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LONG TIME SOLUTIONS FOR QUASI-LINEAR HAMILTONIAN PERTURBATIONS OF SCHRÖDINGER AND KLEIN-GORDON EQUATIONS ON TORI

, where the time of existence is decreasing with respect to the dimension.

INTRODUCTION

This paper is concerned with the study of the lifespan of solutions of two classes of quasi-linear, Hamiltonian equations on the d -dimensional torus T d := (R/2πZ) d , d ≥ 1. We study quasi-linear perturbations of the Schrödinger and Klein-Gordon equations.

The Schrödinger equation we consider is the following

i∂ t u + ∆u -V * u + ∆(h(|u| 2 )) h (|u| 2 )u -|u| 2 u = 0, u(0, x) = u 0 (x) (NLS)
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where C u := u(t , x), x ∈ T d , d ≥ 1, V (x) is a real valued potential even with respect to x, h(x) is a function in C ∞ (R; R) such that h(x) = O(x 2 ) as x → 0. The initial datum u 0 has small size and belongs to the Sobolev space H s (T d ) (see (2.2)) with s 1.

We examine also the Klein-Gordon equation

     ∂ t t ψ -∆ψ + mψ + f (ψ) + g (ψ) = 0 , ψ(0, x) = ψ 0 , ∂ t ψ(0, x) = ψ 1 , (KG) 
where ψ = ψ(t , x), x ∈ T d , d ≥ 1 and m > 0. The initial data (ψ 0 , ψ 1 ) have small size and belong to the Sobolev space H s (T d ) × H s-1 (T d ), for some s 1. The nonlinearity f (ψ) has the form

f (ψ) := - d j =1 ∂ x j ∂ ψ x j F (ψ, ∇ψ) + (∂ ψ F )(ψ, ∇ψ) (1.1)
where F (y 0 , y 1 , . . . , y d ) ∈ C ∞ (R d +1 , R), has a zero of order at least 6 at the origin. The non linear term g (ψ) has the form

g (ψ) = (∂ y 0 G)(ψ, Λ 1 2 KG ψ) + Λ 1 2 KG (∂ y 1 G)(ψ, Λ 1 2 KG ψ) (1.2)
where G(y 0 , y 1 ) ∈ C ∞ (R 2 ; R) is a homogeneous polynomial of degree 4 and Λ KG is the operator

Λ KG := (-∆ + m) 1 2 , (1.3) 
defined by linearity as

Λ KG e i j •x = Λ KG ( j )e i j •x , Λ KG ( j ) = | j | 2 + m , ∀ j ∈ Z d . (1.4) 
Historical introduction for (NLS). Quasi-linear Schrödinger equations of the specific form (NLS) appear in many domains of physics like plasma physics and fluid mechanics [START_REF] Litvak | One dimensional collapse of plasma waves[END_REF][START_REF] Goldman | Upper hybrid solitons and oscillating two-stream instabilities[END_REF], quantum mechanics [START_REF] Hasse | A general method for the solution of nonlinear soliton and kink Schrödinger equations[END_REF], condensed matter theory [START_REF] Makhankov | Non-linear effects in quasi-one-dimensional models of condensed matter theory[END_REF]. They are also important in the study of Kelvin waves in the superfluid turbulence [START_REF] Laurie | Interaction of kelvin waves and nonlocality of energy transfer in superfluids[END_REF]. Equations of the form (NLS) posed in the Euclidean space have received the attention of many mathematicians. The first result, concerning the local well-posedness, is due to Poppenberg [START_REF] Poppenberg | Smooth solutions for a class of fully nonlinear Schrödinger type equations[END_REF] in the one dimensional case. This has been generalized by Colin to any dimension [START_REF] Colin | On the local well-posedness of quasilinear Schrödinger equations in arbitrary space dimension[END_REF]. A more general class of equations is considered in the pioneering work by Kenig-Ponce-Vega [START_REF] Kenig | The Cauchy problem for quasi-linear Schrödinger equations[END_REF]. These results of local well-posedness have been recently optimized, in terms of regularity of the initial condition, by Marzuola-Metcalfe-Tataru [START_REF] Marzuola | Quasilinear Schrödinger equations III: large data and short time[END_REF] (see also references therein). Existence of standing waves has been studied by Colin [START_REF] Colin | Stability of stationary waves for a quasilinear Schrödinger equation in space dimension 2[END_REF] and Colin-Jeanjean [START_REF] Colin | Solutions for a quasilinear Schrödinger equation: a dual approach[END_REF]. The global well-posedness has been established by de Bouard-Hayashi-Saut [START_REF] De Bouard | Global existence of small solutions to a relativistic nonlinear Schrödinger equation[END_REF] in dimension two and three for small data. This proof is based on dispersive estimates and energy method. New ideas have been introduced in studying the global well-posedness for other quasi-linear equations on the Euclidean space. Here the aforementioned tools are combined with normal form reductions. We quote Ionescu-Pusateri [START_REF] Ionescu | Global solutions for the gravity water waves system in 2d[END_REF][START_REF] Ionescu | Global regularity for 2d water waves with surface tension[END_REF] for the water-waves equation in two dimensions.

Very little is known when the equation (NLS) is posed on a compact manifold. The firsts local wellposedness results on the circle are given in the work by Baldi-Haus-Montalto [START_REF] Baldi | Controllability of quasi-linear Hamiltonian NLS equations[END_REF] and in the paper [START_REF] Feola | Local well-posedness for quasi-linear NLS with large Cauchy data on the circle[END_REF]. Recently these results have been generalized to the case of tori of any dimension in [START_REF] Feola | Local well-posedness for the Hamiltonian quasi-linear Schrödinger equation on tori[END_REF]. Except these local existence results, nothing is known concerning the long time behavior of the solutions. The problem of global existence/blow-up is completely opened. In the aforementioned paper [START_REF] De Bouard | Global existence of small solutions to a relativistic nonlinear Schrödinger equation[END_REF] it is exploited the dispersive character of the flow of the linear Schrödinger equation. This property is not present on compact manifolds: the solutions of the linear Schrödinger equation do not decay when the time goes to infinity. However in the one dimensional case in [START_REF] Feola | Long time existence for fully nonlinear NLS with small Cauchy data on the circle[END_REF][START_REF] Feola | A non-linear Egorov theorem and Poincaré-Birkhoff normal forms for quasi-linear pdes on the circle[END_REF] it is proven that small solutions of quasilinear Schrödinger equations exist for long, but finite, times. In these works two of us exploit the fact that quasi-linear Schrödinger equations may be reduced to constant coefficients trough a para-composition generated by a diffeomorphism of the circle. This powerful tool has been used for the same purpose by other authors in the context of water-waves equations, firstly by Berti-Delort in [START_REF] Berti | Almost global solutions of capillary-gravity water waves equations on the circle[END_REF] in a non resonant regime, secondly by Berti-Feola-Pusateri in [START_REF] Berti | Birkhoff normal form and long time existence for periodic gravity water waves[END_REF][START_REF] Berti | Birkhoff normal form for gravity water waves[END_REF] and Berti-Feola-Franzoi [START_REF] Berti | Quadratic life span of periodic gravity-capillary water waves[END_REF] in the resonant case. We also mention that this feature has been used in other contexts for the same equations, for instance Feola-Procesi [START_REF] Feola | Quasi-periodic solutions for fully nonlinear forced reversible Schrödinger equations[END_REF] prove the existence of a large set of quasi-periodic (and hence globally defined) solutions when the problem is posed on the circle. This "reduction to constant coefficients" is a peculiarity of one dimensional problems, in higher dimensions new ideas have to be introduced. For quasi-linear equations on tori of dimension two we quote the paper about long-time solutions for water-waves problem by Ionescu-Pusateri [START_REF] Ionescu | Long-time existence for multi-dimensional periodic water waves[END_REF], where a different normal form analysis has been presented.

Historical introduction for (KG). The local existence for (KG) is classical and we refer to Kato [START_REF] Kato | Spectral Theory and Differential Equations[END_REF]. Many analysis have been done for global/long time existence.

When the equation is posed on the Euclidean space we have global existence for small and localized data Delort [START_REF] Delort | Semiclassical microlocal normal forms and global solutions of modified one-dimensional KG equations Annales de l[END_REF] and Stingo [START_REF] Stingo | Global existence and asymptotics for quasi-linear one-dimensional Klein-Gordon equations with mildly decaying Cauchy data[END_REF], here the authors use dispersive estimates on the linear flow combined with quasi-linear normal forms.

For (KG) on compact manifolds we quote Delort [START_REF] Delort | Application to the quasi-linear Klein-Gordon equation on S 1[END_REF][START_REF] Delort | Quasi-Linear Perturbations of Hamiltonian Klein-Gordon Equations on Spheres[END_REF] on S d and Delort-Szeftel [START_REF] Delort | Long-time existence for small data nonlinear Klein-Gordon equations on tori and spheres[END_REF] on T d . The results obtained, in terms of length of the lifespan of solutions, are stronger in the case of the spheres. More precisely in the case of spheres the authors show the following. If m in (KG) is chosen outside of a set of zero Lebesgue measure, then for any natural number N , any initial condition of size ε (small depending on N ) produces a solution whose lifespan is at least of magnitude ε -N . In the case of tori in [START_REF] Delort | Long-time existence for small data nonlinear Klein-Gordon equations on tori and spheres[END_REF] they consider a quasi-linear equation, vanishing quadratically at the origin and they prove that the lifespan of solutions is of order ε -2 if the initial condition has size ε small enough. The differences between the two results are due to the different behaviors of the eigenvalues of the square root of the Laplace-Beltrami operator on S d and T d . The difficulty on the tori is a consequence of the fact that the set of differences of eigenvalues of -∆ T d is dense in R if d ≥ 2, this does not happen in the case of spheres. A more general set of manifolds where this does not happen is the Zoll manifolds, in this case we quote the paper by Delort-Szeftel [START_REF] Delort | Long-time existence for semi-linear Klein-Gordon equations with small cauchy data on Zoll manifolds[END_REF] and Bambusi-Delort-Grébert-Szeftel [START_REF] Bambusi | Almost global existence for Hamiltonian semi-linear Klein-Gordon equations with small Cauchy data on Zoll manifolds[END_REF] for semi-linear Klein-Gordon equations. For semi-linear Klein-Gordon equations on tori we have the result by Delort [START_REF] Delort | On long time existence for small solutions of semi-linear Klein-Gordon equations on the torus[END_REF]. In this paper the author proves that if the non-linearity is vanishing at order k at zero then any initial datum of small size ε produces a solution whose lifespan is at least of magnitude ε -k(1+ 2 d ) , up to a logarithmic loss. We improve this result, see Theorem 4, when k = 2 and d ≥ 4.

Statement of the main results. The aim of this paper is to prove, in the spirit of [START_REF] Ionescu | Long-time existence for multi-dimensional periodic water waves[END_REF], that we may go beyond the trivial time of existence, given by the local well-posedness theorem which is ε -2 since we are considering equations vanishing cubically at the origin and initial conditions of size ε.

In order to state our main theorem for (NLS) we need to make some hypotheses on the potential V . We consider potentials having the following form

V (x) = ξ∈Z d V (ξ)e iξ•x , V (ξ) = x ξ 4〈ξ〉 m , x ξ ∈ - 1 2 , 1 2 ⊂ R , N m > 1.
(1.5)

We endow the set O := [-1/2, 1/2] Z d with the standard probability measure on product spaces. Our main theorem is the following.

Theorem 1. (Long time existence for NLS).

Consider the (NLS) with d ≥ 2. There exists N ⊂ O having zero Lebesgue measure such that if x ξ in (1.5) is in O \ N , we have the following. There exists s 0 = s 0 (d , m) 1 such that for any s ≥ s 0 there are constants c 0 > 0 and ε 0 > 0 such that for any 0 < ε ≤ ε 0 we have the following. If u 0 H s < c 0 ε, there exists a unique solution of the Cauchy problem (NLS) such that u(t , x) ∈ C 0 [0, T ); H s (T d ) , sup

t ∈[0,T ) u(t , •) H s ≤ ε , T ≥ c 0 ε -4 . (1.6)
In the one dimensional case the potential V may be disregarded and we obtain the following.

Theorem 2. Consider (NLS) with V ≡ 0 and d = 1. There exists s 0 1 such that for any s ≥ s 0 there are constants c 0 > 0 and ε 0 > 0 such that for any 0 < ε ≤ ε 0 we have the following. If u 0 H s < c 0 ε, there exists a unique solution of the Cauchy problem (NLS) such that u(t , x) ∈ C 0 [0, T ); H s (T d ) , sup

t ∈[0,T ) u(t , •) H s ≤ ε , T ≥ c 0 ε -4 . (1.7)
This is, to the best of our knowledge, the first result of this kind for quasi-linear Schrödinger equations posed on compact manifolds of dimension greater than one.

Our main theorem regarding the problem (KG) is the following. Theorem 3. (Long time existence for KG). Consider the (KG) with d ≥ 2. There exists N ⊂ [START_REF] Baldi | Controllability of quasi-linear Hamiltonian NLS equations[END_REF][START_REF] Bambusi | Birkhoff normal form for some nonlinear PDEs[END_REF] having zero Lebesgue measure such that if m ∈ [1, 2]\N we have the following. There exists s 0 = s 0 (d , m) 1 such that for any s ≥ s 0 there are constants c 0 > 0 and ε 0 > 0 such that for any 0 < ε ≤ ε 0 we have the following.

For any initial data (ψ 0 , ψ 1 )

∈ H s+1/2 (T d ) × H s-1/2 (T d ) such that ψ 0 H s+1/2 + ψ 1 H s-1/2 < c 0 ε ,
there exists a unique solution of the Cauchy problem (KG) such that

ψ(t , x) ∈ C 0 [0, T ); H s+ 1 2 (T d ) C 1 [0, T ); H s-1 2 (T d ) , sup t ∈[0,T ) ψ(t , •) H s+ 1 2 + ∂ t ψ(t , •) H s-1 2 ≤ ε , T ≥ c 0 ε -a + , (1.8 
)

where a = 3 if d = 2 and a = 8/3 if d ≥ 3.
We remark that long time existence for quasi-linear Klein-Gordon equations in dimension one are nowadays well known, see for instance [START_REF] Delort | Application to the quasi-linear Klein-Gordon equation on S 1[END_REF]. The theorem 2 improves the general result in [START_REF] Delort | On long time existence for small solutions of semi-linear Klein-Gordon equations on the torus[END_REF] in the particular case of cubic non-linearities in the following sense. First of all we can consider more general equations containing derivatives in the non-linearity (with "small" quasi-linear term), moreover our time of existence does not depend on the dimension. Furthermore, adapting our proof to the semi-linear case (i.e. when f = 0 in (KG) and (1.1) and G in (1.2) does not depend on y 1 ), we obtain the better time of existence ε -10/3 + for any d ≥ 4. In the cases d = 2, 3 we recover the time of existence in [START_REF] Delort | On long time existence for small solutions of semi-linear Klein-Gordon equations on the torus[END_REF]. This is the content of the next Theorem. Comments on the results. We begin by discussing the (NLS) case. We remark that, beside the mathematical interest, it would be very interesting, from a physical point of view, to be able to deal with the case h(τ) ∼ τ . Indeed, for instance, if we chose h(τ) = 1 + τ -1; the respective equation (NLS) models the self-channeling of a high power, ultra-short laser pulse in matter, see [START_REF] Borovskii | Dynamical Modulation of an Ultrashort High-Intensity Laser Pulse in Matter[END_REF]. Unfortunately we need in our estimates h(τ) ∼ τ 1+δ with δ > 0, and since h has to be smooth this leads to h(τ) ∼ τ 2 .

Our method covers also more general cubic terms. For instance we could replace the term |u| 2 u with g (|u| 2 )u, where g (•) is any analytic function vanishing at least linearly at the origin and having a primitive G = g . We preferred not to write the paper in the most general case since the non-linearity |u| 2 u is a good representative for the aforementioned class and allows us to avoid to complicate the notation furtherly. We also remark that we consider a class of potentials V more general than the one we used in [START_REF] Feola | Long time existence for fully nonlinear NLS with small Cauchy data on the circle[END_REF][START_REF] Feola | A non-linear Egorov theorem and Poincaré-Birkhoff normal forms for quasi-linear pdes on the circle[END_REF] and more similar to the one used in [START_REF] Bambusi | Birkhoff normal form for partial differential equations with tame modulus[END_REF] in a semi-linear context.

We now make some comments on the result concerning (KG). In this case we use normal forms (the same strategy is used for (NLS) as well) and therefore small divisors' problems arise. The small divisors, coming from the four waves interaction, are of the form

Λ KG (ξ -η -ζ) -Λ KG (η) + Λ KG (ζ) -Λ KG (ξ) (1.9)
with Λ KG defined in (1.4). In this case we prove the lower bound (see (2.26))

|Λ KG (ξ -η -ζ) -Λ KG (η) + Λ KG (ζ) -Λ KG (ξ)| max 2 {|ξ -η -ζ|, |η|, |ζ|} -N 0 max{|ξ -η -ζ|, |η|, |ζ|} -β , (1.10)
for almost any value of the mass m in the interval [START_REF] Baldi | Controllability of quasi-linear Hamiltonian NLS equations[END_REF][START_REF] Bambusi | Birkhoff normal form for some nonlinear PDEs[END_REF] and where β is any real number in the open interval [START_REF] Bambusi | Almost global existence for Hamiltonian semi-linear Klein-Gordon equations with small Cauchy data on Zoll manifolds[END_REF][START_REF] Bambusi | Birkhoff normal form for partial differential equations with tame modulus[END_REF]. The second factor in the r.h.s. of the above inequality represents a loss of derivatives when dividing by the quantity (1.9) which may be transformed in a loss of length of the lifespan through partition of frequencies. This is an extra difficulty, compared with the (NLS) case, which makes the problem challenging already in a semi-linear setting. The novelty in (1.10) is that β does not depend on the dimension d . This is why we can improve the result of [START_REF] Delort | On long time existence for small solutions of semi-linear Klein-Gordon equations on the torus[END_REF]. We also quote [START_REF] Bernier | Long time behavior of the solutions of NLW on the d -dimensional torus[END_REF] where Bernier-Faou-Grébert use a control of the small divisors involving only the largest index (and not max 2 as in (1.10)). They obtained, in the semi-linear case, the control of the Sobolev norm as in (1.8), with a arbitrary large, but assuming that the initial datum satisfies ψ 0 H s +1/2 + ψ 1 H s -1/2 < c 0 ε for some s ≡ s (a) > s, i.e. allowing a loss of regularity.

We notice that also in the (KG) case we are not able to deal with the interesting case of cubic quasilinear term.

Ideas of the proof. In our proof we shall use a quasi-linear normal forms/modified energies approach, this seems to be the only successful one in order to improve the time of existence implied by the local theory. We recall, indeed, that on T d the dispersive character of the solutions is absent. Moreover, the lack of conservation laws and the quasi-linear nature of the equation prevent the use of semi-linear techniques as done by Bambusi-Grébert [START_REF] Bambusi | Birkhoff normal form for partial differential equations with tame modulus[END_REF] and Bambusi-Delort-Grébert-Szeftel [START_REF] Bambusi | Almost global existence for Hamiltonian semi-linear Klein-Gordon equations with small Cauchy data on Zoll manifolds[END_REF].

The most important feature of equation (NLS) and (KG), for our purposes, is their Hamiltonian structure. This property guarantees some key cancellations in the energy-estimates that will be explained later on in this introduction.

The equation (NLS) may be indeed rewritten as follows:

∂ t u = -i∇ u H NLS (u, u) = i ∆u -V * u -p(u) ,
where ∂ x j ∂ u x j P (u, ∇u) .

∇ u := (∇ Re(u) + i∇ Im(u) )/2, ∇ denote the L 2 -
(1.11)

The equation (KG) is Hamiltonian as well. Thanks to the (1.1), (1.2) we have that also the nonlinear Klein-Gordon in (KG) can be written as

∂ t ψ = ∂ φ H KG (ψ, φ) = φ , ∂ t φ = -∂ ψ H KG (ψ, φ) = -Λ 2 KG ψ -f (ψ) -g (ψ) , (1.12) 
where H KG (ψ, φ) is the Hamiltonian

H KG (ψ, φ) = T d φ 2 2 + (Λ 2 KG ψ)ψ 2 + F (ψ, ∇ψ) +G(ψ, Λ 1 2 KG ψ)d x . (1.13)
We describe below our strategy in the case of the (NLS) equation. The strategy for (KG) is similar.

