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Abstract

Intelligent surveillance systems in human-centered en-
vironments require people behavioral monitoring. In this
paper, we propose a new Bayesian framework to recog-
nize actions on RGB-D videos by two different observa-
tions: the human pose and objects in its vicinity. We design
a model for each action that integrates these observations
and a probabilistic sequencing of actions performed during
activities. We validate our approach on two public video
datasets: CAD-120 and Watch-n-Patch. We show a perfor-
mance gain of 4% in action detection on the fly on CAD-120
videos. Our approach is competitive to 2D image features
and skeleton-based methods, as we present an improvement
of 16% on Watch-n-Patch. Action recognition performance
is clearly improved by our Bayesian and joint human-object
perception.

1. Introduction

Activity recognition is an important task in the develop-
ment of many practical applications such as home health
monitoring, human-robot interaction, among others. An ac-
tivity can be seen as a temporal sequence of actions e.g.: the
activity prepare coffee involves actions such as pour water,
add ground coffee and turn on machine. Activities involved
at home or in an industrial environment may differ but their
underlying actions may be similar as they cover object dis-
placement, object grasping, object interaction...

This is still a challenging topic where actions could be
misinterpreted due to background clutter, partial occlusions
of the body, presence of numerous objects in the human
vicinity and viewpoint changes. Some of the problems can
be handled by the use of additional sources, i.e., wearable

devices such as accelerometers [3], but the possibility to use
invasive equipment depends on the context or sometimes is
not applicable.

Depth cue offers non-invasive information with the op-
portunity to segment the background and to create 3D mod-
els invariant to camera viewpoints. From these insights,
we focus on non-physically invasive sensors and decide to
only rely on a single low-cost RGB-D sensor (e.g. Kinect,
XTion).

Convolutional Neural Network (CNN) based methods
have shown good performance in the area of multiple ob-
jects detection and human pose estimation over color im-
ages. The fusion of both objects and human pose perception
can be used to understand complex activities, especially in
the case when objects are in interaction with the environ-
ment and the human pose trajectory is not highly discrim-
inant alone. Thus, building upon the recent advances of
CNNs we propose to use human pose and objects detection
as low-level input for our Bayesian framework which allows
labelling actions on the fly.

Some actions do not differ much in the human pose in-
volved but rather in the object configuration during action
execution. Given the inferred class of each object, we can
provide knowledge on how it is manipulated i.e. the so-
called affordance [5]. Multiple affordance labels can be as-
sociated with an object class e.g. an apple is eatable and
peelable not readable. Those affordance labels may imply
specific object configuration, in the case of the label pee-
lable there must be a peeler or a knife nearby.

However human pose perception is relevant to achieve
action recognition as some actions can be discriminated
only by the pose. Grasping action type has a typical move-
ment of the hand going away from the body to reach an
object. Using the pose information, especially when all ob-
jects are static we can find which one is in interaction. Also,



human pose information can help to reduce erroneous ob-
ject movement due to flickering values in the depth image.

Our contributions in this work involve (1) the integration
of contextual cues through human pose and object detec-
tion by open-source deep learning libraries into a Bayesian
framework for action detection.(2) A model of actions re-
usable into a different context.(3) The use of a hyperparam-
eter optimization tool for tuning.

The rest of the paper is organized as follows. We briefly
review the related work in Section 2. We then describe our
joint human-object Bayesian modeling and details its im-
plementation in Section 3. We present our evaluation pro-
tocol and highlight our gains over two public datasets in
Section 4. We draw a conclusion of the presented work in
Section 5.

2. Related Work
Early approaches [30, 15] and datasets [14, 15] focus

solely on human perception and its pose trajectories in video
sequences for action classification. Each video in those
datasets contains a single human action without any con-
text: no backgrounds nor surrounding objects. Still today,
most of the largest RGB-D datasets focus on skeleton-based
action detection with few to no objects to interact with, e.g.:
MSRAction [15], BerkeleyMHAD [21], Human3.6M [8],
NTU RGB+D [25]. Even some datasets offer more realistic
scenarios where a single person performs, in the same video
sequence, different actions that may involve interaction with
his/her environment, e.g. object manipulation, object-to-
object interaction. This kind of scenario with contextual
information can be found in CAD-120 [13] and Watch-n-
Patch [28] datasets.

