observation system is more
intricated than the observation model (1.2): the image is formed in presence of a non-
zero background, the holograms contain some aberrations, and the Born hypothesis
remains approximate for thick samples (a few µm). We study two cases:

C. the observation of a polymer bead whose size and refractive index are known.
Such observation is useful to verify the estimations of reconstruction algorithms.
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Noteworthy, the reconstruction suffers from some imperfections that make the
apparent refractive index vary along the optical axis, which should not be the
case of the physical bead.

D. the image of a snowdrop pollen (Galanthus nivalis), whose physical properties
are unknown. The pollen has an ovoid shape and is slightly flattened along
the z axis, because of the transparent slides used to prepare the sample.

The estimated standard deviation, σ̂, is computed over an empty region of the volume.
Then, we set σtarget = 1.5σ̂. The volumes, as well as the corresponding results, are
reported in Fig. 9:

• For case C, the reconstruction using TV1 or TV2 is efficient in removing the
noise, but is limited by the reconstruction artifacts, making the shape blurry
along the optical axis. Instead, the reconstructions with H-SFW and H-BSFW
do separate the central bead from its neighborhood, which is depicted by a
few lower-intensity atoms.

• Regarding case D, the H-TV algorithms yield two extreme behaviors: H-TV1

retrieves the outer morphology of the pollen, but erases all its internal gradient,
while H-TV2 retrieves some local variations but yields a blurry shape. Instead,
regarding H-SFW and H-BSFW, the sharp edges are less captured, but the
internal refractive index variations are fitted. In particular, the pollen has
an outer shell that is visible in y from texture changes. This shell seems
well-captured by H-SFW and H-BSFW.

As a concluding remark, let us notice that the choice of G as isotropic generalized
Gaussian is made for this paper in an illustration purpose. In a general fashion, G
could be more generic, or specific to some application, as long as its gradient is defined.

5. Discussion. In this paper, we studied the problem of gridless sparse recovery.
We found that the recent SFW solver could be notably accelerated, while preserving
its finite termination property. Furthermore, we showed that these solvers could be em-
bedded within a homotopy algorithm, allowing thus to solve the constrained BLASSO
problem. Numerically, the methods were applied in the case of 3D deconvolution,
showing that the BSFW does accelerate SFW, and that the homotopy embedding is
also effecient to accurately parse the solution path.

Future works will focus on the use of other atomic shapes, such as splines, and on
the generalization of the measure model beyond the sum of Dirac masses.
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constraint strategy in limited angle optical diffraction tomography, Optics Express, 24 (2016),
pp. 4924–4936.

[22] J. Lim, A. B. Ayoub, E. E. Antoine, and D. Psaltis, High-fidelity optical diffraction tomog-
raphy of multiple scattering samples, Light: Science & Applications, 8 (2019), pp. 1–12.

[23] J. Mairal and B. Yu, Complexity analysis of the lasso regularization path, in Proceedings of
the 29th International Conference on Machine Learning (ICML 2012), 2012.

[24] J. Nocedal and S. Wright, Numerical optimization, Springer Science & Business Media, 2006.
[25] M. R. Osborne, B. Presnell, and B. A. Turlach, A new approach to variable selection in

least squares problems, IMA journal of numerical analysis, 20 (2000), pp. 389–403.
[26] M. R. Osborne, B. Presnell, and B. A. Turlach, On the lasso and its dual, Journal of

Computational and Graphical statistics, 9 (2000), pp. 319–337.
[27] N. Parikh and S. Boyd, Proximal algorithms, Foundations and Trends® in Optimization, 1

(2014), pp. 127–239.
[28] C. Park, S. Shin, and Y. Park, Generalized quantification of three-dimensional resolution in

optical diffraction tomography using the projection of maximal spatial bandwidths, JOSA A,
35 (2018), pp. 1891–1898.
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Appendix A. Finite termination of BSFW.
In this appendix, we prove the finite termination property of BSFW. The proof is

reported here for completeness, but follow mostly the one given in [14].
Let (µ[k])k∈N be the sequence of estimations made by BSFW, µ∗ be the unique

solution of (Pλ) and N be the number of atoms in µ∗.
Because steps 3 (weight fit) and 5 (local descent on all parameters) both decrease