In [START_REF] Feola | Local well-posedness for the Hamiltonian quasi-linear Schrödinger equation on tori[END_REF] we prove an energy estimate, without any assumption of smallness on the initial condition, for a more general class of equations. This energy estimate, on the equation (NLS) with small initial datum, would read

E (t ) -E (0) t 0 u(τ, •) 2 H s E (τ)d τ, (1.14)
where

E (t ) ∼ u(t , •) 2 H s .
An estimate of this kind implies, by a standard bootstrap argument, that the lifespan of the solutions is of order at least O(ε -2 ), where ε is the size of the initial condition. To increase the time to O(ε -4 ) one would like to show the improved inequality

E (t ) -E (0) t 0 u(τ, •) 4 H s E (τ)d τ. (1.15)
Our main goal is to obtain such an estimate. PARA-LINEARIZATION OF THE EQUATION (NLS). The first step is the para-linearization, à la Bony [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielle non linéaire[END_REF], of the equation as a system of the variables (u, u), see Prop. 3.1. We rewrite (NLS) as a system of the form (compare with (3.4))

∂ t U = -iE (-∆ + V * )U + A 2 (U )U + A 1 (U )U + X H 4 (U ) + R(U ), E := 1 0 0 -1 , U := u u , where A 2 (U ) is a 2 × 2 self
-adjoint matrix of para-differential operators of order two (see (3.3), (3.2)), A 1 (U ) is a self-adjoint, diagonal matrix of para-differential operators of order one (see (3.4), (3.2)). These algebraic configuration of the matrices (in particular the fact that A 1 (U ) is diagonal) is a consequence of the Hamiltonian structure of the equation. The summand X H 4 is the cubic term (coming from the para-linearization of |u| 2 u, see (3.5)) and R(U ) H s is bounded from above by U 7 H s for s large enough. Both the matrices A 2 (U ) and A 1 (U ) vanish when U goes to 0. Since we assume that the function h, appearing in (NLS), vanishes quadratically at zero, as a consequence of (3.2), we have that

A 2 (U ) L (H s ;H s-2 ) , A 1 (U ) L (H s ;H s-1 )
U 6 H s , where by L (X ; Y ) we denoted the space of linear operators from X to Y . We also remark that the summand X H 4 is an Hamiltonian vector field with Hamiltonian function

H 4 (u) = T d |u| 4 d x.
DIAGONALIZATION OF THE SECOND ORDER OPERATOR. The matrix of para-differential operators A 2 (U ) is not diagonal, therefore the first step, in order to be able to get at least the weak estimate (1.14), is to diagonalize the system at the maximum order. This is possible since, because of the smallness assumption, the operator E (-∆ + A 2 (U )) is locally elliptic. In section 4.1.1 we introduce a new unknown W = Φ NLS (U )U , where Φ NLS (U ) is a parametrix built from the matrix of the eigenvectors of E (-∆+A 2 (U )), see (4.4), (4.2). The system in the new coordinates reads (1) (U ), where both A (1) 2 (U ), A (1) 1 (U ) are diagonal, see (4.11) and where R (1) (U ) H s U 7 H s for s large enough. We note also that the cubic vector field X H 4 remains the same because the map Φ NLS (U ) is equal to the identity plus a term vanishing at order six at zero, see (4.5).

∂ t W = -iE (-∆ + V * )U + A (1) 2 (U )W + A (1) 1 (U )W + X H 4 (W ) + R
DIAGONALIZATION OF THE CUBIC VECTOR-FIELD. In the second step, in section 4.1.2, we diagonalize the cubic vector-field X H 4 . It is fundamental for our purposes to preserve the Hamiltonian structure of this cubic vector-field in this diagonalization procedure. In view of this we perform a (approximatively) symplectic change of coordinates generated from the Hamiltonian in (4.22) and (4.21) (note that this is not the case for the diagonalization at order two). Actually the simplecticity of this change of coordinates is one of the most delicate points in our paper. The entire Appendix A is devoted to this. This diagonalization is implemented in order to simplify a low-high frequencies analysis. More precisely we prove that the cubic vector field may be conjugated to a diagonal one modulo a smoothing remainder. The diagonal part shall cancel out in the energy estimate due to a symmetrization argument based on its Hamiltonian character. As a consequence the time of existence shall be completely determined by the smoothing reminder. Being this remainder smoothing the contribution coming from high frequencies is already "small", therefore the normal form analysis involves only the low modes. This will be explained later on in this introduction.

We explain the result of this diagonalization. We define a new variable Z = Φ B NLS (W ), see (4.23), and we obtain the new diagonal system (compare with (4.26))

∂ t Z = -iE (-∆ + V * )Z + A (1) 2 (U )Z + A (1) 1 (U )Z + X H 4 (Z ) + R (2)
5 (U ), where the new vector-field X H 4 (Z ) is still Hamiltonian, with Hamiltonian function defined in (4.29), and it is equal to a skew-selfadjoint and diagonal matrix of bounded para-differential operators modulo smoothing reminders, see (4.27). Here R (2) 5 (U ) satisfies the quintic estimates (4.28). INTRODUCTION OF THE ENERGY-NORM. Once achieved the diagonalization of the system we introduce an energy norm which is equivalent to the Sobolev one. Assume for simplicity s = 2n with n a natural number. Thanks to the smallness condition on the initial datum we prove in Section 5.1.1 that (-∆1 + A 2 (U ) + A 1 (U )) s/2 f L 2 ∼ f H s for any function f in H s (T d ). Therefore by setting 1

Z n := [E (-∆1 + A 2 (U ) + A 1 (U ))] s/2 Z ,
we are reduced to study the L 2 norm of the function Z n . This has been done in Lemma 5.2. Since the system is now diagonalized, we write the scalar equation, see Lemma 5.3, solved by z n

∂ t z n = -iT L z n -iV * z n -∆ n X + H 4 (Z ) + R n (U )
, where we have denoted by T L the element on the diagonal of the self-adjoint operator -∆1 + A 2 (U ) + A 1 (U ), see ( does not give any contribution to the energy estimates. This key cancellation may be interpreted as a consequence of the fact that the super actions

I p := j ∈Z d , | j |=p | z( j )| 2 , p ∈ N , Z := z z ,
where z is defined in (2.1), are prime integrals of the resonant Hamiltonian vector field X +,res H 4 (Z ) in the same spirit 2 of [START_REF] Faou | Sobolev stability of plane wave solutions to the cubic nonlinear Schrödinger equation on a torus[END_REF]. This is the content of Lemma 5.4, more specifically equation (5.16). We are left with the study of the term -∆ n X +,⊥ H 4 . In Lemma 5.3 we prove that -∆ n X +,⊥ H 4 = B (1) n (Z )+B (2) n (Z ), where B (1) n (Z ) does not contribute to energy estimates and B (2) n (Z ) is smoothing, gaining one space derivative, see (5.11) and Lemma 2.5. The cancellation for B (1) n (Z ) is again a consequence of the Hamiltonian structure and it is proven in Lemma 5.4, more specifically equation (5.17). Summarizing we obtain the following energy estimate (see (2.3)) 1 2 (5.17). Setting E (t ) = z n (t ) 2 L 2 , the only term which is still not good in order to obtain an estimate of the form (1.15) is the (1.20).

d d t z n (t ) 2 L 2 = Re (-iT L z n , z n ) L 2 + Re (-iV * z n , z n ) L 2 (1.16) + Re (R n (U ), z n ) L 2 (1.17) + Re (-∆ n X +,res H 4 (Z ), z n ) L 2 (1.18) + Re (B (1) n (Z ), z n ) L 2 (1.19) + Re (B (2) n (Z ), z n ) L 2 . ( 1 
In order to improve the time of existence we need to reduce the size of this new term B (2) n (Z ) by means of normal forms/integration by parts. We note immediately that, thanks to all the reductions we have performed, the term B (2) n presents two advantages: it is non-resonant and smoothing. Thanks to the fact that it is smoothing we shall need to perform a normal form only for the low frequencies of B (2) n (Z ). More precisely, thanks to (5.9) and (5.11), we prove in Lemma 5.8, see (5.34), that the high frequency part of this vector-field is already small, if N therein is chosen large enough inversely proportional to a power 1 To be precise the definition of Z n = (z n , z n ) in 5.1.1 is slightly different than the one presented here, but they coincide modulo smoothing corrections. For simplicity of notation, and in order to avoid technicalities, in this introduction we presented it in this way. 2 More generally, this cancellation can be viewed as a consequence of the commutation of the linear flow with the resonant part of the nonlinear perturbation which is a key of the Birkhoff normal form theory (see for instance [START_REF] Grébert | Birkhoff normal form and Hamiltonian PDEs[END_REF]).

of the size of the initial condition. The normal form on the non-resonant term, restricted to the low frequencies, is performed in Proposition 5.7. Here we use the lower bound on the small divisor in (5.26) given by Proposition 5.6.

As said before the strategy for (KG) is similar except for the control of the small divisor (1.10) which implies some extra difficulties that we already talk about. Let us just describe how the paper is organized concerning (KG): In Section 3.2 we paralinearize the equation obtaining, passing to the complex variables (3.11), the system of equations of order one (3.31). In Section 4.2 we diagonalize the system: the operator of order one is treated in Prop. 4.11 and the order zero in Prop. 4.13. As done for (NLS) in the diagonalization of the operator of order zero we preserve its Hamiltonian structure. The energy estimates are given in Section 5.2. The non degeneracy of the linear frequencies is studied in Appendix B.
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PRELIMINARIES

We denote by H s (T d ; C) (respectively H s (T d ; C 2 )) the usual Sobolev space of functions T d x → u(x) ∈ C (resp. C 2 ). We expand a function u(x), x ∈ T d , in Fourier series as

u(x) = 1 (2π) d /2 n∈Z d u(n)e in•x , u(n) := 1 (2π) d /2 T d u(x)e -in•x d x . (2.1) 
We set , where 〈D〉e i j •x = 〈 j 〉e i j •x , for any j ∈ Z d , and (•, •) L 2 denotes the standard complex L 2 -scalar product

〈 j 〉 := 1 + | j | 2 for j ∈ Z d . We endow H s (T d ; C) with the norm u(•) 2 H s := j ∈Z d 〈 j 〉 2s |u j | 2 . ( 2 
(u, v) L 2 := T d u • vd x , ∀ u, v ∈ L 2 (T d ; C) . (2.3) 
Notation. We shall use the notation A B to denote A ≤ C B where C is a positive constant depending on parameters fixed once for all, for instance d and s. We will emphasize by writing q when the constant C depends on some other parameter q. Basic Paradifferential calculus. We follow the notation of [START_REF] Feola | Local well-posedness for the Hamiltonian quasi-linear Schrödinger equation on tori[END_REF]. We introduce the symbols we shall use in this paper. We shall consider symbols

T d × R d (x, ξ) → a(x, ξ) in the spaces N m s , m, s ∈ R, defined by the norms |a| N m s := sup |α|+|β|≤s sup |ξ|>1/2 〈ξ〉 -m+|β| ∂ β ξ ∂ α x a(x, ξ) L ∞ . (2.4)
The constant m ∈ R indicates the order of the symbols, while s denotes its differentiability. Let 0 < < 1/2 and consider a smooth function χ : R → [0, 1]

χ(ξ) = 1 if |ξ| ≤ 5/4 0 if |ξ| ≥ 8/5 and define χ (ξ) := χ(|ξ|/ ) . (2.5)
For a symbol a(x, ξ) in N m s we define its (Weyl) quantization as

T a h := 1 (2π) d j ∈Z d e i j •x k∈Z d χ | j -k| 〈 j + k〉 a j -k, j + k 2 h(k) (2.6)
where a(η, ξ) denotes the Fourier transform of a(x, ξ) in the variable x ∈ T d . Thanks to the choice of χ in (2.5) we have that, if j = 0 then χ (| j -k|/〈 j + k〉) ≡ 0 for any k ∈ Z d \ {0}. Moreover, the function T a h -(T a h)(0) depends only on the values of a(x, ξ) for |ξ| ≥ 1. In view of this fact, if a(x, ξ) = b(x, ξ) for |ξ| > 1/2 then T a -T b is a finite rank operator. Therefore, without loss of generality, we write a = b if a(x, ξ) = b(x, ξ) for |ξ| > 1/2. Moreover the definition of the operator T a is independent of the choice of the cut-off function χ up to smoothing terms, see, for instance, Lemma 2.1 in [START_REF] Feola | Local well-posedness for the Hamiltonian quasi-linear Schrödinger equation on tori[END_REF].

Notation. Given a symbol a(x, ξ) we shall also write

T a [•] := Op BW (a(x, ξ))[•] , (2.7) 
to denote the associated para-differential operator.

We now collects some fundamental properties of para-differential operators. For details we refer the reader to section 2 in [START_REF] Feola | Local well-posedness for the Hamiltonian quasi-linear Schrödinger equation on tori[END_REF].

Lemma 2.1. (Lemma 2.1 in [START_REF] Feola | Local well-posedness for the Hamiltonian quasi-linear Schrödinger equation on tori[END_REF]) The following holds.

(i ) Let m 1 , m 2 ∈ R, s > d /2 and a ∈ N m 1 s , b ∈ N m 2 s . One has |ab| N m 1 +m 2 s + |{a, b}| N m 1 +m 2 -1 s-1 + |a| N m 1 s |b| N m 2 s (2.8)
where {a, b} :=

d j =1 (∂ ξ j a)(∂ x j b) -(∂ x j a)(∂ ξ j b) .
(2.9) s 0 +2 we have (recall (2.9))

(i i ) Let N s 0 > d , m ∈ R
T a • T b = T ab + R 1 (a, b) , T a • T b = T ab + 1 2i T {a,b} + R 2 (a, b) , (2.11)
where R j (a, b) are remainders satisfying, for any s ∈ R,

R j (a, b)h H s-m 1 -m 2 + j h H s |a| N m 1 s 0 + j |b| N m 2 s 0 + j . (2.12) Moreover, if a, b ∈ H ρ+s 0 (T d ; C) are functions (independent of ξ ∈ R n ) then, ∀s ∈ R, (T a T b -T ab )h H s+ρ h H s a H ρ+s 0 b H ρ+s 0 . (2.13) Lemma 2.3. Fix s 0 > d /2 and let f , g , h ∈ H s (T; C) for s ≥ s 0 . Then f g h = T f g h + T g h f + T f h g + R( f , g , h) , (2.14) 
where

R( f , g , h)(ξ) = 1 (2π) d η,ζ∈Z d a(ξ, η, ζ) f (ξ -η -ζ) g (η) h(ζ) , |a(ξ, η, ζ)| ρ max 2 (|ξ -η -ζ|, |η, ||ζ|) ρ max 1 (|ξ -η -ζ|, |η|, |ζ|) ρ , ∀ρ ≥ 0.
(2.15)

Proof. We start by proving the following claim: the term

T f g h - ξ∈Z d e iξ•x η,ζ∈Z d χ |ξ-η-ζ|+|η| 〈ζ〉 f (ξ -η -ζ) g (η) h(ζ)
is a remainder of the form (2.15). By (2.6) this is actually true with coefficients a(ξ, η, ζ) of the form

a(ξ, η, ζ) := χ |ξ-ζ| 〈ξ+ζ〉 -χ |ξ-η-ζ|+|η| 〈ζ〉 .
In order to prove this, we consider the following partition of the unity:

1 = Θ (ξ, η, ζ) + χ |ξ-η-ζ|+|ζ| 〈η〉 + χ |η|+|ζ| 〈ξ-η-ζ〉 + χ |ξ-η-ζ|+|η| 〈ζ〉 . (2.16)
Then we can write

a(ξ, η, ζ) = χ |ξ-ζ| 〈ξ+ζ〉 -1 χ |ξ-η-ζ|+|η| 〈ζ〉 + χ |ξ-ζ| 〈ξ+ζ〉 χ |ξ-η-ζ|+|ζ| 〈η〉 + χ |ξ-ζ| 〈ξ+ζ〉 χ |η|+|ζ| 〈ξ-η-ζ〉 + χ |ξ-ζ| 〈ξ+ζ〉 Θ (ξ, η, ζ) . Using (2.5) one can prove that each summand in the r.h.s. of the equation above is non-zero only if max 2 (|ξ -η -ζ|, |η, ||ζ|) ∼ max 1 (|ξ -η -ζ|, |η, ||ζ|
). This implies that each summand defines a smoothing remainder as in (2.15). A similar property holds also for T g h f and T f h g . At this point we write

f g h = ξ∈Z d e iξ•x η,ζ∈Z d Θ (ξ, η, ζ) + χ |ξ-η-ζ|+|ζ| 〈η〉 + χ |η|+|ζ| 〈ξ-η-ζ〉 + χ |ξ-η-ζ|+|η| 〈ζ〉 f (ξ -η -ζ) g (η) h(ζ) .
One concludes by using the claim at the beginning of the proof.

Matrices of symbols and operators.

Let us consider the subspace U defined as

U := (u + , u -) ∈ L 2 (T d ; C) × L 2 (T d ; C) : u + = u -. (2.17) 
Along the paper we shall deal with matrices of linear operators acting on

H s (T d ; C 2 ) preserving the subspace U . Consider two operators R 1 , R 2 acting on C ∞ (T d ; C).
We define the operator F acting on

C ∞ (T d ; C 2 ) as F := R 1 R 2 R 2 R 1 , (2.18) 
where the linear operators

R i [•], i = 1, 2 are defined by the relation R i [v] := R i [v]
. We say that an operator of the form (2.18) is real-to-real. It is easy to note that real-to-real operators preserves U in (2.17).

Consider now a symbol a(x, ξ) of order m and set A := T a . Using (2.6) one can check that

A[h] = A[h] , ⇒ A = T ã , ã(x, ξ) = a(x, -ξ) ; (2.19) (Ajdoint) (Ah, v) L 2 = (h, A * v) L 2 , ⇒ A * = T a . (2.20)
By (2.20) we deduce that the operator A is self-adjoint with respect to the scalar product (2.3) if and only if the symbol a(x, ξ) is real valued. We need the following definition. Consider two symbols a, b ∈ N m s and the matrix

A := A(x, ξ) := a(x, ξ) b(x, ξ) b(x, -ξ) a(x, -ξ) .
Define the operator (recall (2.7))

M := Op BW (A(x, ξ)) := Op BW (a(x, ξ)) Op BW (b(x, ξ)) Op BW (b(x, -ξ)) Op BW (a(x, -ξ)) . ( 2 

.21)

The matrix of paradifferential operators defined above have the following properties:

• Reality: by (2. [START_REF] Delort | Quasi-Linear Perturbations of Hamiltonian Klein-Gordon Equations on Spheres[END_REF] we have that the operator M in (2.21) has the form (2.18), hence it is real-to-real;

• Self-adjointeness: using (2.20) the operator M in (2.21) is self-adjoint with respect to the scalar product on (2.17)

(U ,V ) L 2 := T d U • V d x , U = u u , V = v v . (2.22) if and only if a(x, ξ) = a(x, ξ) , b(x, -ξ) = b(x, ξ) . ( 2 

.23)

Non-homogeneous symbols. In this paper we deal with symbols satisfying (2.4) which depends nonlinearly on an extra function u(t , x) (which in the application will be a solution either of (NLS) or a solution of (KG)). We are interested in providing estimates of the semi-norms (2.4) in terms of the Sobolev norms of the function u. Consider a function F (y 0 , y 1 , . . . ,

y d ) in C ∞ (C d +1 ; R) in the real sense, i.e. F is C ∞ as function of Re(y i ), Im(y i ). Assume that F has a zero of order at least p + 2 ∈ N at the origin. Consider a symbol f (ξ), inde- pendent of x ∈ T d , such that | f | N m s ≤ C < +∞, for some constant C . Let us define the symbol a(x, ξ) := ∂ z α j z β k F (u, ∇u) f (ξ) , z α j := ∂ α x j u σ , z β k := ∂ β x k u σ (2.24)
for some j , k = 1, . . . , d , α, β ∈ {0, 1} and σ, σ ∈ {±} where we used the notation u + = u and u -= u. The following lemma is proved in section 2 of [START_REF] Feola | Local well-posedness for the Hamiltonian quasi-linear Schrödinger equation on tori[END_REF].