Human action recognition approaches can be roughly
categorized into data-driven or model-driven paradigms.
Data-driven approaches such as Convolutional Neural Net-
works (CNN) for action recognition [1, 10, 27], pose and
object detection [2, 18] are state-of-the-art on 2D videos or
single image datasets. These deep learning networks learn
a representation of a model based on pre-recorded and la-
beled data, the so-called supervised learning.

Recent advances in 2D deep learning object (resp. hu-
man pose) detection with frameworks such as Single Shot
Detector [18] (resp. OpenPose [2]) are also linked to the
emergence of challenges. An example is the MSCOCO
challenge [16] which provides images with 1.7 million of
labeled keypoints for human pose detection and also images
with 500k annotated objects. Proposals have demonstrated
their robustness to a variety of situations and camera view-
points by means of a heavy training over large annotated
datasets.

Since the release of NTU-RGB+D [25], the largest RGB-
D dataset for human action recognition, most of the 3D deep
learning approaches are solely based on 3D human pose

through the analysis of skeleton trajectories [17]. How-
ever, those techniques are not applicable on contextual ac-
tion recognition for two reasons: (1) Sometimes skeleton
motion alone cannot discriminate between two different ac-
tions, i.e., eating an apple and drinking water imply simi-
lar motion of the hand towards the head. (2) They are not
straightly applicable due to the limited size of 3D datasets
such as CAD-120 and Watch-n-Patch.

To handle the limited size of the aforementioned
datasets, H. Kataoka et al. [11] employ color and differ-
ential images as input of a CNN pre-trained on ImageNet
(over 1 million annotations) to perform action detection on
Watch-n-Patch. M. S. Ryoo et al. [24] combines 2D CNN
features pre-trained on ImageNet and conventional motion
features such as Histograms of Optical Flow (HOF). Even
though the dataset provides depth information, both ap-
proaches [11] [24] rely only on 2D image and motion fea-
tures. A. Jain et al. [9] use a Structural Recurrent Neural
Network (S-RNN) with pre-defined spatio-temporal graph
structures where nodes and edges are represented as Long
Short-Term Memory units (LSTM). They reason on 3D
skeletons and their interaction with objects.

While achieving undisputed performances when train-
ing data is sufficiently diverse and large, end-to-end deep-
learning action recognition frameworks suffer from a lack
of interpretability of their features [26]. When a CNN does
not recognize an action, it is difficult to know whether the
issue is related to the implicit inference of the object de-
tection and/or related to human pose. Their dependency on
a large volume of training data implies high computational
costs and a lack of explanatory capacities.

For context-based action recognition, we are interested
in the spatial configuration of the objects and their interac-
tion with other objects of the scene and with the human.
RGB-D videos propose a 3D segmentation of the scene
based on the involved distances (sensor vs. scene, human
vs. objects, object vs. object). The 3D perception of the
scene allows us to derive distances in real units (e.g. meters)
and is less subject to misinterpretation of the scene due to
perspective effects. Thereby, irrelevant objects in the back-
ground that may lead to a mistake in the action recognition
are easily removed. Furthermore, action motions are more
discriminant with 3D information especially when the mo-
tion is not fronto-parallel.

Whereas model-based algorithms are inherently inter-
pretable, they also require less training data. Furthermore,
model-based approaches may include custom modeling of
skeleton trajectories, affordances and spatial configuration
of the scene. H. Koppula and A. Saxena [12] propose a
Conditional Random Field (CRF) that models the scene and
the spatial-temporal relations through object affordances.

To recognize actions over contextual RGB-D datasets,
we design Bayesian models to infer the action labels on
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Figure 1. Action detection framework.

video streams. The scene reveals different cues about the
nature of objects, their spatial configuration in the human
vicinity, and his/her posture. The previous action also gives
information about the likelihood of the following actions.
Our framework considers all the aforementioned cues. We
take the opportunity of the recent development of 2D deep-
learning for human pose and object detection to use them as
lower input for a higher-level inference: the current action
on the video. No further data labeling or training is required
as pre-trained deep-learning models are widely available.
Our framework is tuned from a small set of annotated data,
using a Bayesian optimization tool: SMAC [7]. Thus our
approach presents adaptability characteristics that ease the
addition of new action classes or the use of another dataset.
To the best of our knowledge, such a framework i.e. se-
quencing deep-learning (data driven) and Bayesian (model
driven) concepts has not been designed before in the litera-
ture.

Fig. 1 illustrates our action recognition framework and
we present the probabilistic action models in the following
section.

