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Abstract Real life experience has shown that intermittent faults are among the
most challenging kinds of faults to detect and isolate, being present in the majority
of production systems. Such a concern has made intermittent fault an active area
of research in both discrete event and continuous-variable dynamic systems. In this
paper, we present a review of the state-of-the art of intermittent fault diagnosis of
discrete event systems modeled by finite state automata. To this end, we revisit the
main definitions of diagnosability of intermittent faults, and present comparisons
between them, consider verification and analysis techniques, and discuss available
complexity results. Examples are used throughout the paper to illustrate the
reviewed concepts and verification algorithms. We also look ahead, by suggesting
some perspectives for future research.

Keywords Discrete event systems, automata, intermittent fault, diagnosability,
diagnosis

1 Introduction

Fault diagnosis in dynamic systems is a crucial and challenging task to ensure
reliability, safety, and correct operation of production systems. In this context,
and to fulfill such requirements, the development of effective monitoring techniques
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becomes a concern that must be addressed. In particular, having efficient tools for
monitoring and diagnosing fault occurrences is of paramount interest since such
actions prevent, or at least mitigate, failure-related disturbances effects.

Fault diagnosis involves the following aspects: (i) detection of fault occurrences;
(ii) isolation of the actual fault from other possible fault candidates, and; (iii)

identification of the related damage caused to the system. In discrete event
systems (DES) (Cassandras and Lafortune, 2008), fault diagnosis is often discussed
through two main issues: online diagnosis and diagnosability analysis (Lin,
1994; Sampath et al., 1995, 1996a). Online diagnosis consists in inferring the
occurrence of predetermined faults from the observed behavior of the system, while
diagnosability is associated with the capacity of the system that performs the fault
diagnosis — usually referred to as diagnoser — to provide a precise verdict as far
as the fault occurrence is concerned. Thus, system diagnosability analysis consists
in determining whether or not every predetermined failure can be detected and
identified accurately within a finite delay after its occurrence (Sampath et al.,
1995).

A fault is any deviation of the system from its normal or intended behavior.
In the DES framework, faults are basically depicted as unobservable/silent,
indistinguishable and uncontrollable events (or states). Moreover, faults can be
classified on the basis of their individual behavior into three types (Sharma et al.,
2015b; Zaytoon and Lafortune, 2013)

1. Permanent faults: when the fault occurs and does not disappear (i.e., the
system remains in fault states) unless removed by some external intervention.
Typically, a permanent fault can be caused by subsystem failures, physical
damage or design error. The terminology failure is often used to refer to
permanent faults;

2. Drift-like faults: when the fault varies gradually and slowly develops into a
large value. In DES, these faults can be seen as faults which may occur
within an incremental frequency, or may evolve into permanent ones. Generally,
diagnosing such faults is more involving than the permanent failures since they
often evolve slowly and their effects can be confused with noise and model
uncertainty;

3. Intermittent faults: which correspond to the case when the fault occurs and then
suddenly disappears, and this process continues to repeat in either periodic or
non-periodic manner, making the system switch between normal and faulty
behaviors (Isermann, 2006).

From the diagnosis point of view, it is important to distinguish between these
fault types, especially between permanent and intermittent faults (Deng et al.,
2014a). Intermittent faults can be spontaneously recovered by the occurrence
of uncontrollable and unobservable reset events; therefore, the system oscillates
between normal and faulty behavior. Permanent faults, on the other hand, may
be associated with recovery events (repair/replacement) which are controllable and
observable (Huang, 2003). It is worth remarking that, although in most part of
the literature regarding model-based fault diagnosis of DESs, faults are assumed
to be permanent, practical evidences have shown that intermittent faults are
omnipresent and are among the most challenging kinds of faults to detect and
isolate (Fromherz et al., 2004). In this regard, frequent occurrences of intermittent
faults may bring serious troubles and result in high safety risk, which may reduce
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the competitiveness and damage the reputation of the company. In addition,
intermittent faults can induce overhead maintenance costs for companies due to
several related problems, such as “Can Not Duplicate (CND)”, “No Fault Found
(NFF)”, “False Alarms (FAs)”, etc. (Sorensen et al., 1994); in particular, NFF
costs could be significantly high due to the need of extra tests to identify such
failures (Söderholm, 2007).