Lemma 2.4. Fix s 0 > d /2. For u ∈ B R (H s+s 0 +1 (T d ; C)) with 0 < R < 1, we have |a| N m s u p H s+s 0 +1 ,
where a is the symbol in (2.24). Moreover, for any h ∈ H s+s 0 +1 , the map h → (∂ u a)(u; x, ξ)h extends as a linear form on H s+s 0 +1 and satisfies

|(∂ u a)h| N m s h H s+s 0 +1 u p H s+s 0 +1 .
The same holds for ∂ u a. Moreover if the symbol a does not depend on ∇u, then the same results are true with s 0 + 1 s 0 .

Trilinear operators. Along the paper we shall deal with trilinear operators on the Sobolev spaces. We shall adopt a combination of notation introduced in [START_REF] Berti | Almost global solutions of capillary-gravity water waves equations on the circle[END_REF] and [START_REF] Ionescu | Long-time existence for multi-dimensional periodic water waves[END_REF]. In particular we are interested in studying properties of operators of the form

Q = Q[u 1 , u 2 , u 3 ] : (C ∞ (T d ; C)) 3 → C ∞ (T d ; C) , Q(ξ) = 1 (2π) d η,ζ∈Z d q(ξ, η, ζ) u 1 (ξ -η -ζ) u 2 (η) u 3 (ζ) , ∀ ξ ∈ Z d , (2.25) 
where the coefficients q(ξ, η, ζ) ∈ C for any ξ, η, ζ ∈ Z d . We introduce the following notation: given j 1 , . . . ,

j p ∈ R + , p ≥ 2 we define max i { j 1 , . . . , j p } = i -th largest among j 1 , . . . , j p . ( 2 

.26)

We now prove that, under certain conditions on the coefficients, the operators of the form (2.25) extend as continuous maps on the Sobolev spaces. 

|q(ξ, η, ζ)| max 2 {〈ξ -η -ζ〉, 〈η〉, 〈ζ〉} µ max 1 {〈ξ -η -ζ〉, 〈η〉, 〈ζ〉} m . ( 2 
Q(u 1 , u 2 , u 3 ) H s+m 3 i =1 u i H s i =k u k H s 0 . (2.28)
Proof. By (2.2) we have

Q(u 1 , u 2 , u 3 ) 2 H s+m ≤ ξ∈Z d 〈ξ〉 2(s+m) η,ζ∈Z d |q(ξ, η, ζ)|| u 1 (ξ -η -ζ)|| u 2 (η)|| u 3 (ζ)| 2 (2.27) ξ∈Z d η,ζ∈Z d 〈ξ〉 s max 2 {〈ξ -η -ζ〉, 〈η〉, 〈ζ〉} µ | u 1 (ξ -η -ζ)|| u 2 (η)|| u 3 (ζ)| 2 := I + I I + I I I , (2.29) 
where I , I I , I I I are the terms in (2.29) which are supported respectively on indexes such that max 1 {〈ξη -ζ〉, 〈η〉, 〈ζ〉} = 〈ξ -η -ζ〉, max 1 {〈ξ -η -ζ〉, 〈η〉, 〈ζ〉} = 〈η〉 and max 1 {〈ξ -η -ζ〉, 〈η〉, 〈ζ〉} = 〈ζ〉. Consider for instance the term I I I . By using the Young inequality for sequences we deduce

I I I (〈p〉 µ u 1 (p)) * (〈η〉 µ u 2 (η)) * (〈ζ〉 s u 3 (ζ)) 2 u 1 H s 0 u 2 H s 0 u 3 H s ,
which is the (2.28). The bounds of I and I I are similar.

In the following lemma we shall prove that a class of "para-differential" trilinear operators, having some decay on the coefficients, satisfies the hypothesis of the previous lemma. 

(ξ, η, ζ) = f (ξ, η, ζ)χ |ξ -ζ| 〈ξ + ζ〉 , | f (ξ, η, ζ)| |ξ -ζ| µ 〈ζ〉 m (2.30)
for any ξ, η, ζ ∈ Z d and 0 < 1. Then the coefficients q(ξ, η, ζ) satisfy the (2.27) with µ µ + m.

Proof. First of all we write q(ξ,

η, ζ) = q 1 (ξ, η, ζ) + q 2 (ξ, η, ζ) with q 1 (ξ, η, ζ) = f (ξ, η, ζ)χ |ξ -ζ| 〈ξ + ζ〉 χ |ξ -η -ζ| + |η| 〈ζ〉 , (2.31 
) 

q 2 (ξ, η, ζ) = f (ξ, η, ζ)χ |ξ -ζ| 〈ξ + ζ〉 χ |ξ -η -ζ| + |ζ| 〈η〉 + χ |η| + |ζ| 〈ξ -η -ζ〉 + Θ (ξ, η, ζ) , ( 2 

Hamiltonian formalism in complex variables. Given a Hamiltonian function

H : H 1 (T d ; C 2 ) → R, its
Hamiltonian vector field has the form

X H (U ) := -iJ ∇H (U ) = -i ∇ u H (U ) -∇ u H (U ) , J = 0 1 -1 0 , U = u u . (2.33) Indeed one has d H (U )[V ] = -Ω(X H (U ),V ) , ∀U = u u , V = v v , (2.34) 
where Ω is the non-degenerate symplectic form

Ω(U ,V ) = - T d U • iJV d x = - T d i(uv -uv)d x . (2.35)
The Poisson brackets between two Hamiltonians H ,G are defined as

{G, H } := Ω(X G , X H ) (2.35) = -iJ ∇G • ∇H d x = -i ∇ u H ∇ u G -∇ u H ∇ u Gd x . (2.36)
The nonlinear commutator between two Hamiltonian vector fields is given by

[X G , X H ](U ) = d X G (U ) X H (U ) -d X H (U ) X G (U ) = -X {G,H } (U ) . (2.37)
Hamiltonian formalism in real variables. Given a Hamiltonian function H R : H 1 (T d ; R 2 ) → R, its hamiltonian vector field has the form

X H R (ψ, φ) := J ∇H R (ψ, φ) = ∇ φ H R (ψ, φ) -∇ ψ H R (ψ, φ) , (2.38)
where J is in (2.33). Indeed one has

d H R (ψ, φ)[h] = -Ω(X H R (ψ, φ), h) , ∀ ψ φ , h = ψ φ , (2.39) 
where Ω is the non-degenerate symplectic form Ω(

ψ 1 φ 1 , ψ 2 φ 2 ) := T d ψ 1 φ 1 • J -1 ψ 2 φ 2 d x = T d -(ψ 1 φ 2 -φ 1 ψ 2 )d x , (2.40) 
We introduce the complex symplectic variables

u u = C ψ φ := 1 2 Λ 1 2 KG ψ + iΛ -1 2 KG φ Λ 1 2 KG ψ -iΛ -1 2 KG φ , ψ φ = C -1 u u = 1 2 Λ -1 2 KG (u + u) -iΛ 1 2 KG (u -u) , ( 2.41) 
where Λ KG is in (1.3). The symplectic form in (2.40) transforms, for

U = u u , V = v v , into Ω(U ,V )
where Ω is in (2.35). In these coordinates the vector field X H R in (2.38) assumes the form X H as in (2.33) with

H := H R • C -1 .
We now study some algebraic properties enjoyed by the Hamiltonian functions previously defined. Let us consider a homogeneous Hamiltonian H : H 1 (T d ; C 2 ) → R of degree four of the form

H (U ) = (2π) -d ξ,η,ζ∈Z d h 4 (ξ, η, ζ) u(ξ -η -ζ) u(η) u(ζ) u(-ξ) , U = u u , (2.42) 
for some coefficients

h 4 (ξ, η, ζ) ∈ C such that h 4 (ξ, η, ζ) = h 4 (-η, -ξ, ζ) = h 4 (ξ, η, ξ -η -ζ) , h 4 (ξ, η, ζ) = h 4 (ζ, η + ζ -ξ, ξ) , ∀ ξ, η, ζ ∈ Z d . (2.43)
By (2.43) one can check that the Hamiltonian H is real valued and symmetric in its entries. Recalling (2.33) we have that its Hamiltonian vector field can be written as

X H (U ) = -i∇ u H (U ) i∇ u H (U ) = X + H (U ) X + H (U ) (2.44) X + H (U )(ξ) = (2π) -d η,ζ∈Z d f (ξ, η, ζ) u(ξ -η -ζ) u(η) u(ζ) , (2.45) 
where the coefficients f (ξ, η, ζ) have the form

f (ξ, η, ζ) = 2ih 4 (ξ, η, ζ) , ξ, η, ζ ∈ Z d . (2.46)
We need the following definition.

Definition 2.7. (Resonant set). We define the following set of resonant indexes:

R := (ξ, η, ζ) ∈ Z 3d : |ξ| = |ζ| , |η| = |ξ -η -ζ| ∪ (ξ, η, ζ) ∈ Z 3d : |ξ| = |ξ -η -ζ| , |η| = |ζ| .
(2.47)

Consider the vector field in (2.45). We define the field X +,res H (U ) by X +,res

H (ξ) = (2π) -d η,ζ∈Z d f (res) (ξ, η, ζ) u(ξ -η -ζ) u(η) u(ζ) , (2.48) where f (res) (ξ, η, ζ) := f (ξ, η, ζ)1 R (ξ, η, ζ) , (2.49)
where 1 R is the characteristic function of the set R.

In the next lemma we prove a fundamental cancellation. 

H (ξ) = (2π) -d (η,ζ)∈R(ξ) F (ξ, η, ζ) u(ξ -η -ζ) u(η) u(ζ) , with R(ξ) := {(η, ζ) ∈ Z 2d : |ξ| = |ζ| , |η| = |ξ -η -ζ|}, for ξ ∈ Z d , and 
F (ξ, η, ζ) := f (ξ, η, ζ) + f (ξ, η, ξ -η -ζ) . (2.51)
By an explicit computation we have Re(D s X +,res

H (U ), D s u) L 2 = = (2π) -d ξ∈Z d ,(η,ζ)∈R(ξ) |ξ| 2s F (ξ, η, ζ) + F (ζ, ζ + η -ξ, ξ) u(ξ -η -ζ) u(η) u(ζ) u(-ξ) .
By (2.51), (2.46) and using the symmetries (2.43) we have

F (ξ, η, ζ) + F (ζ, ζ + η -ξ, ξ) = 0 .
Remark 2.9. We remark that along the paper we shall deal with general Hamiltonian functions of the form

H (W ) = (2π) -d σ 1 ,σ 2 ,σ 3 ,σ 4 ∈{±} ξ,η,ζ∈Z d h σ 1 ,σ 2 ,σ 3 ,σ 4 (ξ, η, ζ) u σ 1 (ξ -η -ζ) u σ 2 (η) u σ 3 (ζ) u σ 4 (-ξ) ,
where we used the notation

u σ (ξ) = u(ξ) , if σ = + , and u σ (ξ) = u(ξ) , if σ = -. (2.52)
However, by the definition of the resonant set (2.47), we can note that the resonant vector field has still the form (2.48) and it depends only on the monomials in the Hamiltonian H (U ) which are gauge invariant, i.e. of the form (2.42).

PARA-DIFFERENTIAL FORMULATION OF THE PROBLEMS

In this section we rewrite the equations in a para-differential form by means of the para-linearization formula (à la Bony see [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielle non linéaire[END_REF]). In subsection 3.1 we deal with the problem (NLS) and in the 3.2 we deal with (KG).

3.1. Para-linearization of the NLS. In the following proposition we para-linearize (NLS), with respect to the variables (u, u). We shall use the following notation throughout the rest of the paper

U := u u , E := 1 0 0 -1 , 1 := 1 0 0 1 , diag(b) := b1 , b ∈ C . (3.1)
Define the following real symbols

a 2 (x) := h (|u| 2 ) 2 |u| 2 , b 2 (x) := h (|u| 2 ) 2 u 2 , a 1 (x) • ξ := h (|u| 2 ) 2 d j =1 Im (uu x j )ξ j , ξ = (ξ 1 , . . . , ξ d ) . (3.2)
We define also the matrix of functions

A 2 (x) := A 2 (U ; x) := a 2 (U ;x) b 2 (U ;x) b 2 (U ;x) a 2 (U ;x) = a 2 (x) b 2 (x) b 2 (x) a 2 (x) (3.3)
with a 2 (x) and b 2 (x) defined in (3.2). We have the following. 

U = -iEOp BW (1 + A 2 (x))|ξ| 2 U -iEV * U -iOp BW diag( a 1 (x) • ξ) U + X H (4) NLS (U ) + R(U ) , (3.4)
where V is the convolution potential in (1.5), the matrix A 2 (x) is the one in (3.3), the symbol a 1 (x) • ξ is in (3.2) and the vector field X H (4) NLS (U ) is defined as follows

X H (4) NLS (U ) = -iE Op BW 2|u| 2 u 2 u 2 2|u| 2 U +Q 3 (U ) . (3.5)
The semi-norms of the symbols satisfy the following estimates

|a 2 | N 0 p + |b 2 | N 0 p u 6 H p+s 0 , ∀ p + s 0 ≤ s , p ∈ N, | a 1 • ξ| N 1 p u 6 H p+s 0 +1 , ∀ p + s 0 + 1 ≤ s , p ∈ N , (3.6) 
where we have chosen s

0 > d . The remainder Q 3 (U ) has the form Q + 3 (U ),Q + 3 (U ) T and Q + 3 (ξ) = (2π) -d η,ζ∈Z d q(ξ,η,ζ) u(ξ -η -ζ) u(η) u(ζ) , (3.7 
)

for some q(ξ,η,ζ) ∈ C. The coefficients of Q + 3 satisfy |q(ξ, η, ζ)| max 2 {〈ξ -η -ζ〉, 〈η〉, 〈ζ〉} ρ max{〈ξ -η -ζ〉, 〈η〉, 〈ζ〉} ρ , ∀ ρ ≥ 0 . (3.8)
The remainder R(U ) has the form (R + (U ), R + (U )) T . Moreover, for any s > 2d + 2, we have the estimates

R(U ) H s U 7 H s , Q 3 (U ) H s+2 U 3 H s . (3.9) 
Proof. By Proposition 3.3 in [START_REF] Feola | Local well-posedness for the Hamiltonian quasi-linear Schrödinger equation on tori[END_REF] we obtain that at the positive orders the symbols are given by

a 2 (U ; x, ξ) = d j ,k=1 (∂ u x k u x j P )ξ j ξ k , b 2 (U ; x, ξ) = d j ,k=1 (∂ u x k u x j P )ξ j ξ k , a 1 (U ; x) • ξ = i 2 d j =1 (∂ uu x j P ) -(∂ uu x j P ) ξ j = d j =1
Im (∂ uu x j P )ξ j , then one obtains formulae (3.2) by direct inspection by using the second line in (1.11). The estimates (3.6) are obtained as consequence of the fact that h (s) ∼ s when s goes to 0 and using Lemma 2.4. The estimate on R(U ) in (3.9) may be deduced from (2.10), (2.8), (2.12) and (3.6), for more details one can follow Proposition 3.3 in [START_REF] Feola | Local well-posedness for the Hamiltonian quasi-linear Schrödinger equation on tori[END_REF]. Formula (3.5) is obtained by using Lemma 2.3 applied to |u| 2 u.

Remark 3.2. • The cubic term X H (4) NLS (U ) in (3.

5) is the Hamiltonian vector field of the Hamiltonian function

H (4) NLS (U ) := 1 2 T d |u| 4 d x , X H (4) NLS (U ) = -i|u| 2 u u (3.10) • The operators Op BW (1+ A 2 (x))|ξ| 2 , Op BW diag( a 1 (x)•ξ) and Op BW 2|u| 2 u 2 u 2 2|u| 2
are self-adjoint thanks to (2.23) and (3.2).

Para-linearization of the KG.

In this section we rewrite the equation (KG) as a paradifferential system. This is the content of Proposition 3.6. Before stating this result we need some preliminaries. In particular in Lemma 3.3 below we analyze some properties of the cubic terms in the equation (KG). Define the following real symbols

a 2 (x, ξ) := a 2 (u; x, ξ) := d j ,k=1 ∂ ψ x j ψ x k F (ψ, ∇ψ)ξ j ξ k , ψ = Λ -1 2 KG 2 (u + u) , a 0 (x, ξ) := a 0 (u; x, ξ) := 1 2 (∂ y 1 y 1 G)(ψ, Λ 1 2 KG ψ) + (∂ y 1 y 0 G)(ψ, Λ 1 2 KG ψ)Λ -1 2 KG (ξ) . (3.11)
We define also the matrices of symbols

A 1 (x, ξ) := A 1 (u; x, ξ) := 1 2 1 1 1 1 Λ -2 KG (ξ)a 2 (u; x, ξ) , (3.12 
)

A 0 (x, ξ) := A 0 (u; x, ξ) := 1 1 1 1 a 0 (u; x, ξ) , (3.13) 
and the Hamiltonian function

H (4) KG (U ) := T d G ψ, Λ 1 2 KG ψ d x , (3.14) 
with G the function appearing in (1.13). First of all we study some properties of the vector field of the Hamiltonian H (4) KG . Lemma 3.3. We have that

X H (4) KG (U ) = -iJ ∇H (4) KG (U ) = -iEOp BW (A 0 (x, ξ))U +Q 3 (u) , (3.15 
)

with A 0 in (3.13). The remainder Q 3 (u) has the form Q + 3 (u),Q + 3 (u)
T and (recall (2.52))

Q + 3 (ξ) = 1 (2π) d σ 1 ,σ 2 ,σ 3 ∈{±} η,ζ∈Z d q σ 1 ,σ 2 ,σ 3 (ξ, η, ζ) u σ 1 (ξ -η -ζ) u σ 2 (η) u σ 3 (ζ) , (3.16 
)

for some q σ 1 ,σ 2 ,σ 3 (ξ, η, ζ) ∈ C. The coefficients of Q + 3 satisfy |q σ 1 ,σ 2 ,σ 3 (ξ, η, ζ)| max 2 {〈ξ -η -ζ〉, 〈η〉, 〈ζ〉} max{〈ξ -η -ζ〉, 〈η〉, 〈ζ〉} (3.17) 
for any σ 1 , σ 2 , σ 3 ∈ {±}. Finally, for s > 2d + 1, we have

|a 0 | N 0 p u 2 H p+s 0 , p + s 0 ≤ s , s 0 > d , (3.18 
)

X H (4) KG (U ) H s u 3 H s , Q 3 (u) H s+1 u 3 H s , (3.19) d U X H (4) KG (U )[h] H s u 2 H s h H s , ∀h ∈ H s (T d ; C 2 ) . (3.20)
Proof. By and explicit computation and using (1.2) we get

X H (4) KG (U ) = X + H (4) KG (U ), X + H (4) KG (U ) T , X + H (4) KG (U ) = -i Λ -1 2 KG 2 g ψ .
The function g is a homogeneous polynomial of degree three. Hence, by using Lemma 2.3, we obtain iX +

H (4) KG (U ) = A 0 + A -1 2 + A -1 +Q -ρ (u) (3.21)
where

A 0 := 1 2 Op BW (∂ y 1 y 1 G(ψ, Λ 1/2 KG ψ))[u + u] , (3.22) A -1 2 := 1 2 Op BW (∂ y 1 y 0 G(ψ, Λ 1/2 KG ψ))[Λ -1 2 KG (u + u)] + Λ -1 2 KG 2 Op BW (∂ y 1 y 0 G(ψ, Λ 1/2 KG ψ))[u + u] , (3.23 
)

A -1 := Λ -1 2 KG 2 Op BW (∂ y 0 y 0 G(ψ, Λ 1/2 KG ψ))[Λ -1 2 KG (u + u)] , (3.24) 
and Q -ρ is a cubic smoothing remainder of the form (2.15) whose coefficients satisfy the bound (3.17).