3. Our Approach

In this section, we first define the probabilistic model,
which is the core of our action detection process, then we
provide details regarding its implementation.

3.1. Probabilistic Formulation

Here we consider activities performed by a single human
with several objects known in a priori. An activity is de-
fined by a sequence of actions as proposed by Moeslundet
al. [20]. We recognize the actions based on the joint ob-
servation of the human pose and the objects in the scene.
We describe the human pose by a skeleton composed by a
set of 3D points representing joints and some pairs of joints
represent limbs.

We consider there are two types of actions to infer: (1)
actions before a hand grasps an object and (2) actions while
a hand is in contact with an object. In both cases, the whole
surrounding objects and skeleton pose affect the probabili-
ties of action classes. Object affordances are considered in

the human-object interactions as well as in object-object in-
teractions. Once an object is grasped it can further interact
with: a part of the body (e.g. to eat fruit with the mouth, to
make a phone call with the ear) or with another object (e.g.
pour a bottle of milk into a cup, place a book on the table).
No further interaction is also an alternative, (e.g. move an
object, use a smartphone, turn on a light.) Our approach is
designed to encompass all these different types of actions
in a unified Bayesian framework based on the inferred ob-
servations of the spatial configuration of the objects and the
human pose.

Each action a is associated with a model. Let A =
{a1, a2, ..., an} be the set of n actions. Let Ot = {st,Ωt}
represent, at time t, the joint observation of the human
skeleton st and the set of objects detected in the human
vicinity: Ωt = {ω1, ω2, ..., ωCard(Ω)} with Card(Ω) be-
ing the number of objects in the scene. We model the a
posteriori probability of the actions given the observations
as follows:

p(a0:T |O0:T ) ∝
T∏

t=0

p(Ot|at)
T∏

t=1

p(at|at−1). (1)

In equation (1), p(Ot|at) is the likelihood of the observation
given the action at. The term p(at|at−1) denotes the transi-
tion probability between two successive actions. Thus, our
approach aims to achieve online action classification, with-
out the need of an action segmentation preprocessing step.
The classification is inferred through information aggrega-
tion over T frames. Therefore, the inference is near to real-
time as T typically ranges between 2 and 10 frames.The
observation likelihood in equation (1) is decomposed as:

p(Ot|at) ∝ p(st|at,Ωt)p(Ωt|at). (2)

Here in equation (2), p(st|at,Ωt) models the probability of
the observed skeleton (st) to be a representation of the es-
timated skeleton model associated with action at, in inter-
action with one object of the set Ω. The skeleton pose s is
in our case is reduced to the 3D positions of the upper body
extremities i.e. hands and head. This is represented as a 9-
dimensional vector of Cartesian joint positions in the world
coordinate frame as shown in equation (3):

s = (sl.hand, shead, sr.hand). (3)

The equation (2) is the product of two likelihoods, the first
one can be expressed as:

p(st|at,Ωt) ∝ N (dp(s, sn);µ1, σ1)N (do(s,Ω);µ2, σ2),
(4)

where sn is the skeleton model associated with action at,
for example if at = eat, one of the hand should be close
to the head. For clarity reasons we omit the term t. In
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Figure 2. From the Kinect camera RGB-D input of 2(a) and 2(b)
we model the 3D object configuration of the scene as shown on
Figs. 2(c) and their associated Gaussian distribution as shown
on 2(d).

this equation, dp is the 3D pose distance between the skele-
ton model and the estimated skeleton pose and do is the 3D
distance between the skeleton hands and the objects. This
second normal distribution represents the probability of an
object in hand to be in interaction with other objects in the
scene. Standard deviations σ1, σ2 on this equation are hy-
perparameters that need to be tuned for each action. Ob-
ject affordances and object-object interactions are modeled
through the position of the hands.

The second likelihood of equation (2), i.e. p(Ωt|at), rep-
resents the spatial configuration of all objects detected on
the scene and it is modeled as follows:

p(Ωt|at) =

Card(Ωt)∏
k=1

p(ωk
t |at). (5)

In equation (5), the likelihood is also expressed as a normal
distribution.

In Fig. 2 we present the RGB-D frames input, the 3D
spatial configuration of objects as well as associated Gaus-
sian probability distributions. We can see during the action
pour that static objects are in interaction with the table, and
the milk is in interaction with the bowl while being in the
hands. Details regarding human pose and object detection,
as well as the parameter optimization of our modeling, are
in the following section.