In order to show the significance of intermittent faults and their impact in
industry, in particular, their financial impacts, we enumerate a set of indicators
gathered from the literature and from industrial reports, as follows:

– In the late 1960s, surveys provided by Hardie and Suhocki (1967) and Ball
and Hardie (1969) indicate that intermittent faults comprise over 30% of
predetermined faults/errors and about 90% of field failures in computer
systems.

– Between 80% and 90% of failures in sequential circuits are caused by
intermittent faults (Roberts, 1989). A similar conclusion has been reached in
wireless sensors networks by Banerjee and Khilar (2010).

– In 2001, over $10 million have been spent by F-16 plane customers in order to
replace parts that were tested as NFF at the shop level (Steadman et al., 2002).
In addition, NFF observations reported by commercial airlines and military
repair depots have been found to be as high as 50-60%.

– The thick film integrated ignition module in Ford cars in the 1980 models led
to a lawsuit and a settlement by Ford Motors Company due to intermittent
faults, particularly NFFs (Maul et al., 2001).

– Recently, a survey among 80 aerospace organizations (Syed et al., 2013) ranked
intermittent faults as the main perceived cause of the NFF problem and the
highest cost source in terms of aerospace maintenance;

– In digital electronic cruise control modules (CCM) used in automobiles,
intermittent faults were the justification for the fact that 96% of the components
that were returned to the vehicle manufacturer due to customer complaints
actually operated properly (Kimseng et al., 1999);

– In 1997, the Air Transport Association (ATA) estimated at $20M the annual
NFF costs for an airline operating 200 aircrafts; or $100,000 per aircraft every
year (Erkoyuncu et al., 2016);

– In 2005, a study by WDS mobile company found that NFFs due to intermittent
faults account for about 63% of the mobile phones that were returned to the
manufacturer, costing the industry $4.5 billion a year (Overton, 2006).

– The cost of exchange of F-16 avionics boxes due to intermittent faults was
estimated at $20,000,000 (Steadman et al., 2005, 2008).

Overall, intermittent faults are a general phenomenon that affects industrial
systems ranging from small components to large complex modules (Shen et al.,
2016). Therefore, in several domains such as digital and electronic systems (Chang
and McCluskey, 1997; Gracia et al., 2008), aerospace industry (Salvatore et al.,
2003), aircraft systems (Anderson and Aylward, 1993; Yang et al., 2012), modern
industrial and chemical processes (Madden and Nolan, 1999; Yan et al., 2015),
transportation systems (Aydin et al., 2013), machine driven systems (Ismaeel and
Bhatnagar, 1997; Kim, 2009) and computer systems (Hsu and Hsu, 1991), there
is a need to deeply address issues related to intermittent fault diagnosis.

Generally, intermittent faults are characterized by three parameters, as follows:
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1. Duration: which represents the time during which the fault is active at each
occurrence;

2. Pseudo-period: which is defined as the mean time between two consecutive
fault occurrences (or detections); being therefore, the average delay separating
successive faults inside a sliding window. It is worth noticing that it would
not be appropriate to define the average interval as a period, due to the
asynchronous and random nature of faults;

3. Number of fault detections: which represents how many times the fault is
detected.

In the literature, we can find several definitions of intermittent faults: Sorensen
et al. (1994) defines intermittent faults as “any temporary deviation from the nominal

operating conditions of a circuit or device”. In Syed et al. (2013), intermittent
faults are defined as a temporary malfunction of a device. For Pan et al. (2012),
an intermittent fault is “a hardware error which occurs frequently and irregularly

for a period of time”. According to the IEEE standard (Sharma et al., 2015a),
intermittent faults are defined as “failures of an item for a limited period of time,

following which the item recovers its ability to perform its required function without

being subjected to any external corrective action. Moreover, such failures are often

recurrent”. In the context of DES, intermittent faults are defined as “faults which

often occur intermittently, and can be seen as fault events followed, later on, by the

corresponding reset events, (possibly) followed by new occurrences of fault events, and

so forth” (Contant et al., 2004). Another similar definition is given in Deng et al.
(2014a), where intermittent faults are presented as faults that can at some point
automatically reset once they have occurred.