The symbols of the the paradifferential operators have the form (using that G is a polynomial)

(∂ k j G) Λ -1 2 KG (u+u) 2 , u+u 2 = (2π) -d ξ∈Z d e iξ•x η∈Z d g σ 1 ,σ 2 k, j (ξ, η) u σ 1 (ξ -η) u σ 2 (η) (3.25)
where k, j ∈ {y 0 , y 1 } and where the coefficients

g σ 1 ,σ 2 k, j (ξ, η) ∈ C satisfy |g σ 1 ,σ 2 k, j (ξ, η)| 1.
We claim that the term in (3.24) is a cubic remainder of the form (3.16) with coefficients satisfying (3.17). By (2.6) we have

A -1 (ξ) = 1 2(2π) d ζ∈Z d ,σ∈{±} ∂ y 0 y 0 G(ξ -ζ)Λ -1 2 KG (ξ)Λ -1 2 KG (ζ)χ |ξ -ζ| 〈ξ + ζ〉 u σ (ξ) (3.25) = 1 2(2π) d σ 1 ,σ 2 ,σ∈{±} η,ζ∈Z d g σ 1 ,σ 2 y 0 ,y 0 (ξ -ζ, η)Λ -1 2 KG (ξ)Λ -1 2 KG (ζ)χ |ξ -ζ| 〈ξ + ζ〉 u σ 1 (ξ -η -ζ) u σ 2 (η) u σ (ζ) ,
which implies that A -1 has the form (3.16) with coefficients 

a σ 1 ,σ 2 ,σ 3 -1 (ξ, η, ζ) = 1 2 g σ 1 ,σ 2 y 0 ,y 0 (ξ -ζ, η)Λ -1 2 KG (ξ)Λ -1 2 KG (ζ)χ |ξ-ζ| 〈ξ+ζ〉 . ( 3 
A -1 2 = Op BW (Λ -1 2 KG (ξ)∂ y 0 y 1 G) + R -1 , (3.27) 
where

R -1 (ξ) = (2π) -d σ 1 ,σ 2 ,σ∈{±} η,ζ∈Z d r σ 1 ,σ 2 ,σ (ξ -η -ζ, η, ζ) u σ 1 (ξ -η -ζ) u σ 2 (η) u σ (ζ) , r σ 1 ,σ 2 ,σ (ξ -η -ζ, η, ζ) = 1 2 g σ 1 ,σ 2 y 0 ,y 1 (ξ -ζ, η)χ |ξ-ζ| 〈ξ+ζ〉 Λ -1 2 KG (ξ) + Λ -1 2 KG (ζ) -2Λ -1 2 KG ( ξ+ζ 2 ) 
.

We note that

Λ -1 2 KG (ξ) = Λ -1 2 KG ( ξ+ζ 2 ) - 1 2 1 0 Λ -3 2 KG ( ξ+ζ 2 + τ ξ-ζ 2 )d τ .
Then we deduce

Λ -1 2 KG (ξ) + Λ -1 2 KG (ζ) -2Λ -1 2 KG ( ξ+ζ 2 ) |ξ| -3 2 + |ζ| -3 2 .
Again by Lemma 2.6 one can conclude that r σ 1 ,σ 

d U X H (4) KG (U )[h] = -iEOp BW (A 0 (x, ξ))h -iEOp BW (d U A 0 (x, ξ)h)U + d U Q 3 (u)[h] . ( 3 
a 0 (x, ξ) = (2π) -d 2 p∈Z d e ip•x a 0 (p, ξ) , a 0 (p, ξ) = (2π) -d σ 1 ,σ 2 ∈{±} η∈Z d a σ 1 ,σ 2 0 (p, η, ξ) u σ 1 (p -η) u σ 2 (η) a σ 1 ,σ 2 0 (p, η, ξ) := 1 2 g σ 1 ,σ 2 y 1 ,y 1 (p, η) + g σ 1 ,σ 2 y 0 ,y 1 (p, η)Λ -1 2 KG (ξ) .
(3.29)

Moreover one has |a ) with symbol a 0 (x, ξ) of order -1 given by (see

σ 1 ,σ 2 0 (p, η, ξ)| 1. Since the symbol a 0 (x, ξ) is real-valued one can check that a σ 1 ,σ 2 0 (p, η, ξ) = a -σ 1 ,-σ 2 0 (-p, -η, ξ) , ∀ ξ, p, η ∈ Z d , σ 1 , σ 2 ∈ {±} . ( 3 
(3.24)) a 0 (x, ξ) := 1 2 ∂ y 0 y 0 G(ψ)Λ -1 KG (ξ) .
The remainder Q 3 would satisfy the (3.17) with better denominator max{〈ξ -η -ζ〉, 〈η〉, 〈ζ〉} 2 .

The main result of this section is the following. Proposition 3.6. (Paralinearization of KG). The system (1.12) is equivalent to

U = -iEOp BW (1 + A 1 (x, ξ))Λ KG (ξ) U + X H (4) KG (U ) + R(u) , (3.31) 
where U :

= u u := C ψ φ (see (2.41)), A 1 (x, ξ) is in (3.12), X H (4) 
KG (U ) is the Hamiltonian vector field of (3.14).

The operator R(u) has the form (R + (u), R + (u)) T . Moreover we have that

|A 1 | N 0 p + |a 2 | N 2 p + u 4 H p+s 0 +1 , ∀ p + s 0 + 1 ≤ s , p ∈ N , (3.32) 
where we have chosen s 0 > d . Finally there is µ > 0 such that, for any s > 2d + µ, the remainder R ≥5 (u) satisfy R(u) H s u 5 H s .

(3.33)

Proof. First of all we note that system (1.12) in the complex coordinates (2.41) reads

∂ t u = -iΛ KG u -i Λ -1 2 KG 2 ( f (ψ) + g (ψ)) , ψ = Λ -1 2 KG (u+u) 2 , ( 3.34) 
with

f (ψ), g (ψ) in (1.1), (1.2). The term -i/ 2Λ -1/2 KG g (ψ)
is the first component of the vector field X H (4) KG (U ) which has been studied in Lemma 3.3. By using the Bony para-linearization formula (see [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielle non linéaire[END_REF]), passing to the Weyl quantization and (1.1) we get

f (ψ) = - d j ,k=1 ∂ x j • Op BW ∂ ψ x j ψ x k F (ψ, ∇ψ) • ∂ x k ψ (3.35) + d j =1 Op BW ∂ ψψ x j F (ψ, ∇ψ) , ∂ x j ψ + Op BW ∂ ψψ F (ψ, ∇ψ) ψ + R -ρ (ψ) , (3.36) 
where R -ρ (ψ) satisfies R -ρ (ψ) H s+ρ ψ 5 H s for any s ≥ s 0 > d + ρ. By Lemma 2.12 in [START_REF] Feola | Local well-posedness for the Hamiltonian quasi-linear Schrödinger equation on tori[END_REF], and recalling that F (ψ, ∇ψ) ∼ O(ψ 6 ), we have that

|∂ ψ x k ψ x j F | N 0 p + |∂ ψψ x j F | N 0 p + |∂ ψψ F | N 0 p ψ 4 H p+s 0 +1 , p + s 0 + 1 ≤ s , (3.37) 
where s 0 > d . Recall that ∂ x j = Op BW (ξ j ). Then, by Proposition 2.2, we have 

Op BW ∂ ψψ x j F , ∂ x j = Op BW (-i{∂ ψψ x j F, ξ j }) +Q(ψ) with (see (2.12)) Q(ψ) H s+1 |∂ ψψ x j F | N 0 s 0 +2 ψ H s .
-∂ x j • Op BW ∂ ψ x j ψ x k F (ψ, ∇ψ) • ∂ x k = Op BW (ξ j )Op BW ∂ ψ x j ψ x k F (ψ, ∇ψ) Op BW (ξ k ) .
By using again Lemma 2.1 and Proposition 2.2 we get that

f (ψ) = Op BW (a 2 (x, ξ))ψ + R(ψ) , (3.38) 
where a 2 is in (3.11) and R(ψ) is a remainder satisfying (3.33). The symbol a 2 (x, ξ) satisfies (3.32) by (3.37). Moreover

1 2 Λ -1 2 KG f (ψ) = 1 2 Λ -1 2 KG f ( Λ -1 2 KG (u+u) 2 ) (3.38) = 1 2 Op BW (a 2 (x, ξ)Λ -1 KG (ξ))[u + u] (3.39)
up to remainders satisfying (3.33). Here we used Proposition 2.2 to study the composition operator

Λ -1 2 KG Op BW (a 2 (x, ξ))Λ -1 2 KG
. By the discussion above and formula (3.34) we deduce the (3.31). Remark 3.7. In the semi-linear case, i.e. when f = 0 and g does not depend on y 1 (see (1.1), (1.2)) , the equation (3.31) reads

U = -iEOp BW 1Λ KG (ξ) U + X H (4) KG (U ) ,
and where the vector field X H (4) KG has the particular structure described in Remark 3.5.

DIAGONALIZATION

4.1. Diagonalization of the NLS. In this section we diagonalize the system (3.4). We first diagonalize the matrix E (1 + A 2 (x)) in (3.4) by means of a change of coordinates as the ones made in the papers [START_REF] Feola | Local well-posedness for the Hamiltonian quasi-linear Schrödinger equation on tori[END_REF][START_REF] Feola | Long time existence for fully nonlinear NLS with small Cauchy data on the circle[END_REF]. After that we diagonalize the matrix of symbols of order 0 at homogeneity 3, by means of an approximatively symplectic change of coordinates. Throughout the rest of the section we shall assume the following. Hypothesis 4.1. We restrict the solution of (NLS) on the interval of times [0, T ), with T such that

sup t ∈[0,T ) u(t , x) H s ≤ ε , u 0 (x) H s ≤ c 0 (s)ε 1 ,
for some 0 < c 0 (s) < 1.

Note that such a time T > 0 exists thanks to the local existence theorem in [START_REF] Feola | Local well-posedness for the Hamiltonian quasi-linear Schrödinger equation on tori[END_REF].

4.1.1. Diagonalization at order 2. We consider the matrix E (1 + A 2 (x)) in (3.4). We define

λ NLS (x) := λ NLS (U ; x) := 1 + 2|u| 2 [h (|u| 2 )] 2 , a (1) 2 (x) := λ NLS (x) -1 , (4.1) 
and we note that ±λ NLS (x) are the eigenvalues of the matrix E (1 + A 2 (x)). We denote by S matrix of the eigenvectors of E (1 + A 2 (x)), more explicitly

S = s 1 s 2 s 2 s 1 , S -1 = s 1 -s 2 -s 2 s 1 , s 1 (x) := 1 + |u| 2 [h (|u| 2 )] 2 + λ NLS (x) 2λ NLS (x)(1 + |u| 2 + λ NLS (x)) , s 2 (x) := -u 2 [h (|u| 2 )] 2 2λ NLS (x)(1 + |u| 2 + λ NLS (x)) . (4.2)
Since ±λ NLS (x) are the eigenvalues and S(x) is the matrix eigenvectors of E (1 + A 2 (x)) we have that

S -1 E (1 + A 2 (x))S = E diag(λ NLS (x)) , s 2 1 -|s 2 | 2 = 1 , (4.3) 
where we have used the notation (3.1). In the following lemma we estimate the semi-norms of the symbols defined above.

Lemma 4.2. Let N s 0 > d . The symbols a (1) 2 defined in (4.1), s 1 -1 and s 2 defined in (4.2) satisfy the following estimate |a (1) 2

| N 0 p + |s 1 -1| N 0 p + |s 2 | N 0 p u 6 p+s 0 , p + s 0 ≤ s , p ∈ N .
Proof. The proof follows by using the estimate (3.6) on the symbols in (3.2), the fact that h (s) ∼ s when s ∼ 0, u s 1, and the explicit expression (4.1), (4.2).

We now study how the system (3.4) transforms under the maps 

Φ NLS := Φ NLS (U ) := Op BW (S -1 (U ; x)) , Ψ NLS := Ψ NLS (U ) := Op BW (S(U ; x)) . ( 4 
Φ NLS (U )W H s + Ψ NLS (U )W H s ≤ W H s 1 +C u 6 H 2s 0 , (Φ NLS (U ) -1)W H s + (Ψ NLS (U ) -1)W H s W H s u 6 H 2s 0 , ∀W ∈ H s (T d ; C) , (4.5) 
where the constant C depends on s;

(i i ) one has Ψ NLS (U ) • Φ NLS (U ) = 1 + R(u) where R is a real-to-real remainder of the form (2.18) satisfying R(u)W H s+2 W H s u 6 H 2s 0 +2 . (4.6) 
The map

1 + R(u) is invertible with inverse (1 + R(u)) -1 := (1 + R(u)) with R(u) of the form (2.18) and R(u)W H s+2 W H s u 6 H 2s 0 +2 , (4.7) 
as a consequence the map Φ NLS is invertible and

Φ -1 NLS = (1 + R)Ψ NLS with estimates Φ -1 NLS (U )W H s ≤ W H s (1 +C u 6 H 2s 0 +2 ) , (4.8) 
where the constant C depends on s; 

(i i i ) for any t ∈ [0, T ), one has ∂ t Φ NLS (U )[•] = Op BW (∂ t S -1 (U ; x)) and |∂ t S -1 (U ; x)| N 0 s 0 u 6 H 2s 0 +2 , ∂ t Φ NLS (U )V H s W H s u 6 H 2s 0 +2 . ( 4 
(i i i ) We note that ∂ t s 1 (x, ξ) = (∂ u s 1 )(u; x, ξ)[ u] + (∂ u s 1 )(u; x, ξ)[ u]
. Since u solves (3.4) and satisfies Hypothesis 4.1, then using Lemma 2.1 and (3.9) we deduce that u H s u H s+2 . Hence the estimates (4.9) follow by direct inspection by using the explicit structure of the symbols s 1 , s 2 in (4.2), Lemma 2.4 and (2.10).

We are now in position to state the following proposition. with Φ NLS defined in (4.4). Then W solves the equation

Ẇ = -iEOp BW diag 1 + a (1) 2 (U ; x) |ξ| 2 )W -iEV * W -iOp BW diag a (1) 1 (U ; x) • ξ W + X H (4) NLS (W ) + R (1) (U ) , (4.11) 
where the vector field X H (4) NLS is defined in (3.5). The symbols a (1) 2 and a (1) 1 • ξ are real valued and satisfy the following estimates

|a (1) 2 | N 0 p u 6 H p+s 0 , ∀ p + s 0 ≤ s , p ∈ N , | a (1) 1 • ξ| N 1 p u 6 H p+s 0 +1 , ∀ p + s 0 + 1 ≤ s , p ∈ N , (4.12) 
where we have chosen s 0 > d . The remainder R (1) has the form (R (1,+) , R (1,+) ) T . Moreover, for any s > 2d +2, it satisfies the estimate R (1) (U )

H s U 7 H s . (4.13)
Proof. The function W defined in (4.10) satisfies

Ẇ = [∂ t Φ NLS (U )]U + Φ NLS (U ) U = -Φ NLS (U )iEOp BW (1 + A 2 (U ))|ξ| 2 Ψ NLS (U )W -Φ NLS (U )iEV * Ψ NLS W (4.14) -iΦ NLS (U )Op BW diag( a 1 (U ) • ξ) Ψ NLS (U )W (4.15) + Φ NLS (U )X H (4) NLS (U ) (4.16) + Φ NLS (U )R(U ) + Op BW (∂ t S -1 (U ))U (4.17) -Φ NLS (U )i EOp BW (1 + A 2 (U ))|ξ| 2 + Op BW diag( a 1 • ξ) + Φ NLS (U )iEV * R(U )Ψ NLS (U ) , (4.18) 
here we have used items (i i ) and (i i i ) of Lemma 4.3.

We are going to analyze each term in the r.h.s. of the equation above. Because of estimates (4.7), (4.5) (applied for the map Φ NLS ), Lemma 4.2 (applied for the symbols a 2 , b 2 and a 1 • ξ) and finally item (i i ) of Lemma 2.1 we may absorb term (4.18) in the remainder R (1) (U ) verifying (4.13). The term in (4.17) may be absorbed in R (1) (U ) as well because of (3.9) and (4.5) for the first addendum, because of (4.9) and item (i i ) of Lemma 2.1 for the second one.

We study the first addendum in (4.14). We recall (4.4) and (4.2), we apply Proposition 2.2 and we get, by direct inspection, that the new term, modulo contribution that may be absorbed in R (1) (U ), is given by

-iEOp BW diag(λ NLS ) W -2iOp BW diag Im (s 2 b 2 )∇s 1 + (s 1 b 2 + s 2 (1 + a 2 ))∇s 2 • ξ W ,
where by Im { b}, with b = (b 1 , . . . , b d ), we denoted the vector (Im (b 1 ), . . . , Im (b d )). The second addendum in (4.14) is equal to -iEV * W modulo contributions to R (1) (U ) thanks to (1.5) and (4.5).

Reasoning analogously one can prove that the term in (4.15) equals to -iOp BW diag( a 1 (U )•ξ) W , modulo contributions to R (1) (U ). We are left with studying (4.16). First of all we note that X H (4)

NLS (U ) = -iE |u| 2 U , then we write X H (4) NLS (U ) = X H (4) NLS (W ) + X H (4) NLS (U ) -X H (4) NLS (W ) .
Lemma 4.2 and item (i i ) of Lemma 2.1 (recall also (4.2)), imply

Φ NLS (U )U -U H s U 7 H s , therefore it is a contribution to R (1) (U ). We have obtained Φ NLS (U )X H (4) NLS (U ) = X H (4) NLS (W ) modulo R (1) (U ).
Summarizing we obtained the (4.11) with symbols a (1) 2 defined in (4.1) and a (1) 1

= a 1 + 2Im (s 2 b 2 )∇s 1 + (s 1 b 2 + s 2 (1 + a 2 ))∇s 2 ∈ R , (4.19) 
with a 1 in (3.2).

4.1.2. Diagonalization of cubic terms at order 0. The aim of this section is to diagonalize the cubic vector field X H (4) NLS in (4.11) (see also (3.5)) up to smoothing remainder. In order to do this we will consider a change of coordinates which is symplectic up to high degree of homogeneity. We reason as follows. Define the following frequency localization:

S ξ w := k∈Z d w(k)χ |k| 〈ξ〉 e ik•x , ξ ∈ Z d , (4.20) 
for some 0 < < 1, where χ is defined in (2.5). Consider the matrix of symbols

B NLS (W ; x, ξ) := B NLS (x, ξ) := 0 b NLS (x, ξ) b NLS (x, -ξ) 0 , b NLS (x, ξ) = w 2 1 2|ξ| 2 , ( 4.21) 
and the Hamiltonian function

B NLS (W ) := 1 2 T d iEOp BW (B NLS (S ξ W ; x, ξ))W • W d x , (4.22) 
where S ξ W := (S ξ w, S ξ w) T . The presence of truncation on the high modes (S ξ ) will be decisive in obtaining Lemma A.1 (see comments in the proof of this Lemma).

Let

Z := z z := Φ B NLS (W ) := W + X B NLS (W ) (4.23)
where X B NLS is the Hamiltonian vector field of (4.22). We note that Φ B NLS is not symplectic, nevertheless it is close to the flow of B NLS (W ) which is symplectic. This is a consequence of the estimates (4.5), (4.8), (A.7), (A.4), (A.9).

We introduce the following notation. We define the operator Λ NLS as the Fourier multiplier acting on periodic functions as follows:

Λ NLS e iξ•x = Λ NLS (ξ)e iξ•x , R Λ NLS (ξ) := |ξ| 2 + V (ξ) , ξ ∈ Z d , (4.25) 
where V (ξ) are the real Fourier coefficients of the convolution potential V (x) given in (1.5). We prove the following. 