3.2. Implementation

As mentioned in Section 3.1 our formulation requires
the skeleton s as a representation of the human pose and
the objects ω observed. They are both detected using 2D
images through two deep learning neural network frame-

works and projected onto the 3D space using the given cal-
ibration parameters of the Kinect camera. The 2D human
pose is inferred by OpenPose [2], a popular open source
library with up to 900 citations, that outperforms state-of-
the-art results while maintaining real-time execution. The
authors also released pre-trained models on MSCOCO [16]
keypoints challenge data. This framework takes as input an
RGB image to infer the human posture, i.e. the localization
in the 2D image of 25 skeleton joints and their correspond-
ing confidence scores. This bottom-up approach does not
rely first on the detection of the person, but rather the dif-
ferent body parts. It has proven to perform well even under
self-occlusions situations and to achieve real-time perfor-
mance.

Objects in the scene are detected by Single Shot Multi-
Box Detector (SSD) [18] pre-trained on the MSCOCO
dataset [16] featuring 80 objects categories. Categories in-
clude everyday-life objects e.g.: cup, bottle, microwave,
TV, desk, smartphone. This is a famous object detector with
up to 3400 citations to this day.

As seen in Section 3.1, we have to set values for the ac-
tion transition matrix and the standard deviations for each
Gaussian probability density. In object-object interaction,
they depend on distances between pairs of objects, e.g. pour
milk in a cup. In the affordance model, they may depend
on the distance between head and object, e.g. drink water,
or also depending on velocity ranges. The transition matrix
between actions needs also to be tuned and its size is n×n,
n being the number of actions. Manual tuning of a great
number of parameters is difficult, and due to the dimension-
ality of the configuration space, grid search methods are not
suitable. Instead, we use a hyper-parameter optimization
method: SMAC [7], which has up to 900 citations. It has
proven already to increase the performances of computer
vision algorithms by tuning hyper-parameters [4, 19]. In
order to find the set of parameters values, it requires a mea-
sure of the algorithm’s performance. SMAC optimizes pa-
rameters with respect to a cost function. In our case, we
want to find the set of parameters leading to the best results
in terms of action classification. Therefore, we compute the
performance metric F1-score, fai of each action in A, with
n being the number of actions to consider. Thus, the cost
function C is defined by equation (6):

C = n−
n∑

i=1

fai . (6)

Upon each iteration, SMAC builds a model of the cost func-
tion, which allows it to find the optimal set of parameters
with few evaluations. SMAC takes into account previous
evaluation outcomes so that it spends less time on the eval-
uation of irrelevant parameters values, in contrast to random
or grid search methods. We compare the inferred action la-
bels to the ground truth to compute F1-scores and so the



(a) Front view (b) Side view

(c) Front view (d) Side view

Figure 3. Example views of the dataset CAD-120 [13] on 3(a)-3(b)
and Watch-n-Patch [28] on 3(c)-3(d) with associated ground-truth
objects in red boxes, OpenPose upper-body skeleton and action
labels are in blue.

cost function C.

4. Experiments
In this section, we present the public datasets and met-

rics used to evaluate our approach, and then we present and
discuss the results in comparison to the literature.

4.1. Datasets and metrics

We evaluate our approach on two public datasets in the
literature: CAD-120 [13] and Watch-n-Patch [28]. Thus we
can make a comparison of our approach with state-of-the-
art methods.

CAD-120 dataset [13] consists of 120 RGB-D videos
that are performed by 4 subjects. There are 10 activities
(making cereal, taking medicine, stacking objects, unstack-
ing objects, microwaving food, picking objects, cleaning
objects, taking food, arranging objects, having meal). In
this dataset, each video sequence represents an activity. As
defined in Section 3.1, an activity corresponds to the execu-
tion of successive actions. For example, the activity mak-
ing cereals is made of the action classes reach, move, pour
and place. All the actions of the dataset and their unbal-
anced distribution, expressed in percentage of correspond-
ing frames, are shown on the bar chart of Fig. 4(a). This
dataset offers front and side views, see Figs. 3(a) 3(b).