C, we have ∀k > 0:

(A.1) C(y, λ, µ
[k]
w,θ) ≤ C(y, λ, µ̃[k]) ≤ C(y, λ, µ[k]) ≤ C(y, λ, µ[k−1])

where µ̃[k] is the result of step 2 (support expansion) at iteration k. As noted in [14],
µ̃(k) is the result of a standard Frank-Wolfe algorithm, so we benefit from the same
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convergence rate [24]: there exists A > 0 such that

(A.2) ∀k > 0, C(y, λ, µ
[k]
w,θ)− C(y, λ, µ∗) ≤ A

k
.

Hence, (µ[k])k∈N is a bounded minimizing sequence. One can extract from it a
subsequence that converges towards some µ ∈M(D) for the weak-* topology. Since
Cλ is convex and lower semi-continuous (l.s.c.), it is also weak-* l.s.c. so that Cλ(µ) =
Cλ(µ∗), making µ a solution of (Pλ). Hence, if µ∗ ∈ M(D) is the unique solution
of (Pλ), then (µ[k])k∈N weak-* converges towards µ∗.

Such convergence can also be established for the certificate η and its derivatives.
From [14], we obtain that because Φ is weak-* to weak continuous and ΦT is a compact
operator, ∀j ∈ {0, 1, 2}:

(A.3) (η[k])(j)
‖·‖∞,M(D)−→
k→+∞

η
(j)
λ .

Let us denote µi = wiδθi
for the i−th spike in µ∗. As in [14], the proof of finite

termination is made in three steps.
First step. Because ηλ is non-degenerate, and because of (A.3), there exists e > 0

and k1 ∈ N such that:

(A.4) ∀k ≥ k1,∀i ∈ {1, . . . , N},∀µ ∈ Iµi,e, η
(k)′′(µ) 6= 0,

where Iµi,e =]µi − e, µi + e[.
Second step. Since µ[k] converges towards µ∗ in the weak-* topology, and |µ∗|

does not charge the boundary of Iµi,e we have:

(A.5) ∀i ∈ {1, . . . , N}, µ[k](Iµi,e) →
k→+∞

µ∗(Iµi,e) = wi 6= 0.

Hence, there exists k2 ∈ N such that ∀k ≥ k2, µ[k] contains at least one spike in each
Iµi,e. Notably, µ[k] contains at least N spikes.

Third step. Because of (A.3), there exists some k3 such that ‖η[k3]‖∞ < 1, so
step 5 (local descent on all parameters) happens. In addition, from (A.3), there exists
k4 such that

(A.6) ∀k ≥ k4,Sat±(η[k]) ⊂ Sat±(ηλ)⊕ (]− e, e[×{0}) .

With the set of saturation point of a given η ∈ C0 (M(D),R) defined as Sat±(η) =
{(x, v) ∈M(D)× {−1, 1}; η(x) = v}. In addition:

(A.7) ∀µ ∈M(D) \
N⋃
i=1

Iµi,e, |η[k](µ)| < 1.

In particular, for k ≥ k3 and k ≥ k4, µ[k] has no spikes in M(D) \
⋃N
i=1 Iµi,e because

it would contradict the optimality of step 5.
Gathering the three steps, let us assume that k ≥ max(k1, k2, k3, k4). Then:

• η[k]′′(x) 6= 0 inside
⋃N
i=1 Iµi,e

• µ[k] has at least one spike in each Iµi,e.

• step 2b happens, so µ[k] has no spikes outside of
⋃N
i=1 Iµi,e
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Let µ
[k]
j be the position of the j−th spike in µ[k]. From step 5 (local descent on

all parameters) we have that η(k)′(µ[k]
j ) = 0. Because η(k)′′ 6= 0 in Iµi,e, this implies

that |η(k)| < 1 except in µ
[k]
j . So µ[k] has exactly one spike in Iµi,e, and:

(A.8) ∀µ ∈M(D) \
N⋃
i=1

µ
[k]
j , |η

(k)(µ)| < 1.