∂ t Z = -iE Λ NLS Z -iEOp BW diag a (1) 2 (x)|ξ| 2 Z -iOp BW diag a (1) 1 (x) • ξ Z + X H (4) NLS (Z ) + R (2) 5 (U ) , (4.26) 
where a (1) 2 (x), a ( Then we have that the equation (4.11) reads

∂ t W = X H (≤4) NLS (W ) -iOp BW A(U ; x, ξ) W + R (1) (U )
where we set

A(U ; x, ξ) := E diag(a (1) 2 (U ; x)|ξ| 2 ) + diag( a (1) 1 (U ; x) • ξ) . (4.31)
Hence by (4.23) we get

∂ t Z = (d W Φ B NLS (W )) -iOp BW A(U ; x, ξ) W + (d W Φ B NLS )(W ) X H (≤4) NLS (W ) + (d W Φ B NLS )(W ) R (1) (U ) . (4.32)
We study each summand separately. First of all we have that Let us now analyze the first summand in the r.h.s. of (4.32). We write 

d W Φ B NLS (W ) R (1) (U ) H s (A.
(d W Φ B NLS (W )) iOp BW A(U ; x, ξ) W = iOp BW A(U ; x, ξ) Z + P 1 + P 2 , P 1 := iOp BW A(U ; x, ξ) W -Z , P 2 := (d W Φ B NLS (W )) -1 iOp BW A(U ; x, ξ) W . ( 4 
d W Φ B NLS (W ) X H (≤4) NLS (W ) = X H (≤4) NLS (Z ) + X B NLS (Z ), X H (2) NLS (Z ) + R 5 (Z )
where R 5 is a remainder satisfying the quintic estimate (A.11). By Lemma A.4 we also have that In this section we diagonalize the system (3.31) up to a smoothing remainder. This will be done into two steps. We first diagonalize the matrix E (1 + A 1 (x, ξ)) in (3.31) by means of a change of coordinates similar to the one made in the previous section for the (NLS) case.

X H (≤4) NLS (Z ) + X B NLS (Z ), X H (2) NLS (Z ) = -iE Λ NLS Z + X H (4) NLS (Z ) ,
After that we diagonalize the matrix of symbols of order 0 at homogeneity 3, by means of an approximatively symplectic change of coordinates. Consider the Cauchy problem associated to (KG). Throughout the rest of the section we shall assume the following.

Hypothesis 4.8. We restrict the solution of (KG) on the interval of times [0, T ), with T such that

sup t ∈[0,T ) ψ(t , •) H s+ 1 2 + ∂ t ψ(t , •) H s-1 2 ≤ ε , ψ 0 (•) H s+ 1 2 + ψ 1 (•) H s-1 2 ≤ c 0 (s)ε 1 , for some 0 < c 0 (s) < 1 with ψ(0, x) = ψ 0 (x) and (∂ t ψ)(0, x) = ψ 1 (x) .
Note that such a T exists thanks to the local well-posedness proved in [START_REF] Kato | Spectral Theory and Differential Equations[END_REF].

Remark 4.9. Recall the (2.41). Then one can note that ψ

H s+ 1 2 + ∂ t ψ H s-1 2 ∼ u H s . 4.2.
1. Diagonalization at order 1. Consider the matrix of symbols (see (3.11), (3.12))

E (1 + A 1 (x, ξ)) , A 1 (x, ξ) := 1 1 1 1 a 2 (x, ξ) , a 2 (x, ξ) := 1 2 Λ -2 KG (ξ)a 2 (x, ξ) . (4.38) Define λ KG (x, ξ) := (1 + a 2 (x, ξ)) 2 -( a 2 (x, ξ)) 2 , a + 2 (x, ξ) := λ KG (x, ξ) -1. (4.39)
Notice that the symbol λ KG (x, ξ) is well-defined by taking u H s 1 small enough. The matrix of eigenvectors associated to the eigenvalues of E (1

+ A 1 (x, ξ)) is S(x, ξ) := s 1 (x, ξ) s 2 (x, ξ) s 2 (x, ξ) s 1 (x, ξ) , S -1 (x, ξ) := s 1 (x, ξ) -s 2 (x, ξ) -s 2 (x, ξ) s 1 (x, ξ)
,

s 1 := 1 + a 2 + λ KG 2λ KG 1 + a 2 + λ KG , s 2 := -a 2 2λ KG 1 + a 2 + λ KG . (4.40)
By a direct computation one can check that

S -1 (x, ξ)E (1 + A 1 (x, ξ))S(x, ξ) = E diag(λ KG (x, ξ)), s 2 1 -|s 2 | 2 = 1 . (4.41)
We shall study how the system (3.31) transforms under the maps

Φ KG = Φ KG (U )[•] := Op BW (S -1 (x, ξ)) , Ψ KG = Ψ KG (U )[•] := Op BW (S(x, ξ)) . (4.42)
We prove the following result.

Lemma 4.10. Assume Hypothesis 4.8. We have the following:

(i ) if s 0 > d , then | a + 2 | N 0 p + | a 2 | N 0 p + |s 1 -1| N 0 p + |s 2 | N 0 p u 4 H p+s 0 +1 , p + s 0 + 1 ≤ s ; (4.43) (i i ) for any s ∈ R one has Φ KG (U )V -V H s + Ψ KG (U )V -V H s V H s u 4 H 2s 0 +1 , ∀V ∈ H s (T d ; C 2 ) ; (4.44) (i i i ) one has Ψ KG (U ) • Φ KG (U ) = 1 +Q(U ) where Q is a real-to-real remainder satisfying Q(U )V H s+1 V H s u 4 H 2s 0 +3 ; (4.45) (i v) for any t ∈ [0, T ), one has ∂ t Φ KG (U )[•] = Op BW (∂ t S -1 (x, ξ))
and 

|∂ t S -1 (x, ξ)| N 0 s 0 u 4 H 2s 0 +3 , ∂ t Φ KG (U )V H s V H s u 4 H 2s 0 +3 . ( 4 
Ψ KG (U ) • Φ KG (U ) = 1 + Op BW 0 i{s 1 , s 2 } -i{s 1 , s 2 } 0 + R(s 1 , s 2 ) ,
for some remainder satisfying (2.12) with a s 1 and b s 2 . Therefore the (4.45) follows by using (2.8), (2.10) and (4.43). (i v) It is similar to the proof of item (i i i ) of Lemma 4.3. with Φ KG defined in (4.42). Then W solves the equation (recall

(3.1)) Ẇ = -iEOp BW diag 1 + a + 2 (x, ξ) Λ KG (ξ))W + X H (4) KG (W ) + R (1) (u) , (4.48)
where the vector field X H (4) KG is defined in (3.15). The symbol ã+ 2 is defined in (4.39). The remainder R (1) has the form (R (1,+) , R (1,+) ) T . Moreover, for any s > 2d + µ, for some µ > 0, it satisfies the estimate R (1) 

∂ t W = Φ KG (U ) U + (∂ t Φ KG (U ))[U ] = -iΦ KG (U )Op BW E (1 + A 1 (x, ξ))Λ KG (ξ) Ψ KG (U )W + Φ KG (U )X H (4) KG (U ) + Φ KG (U )R(u) + (∂ t Φ KG (U ))[U ] + iΦ KG (U )Op BW E (1 + A 1 (x, ξ))(ξ) Q(U )U , (4.50)
where we used items (i i ), (i i i ) in Lemma 4.10. We study the first summand in the r.h.s of (4.50). By direct inspection, using Lemma 2.1 and Proposition 2.2 we get

-iΦ KG (U )Op BW E (1 + A 1 (x, ξ))Λ KG (ξ) Ψ KG (U ) = -iOp BW S -1 E (1 + A 1 (x, ξ))S + R(u) (4.41) = -iEOp BW (diag(λ KG (x, ξ))) + R(u)
where R(u) is a remainder satisfying (4.49). Thanks to the discussion above and (4.39) we obtain the highest order term in (4.48). All the other summands in the r.h.s. of (4.50) may be analyzed as done in the proof of Prop. 4.4 by using Lemma 4.10.

Diagonalization of cubic terms at order 0.

In the previous section we showed that if the function U solves (3.31) then W in (4.47) solves (4.48). The cubic terms in the system (4.48) are the same appearing in (3.31) and have the form (3.15). The aim of this section is to diagonalize the matrix of symbols of order zero A 0 (x, ξ). We must preserve the Hamiltonian structure of the cubic terms in performing this step. In order to do this, in analogy with the (NLS) case, we reason as follows. Consider the matrix of symbols

B KG (W ; x, ξ) := B KG (x, ξ) := 0 b KG (x, ξ) b KG (x, -ξ) 0 , b KG (W ; x, ξ) = a 0 (x, ξ) 2Λ KG (ξ) , (4.51)
with a 0 (x, ξ) in (3.11), and define the Hamiltonian function

B KG (W ) := 1 2 T d iEOp BW (B KG (S ξ W ; x, ξ))W • W d x , (4.52)
where S ξ W := (S ξ w, S ξ w) T where S ξ is in (4.20). Let us define

Z := z z := Φ B KG (W ) := W + X B KG (W ) (4.53)
where X B KG is the Hamiltonian vector field of ( 

∂ t Z = -iEOp BW diag 1 + a + 2 (x, ξ) Λ KG (ξ))Z + X H (4) KG (Z ) + R (2) 5 (u) , ( 4 
H (4) KG (Z ) := H (4) KG (Z ) -{B KG (Z ), H (2) KG (Z )} , H (2) KG (Z ) = T d Λ KG z • zd x (4.58)
where H (4) KG is in (3.14), and B KG is in (4.52), (4.51). Proof. Recalling (3.14) and (the second equation in) (4.58) we define

H (≤4) KG (W ) := H (2) KG (W ) + H (4) KG (W ) , (4.59) 
and we rewrite the equation (4.48) as

∂ t W = X H (≤4) KG (W ) -iEOp BW a + 2 (x, ξ)Λ KG (ξ) W + R (1) (u).
Then, using (4.53), we get

∂ t Z = d W Φ B KG (W ) ∂ t W = d W Φ B KG (W ) X H (≤4) KG (W ) (4.60) + d W Φ B KG (W ) -iEOp BW diag( a + 2 (x, ξ)Λ KG (ξ)) W (4.61) + d W Φ B KG (W ) R (1) (u) . ( 4 

.62)

By estimates (A.5) and (4.49) we have that the term in (4.62) can be absorbed in a remainder satisfying the (4.57). Consider the term in (4.61). We write 

(4.61) = -iEOp BW diag( a + 2 (x, ξ)Λ KG (ξ)) Z + P 1 + P 2 , P 1 := -iEOp BW diag( a + 2 (x, ξ)Λ KG (ξ)) W -Z , P 2 := (d W Φ B KG (W )) -1 -iEOp BW diag( a + 2 (x, ξ)Λ KG (ξ)) W . ( 4 
d W Φ B KG (W ) X H (≤4) KG (W ) = X H (≤4) KG (Z ) + X B KG (Z ), X H (2) KG (Z ) , (4.64)
modulo remainders that can be absorbed in R (2) 5 satisfying (4.57). The (4.64), (4.60)-(4.62) and the discussion above imply the (4.55) where the cubic vector field has the form 

X H (4) KG (Z ) = X H (4) KG (Z ) + X B KG (Z ), X H (2) KG (Z ) . ( 4 
∂ t Z = -iEOp BW diag(Λ KG (ξ)) Z + X H (4) KG (Z ) + R (2) 5 (u) ,
where X H (4)

KG

has the form (4.56) with a 0 (x, ξ) a symbol of order -1 and Q H (4) KG a remainder of the form (A.23)

with coefficients satisfying (A.24) with the better denominator max{〈ξ -η -ζ〉, 〈η〉, 〈ζ〉} 2 .

ENERGY ESTIMATES

5.1. Estimates for the NLS. In this section we prove a priori energy estimates on the Sobolev norms of the variable Z in (4.23). In subsection 5.1.1 we introduce a convenient energy norm on H s (T d ; C) which is equivalent to the classic H s -norm. This is the content of Lemma 5.2. In subsection 5.1.2, using the non-resonance conditions of Proposition 5.6, we provide bounds on the non-resonant terms appearing in the energy estimates. We deal with resonant interactions in Lemma 5.4.

Energy norm. Let us define the symbol

L = L (x, ξ) := |ξ| 2 + Σ , Σ = Σ(x, ξ) := a (1) 2 (x)|ξ| 2 + a (1) 1 (x) • ξ , (5.1) 
where the symbols a (1) 2 (x), a (1) 1 (x) are given in Proposition 4.4. We have the following.

Lemma 5.1. Assume the Hypothesis 4.1 and let γ > 0. Then for ε > 0 small enough we have the following.

(i ) One has |L | N 2 s 0 + |L γ | N 2γ s 0 ≤ 1 +C u 6 H 2s 0 +1 , |Σ| N 2 s 0 + |L γ -|ξ| 2γ | N 2γ s 0 u 6 H 2s 0 +1 (5.2)
for some C > 0 depending on s 0 . (i i ) For any s ∈ R and any h ∈ H s (T d ; C), one has

T L h H s-2 + T L γ h H s-2γ ≤ h H s (1 +C u 6 H 2s 0 +1 ) , T Σ h H s-2 + T L γ -|ξ| 2γ h H s-2γ h H s u 6 H 2s 0 +1 , (5.3) 
for some C > 0 depending on s.

(i i i ) For any t ∈ [0, T ) one has |∂ t Σ| N 2 s 0 u 6 H 2s 0 +3 . Moreover (T ∂ t L γ )h H s-2γ h H s u 6 H 2s 0 +3 , ∀ h ∈ H s (T d ; C) . (5.4) 
(i v) The operators T L , T L γ are self-adjoint with respect to the L 2 -scalar product (2.3).

Proof. Items (i )-(i i ). The (5.2) follows by using (5.1), the bounds (4.12) on the symbols a (1) 2 and a (1) 1 • ξ. The (5.3) follows by Lemma 2.1. Item (i i i ). The bound on ∂ t Σ follows by reasoning as in item (i i i ) of Lemma 4.3 using the explicit formula of a (1) 2 in (4.1) and the formula for a (1) 1 • ξ in (4.19) (see also (4.2)). Then the (2.10) implies the (5.4). Item (i v). This follows by (2.20) since the symbol L in (5.1) is real-valued.

In the following we shall construct the energy norm. By using this norm we are able to achieve the energy estimates on the previously diagonalized system. For s ∈ R we define 

z n := T L n z , Z n = z n z n := T L n 1Z , Z = z z , n := s/2 . ( 5 
z H s ∼ z L 2 + T |ξ| 2n z L 2 (5.3) ≤ z L 2 + z n L 2 +C z H s u 6 H 2s 0 +1 which implies (1 -C u 6 H 2s 0 +1 ) z H s ≤ z L 2 + z n L 2 ,
for some constant C depending on s. The discussion above implies the (5.6) by taking ε > 0 in Hyp. 4.1 small enough.

Recalling (4.26), (4.25) and (5.1) we have

(∂ t + iΛ NLS )z = -iT Σ z + X + H (4) NLS (Z ) + R (2,+) 5 (U ) , Z = z z , (5.7) 
where X H (

is given in (4.27) (see also Remark 4.7) and R (2,+) 5 is the remainder satisfying (4.28).

Lemma 5.3. Fix s > 2d +4 and recall (5.7). One has that the function z n defined in (5.5) solves the problem

∂ t z n = -iT L z n -iV * z n + T |ξ| 2n X +,res H (4) NLS (Z ) + B (1) n (Z ) + B (2) n (Z ) + R 5,n (U ) , (5.8) 
where X +,res

H (4)
NLS is defined as in Def. 2.7,

B (1) n (Z )(ξ) = 1 (2π) d η,ζ∈Z d b (1) (ξ, η, ζ) z(ξ -η -ζ) z(η) z n (ζ) , B (2) n (Z )(ξ) = 1 (2π) d η,ζ∈Z d b (2) n (ξ, η, ζ) z(ξ -η -ζ) z(η) z(ζ) , (5.9 
)

with b (1) (ξ, η, ζ) := -2iχ |ξ-ζ| 〈ξ+ζ〉 1 R c (ξ, η, ζ) , (5.10) 
|b (2) n (ξ, η, ζ)| 〈ξ〉 2n max 2 {|ξ -η -ζ|, |η|, |ζ|} 4 max 1 {〈ξ -η -ζ〉, 〈η〉, 〈ζ〉} 1 R c (ξ, η, ζ) , (5.11) 
and where the remainder R 5,n satisfies R 5,n (U ) L 2 u 5 H s .

(5.12)

Proof. Recalling (2.48) we define

X +,⊥ H (4) NLS (Z ) := X + H (4) NLS (Z ) -X +,res H (4) 
NLS (Z ) .

(5.13) By differentiating (5.5) and using the (5.1) and (5.7) we get

∂ t z n = T L n ∂ t z + T ∂ t L n z = -iT L z n -iT L n (V * z) + T L n X + H (4) NLS (Z ) + T L n R (2,+) 5 (U ) + T ∂ t L n z -i[T L n , T L ]z . (5.14) 
By using Lemmata 2.1, 5.1 and Proposition 2.2, and the (5.6), (4.24) one proves that the last summand gives a contribution to R 5,n (U ) satisfying (5.12). By using (5.4), (4.24), (4.28) we deduce that

T L n R (2,+) 5 (U ) L 2 + T ∂ t L n z L 2 u 5 H s .
Secondly we write

iT L n (V * z) = iV * z n + iV * T |ξ| 2n -L n z + iT L n -|ξ| 2n (V * z) .
By (5.3), (4.24), and recalling (1.5) we conclude

T L n (V * z) -V * z n L 2 u 7
H s . We now study the third summand in (5.14). We have (see (5.13))

T L n X + H (4) NLS (Z ) = T |ξ| 2n X +,res H (4) NLS (Z ) + T |ξ| 2n X +,⊥ H (4) NLS (Z ) + T L n -|ξ| 2n X + H (4) NLS (Z ) .
By (5.3), (4.27), (2.10), Lemma 2.5 and using the estimate (A.18), one obtains

T L n -|ξ| 2n X + H (4) NLS (Z ) L 2 u 9 H s .
Recalling (4.37) and (5.13) we write

T |ξ| 2n X +,⊥ H (4) NLS (Z ) = C 1 + C 2 + C 3 , C i (ξ) = 1 (2π) d η,ζ∈Z d c i (ξ, η, ζ) z(ξ -η -ζ) z(η) z(ζ) , c 1 (ξ, η, ζ) := -2iχ |ξ-ζ| 〈ξ+ζ〉 |ζ| 2n 1 R c (ξ, η, ζ) c 2 (ξ, η, ζ) := -2iχ |ξ-ζ| 〈ξ+ζ〉 |ξ| 2n -|ζ| 2n 1 R c (ξ, η, ζ) c 3 (ξ, η, ζ) := q H (4) NLS (ξ, η, ζ)|ξ| 2n 1 R c (ξ, η, ζ) (5.15)
We now consider the operator C 1 with coefficients c 1 (ξ, η, ζ). First of all we remark that it can be written as C 1 = M (z, z, z) where M is a trilinear operator of the form (2.25). Moreover, setting

z n = T |ξ| 2n z + h n , h n := T L n -|ξ| 2n z ,
we can write C 1 = B (1) n (Z ) -M (z, z, h n ) , where B (1) n has the form (5.9) with coefficients as in (5.10). Using that |c 1 (ξ, η, ζ)| 1, Lemma 2.5 (with m = 0) and (5.3) we deduce that M (z, z, h n ) L 2 u 9 H s . Therefore this is a contribution to R 5,n (U ) satisfying (5.12). The discussion above implies formula (5.8) by setting B (2) n as the operator of the form (5.9) with coefficients b (2) In the following lemma we prove a key cancellation due to the fact that the super actions are prime integrals of the resonant Hamiltonian vector field X +,res H 4 (Z ) in the same spirit of [START_REF] Faou | Sobolev stability of plane wave solutions to the cubic nonlinear Schrödinger equation on a torus[END_REF]. We also prove an important algebraic property of the operator B (1) n in (5.8).

n (ξ, η, ζ) := c 2 (ξ, η, ζ) + c 3 (ξ, η, ζ).
Lemma 5.4. For any n ≥ 0 we have Re(T |ξ| n X +,res

H (4) NLS (Z ), T |ξ| n z) L 2 = 0 , (5.16) 
Re(B (1) 

n (Z ), z n ) L 2 = 0 , (5.17) 
where X +,res

H (4)
NLS is defined in Lemma 5.3 and B (1) n in (5.9), (5.10).