Watch-n-Patch dataset [28] is split into two environ-
ments: kitchen and office. The environment office consists
of 196 videos recorded in 8 different offices with 10 differ-
ent actions (reading, walking, leave-office, fetch-book, put-

back-book, put-down-item, take-item, play-computer, turn-
on-monitor, turn-off-monitor). Distribution in the dataset of
the 10 actions is on the bar chart of Fig. 4(b). Each video
in the dataset contains 2-7 actions where the actor interacts
with different objects in a cluttered background. Also, it
offers a variety of camera viewpoints: front and side views
are illustrated in Figs. 3(c) 3(d).
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Figure 4. Action class distribution in datasets CAD-120 [13] and
Watch-n-Patch [28]. Corresponding percentage of frames in the
dataset to each action label on the y-axis.

In the literature, the approaches are evaluated and com-
pared using two main metrics: F1-score and accuracy as mi-
cro precision and recall. The F1-score measures accuracy as
the harmonic mean of precision and recall. As our approach
only outputs one label per frame, in this case the accuracy
represents the ratio of correctly labeled frames, also called
frame-wise accuracy.

Then, approaches in comparison often provide details
about macro precision and macro recall. The difference in
the computation between micro or macro depends on the
consideration of whether classes in the dataset are balanced
or not. Those metrics are computed with or without the
temporal action segmentation depending on the nature of
the approach.

For a fair evaluation on CAD-120 [13], we use a 4-fold



Table 1. Precision (P), Recall (R) and F1-score (F1) averages over
all the classes on CAD-120 [13] dataset using ground-truth seg-
mentation.

Approach P R F1
GPNN [23] 0.88 0.86 0.87
HELK [6] 0.83 0.82 0.82
S-RNN [9] N/A N/A 0.83
QHWZ [22] 0.71 0.68 0.69
Ours 0.84 0.80 0.82

cross-validation with a new human subject in each fold, in a
similar way as [6, 13, 22, 23]. We use the SMAC framework
to tune the hyperparameters in the training folds, leaving
one fold for testing.

4.2. Evaluations and discussion

Hereafter, we compare our action detection proposal
against state-of-the-art approaches. Our method is origi-
nally developed to deal with online action detection and ac-
tion transitions. We evaluate ourselves in two different set-
tings: with and without ground-truth action segmentation.
First on CAD-120 dataset, then on Watch-n-Patch dataset.

As our approach outputs one prediction per frame and
not over a sequence, we slightly adapt it as follows. As time
bounds of the different actions in the sequence are known,
we use a weighted-vote to find the predicted class over this
time segment. Average Precision, Recall and F1-score are
derived from the action class distribution in Fig. 4(a) and
confusion matrices found in the original publications when
available. Results with ground-truth action segmentation on
CAD-120 [13] are summarized in Table 1. Methods [23, 9]
are data-driven and rely on neural networks for training and
inference. Whereas [6] relies on the computation of maxi-
mum likelihood estimation over graphs and [22] employs
stochastic grammars. We show similar results to S-RNN ap-
proach [9] with a difference of 0.01 in the F1-score, without
the need of a large-scale dataset with annotations for train-
ing. In comparison to HELK [6], we obtain similar average
results and they show better performances in the detection
of action reach and move. However, their weakest perfor-
mances in terms of precision concern actions eat and clean
(< 0.3), which are among the least frequent in the dataset as
shown in Fig. 4(a). Whereas we achieve to maintain good
performances over those two actions, as we can see on the
next evaluation configuration.

Now we consider a more challenging situation where
the ground-truth action segmentation is not available. In
this case we compute the most likely action of each frame
and the results are shown in Table 2. Macro Precision and
Recall are derived from confusion matrices of the original
publications when available. Accuracy is computed as mi-

Table 2. Macro Precision (R), macro Recall (R), and accuracy per
action on CAD-120 [13] dataset without ground-truth action seg-
mentation.

Approach KGS [13] KS [12] Ours
Action P R P R P R
reach N/A N/A 0.63 0.65 0.67 0.81
move N/A N/A 0.30 0.86 0.47 0.68
pour N/A N/A 0.93 0.59 0.8 0.73

eat&drink N/A N/A 0.92 0.52 0.90 0.79
open&close N/A N/A 0.84 0.63 0.84 0.75

place N/A N/A 0.66 0.61 0.84 0.76
clean N/A N/A 0.46 0.58 0.88 0.83
mean 0.71 0.62 0.75 0.63 0.80 0.76

accuracy 0.68 0.70 0.74

cro precision and recall, taking into account the balance of
actions in the dataset presented in Fig. 4(a). In the CAD-120
dataset, actions reach and move represent more than half of
the instances. Therefore, we present precision and recall for
a more precise analysis of the performances despite class
imbalance. We show an overall improvement of at least 4%
in accuracy. This improvement is especially significant re-
garding actions place (resp. clean) with +0.16 (resp. +0.3)
in the F1-score. We have enhanced the original object de-
tections given by the dataset through SSD detections (e.g.
table or desk). As objects are often placed on the table,
to know its position helps to design a more accurate action
model associated with the action place.