Hence µ[k], containing N spikes, is a solution of (Pλ). Since µ∗ is assumed to be
the unique solution of (Pλ), µ[k] = µ∗: the BSFW algorithms recovers µ∗ in a finite
number of steps.

Appendix B. Finite termination of the BLASSO homotopy algorithm.

In this second appendix, we show that the homotopy algorithm (Alg. 3.1) stops
in a finite number of steps. To do so, we show that

{
‖y −Φµ[t]‖

}
t∈N is a strictly

decreasing sequence, ensuring that there exists t1 such that ∀t ≥ t1, ‖y −Φµ[t]‖ < e

(or equivalently that
√
‖y −Φµ[t]‖/S ≤ σtarget) so that Alg. 3.1 stops at t1.

Because λt > λt+1, we have ∀µ ∈M(D):

(B.1) C(y, λ, µ) =
1

2
‖y −Φµ‖2 + λt|µ| >

1

2
‖y −Φµ‖2 + λt+1|µ| = C(y, λt+1, µ).

In particular for µ = µ[t] :

(B.2) C(y, λt, µ[t]) > C(y, λt+1, µ[t]) > C(y, λt+1, µ[t+1]),

because µ[t+1] is a minimizer of C(·, λt+1).
From (B.2) we have:

1

2
‖y −Φµ[t]‖2 + λt|µ[t]| >

1

2
‖y −Φµ[t+1]‖2 + λt+1|µ[t+1]|

‖y −Φµ[t]‖2 − ‖y −Φµ[t+1]‖2 > 2λt+1|µ[t+1]| − 2λt|µ[t]|
(B.3)

Let us denote:

(B.4) µ∗(λ) = arg min
1

2
‖y −Φµ‖2 + λ|µ|.

Then, we have:

(B.5)
∂C(y, λ, µ)

∂µ

∣∣∣∣
µ=µ∗(λ)

= ΦT (Φµ∗ − y) + λ = 0,

where ∂·
∂µ is the Radon-Nikodym derivative over M(D). Deriving with respect to λ

yields:

∂

∂λ

(
∂C(y, λ, µ)

∂µ

∣∣∣∣
µ=µ∗(λ)

)
+
∂µ∗(λ)

∂λ

∂

∂λ

∂2C(y, λ, µ)

∂2µ

∣∣∣∣
µ=µ∗(λ)

= 0,

1 + ΦTΦ
∂µ∗(λ)

∂λ
= 0.

(B.6)

Because ΦTΦ 6= 0, we have that ∂µ∗(λ)
∂λ < 0. Hence, λt > λt+1 implies that |µ[t]| <

|µ[t+1]|.
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Going back to (B.3), we showed that ‖y −Φµ[t]‖2 − ‖y −Φµ[t+1]‖2 > 0, hence
σt+1 < σt ∀t. Hence, the {σt}t∈N form a strictly decreasing sequence, and so there
exists some T ∈ N such that σT < σtarget: the homotopy algorithm stops in a finite
number of iterations.

Appendix C. Gradient of C.
In this appendix, we report the analytical form of the gradient of C from (Pλ), given

that atoms are generalized 3D Gaussians (4.1). Let us recall that C is parametrized
by θ = {θ1, . . . ,θn, . . . ,θK} and that each θn rules a different atom. Let us denote
mn,i one of the three scalars forming the position vector mn ∈ R3 and si one of the
three scalars of s, which locates a voxel in y. For each θn ∈ θ and for each parameter
θn,i ∈ θn = {mn,1,mn,2,mn,3, σn, dn}:

(C.1)
∂C(y, λ, µw,θ)

∂θn,i
= H ∗

∑
s∈S

∂G(θn, wn, s)

∂θn,i
× 2 (Φµw,θ − y)

We now write the derivatives of G along each component of one atom θn. For
each location parameter, we have:

(C.2)
∂G(θn, wn, s)

∂mn,i
=
dn(si −mn,i)

2σdnn
‖mn − s‖dn−22 G(θn, wn, s).