Proof. The (5.16) follows by Lemma 2.8. Let us check the (5.17). By an explicit computation using (2.3), (5.9) we get Re(B (1) 

n (Z ), z n ) L 2 = 1 (2π) d ξ,η,ζ∈Z d b (1) (ξ, η, ζ) z(ξ -η -ζ) z(η) z n (ζ) z n (-ξ) + 1 (2π) d ξ,η,ζ∈Z d b (1) (ξ, η, ζ) z(-ξ + η + ζ) z(-η) z n (-ζ) z n (ξ) = 1 (2π) d ξ,η,ζ∈Z d b (1) (ξ, η, ζ) + b (1) (ζ, ζ + η -ξ, ξ) z(ξ -η -ζ) z(η) z n (ζ) z n (-ξ) .
By (5.10) we have

b (1) (ξ, η, ζ) + b (1) (ζ, ζ + η -ξ, ξ) = 2iχ |ξ-ζ| 〈ξ+ζ〉 1 R c (ξ, η, ζ) -1 R c (ζ, ζ + η -ξ, ξ) = 0 ,
where we used the form of the resonant set R in (2.47). This proves the lemma.

We conclude the section with the following proposition.

Proposition 5.5. Let u(t , x) be a solution of (NLS) satisfying Hypothesis 4.1 and consider the function z n in (5.5) (see also (4.23), (4.10)). Then, setting s = 2n > 2d + 4 we have z n (t ) L 2 ∼ u(t ) H s and

∂ t z n (t ) 2 L 2 = B(t ) + B >5 (t ) , t ∈ [0, T ) , (5.18) 
where

• the term B(t ) has the form

B(t ) = 2 (2π) d ξ,η,ζ∈Z d |ξ| 2n b(ξ,η,ζ) z(ξ -η -ζ) z(η) z(ζ) z(-ξ) , b(ξ,η,ζ) = b (2) n (ξ, η, ζ) + b (2) n (ζ, ζ + η -ξ, ξ) , ξ, η, ζ ∈ Z d , (5.19) 
where b (2) n (ξ, η, ζ) are the coefficients in (5.9), (5.11);

• the term B >5 (t ) satisfies |B >5 (t )| u 6 H s , t ∈ [0, T ) . (5.20) 
Proof. The norm z n L 2 is equivalent to u H s by using Lemma 5.2 and Remark 4.5. By using (5.8) we get

1 2 ∂ t z n (t ) 2 L 2 = Re(T |ξ| 2n X +,res H (4) NLS (Z ), z n ) L 2 (5.21) + Re(-iT L z n , z n ) L 2 + Re(B (1) n (Z ), z n ) L 2 + Re(-iV * z n , z n ) L 2 (5.22) + Re(B (2) n (Z ), z n ) L 2 (5.23) + Re(R 5,n (Z ), z n ) L 2 . ( 5.24) 
Recall that T L is self-adjoint (see item (i v) in Lemma 5.1) and the convolution potential V has real Fourier coefficients. Then by using also Lemma 5.4 (see (5.17)) we deduce (5.22) = 0. Moreover by Cauchy-Schwarz inequality, estimates (5.12), (5.6) and (4.24) we obtain that the term in (5.24) is bounded form above by u 6 H s . Consider the terms in (5.21) and (5.23). Recalling (5.5) and (5.1) we write Re(T |ξ| 2n X +,res

H (4) NLS (Z ), z n ) L 2 = Re(T |ξ| 2n X +,res H (4) NLS (Z ), T |ξ| 2n z) L 2 + Re(T |ξ| 2n X +,res H (4) NLS (Z ), T L n -|ξ| 2n z) L 2 , (5.16) = Re(T |ξ| 2n X +,res H (4) NLS (Z ), T L n -|ξ| 2n z) L 2 .

Moreover we write

Re(B (2) n (Z ),

z n ) L 2 = Re(B (2) n (Z ), T |ξ| 2n z) L 2 + Re(B (2) n (Z ), T L n -|ξ| 2n z) L 2 .
Using the bound (5.3) in Lemma 5.1 to estimate the operator T L n -|ξ| 2n , Lemma 2.5 and (5.11) to estimate the operator B (2) n (Z ), we get |Re(T |ξ| 2n X +,res

H (4) NLS (Z ), T L n -|ξ| 2n z) L 2 | + |Re(B (2) n (Z ), T L n -|ξ| 2n z) L 2 | u 10 H s ,
which means that these remainders can be absorbed in the term B >5 (t ). Then we set B(t ) := 2Re(B (2) n (Z ), T |ξ| 2n z) L 2 . Formulae (5.19) follow by an explicit computation using (5.9), (5.11).

Estimates of non-resonant terms.

In this subsection we provide estimates on the term B(t ) appearing in (5.18). Proposition 5.6. (Non-resonance conditions). Consider the phase ω NLS (ξ, η, ζ) defined as

ω NLS (ξ, η, ζ) := Λ NLS (ξ -η -ζ) -Λ NLS (η) + Λ NLS (ζ) -Λ NLS (ξ) , (ξ, η, ζ) ∈ Z 3d (5.25)
where Λ NLS is in (4.25) and the potential V is in (1.5). We have the following. 

ξ = ζ , η = ξ -η -ζ , or ξ = ξ -η -ζ , η = ζ , ξ, η, ζ ∈ Z. (5.27) 
Proof. Item (i ) follows by Proposition 2.8 in [START_REF] Faou | A Nekhoroshev-type theorem for the nonlinear Schrödinger equation on the torus[END_REF]. Item (i i ) is classical.

We are now in position to state the main result of this section.

Proposition 5.7. Let N > 0. Then there is s 0 = s 0 (N 0 ), where N 0 > 0 is given by Proposition 5.6, such that, if Hypothesis 4.1 holds with s ≥ s 0 , one has

t 0 B(σ)d σ u 10 L ∞ H s T N + u 6 L ∞ H s T + u 4 L ∞ H s T N -1 + u 4 L ∞ H s , (5.28) 
where B(t ) is in (5.19).

We need some preliminary results. We consider the following trilinear maps: 

B i = B i [z 1 , z 2 , z 3 ] , B i (ξ) = 1 (2π) d η,ζ∈Z d b i (ξ, η, ζ) z 1 (ξ -η -ζ) z 2 (η) z 3 (ζ) , i = 1, 2, (5.29) 
T < = T < [z 1 , z 2 , z 3 ] , T < (ξ) = 1 (2π) d η,ζ∈Z d t < (ξ, η, ζ) z 1 (ξ -η -ζ) z 2 (η) z 3 (ζ) , (5.30 
t < (ξ, η, ζ) = -1 iω NLS (ξ,η,ζ) b 1 (ξ, η, ζ) , (5.33) 
where b(ξ,η,ζ) are the coefficients in (5.19), and ω NLS is the phase in (5.25). We remark that if (ξ, η, ζ) ∈ R then the coefficients b(ξ,η,ζ) are equal to zero (see (5.19), (5.9), (5.11)). Therefore, since ω NLS is nonresonant (see Proposition 5.6), the coefficients in (5.33) are well-defined. We now prove an abstract results on the trilinear maps introduced in (5.29)-(5.30).

Lemma 5.8. One has that, for s = 2n > d /2 + 4,

B 2 [z 1 , z 2 , z 3 ] L 2 N -1 3 i =1 z i H s i =k z k H d /2+4+ , ∀ > 0 .
(

5.34)

There is s 0 (N 0 ) > 0 (N 0 > 0 given by Proposition 5.6) such that for s ≥ s 0 (N 0 ) one has

T < [z 1 , z 2 , z 3 ] H p N 3 i =1 z i H s+p-2 i =k z k H s 0 , p ∈ N , (5.35) 
T < [z 1 , z 2 , z 3 ] L 2 3 i =1 z i H s i =k z k H s 0 .
(5.36)

Proof. Using (5.32), (5.19), (5.11) we get that

B 2 [z 1 , z 2 , z 3 ] 2 L 2 ξ∈Z d η,ζ∈Z d |b 2 (ξ, η, ζ)|| z 1 (ξ -η -ζ)|| z 2 (η)|| z 3 (ζ)| 2 N -2 ξ∈Z d η,ζ∈Z d 〈ξ〉 2n max 2 {|ξ -η -ζ|, |η|, |ζ|} 4 | z 1 (ξ -η -ζ)|| z 2 (η)|| z 3 (ζ)| 2 .
Then, by reasoning as in the proof of Lemma 2.5, one obtains the (5.34). Let us prove the bound (5.35) for p = 0, the others are similar. Using (5.33), (5.26), (5.19), (5.11) we have

T < [z 1 , z 2 , z 3 ] 2 L 2 ξ∈Z d η,ζ∈Z d |t < (ξ, η, ζ)|| z 1 (ξ -η -ζ)|| z 2 (η)|| z 3 (ζ)| 2 γ N 2 ξ∈Z d η,ζ∈Z d 〈ξ〉 2n max 2 {|ξ-η-ζ|,|η|,|ζ|} N 0 +4 max 1 {|ξ-η-ζ|,|η|,|ζ|} 2 | z 1 (ξ -η -ζ)|| z 2 (η)|| z 3 (ζ)| 2 .
Again, by reasoning as in the proof of Lemma 2.5, one obtains the (5.35). The (5.36) Consider now the first summand in the r.h.s. of (5.37). We claim that we have the following identity:

t 0 (B 1 [z, z, z], T |ξ| 2n z) L 2 d σ = t 0 (T < [z, z, z], T |ξ| 2n (∂ t + iΛ NLS )z) L 2 d σ + t 0 (T < [(∂ t + iΛ NLS )z, z, z], T |ξ| 2n z) L 2 d σ + t 0 (T < [z, z, (∂ t + iΛ NLS )z], T |ξ| 2n z) L 2 d σ + t 0 (T < [z, (∂ t + iΛ NLS )z, z], T |ξ| 2n z) L 2 d σ + O( u 4 H s ) .
(5.39)

We use the claim, postponing its proof. Consider the first summand in the r.h.s. of (5.39). Using the self-adjointness of T |ξ| 2 and the (5.7) we write

(T < [z, z, z], T |ξ| 2n (∂ t + iΛ NLS )z) L 2 = (T |ξ| 2 T < [z, z, z], -T |ξ| 2n-2 iT Σ z) L 2 + T < [z, z, z], T |ξ| 2n (X + H (4) NLS (Z ) + R (2,+) 5 (U )) L 2 .
We estimate the first summand in the r.h.s. by means of the Cauchy-Schwarz inequality, the (5.35) with p = 2 and the (5.3); analogously we estimate the second summand by means of the Cauchy-Schwarz inequality, (5.36), the (4.27) and the (4.28), obtaining

t 0 (T < [z, z, z], T |ξ| 2n (∂ t + iΛ NLS )z) L 2 d σ ≤ t 0 u(σ) 10 H s N + u(σ) 6 H s d σ .
The other terms in (5.39) are estimated in a similar way. We eventually obtain the (5.28).

We now prove the claim (5.39). Recalling (5.7) we have that

∂ t z(ξ) = -iΛ NLS (ξ) z(ξ) + Q(ξ) , ξ ∈ Z d , Q := -iT Σ z + X + H (4) NLS (Z ) + R (2,+) 5 (U ) .
We define g (ξ) := e it Λ NLS (ξ) z(ξ), ∀ξ ∈ Z d . One can note that g (ξ) satisfies

∂ t g (ξ) = e it Λ NLS (ξ) Q(ξ) = e it Λ NLS (ξ) (∂ t + iΛ NLS ) z(ξ) , ∀ ξ ∈ Z d .
(5.40)

According to this notation and using (5.29) and (5.25) we have

t 0 (B 1 [z, z, z], T |ξ| 2n z) L 2 d σ = t 0 ξ,η,ζ∈Z d 1 (2π) d b 1 (ξ, η, ζ)e -iσω NLS (ξ,η,ζ) g (ξ -η -ζ) g (η) g (ζ) g (-ξ)|ξ| 2n d σ .
By integrating by parts in σ and using (5.40) one gets the (5.39) with

O( u 4 H s ) = (T < [z(t ), z(t ), z(t )], T |ξ| 2n z(t )) L 2 -(T < [z(0), z(0), z(0)], T |ξ| 2n z(0)) L 2 .
The remainder above is bounded from above by u 4 L ∞ H s using Cauchy-Schwarz and the (5.36).

5.2.

Estimates for the KG. In this section we provide a priori energy estimates on the variable Z solving (4.55). This implies similar estimates on the solution U of the system (3.31) thanks to the equivalence (4.54). In subsection 5.2.1 we introduce an equivalent energy norm and we provide a first energy inequality. This is the content of Proposition 5.11. Then in subsection 5.2.2 we give improved bounds on the non-resonant terms.

5.2.1. First energy inequality. We recall that the system (4.55) is diagonal up to smoothing terms plus some higher degree of homogeneity remainder. Hence, for simplicity, we pass to the scalar equation

∂ t z + iΛ KG z = -iOp BW a + 2 (x, ξ)Λ KG (ξ) z + X + H (4) KG (Z ) + R (2,+) 5 (u) (5.41)
where (recall (4.56)) X +

H (4) KG (Z ) = -iOp BW (a 0 (x, ξ))z +Q + H (4) KG (Z ) .
For n ∈ R we define

z n := Λ n KG z , Z n = z n z n := 1Λ n KG Z , Z = z z .
(5.42)

We have the following.

Lemma 5.9. Fix n := n(d ) 1 large enough and recall (5.41). One has that the function z n defined in (5.42) solves the problem

∂ t z n = -iOp BW (1 + a + 2 (x, ξ))Λ KG (ξ) z n + Λ n KG X +,res H (4) 
KG (Z ) + B (1) n (Z ) + B (2) n (Z ) + R 5,n (U ) , (5.43) where the resonant vector field X +,res

H (4)
KG is defined as in Def. 2.7 (see also Rmk. 2.9), the cubic terms B (i ) n , i = 1, 2, have the form B (1) n (Z which represents the non resonant terms in the cubic vector field of (5.41). By differentiating in t the (5.42) and using the (5.41) we get

)(ξ) = 1 (2π) d σ 1 ,σ 2 ∈{±} η,ζ∈Z d b σ 1 ,σ 2 1 (ξ, η, ζ) z σ 1 (ξ -η -ζ) z σ 2 (η) z n (ζ) , (5.44) 
B (2) n (Z )(ξ) = 1 (2π) d σ 1 ,σ 2 ,σ 3 ∈{±} η,ζ∈Z d b σ 1 ,σ 2 ,σ 3 2,n (ξ, η, ζ) z σ 1 (ξ -η -ζ) z σ 2 (η) z σ 3 (ζ) , ( 5 
∂ t z n = -iOp BW (1 + a + 2 (x, ξ))Λ KG (ξ) z n + Λ n KG X +,res H (4) KG (Z ) -i Λ n KG ,Op BW (1 + a + 2 (x, ξ))Λ KG (ξ) z (5.50) + Λ n KG X +,⊥ H (4) 
KG (Z ) (5.51)

+ Λ n KG R (2,+) 5 (u) , (5.52) 
We analyse each summand above separately. First of all we remark that we have the equivalence between the two norms (see 

(2.2)) u 2 H n ∼ (Λ n KG u, Λ n KG u) L 2 .
Λ n KG X +,⊥ H (4) KG (Z ) = B (1) n (Z ) + C 1 + C 2 , (5.53) 
with B (1) n (Z ) as in (5.44) and coefficients as in (5.46), the term C 1 has the form

C 1 (ξ) = 1 (2π) d σ 1 ,σ 2 ∈{±} η,ζ∈Z d c σ 1 ,σ 2 1 (ξ, η, ζ) z σ 1 (ξ -η -ζ) z σ 2 (η) z(ζ) , c σ 1 ,σ 2 1 (ξ, η, ζ) = -ia σ 1 ,σ 2 0 ξ -ζ, η, ξ+ζ 2 χ |ξ-ζ| 〈ξ+ζ〉 Λ n KG (ξ) -Λ n KG (ζ) 1 R c (ξ, η, ζ) , (5.54) 
and the term C 2 has the form (5.45) with coefficients (see (A.23))

c σ 1 ,σ 2 ,σ 3 2 (ξ, η, ζ) := q σ 1 ,σ 2 ,σ 3 H (4) KG (ξ, η, ζ)Λ n KG (ξ)1 R c (ξ, η, ζ) .
(5.55)

In order to conclude the proof we need to show that the coefficients in (5.54), (5.55) satisfy the bound (5.47). This is true for the coefficients in (5.55) thanks to the bound (A.24). Moreover notice that

|Λ n KG (ξ) -Λ n KG (ζ)| |ξ -ζ| max{〈ξ〉, 〈ζ〉} n-1 .
Then the coefficients in (5.54) satisfy (5.47) by using Remark 3.4 and Lemma 2. In view of Lemma 5.9 we deduce the following. Proposition 5.14. Let N > 0 and let β be as in Proposition 5.13. Then there is s 0 = s 0 (N 0 ), where N 0 > 0 is given by Proposition 5.13, such that, if Hypothesis 4.8 holds with s ≥ s 0 , one has

t 0 B(σ)d σ u 6 L ∞ H s T N β-1 + u 8 L ∞ H s N β T + u 4 L ∞ H s T N -1 + N β-1 u 4 L ∞ H s , (5.67) 
where B(t ) is in (5.57).

We firstly introduce some notation. Let σ := (σ 1 , σ 2 , σ 3 ) ∈ {±} 3 and consider the following trilinear maps:

B σ i = B σ i [z 1 , z 2 , z 3 ] , B σ i (ξ) = 1 (2π) d η,ζ∈Z d b σ i (ξ, η, ζ) z σ 1 1 (ξ -η -ζ) z σ 2 2 (η) z σ 3 3 (ζ) , (5.68) 
T σ < = T σ < [z 1 , z 2 , z 3 ] , T σ < (ξ) = 1 (2π) d η,ζ∈Z d t σ < (ξ, η, ζ) z σ 1 1 (ξ -η -ζ) z σ 2 2 (η) z σ 3 3 (ζ) , (5.69) 
where

b σ 1 (ξ, η, ζ) = b σ 1 ,σ 2 ,σ 3 (ξ, η, ζ)1 {max{|ξ-η-ζ|,|η|,|ζ|}≤N } , (5.70) b σ 2 (ξ, η, ζ) = b σ 1 ,σ 2 ,σ 3 (ξ, η, ζ)1 {max{|ξ-η-ζ|,|η|,|ζ|}>N } ,
(5.71) 

t σ < (ξ, η, ζ) = -1 iω σ KG (ξ,η,ζ) b σ 1 (ξ, η, ζ) , ( 5 
B σ 2 [z 1 , z 2 , z 3 ] L 2 N -1 3 i =1 z i H s i =k z k H d /2+µ+ , (5.73) 
for any σ ∈ {±} 3 and any > 0. There is s 0 (N 0 ) > 0 (N 0 > 0 given by Proposition 5.13) such that for s ≥ s 0 (N 0 ) one has

T < [z 1 , z 2 , z 3 ] H p N β 3 i =1 z i H s+p-1 i =k z k H s 0 , p ∈ N , (5.74) 
T

< [z 1 , z 2 , z 3 ] L 2 N β-1 3 i =1 z i H s i =k z k H s 0 . (5.75)
where β is defined in Proposition 5.13.

Proof. The proof is similar to the one of Lemma 5.8.

Remark 5.16. In view of Remark 5.12, if (KG) is semi-linear we may improve (5.75) with

T < [z 1 , z 2 , z 3 ] L 2 N β-2 3 i =1 z i H s i =k z k H s 0 .
(5.76)

We are now in position to prove the main Proposition 5.14.