In the confusion matrix of Fig. 5, we observe a strong
diagonal and note that one of the major source of error is the
high false positive rate of the action move. The action move
is the most frequent one as it precedes most of the other
actions (pour, eat-drink, place, clean). The false positive
rate is due to transitions between move and the following
action, being difficult to define precisely.

We now compare our results with the literature using
the dataset Watch-n-Patch. This shows the great adaptabil-
ity property of our framework because the two datasets are
quite different in terms of points of view and actions in-
volved. In Table 3, we report the ratio of correctly labeled
frames (Accuracy) as in [28, 29]. We observe a strong im-
provement compared to approaches of the literature, i.e. +
∼ 16% in the accuracy. Approach [24] in comparison, in-
fer action labels solely based 2D image features and op-
tical flow. We show that the additional information about
objects configuration and their nature enhance action mod-
els, thus action recognition performances. The approach
KMHIS [11] relies on motion pattern recognition in 2D
through differential images. The significant improvement is
also due to our 3D modeling of the scene being more robust
to changes in camera viewpoints present in this dataset.



Figure 5. Confusion matrix without ground truth segmentation on
CAD-120 [13].

Figure 6. Confusion matrix without ground truth segmentation on
Watch-n-Patch [28].

In Fig. 6, we observe good performances over the most
frequent actions present in the dataset. The class distribu-
tion in the dataset is unbalanced: actions read and play-
computer represent 50% of the labeled frames. While the
human pose is similar: the person is sitting in front of a desk
with motion in hands, in both cases. They strongly differ in
the nature of the object being in interaction: a book or a
keyboard. We also achieve a good performance on less fre-
quent actions such as turn-on-off-monitor, which represents
only 4.27% of the frames. However, in our approach, ac-
tions put-back-book and put-down-item are prone to recog-
nition errors because they involve similar pose and the book
or the item is often place on the table. We should modify
our models to be more specific towards put-down-item.

In Fig. 7 we observe our action detection behavior along
the frames of a sequence of CAD-120 [13]. We can also
note that actions differ also in execution time length. Some
are typically longer such as move and open in contrast to

Table 3. Accuracy as the percentage of frames correctly labelled of
state-of-the-art methods without ground-truth action segmentation
on the office environment of Watch-n-Patch [28].

Approach Accuracy
CaTM [28] 38.5
WBTM [29] 41.2
PoT [24] 49.93
KMHIS [11] 59.75
Ours 76.1

0                     100                   200                   300                    400                   500                   600                                                                            

  reach                    open                       reach             move                place       reach    close         

Figure 7. Qualitative result on the sequence microwaving food on
CAD-120. Frames are on the x-axis. First row is our approach and
second row is the labelled ground-truth.

place or reach. We have errors on the action transition, on
this example we tend to detect the following action too early
compared to the ground truth. At the end of action, the
probability of the model decreases and the transition matrix
favors the probability of the next actions that are likely to
occur. This is especially true in CAD-120 where some ac-
tions determine the following one e.g.: pour and drink are
always followed by move.

5. Conclusion

This paper proposes an original framework for online ac-
tion recognition based on the joint modeling of the human
and observed objects in the 3D world. Models are described
through Gaussian probability densities which standard de-
viation parameters are learned using a hyperparameter opti-
mization tool i.e. SMAC.

Our joint perception mechanism aims to disambiguate
action labeling, e.g. the displacement of an object will be
found in many different actions class where the nature of
the object and its human affordance will strengthen the right
action labeling. We don’t need a large number of labeled
videos to recognize a similar action in another dataset as it
might be the case especially for supervised learning tech-
niques, especially CNN ones. Our framework is shown to
be more robust to variations in camera viewpoints.

Our evaluations on two challenging public datasets high-
light improvements, especially in online action detection.
In the future, we will enhance the skeleton observation
with the full upper-body, investigate skeleton trajectories,
and trajectories predictions based on motion planning. We
will also extend the proposal to online activity recognition
through plan execution verification.
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