Deriving G along the n−th standard deviation yields:

(C.3)
∂G(θn, wn, s)

∂σn
=

dn

2σdn+1
n

‖mn − s‖dn2 G(θn, wn, s),

and the derivative with respect to the n−th degree is:

(C.4)
∂G(θn, wn; s)

∂dn
= − 1

2σdnn
‖mn − s‖dn2 log

(
1

σn
‖mn − s‖2

)
G(θn, wn, s).

Finally,

(C.5)
∂C(y, λ, µw,θ)

∂wn
= λ sgn(wn) + H ∗

∑
s∈S

2G(θn, wn, s)

wn
(Φµw,θ − y) ,

when wn 6= 0. When wn = 0 we adopt the convention
∂C(y,λ,µw,θ)

∂wn
= 0.

Appendix D. 3D image reconstruction with TV regularization. In this
last appendix, we describe how TV regularization is used as an optimization constraint
for 3D TDM images reconstruction. The goal is to reconstruct the volume x over the
voxel grid S, based on the observation y.

Proximal gradient algorithms [27] are popular to solve problems like (PλTVp). We
choose to use the accelerated proximal gradient (APG) method [33]. We start at
x0 = y and repeat the following steps ∀k > 0:

xk := xk + ωk(xk − xk−1)

xk+1 := xk − γkGγk(xk),(D.1)

where

(D.2) Gγ(x) =
1

γ

(
x− proxγ,λTV(x− γH>(Hx− y))

)
,
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Algorithm D.1 TV - Homotopy algorithm

Input: y, PSF H, σtarget, c > 0
Output: Solution of (PTVp

)

Initialization: λ0 = ‖ΦTy‖∞ and x[0] = y.
repeat (iteration t)

1. Starting from x̂[t−1], solve the BLASSO problem (PλtTV) using λt to obtain x̂[t]

using the APG algorithm.

2. Update λt+1 = λt

2
3. Estimate the standard deviation σt of the residual y − x̂[t]

until σt < σtarget

with the proximal operator defined as:

(D.3) proxγ,λTV(x) = arg min
u∈RS

(
λTV(u) +

1

2γ
‖u− x‖22

)
.

The latter is implemented using [4]. Besides, at each step k the value of γk > 0 is
found by line search [6].

Finally, the APG algorithm is stopped based on a computation of the dual gap,
i.e. the difference between the solution to (PλTVp) and the solution to its dual. The
dual gap for this problem is [16]:

(D.4) G(xk) = ‖Hxk − y‖22 + λTV(xk) + 〈Hxk − y,y〉+ λ‖x∇ · (−H>x)‖∞.

The closest G is to 0, the better is the solution. However 0 is never attained because
the problem is defined in the presence of noise. Instead, we choose to stop the APG
algorithm when the dual gap decrease stops. In practice, APG is stopped when the
relative gap between G(xk) and the average of the 10 previous iterations is lower than
10−3.

Finally, in the same fashion as SFW and BSFW, the APG method can be embedded
within a homotopy method, which is reported in Alg. D.1.

22


	Introduction
	Observation model and work hypothesis
	Gridless sparse recovery
	Homotopy
	This paper

	Boosting the SFW BLASSO solver
	The SFW solver
	Boosting SFW
	BSFW convergence and time complexity analysis

	Homotopy embedding of BLASSO solvers
	Motivation
	Homotopy for BLASSO solvers
	Convergence and time complexity analysis

	Numerical results
	Experimental setting
	Solving the unconstrained BLASSO problem
	Homotopy solving of the constrained BLASSO
	Application on real images

	Discussion
	References
	Appendix A. Finite termination of BSFW
	Appendix B. Finite termination of the BLASSO homotopy algorithm
	Appendix C. Gradient of C
	Appendix D. 3D image reconstruction with TV regularization