Proof of Proposition 5.14. By (5.68), (5.70), (5.71), and recalling the definition of B in (5.57), we can write 

t 0 B(τ)d τ = σ∈{±} 3 t 0 (B σ 1 [z, z, z], Λ s KG z) L 2 d τ + σ∈{±} 3 t 0 (B σ 2 [z, z, z], Λ s KG z) L 2 d τ . ( 5 
(B σ 1 [z, z, z], Λ s KG z) L 2 d τ = t 0 (T σ < [z, z, z], Λ s KG (∂ t + iΛ KG )z) L 2 d τ + t 0 (T σ < [(∂ t + iΛ KG )z, z, z], Λ s KG z) L 2 d τ + t 0 (T σ < [z, z, (∂ t + iΛ KG )z], Λ s KG z) L 2 d τ + t 0 (T σ < [z, (∂ t + iΛ KG )z, z], Λ s KG z) L 2 d τ + R , (5.79) 
where

R = (T σ < [z(t ), z(t ), z(t )], Λ s KG z(t )) L 2 -(T σ < [z(0), z(0), z(0)], Λ s KG z(0)) L 2 .
The remainder R above is bounded from above by N β u 4 L ∞ H s using Cauchy-Schwarz and the (5.74). Let us now consider the first summand in the r.h.s. of (5.79). Using that the operator Λ KG is self-adjoint and recalling the equation (5.41) we have 

(T σ < [z, z, z], Λ s KG (∂ t + iΛ KG )z) L 2 = (Λ KG T σ < [z, z, z], Λ s-1 KG (∂ t + iΛ KG )z) L 2 = (Λ KG T σ < [z, z, z], Λ s-1 KG Op BW -i a + 2 (x, ξ)Λ KG (ξ) z) L 2 (5.80) + (T σ < [z, z, z], Λ s KG X + H (4) KG (Z ) + R (2,+) ≥5 (u) ) L 2 . ( 5 
B(σ)d σ u 6 L ∞ H s T N β-2 + u 4 L ∞ H s T N -2 + N β-2 u 4 L ∞ H s .
(5.82)

PROOF OF THE MAIN RESULTS

In this section we conclude the proof of our main theorems.

Proof of Theorem 1. Consider (NLS) and let u 0 as in the statement of Theorem 1. By the result in [START_REF] Feola | Local well-posedness for the Hamiltonian quasi-linear Schrödinger equation on tori[END_REF] we have that there is T > 0 and a unique solution u(t , x) of (NLS) with V ≡ 0 such that Hypothesis 4.1 is satisfied. To recover the result when V = 0 one can argue as done in [START_REF] Feola | Local well-posedness for quasi-linear NLS with large Cauchy data on the circle[END_REF]. Consider a potential V as in (1.5) with x ∈ O \ N with N is the zero measure set given in Proposition 5.6. We claim that we have the following a priori estimate: fix any 0 < N , then for any t ∈ [0, T ), with T as in Hyp. 4.1, one has 

u(t ) 2 H s u 0 2 H s + u 10 L ∞ H s T N + u 6 L ∞ H s T + u 4 L ∞ H s T N -1 + u 4 L ∞ H s . ( 6 
< ε ≤ ε 0 , if u 0 H s ≤ c 0 ε , sup t ∈[0,T ) u(t ) H s ≤ ε , T ≤ c 0 ε -4 , (6.3) then we have the improved bound sup t ∈[0,T ) u(t ) H s ≤ ε/2.
Proof. For ε small enough the bound (6.1) holds true, and we fix N := ε -3 . Therefore, there is C = C (s) > 0 such that, for any t ∈ [0, T ),

u(t ) 2 H s ≤ C u 0 2 H s + u 4 L ∞ H s + u 10 L ∞ H s T ε -3 + u 6 L ∞ H s T + u 4 L ∞ H s T ε 3 (6.3) ≤ C c 2 0 ε 2 + ε 4 + 2ε 7 T + ε 6 T ≤ C ε 2 4 (4c 2 0 + 4ε 2 + 5c 0 ) ≤ ε 2 /4 (6.4)
where in the last inequality we have chosen c 0 and ε sufficiently small. This implies the thesis.

Proof of Theorem 2. One has to follow almost word by word the proof of Theorem 1. The only difference relies on the estimates on the small divisors which in this case are given by item (i i ) of Proposition 5.6.

Proof of Theorem 3. Consider (KG) and let (ψ 0 , ψ 1 ) as in the statement of Theorem 3. Let ψ(t , x) be a solution of (KG) satisfying the condition in Hyp. 4.8. By Proposition 3.6, recall (2.41), the function

U := u u solves (3.4) with initial condition u 0 = 1 2 (Λ 1 2 KG ψ 0 + iΛ -1 2 KG ψ 1 )
. Moreover, by Hyp. 4.8 one has sup t ∈[0,T ) u H s ≤ ε. By Remark 4.9, in order to get the (1.8), we have to show that the bound on the function u above holds for a longer time T ε -3 + if d = 2 and T ε -8/3 + if d ≥ 3. Fix β as in Proposition 5.13 and let m ∈ C β . By Propositions 4.11, 4.13 and Lemma 5.9 we can construct a function z n with n = s such that if ψ(t , x) solves the (KG) then z n solves the equation (5.43). By Proposition 5.11 we get

u(t ) 2 H s z(t ) 2 L 2 + z n (t ) 2 L 2 u 0 2 H s + t 0 B(σ)d σ + t 0 B >5 (σ)d σ . ( 6.5) 
Propositions 5.11 and 5.14 apply, therefore, by (5.67) and (5.59), we obtain the following a priori estimate: fix any 0 < N , then for any t ∈ [0, T ), with T as in Hyp. 4.8, one has 

u(t ) 2 H s u 0 2 H s + u 6 L ∞ H s T N β-1 + u 8 L ∞ H s T N β + u 6 L ∞ H s T + u 4 L ∞ H s T N -1 + N β-1 u 4 L ∞ H s . ( 6 
< ε ≤ ε 0 , if u 0 H s ≤ c 0 ε , sup t ∈[0,T ) u(t ) H s ≤ ε , T ≤ c 0 ε -a + , ( 6.7 
)

then we have the improved bound sup t ∈[0,T ) u(t ) H s ≤ ε/2.
Proof. We start with d ≥ 3.For ε small enough the bound (6.6) holds true. Let 0 < σ 1. Define

β := 3 + σ , N := ε -2 3+σ . ( 6.8) 
By (6.6), (6.7), (6.8), there is C = C (s) > 0 such that, for any t ∈ [0, T ),

u(t ) 2 H s ≤ C ε 2 (ε 2 3+σ + c 2 0 ) + 2C T ε 2 (ε 4 + ε 2+ 2 3+σ
) ≤ ε 2 /4 (6.9)

where in the last inequality we have chosen c 0 and ε sufficiently small and we used the choice of T in (6.7) and that σ is arbitrary small. This implies the thesis. In the case d = 2 the proof is similar setting β = 2 + σ and N = ε -2/(2+σ) .

Proof of Theorem 4. Using the Remarks 3.5, 3.7, 4.14, 5.10, 5.12, 5.16, 5.17 one deduces the result by reasoning as in the proof of Theorem 3 and using in particular the estimate (5.82).

APPENDIX A. APPROXIMATELY SYMPLECTIC MAPS

A.1. Para-differential Hamiltonian vector fields. In this section we study some properties of the maps generated by the Hamiltonians B NLS (W ) in (4.22) and B KG (W ) in (4.52). In the next lemma we show that their Hamiltonian vector fields are given by Op BW (B NLS (W ; x, ξ))W and Op BW (B KG (W ; x, ξ))W respectively, modulo smoothing remainders. More precisely we have the following. where q σ 1 ,σ In the next proposition we define the changes of coordinates generated by the Hamiltonian vector fields X B NLS and X B KG and we study their properties as maps on Sobolev spaces. We need to prove that this can be written as the r.h.s. of (A. [START_REF] Delort | Semiclassical microlocal normal forms and global solutions of modified one-dimensional KG equations Annales de l[END_REF]). First we note that the term in (A. 

Theorem 4 .

 4 Consider (KG) with f = 0 and g independent of y 1 . Then the same results of Theorem 3 holds true for T ≥ c 0 ε -a + , with a = 4 if d = 2, and a = 10/3 if d ≥ 3.

  gradient, the Hamiltonian function H NLS and the nonlinearity p are H NLS (u, u) := T d |∇u| 2 + (V * u)u + P (u, ∇u)d x , P (u, ∇u) := 1 2 ∇h(|u| 2 ) 2 + |u| 4 , p(u) := (∂ u P )(u, ∇u) -d j =1

Lemma 2 . 5 .

 25 Let µ ≥ 0 and m ∈ R. Assume that for any ξ, η, ζ ∈ Z d one has

Lemma 2 . 6 .

 26 Let µ ≥ 0 and m ∈ R. Consider a trilinear map Q as in (2.25) with coefficients satisfying q

Proposition 3 . 1 .

 31 (Paralinearization of NLS). The equation (NLS) is equivalent to the following system:

. 30 ) 3 . 5 .

 3035 Remark Consider the special case when the function G in (1.2) is independent of y 1 . Following the proof of Lemma 3.3 one could obtain the formula(3.15

. 4 ) 4 . 3 .

 443 Lemma Let U = u u be a solution of (3.4) and assume Hyp. 4.1. Then for any s ≥ 2s 0 + 2, N s 0 > d , we have the following. (i ) One has the upper bound

Proposition 4 . 4 (

 44 Diagonalization at order 2). Consider the system (3.4) and set W = Φ NLS (U )U , (4.10)

Proposition 4 . 6 (

 46 Diagonalization at order 0). Let U = (u, u) be a solution of (3.4) and assume Hyp. 4.1. Define W := Φ NLS (U )U where Φ NLS (U ) is the map in (4.4) given in Lemma 4.3. Then the function Z = z z defined in (4.23) satisfies (recall (4.25))

Proposition 4 . 11 (

 411 Diagonalization at order 1). Consider the system (3.31) and set W = Φ KG (U )U , (4.47)

  The coefficient c 3 (ξ, η, ζ) satisfies the (5.11) by (A.18). For the coefficient c 2 (ξ, η, ζ) one has to apply Lemma 2.6 with µ = m = 1 and f (ξ, η, ζ) := (|ξ| 2n -|ζ| 2n )|ξ| -2n . This concludes the proof.

  (i ) Let d ≥ 2.There exists N ⊂ O with zero Lebesgue measure such that, for any(x i ) i ∈Z d ∈ O \N , there exist γ > 0, N 0 := N 0 (d , m) > 0 such that for any (ξ, η, ζ) ∉ R (see (2.47)) one has |ω NLS (ξ, η, ζ)| ≥ γ max 2 {|ξ -η -ζ|, |η|, |ζ|} -N 0 .(5.26)(i i ) Let d = 1 and assume that V ≡ 0. Then one has |ω NLS (ξ, η, ζ)| 1 unless

) where b 1 (

 1 ξ, η, ζ) = b(ξ,η,ζ)1 {max{|ξ-η-ζ|,|η|,|ζ|}≤N } , (5.31) b 2 (ξ, η, ζ) = b(ξ,η,ζ)1 {max{|ξ-η-ζ|,|η|,|ζ|}>N } ,(5.32) 

6 . 5 . 10 .

 6510 Remark In view ofRemarks 3.5, 3.7, 4.14 if (KG) is semi-linear then the symbol ã+ 2 in (5.43) is equal to zero, the coefficients b σ 1 ,σ 2 ,σ 3 2,n (ξ, η, ζ) in (5.45) satisfies the bound (5.47) the the better denominator max 1 {〈ξ -η -ζ〉, 〈η〉, 〈ζ〉} 2 .

. 6 )

 6 The thesis of Theorem 3 follows from the following lemma. Lemma 6.2. (Main bootstrap). Let u(t , x) be a solution of (3.31) with t ∈ [0, T ) and initial condition u 0 ∈ H s (T d ; C). Define a = 3 if d = 2 and a = 8/3 if d ≥ 3. Then, for s 1 large enough, there exist ε 0 , c 0 > 0 such that, for any 0

Lemma A. 1 . 1 (2π) d σ 1 ,σ 2 ,σ 3 ∈{±}η,ζ∈Z d q σ 1 ,σ 2 ,σ 3 B

 1112313 Consider the Hamiltonian function B(W ) equals to B NLS in (4.22) or B KG in (4.52). One has that the Hamiltonian vector field of B(W ) has the formX B (W ) = -iJ ∇B(W ) = Op BW (B (W ; x, ξ))W +Q B (W ) , (A.1)where Q B (W ) is a smoothing remainder of the form(Q + B (W ),Q + B (W ))T and the symbol B (W ; x, ξ) is respectively equal to B NLS (W ; x, ξ) in (4.21) or B KG (W ; x, ξ) in (4.51). In particular the cubic remainder Q B (W ) has the form(Q + B (W ))(ξ) = (ξ, η, ζ) w σ 1 (ξ -ηζ) w σ 2 (η) w σ 3 (ζ) , ξ ∈ Z d , (A.2)

2

 2 h i H s , ∀ h i ∈ H s (T d ; C 2 ) , i = 1, 2, 3 , (A.5)with k = 0, 1, 2, 3.Proof. We prove the statement in the case B = B NLS , the other case is similar. Using the formulae (4.21),(4.22) we obtainB NLS (W ) = -G 1 (W ) -G 2 (W ) with G 1 (W ) := -i 2 T d Op BW (b NLS (S ξ w))w wd x , G 2 (W ) := i 2 T d Op BW (b NLS (S ξ w)w wd x ,where we recall(4.20). By (4.21) we obtain that ∇ w G 1 (W ) = -iOp BW (b NLS (S ξ w))w. We compute the gradient with respect w of the term G 2 (W ). We haved w G 2 (W )(h) = i 2 T d Op BW (S ξ (w)S ξ (h) 1 |ξ| 2 )w wd x ξ -ηζ) h(η) w(ζ) w(-ξ) ξ + ηζ) w(ζ) w(-ξ) .Recalling (2.33) and the computations above, after some changes of variables in the summations, we obtainX B NLS (W ) = Op BW (B NLS (S ξ W ; x, ξ))W + R 1 (W )where the remainder R 1 (W ) has the form (R + 1 (W ), R + 1 (W )) T where (recall (2.5)) (R + 1 (W ))(ξ) = 1 (2π) d η,ζ∈Z d r 1 (ξ, η, ζ) w(ξ -ηζ) w(η) w(ζ) , ξ ∈ Z d , r 1 (ξ, η, ζ) = -2ζ〉 .One can check, for 0 < < 1 small enough, |ξ| + |η| |ξ -η -ζ| ∼ |ζ|. Therefore the coefficients r 1 (ξ, η, ζ) satisfies the (2.15). Here we really need the truncation operator S ξ : if you don't insert it in the definition of B NLS (see (4.22)) then R 1 is not a regularizing operator. Furthermore this truncation does not affect the leading term: define the operator R Op BW B NLS (S ξ W ; x, ξ) -B NLS (W ; x, ξ) W , we are going to prove that R 2 is also a regularizing operator. By an explicit computation using (2.6), (4.20) and (4.21) one can check that(R + 2 (W ))(ξ) = 1 (2π) d η,ζ∈Z d r 2 (ξ, η, ζ) w(ξ -ηζ) w(η) w(ζ) , ξ ∈ Z d , r 2 (ξ, η, ζ) • r 2 (ξ, η, ζ) and we use the partition of the unity in (2.16). Hence using the (2.5) one can check that each summand satisfies the bound in(2.15). Therefore the operator Q G := R 1 +R 2 has the form (A.2) and (A.1) is proved. The estimates (A.3) follow by Lemma 2.5. We note thatd W Op BW (B NLS (W ; x, ξ))W [h] = Op BW (B NLS (W ; x, ξ))h + Op BW (d W B NLS (W ; x, ξ)[h])W .Then the estimates (A.4) with k = 0, 1, follow by using (A.3), the explicit formula of B (W ; x, ξ) in (4.21) and Lemma 2.1. Reasoning similarly one can prove the (A.4) with k = 2, 3.

Proposition A. 2 . 1 (

 21 For any s ≥ s 0 > 2d + 2 there is r 0 > 0 such that for 0 ≤ r ≤ r 0 , the following holds. DefineZ := Φ B (W ) := W + X B (W ) , (A.6)where q B NLS (ζ, η, ζ) satisfies the bound in (2.15). Hence, by using formulae (4.25), (A.[START_REF] Delort | Quasi-Linear Perturbations of Hamiltonian Klein-Gordon Equations on Spheres[END_REF]), (2.37), one obtainsX H (4) NLS (Z ) + X B NLS (Z ), X H 2π) d η,ζ∈Z d ic(ξ, η, ζ) z(ξ -ηζ) z(η) z(ζ)wherec(ξ,η,ζ) = 1 + 2 |ξ+η| 2 χ |ξ-η| 〈ξ+η〉 + q B NLS (ξ, η, ζ) Λ NLS (ξ -ηζ) -Λ NLS (η) + Λ NLS (ζ) -Λ NLS (ξ) . (A.20) 

2 χ| j 3 | 1 2 9 |Λ j 1 -2| j 3 | 1 4| j 3 | 2d +3 n β 2 # 1 n| j 3 |

 23191313213 [START_REF] Delort | Long-time existence for small data nonlinear Klein-Gordon equations on tori and spheres[END_REF])q B NLS (ξ, η, ζ) Λ NLS (ξ -ηζ) -Λ NLS (η) + Λ NLS (ζ) -Λ NLS (ξ) (A.21)can be absorbed in R 1 since the (A.21) satisfy the same bound as in (A.18). Moreover, using the (4.25) and the (1.5), we have that the coefficients2 |ξ+η| 2 χ |ξ-η| 〈ξ+η〉 V (ξ -ηζ) -V (η) + V (ζ) -V (ξ) satisfy the bound in (A.[START_REF] Delort | Application to the quasi-linear Klein-Gordon equation on S 1[END_REF]) by using also Lemma 2.6. Therefore the corresponding operator contributes to R 1 . The same holds for the operator corresponding to the coefficients2 |ξ+η| 2 χ |ξ-η| 〈ξ+η〉 |ξ -η -ζ| 2 + |ζ| 2 .We are left with the most relevant terms in (A.20) containing the highest frequencies η and ξ. We have that-2(|ξ| 2 +|η| 2 ) |ξ+η| 〈ξ+η〉r 1 (ξ, η, ζ) , r 1 (ξ, η, ζ) = |ξ-η| 2 |ξ+η| 2 χ |ξ-η|〈ξ+η〉 . Again we note that the coefficients r 1 (ξ, η, ζ), using Lemma 2.6, satisfy(A.18). Then it remains to study the operator R + (Z ) with(R + (Z ))(ξ) := -1 (2π) d η,ζ∈Z d i 1 -χ |ξ-η| 〈ξ+η〉 z(ξ -ηζ) z(η) z(ζ) .By assumption j 1j 2 + σ 3 j 3 + σ 4 j 4 = 0 and thus| j 1j 2 | ≤ 2| j 3 |. Choosing κ = γ 2d +3 | j 1 | β in Lemma B.8 and assuming 2| j 3 | ≤ | j 1 | we have by Lemma B.8 and Lemma B.Λ j 2 + σ 3 Λ j 3 + σ 4 Λ j 4 | ≥ γ | j 3 | 2d +3 | j 1 | β -C | j 3 | 5 | j 1 | 4 ≥ γ 2d +3 | j 1 | βas soon as| j 1 | ≥ C γ -β | j 3 | 2d +8 4-β =: J (γ, | j 3 |) ≥ 10| j 3 | 3 and m ∈ D( j 3 , j 4 , σ, κ, σ 3 g(| j 1 |, | j 1j 2 |, ( j 1 , j 1j 2 ), •)) (the set D is defined in Lemma B.8). Then denoting C (γ, j 3 , j 4 , σ 3 , σ 4 ) :={m ∈ [1, 2] : |Λ j 1 -Λ j 2 + σ 3 Λ j 3 + σ 4 Λ j 4 | ≥ γ 2| j 3 | 2d +3 | j 1 | β , ∀( j 1 , j 2 ) such that | j 1 | ≥ max(| j 2 |, J (γ, | j 3 |)), j 1j 2 + σ 3 j 3 + σ 4 j 4 = 0} we have C (γ, j 3 , j 4 , σ 3 , σ 4 ) = g D( j 3 , j 4 , σ, γ | j 3 | 2d +4 | j 1 | β , σ 3 g(| j 1 |, | j 1j 2 |, ( j 1 , j 1j 2 ), •))where the intersection is taken over all functions g generated by ( j 1 , j 2 ) ∈ (Z d ) 2 such that| j 1 | ≥ max(| j 2 |, J (γ, | j 3 |))and j 1j 2 + σ 3 j 3 + σ 4 j 4 = 0. Thus by Lemma B.8meas [1, 2] \ C (γ, j 3 , j 4 , σ 3 , σ 4 ) ≤ n≥1 10γ {(| j 1 |, |σ 3 j 3 + σ 4 j 4 |, ( j 1 , σ 3 j 3 + σ 4 j 4 )) | j 1 ∈ Z d , | j 1 | 2 = n} .But, the scalar product ( j 1 , σ 3 j 3 +σ 4 j 4 )) takes only integer values no larger in modulus than 2| j 1 || j 3 ] thus meas C (γ, j 3 , j 4 , σ 3 , σ 4 ) ≤ 20γ| j 3 | 2d +2 n≥1 2d +2 .Then it remains to defineN β = ∪ γ>0 ( j 3 , j 4 )∈(Z d ) 2 |k 4 |≤|k 3 | σ 3 ,σ 4 ∈{-1,1} C (γ, j 3 , j 4 , σ 3 , σ 4 )to conclude the proof.Step 3: proof of Proposition B.[START_REF] Baldi | Controllability of quasi-linear Hamiltonian NLS equations[END_REF] We are now in position to prove Proposition B.1. Let σ 1 , σ 2 , σ 3 , σ 4 ∈ {-1, 1}, j 1 , j 2 , j 3 , j 4 ∈ Z d satisfying | j 1 | ≥ | j 2 | ≥ | j 3 | ≥ | j 4 | and σ 1 j 1 + σ 2 j 2 + σ 3 j 3 + σ 4 j 4 = 0. If σ 1 = σ 2 , then, since | j 1 | ≥ | j 2 | ≥ | j 3 | ≥ | j 4 |,we conclude that the associated small divisor cannot be small except if | j 1 | = | j 2 | = | j 3 | = | j 4 | and σ 1 = σ 2 = -σ 3 = -σ 4 but this case is excluded in Proposition B.1. Thus we can assume σ 1 = -σ 2 and we can apply Proposition B.7 which implies the control (B.1) for m ∈ N β with α = 2d + 3 under the additional constrain | j 1 | ≥ J (κ(m), | j 3 |). Now if | j 1 | ≤ J (κ(m), | j 3 |) we can apply Lemma B.2 to obtain that there exists ν > 0 and full measure set M ν such that for m ∈ M ν ∩ N β := C β we have |σ 1 Λ j 1 + σ 2 Λ j 2 + σ 3 Λ j 3 + σ 4 Λ j 4 | ≥ γ(m) | j 1 | ν ≥ γ(m) J (| j 3 |, κ(m)) ν = C γ(m)κ(m) 4-β | j 3 | α with α = ν 2d +8 4-β which, of course, implies (B.1).

  .26) By Lemma 2.6 we have that the coefficients in (3.26) satisfy(3.17). This prove the claim for the operator A -1 . We now study the term in(3.23). We remark that, by Proposition 2.2 (see the composition formula (2.11)), we have that A -1/2 = Op BW (Λ ∂ y 0 y 1 G) up to a smoothing operator of order -3/2. Actually to prove that such a remainder has the form (3.16) with coefficients (3.17) it is more convenient to compute the composition operator explicitly. In particular, recalling (2.6), we get

	-1 2 KG (ξ)

  2 ,σ (ξ -ηζ, η, ζ) satisfies the(3.17). By (3.27),(3.22),(3.24) and recalling the definition of a 0 (x, ξ) in(3.11), we obtain the (3.15). The bound(3.19) for Q 3 follows by (3.17) and Lemma 2.5. Moreover the bound(3.18) follows by Lemma 2.12 in[START_REF] Feola | Local well-posedness for the Hamiltonian quasi-linear Schrödinger equation on tori[END_REF] recalling that

	G(ψ, Λ KG ψ) ∼ O(u 4 ). Then the bound (3.19) for X H (4) 1 2 KG	follows by Lemma 2.1. Let us prove the (3.20). By
	differentiating (3.15) we get	

  We remark that the symbol a 0 (x, ξ) in(3.11) is homogenenous of degree two in the variables u, u. In particular, by(3.25), we have

	.28)
	The first summand in (3.28) satisfies (3.20) by Lemma 2.1 and (3.18). Moreover using (3.25) and (3.11)
	one can check that
	|d

U A 0 (x, ξ)h| N 0 p u H p+s 0 h H p+s 0 , p + s 0 ≤ s . Then the second summand in (3.28) verify the bound (3.20) again by Lemma 2.1. The estimate on the third summand in (3.28) follows by (3.16), (3.17) and Lemma 2.5. Remark 3.4.

  Then by(2.8),(3.37) and (2.10) (see Lemma 2.1 and Proposition 2.2) we deduce that the terms in (3.36) can be absorbed in a remainder satisfying (3.33) with s 2d large enough. We now consider the first term in the r.h.s. of(3.35). We have

  The properties of X B NLS and the estimates of Φ B NLS are discussed in Lemma A.1 and in Proposition A.2.

Remark 4.5. Recall (4.10) and (4.23). One can note that, owing to Hypothesis 4.1, for s > 2d + 2, we have U H s ∼ s W H s ∼ s Z H s . (4.24)

  .46) Proof. (i ) The (4.43) follows by (3.32) using the explicit formulae (4.40), (4.39). (i i ) It follows by using (4.43) and item (i i ) in Lemma 2.1. (i i i ) By formula (2.11) in Proposition 2.2 one gets

  4.52) and W is the function in (4.47). The properties of X B KG and the estimates of Φ B KG are discussed in Lemma A.1 and in Proposition A.2.

	Remark 4.12. Recall (4.47) and (4.53). One can note that, owing to Hypothesis 4.8, for s > 2d + 3, we have
	U H s ∼ s W H s ∼ s Z H s .	(4.54)
	This is a consequence of the estimates (4.44), (4.45) (A.7), (A.5), (A.9).	
	Proposition 4.13 (Diagonalization at order 0). Let U be a solution of (3.31) and assume Hyp. 4.8 (see
	also Remark 4.9). Then the function Z defined in (4.53), with W given in (4.47), satisfies	

  Hence using again (4.43), (2.10), (4.54) we get P 1 satisfies (4.57). It remains to discuss the structure of the term in (4.60). By Lemma A.3 we obtain

	which implies the (4.57). By (A.9) in Lemma A.2 and estimate (A.5) we deduce W -Z H s+1	u 3 H s .
	u 7 H s ,	

.63)

We have that, for s ≥ 2s 0 + 2,

P 2 H s (A.5) u 2 H s Op BW a + 2 (x, ξ)Λ KG (ξ) w H s-1

(4.43),(2.10),(4.54)

  In view ofRemarks 3.5, 3.7, following the same proof of Proposition 4.13, in the semi-linear case we obtain that equation (4.55) reads

		.65)
	Using (2.37), (2.36), we conclude that X H (4) KG	is the Hamiltonian vector field of H (4) KG in (4.58). The (4.56)
	follows by Lemma A.5.	
	Remark 4.14.	

  Proof. Let s = 2n. Then by (5.3) and (5.5) we havez n L 2 ≤ z H s (1 +C u 6 H 2s 0 +1 ) , with s 0 > d . Moreover

		.5)
	Lemma 5.2. (Equivalence of the energy norm). Assume Hypothesis 4.1 with s > 2d + 4. Then, for ε > 0
	small enough enough, one has	
	z L 2 + z n L 2 ∼ z H s .	(5.6)

  follows similarly.

	Proof of Proposition 5.7. By (5.29), (5.31), (5.32), and recalling the definition of B in (5.19), we can write
	t				t						t			
	0	B(σ)d σ =	0	(B 1 [z, z, z], T |ξ| 2n z) L 2 d σ +	0	(B 2 [z, z, z], T |ξ| 2n z) L 2 d σ .	(5.37)
	By Lemma 5.8 we have										
		0	t	(B 2 [z, z, z], T |ξ| 2n z) L 2 d σ	(5.34)	N -1	0	t	z 4 H s d σ	(4.24)	N -1	0	t	u 4 H s .	(5.38)

  By estimate (4.57) we deduce (5.52) L 2 u 5 H n . Let us now consider the commutator term in (5.50). By Lemma 2.1, Proposition 2.2 and the estimate on the semi-norm of the symbol a +

	2 (x, ξ) in (4.43), we obtain that (5.50) L 2	u 4 H n z H n u 5 H n , we have
	used also the (4.54). The term in (5.51) is the most delicate. By (4.56) and (5.49) (recall also Rmk. 3.4 and
	(2.6))	

  We now state an abstract results on the trilinear maps introduced in (5.68)-(5.69). Let µ > 1 as in(5.58). One has that, for s > d /2 + µ,

	Lemma 5.15.

.72) where b σ 1 ,σ 2 ,σ 3 (ξ, η, ζ) are the coefficients in (5.57), and ω σ KG is the phase in (5.65). We remark that if (ξ, η, ζ) ∈ R then the coefficients b(ξ,η,ζ) are equal to zero (see (5.57), (5.45), (5.47)). Therefore, since ω σ KG is non-resonant (see Proposition 5.13), the coefficients in (5.72) are well-defined.

  Consider now the first summand in the r.h.s. of (5.77). Integrating by parts as done in the proof of Prop. 5.7 we have

														.77)
	By Lemma 5.15 we have											
	0	t	(B σ 2 [z, z, z], Λ s KG z) L 2 d σ	(5.73)	N -1	0	t	z 4 H s d τ	(4.54)	N -1	0	t	u 4 H s d τ .	(5.78)

t 0

  H s N β . Consider the term in(5.81). First of all notice that, by (3.18) and Lemma 2.1, and by (A.24) and Lemma 2.5, the field X H[START_REF] Bambusi | Birkhoff normal form for partial differential equations with tame modulus[END_REF] 

	(Z ) in
	KG
	. Therefore, using (5.75) and (4.57), we obtain 1, we conclude that the first summand in the 0 u(τ) 8 d τ + N β-1 t (4.56) satisfies the same estimates (3.19) as the field X H (4) KG |(5.81)| u 6 H s N β-1 . Using that (see Hyp. 4.8) u H s r.h.s. of (5.79) is bounded from above by N β t 0 u(τ) 6 d τ. The other terms in (5.79)
	are estimated in a similar way. We eventually obtain the (5.67).
	Remark 5.17. In view of Remarks 3.5, 3.7, 4.14, 5.10, 5.12 and 5.16, if (KG) is semi-linear we have the
	better (w.r.t. (5.67)) estimate
	t
	0

.81) By Cauchy-Schwarz inequality, estimate (5.74) with p = 1, estimate (4.43) on the semi-norm of the symbol a + 2 (x, ξ) Lemma 2.1 and the equivalence (4.54), we get |(5.80)| u 8

  Propositions 5.5 and 5.7 apply, therefore, by (5.28) and (5.20), we obtain the (6.1). The thesis of Theorem 1 follows from the following lemma. Let u(t , x) be a solution of (NLS) with t ∈ [0, T ) and initial condition u 0 ∈ H s (T d ; C). Then, for s 1 large enough, there exist ε 0 , c 0 > 0 such that, for any 0

	Lemma 6.1. (Main Bootstrap).									
											.1)
	To prove the claim we reason as follows. By Proposition 3.1 we have that (NLS) is equivalent to the
	system (3.H s	z(t ) 2 L 2 + z n (t ) 2 L 2	u 0	2 H s +	0	t	B(σ)d σ +	0	t	B >5 (σ)d σ .	(6.2)

[START_REF] Bambusi | Birkhoff normal form for partial differential equations with tame modulus[END_REF]

. By Propositions 4.4, 4.6 and Lemma 5.3 we can construct a function z n with 2n = s such that if u(t , x) solves the (NLS) then z n solves the equation (5.8). Moreover by Lemma 5.2 and Remark 4.5 we also have that z L 2 + z n L 2 ∼ u H s . By Proposition 5.5 we get u(t )

2 

  2 ,σ 3 In the case that B = B NLS we have that σ 1 = +, σ 2 = -, σ 3 = +. Moreover, for s > d /2 + ρ, we have the followingd k W Q B (W )[h 1 , . . . , h k ] H s+ρ w 3-k ∈ H s (T d ; C 2 ) , i = 1, 2, 3 , (A.3) for k = 0, 1, 2, 3. Moreover, for any s > 2d + 2, one has d k W X B NLS (W )[h 1 , . . . , h k ] H s+2 w 3-k

			k
		H s	i =1 ∀ h i H s h i H s , k h i H s , ∀ h i ∈ H s (T d ; C 2 ) , i = 1, 2, 3 ,	(A.4)
				i =1
	d k W X B KG (W )[h 1 , . . . , h k ] H s+1	H s w 3-k	k
				i =1

B (ξ, η, ζ) ∈ C satisfy, for any ξ, η, ζ ∈ Z d , a bound like (2.15).

Proposition 5.11. Let ψ(t , x) be a solution of (KG) satisfying Hypothesis 4.8 and consider the function z n in (5.42) (see also (4.53), (4.47)). Then, setting s = n = n(d ) 1 we have z n L 2 ∼ ψ H s+1/2 + ψ H s-1/2 and ∂ t z n (t ) 2 L 2 = B(t ) + B >5 (t ) , t ∈ [0, T ) , (5.56) where

• the term B(t ) has the form for some µ > 1;

• 

+ Re(B (1) n (Z ), z n ) L 2 (5.62)

+ Re(B (2) n (Z ), z n ) L 2 (5.63)

(5.64) By (4.39), (4.38) and (3.11) we have that the symbol (1+ a + 2 (x, ξ))Λ KG (ξ) is real-valued. Hence the operator iOp BW (1 + a + 2 (x, ξ))Λ KG (ξ) is skew-self-adjoint. We deduce (5.60)≡ 0. By Lemma 2.8 (see also Remark 2.9) we also have that (5.61)≡ 0. We also have that (5.62) ≡ 0 , to see this one can reason as done in the proof of Prop. 5.4, by using Remark 3.4, in particular (3.30). By formula (5.45) and estimates (5.47) we have that the term in (5.63) has the form (5.57) with coefficients satisfying (5.58). By Cauchy-Schwarz inequality and estimate (5.48) we get that the term in (5.64) satisfies the bound (5.59). Remark 5.12. In view of Remark 5.10, if (KG) is semi-linear, then the coefficients b σ 1 ,σ 2 ,σ 3 (ξ, η, ζ) of the energy in (5.57) satisfy the bound (5.58) with the better denominator max 1 {〈ξ -η -ζ〉, 〈η〉, 〈ζ〉} 2 .

5.2.2.

Estimates of non-resonant terms. In Proposition 5.11 we provide a precise structure of the term B(t ) of degree 4 in (5.56). In this section we show that, actually, B(t ) satisfies better bounds with respect to a general quartic multilinear maps by using that it is non-resonant. We need the following.

Proposition 5.13. (Non-resonance conditions). Consider the phase ω σ

) 

By using estimates (A.4) or (A.5) one can deduce that X B (W ) -X B (Z ) satisfies the bound (A.9 

where H (2) Proof. We prove the statement in the case B = B NLS and H (≤4) = H (≤4) NLS , the KG-case is similar. One can check that (A.10) follows by setting

We are left to prove that R 5 satisfies (A.11). We start from the term in (A.12). First of all we note that

where we used that X H (2) NLS (W ) = -iE Λ NLS W . By Proposition A.2, the (3.10) and (A.4) we deduce that

Hence using again the bounds (A.4) we obtain

Reasoning in the same way, using also (A.8), one can check that the terms in (A.13), (A.14), (A.15) satisfies the same quintic estimates.

In the next lemma we study the structure of the the cubic terms in the vector field in (A.10) in the NLS case.

Lemma A.4. Consider the Hamiltonian B NLS (W ) in (4.22) and recall (3.10), (4.29). Then we have that

where the remainder Q

with symbol satisfying

Proof. We start by considering the commutator between X B NLS and X H (2)

NLS

. First of all notice that (see (A.1), (4.21))

and hence (recall

By formula (3.5) and (2.6) we get R + (Z ) = -iOp BW (2|z| 2 )z + Q + 3 (U ) , where Q 3 satisfies (3.7), (3.8). This concludes the proof.

In the next lemma we study the structure of the the cubic terms in the vector field in (A.10) in the KG case.

Lemma A.5. Consider the Hamiltonian B KG (W ) in (4.52) and recall (3.14), (4.58). Then we have that

for some q σ 1 ,σ 2 ,σ 3

for some µ > 1.

Proof. Using (A.1) (with B = B KG ) we can note that

where

where the coefficients are defined in (A.2). The remainder R 2 has the form (A.23) and we have that the coefficients r σ 1 ,σ 2 ,σ 3 2 (ξ, η, ζ) satisfy the bound (A.24). On the other hand, recalling (4.51), (2.37), we have

where

By Remark 3.4 and (2.6) we get

Using the explicit form of the coefficients of R + 4 and Lemma 2.6 one can conclude that the operator R + l.h.s. of (A.22) = Op BW -ia 0 (x, ξ) 0 0 ia 0 (x, ξ)

where R 4 is in (A.29), R 2 is in (A.26), Q 3 (Z ) is in (3.15) and

where R + 3 is in (A.28). By the discussion above and by Lemma 3.3 we have that the remainders R 2 , R 4 and Q 3 have the form (A.23) with coefficients satisfying (A.24). To conclude the prove we need to show that F 3 has the same property. This will be a consequence of the choice of the symbol b KG (W ; x, ξ) in (4.51). Indeed, by (4.51), Remark 3.4, (A.31), (A.28), we have

where

By Taylor expanding the symbol Λ KG (ξ) in (1.4) (see also Remark 3.4) one deduces that

-1

|ξ-ζ|

Therefore, using Lemma 2.6, we have that the coefficients f σ 1 ,σ 2 ,- 3 (ξ, η, ζ) in (A.32) satisfy the (A.24). This implies the (A.22).

APPENDIX B. NON-RESONANCE CONDITIONS FOR (KG)

In this section we prove Proposition 5.13 providing lower bounds on the phase in (5.25). Recall the symbol Λ KG ( j ) in (1.4). Throughout this subsection, in order to lighten the notation, we shall write Λ KG ( j ) Λ j for any j ∈ Z d . The main result of this section is the following. 

The Proposition B.1 will implies Proposition 5.6. Its proof is done in three steps.

Step 1: control with respect to the highest index.

Lemma B.2.

There exist ν > 0 and M ν ⊂ [1, 2] a set of Lebesgue measure 1 and for m ∈ M ν there exists γ(m) > 0 such that

The proof of this Lemma is standard and follows the line of Theorem 6.5 in [START_REF] Bambusi | Birkhoff normal form for some nonlinear PDEs[END_REF], see also [START_REF] Bambusi | Birkhoff normal form for partial differential equations with tame modulus[END_REF] or [START_REF] Eliasson | KAM for nonlinear beam equation[END_REF]. We briefly repeat the steps. Let us assume that j 1 , j 2 , j 3 ,

First of all, by reasoning as in Lemma 3.2 in [START_REF] Eliasson | KAM for nonlinear beam equation[END_REF], one can deduce the following. Lemma B.3. Consider the matrix D whose entry at place (p, q) is given by d p d m p Λ j q , p, q = 1, . . . , 4. The modulus of the determinant of D is bounded from below: one has |det(D)| ≥ C | j 1 | -µ where C > 0 and µ > 0 are universal constants.

From Lemma 3.3 in [START_REF] Eliasson | KAM for nonlinear beam equation[END_REF] we learn Lemma B.4. Let u (1) , ..., u (4) be 4 independent vectors in R 4 with u (i ) 1 ≤ 1. Let w ∈ R 4 be an arbitrary vector, then there exist i ∈ [1, • • • , 4], such that |u (i ) • w| ≥ C w 1 det(u (1) , . . . , u (4) ).

Let us define

Combining Lemmata B. Then

By combining Corollary B.5 and Lemma B.6 we get 

where C is an universal constant.

We begin with two elementary lemmas

Proof. Let f (m) = Λ j + σΛ k -g(m). In the case σ = -1, which is the worst, we have

We want to estimate | f (m)| from above. By using that 4(| j | 2 + 2)

In the case σ = 1, the same bound holds true. Then we conclude by a standard argument that

which is the thesis. x 7 .

We are now in position to prove the main result of this subsection.

Proof of Proposition B.7. Let g be the rational function introduced in Lemma B.9. We write, with σ = σ 3 σ 4 ,

|Λ j 1 -Λ j 2 + σ 3 Λ j 3 + σ 4 Λ j 4 | ≥|Λ j 3 + σΛ j 4 + σ 3 g(| j 1 |, | j 1j 2 |, ( j 1 , j 1j 2 ), m)| -|Λ j 1 -Λ j 2 -g(| j 1 |, | j 1j 2 |, ( j 1 , j 1j 2 ), m)| .