This paper aims to provide a comprehensive and general review of the literature
regarding intermittent fault diagnosis of DES modeled by finite state automata.
We assume that the reader is familiar with DES theory and its classically-
related modeling formalism; the reader is referred to Cassandras and Lafortune
(2008) for a background on the DES theory. Nevertheless, we also present a brief
account of the main contributions on intermittent fault diagnosis using other DES
frameworks, such as supervision pattern, temporal logic, discrimination between
intermittent and permanent faults, and fault free models, and using different
modeling formalism, such as Petri nets and stochastic automata.

The paper is organized as follows: we introduce the main notions and notations
regarding DES and the intermittent fault modeling in Section 2; in Section 3,
we synthesize the properties of diagnosability reported in the literature and
review the main definitions of intermittent fault diagnosability; in Section 4,
we review existing techniques to verify the various notions of intermittent fault
diagnosability; in Section 5, we briefly discuss how intermittent fault diagnosability
has been addressed using other formalisms, such as Petri nets and temporal logic
specifications; in Section 6, we point towards the future by discussing some open
problems and suggesting some research topics; finally, we draw some conclusions
in Section 7.
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2 Preliminaries

2.1 Discrete event system modeling

In this paper, the basic concepts and the main contributions in intermittent fault
diagnosis of DES are based on finite state automaton (FSA) model; although, as
will be seen in Section 5, other approaches to address this problem are possible.

An FSA is defined by the four-tuple G = (X,Σ, δ, x0), where X is a finite set of
states, Σ is a finite set of events, δ : X×Σ → 2X is the partial transition function,
and x0 ∈ X is the initial state. A triple (x, σ, x′) ∈ X×Σ×X is called a transition if
x′ ∈ δ(x, σ). The system behavior is described by the prefix-closed language L ⊆ Σ∗
generated by G, where Σ∗ denotes the Kleene-closure of Σ. We will partition the
set of events Σ as Σ = Σo∪̇Σu, where Σo and Σu denote the set of observable and
unobservable events, respectively. We say that an event-sequence s = σ1σ2 · · ·σn,
with σi ∈ Σ, is said to be associated with a state-sequence π = x1x2 · · ·xn+1, if
∀i such that 0 < i ≤ n, xi+1 ∈ δ(xi, σi). The partial transition function δ can be
extended to event-sequences, i.e., xn+1 ∈ δ(x1, s). We denote by σi (resp. πi) the
i-th event (resp. state) in s (resp. π). We write |s| to denote the length of s, i.e., the
number of events in s. The post-language of L after s is L/s := {t ∈ Σ∗ |st ∈ L}.
Notation s ≤ s′ indicates that s is a prefix of s′.

To capture the observed behavior of the model, we define the projection

mapping (Lin and Wonham, 1988) P : Σ∗ → Σ∗o in the usual manner: P (σ) = σ

for σ ∈ Σo; P (σ) = ε for σ ∈ Σu, and P (sσ) = P (s)P (σ), where s ∈ Σ∗, σ ∈ Σ.
When applied to a language L, the projection mapping can be extended as follows:
P : Σ∗ → Σ∗o , where P (L) = {t ∈ Σ∗o |(∃s ∈ L)[P (s) = t]}. The inverse projection
operation P−1

L is defined by P−1
L (y) = {s ∈ L|P (s) = y}.

2.2 Modeling intermittent faults

Regarding how the system status evolves after the occurrence of intermittent
faults, two modeling settings can be distinguished: recovery and normalization
settings.

2.2.1 Recovery setting

In this setting, a distinction is made between the states reached by faulty-free
sequences and the states reached by sequences that contain at least one fault event
followed later on by its corresponding reset (or recovery) event (Contant et al.,
2004; Contant, 2005; Contant et al., 2002; Boussif and Ghazel, 2016a; Carvalho
et al., 2010, 2013).

The occurrence of an intermittent fault switches the system from a normal
status to a faulty one, after which the system is switched to a recovered status
upon the occurrence of the corresponding reset event. Although, such a recovered
status is regarded as safe, it is different from the normal status, in the sense
that the system never goes back to a normal status once a fault has occurred. In
order to capture the changes in the system status, the so-called label automaton
Ω = ({N,F,R}, Σ, δΩ , N) (Boussif and Ghazel, 2016a; Jéron et al., 2006; Carvalho
et al., 2012; Fabre et al., 2016, 2018) shown in Figure 1a is used. It is clear from the



6 Abderraouf Boussif et al.

N F R
Σf

Σ \Σf

Σr

Σ \Σr

Σf

Σ \Σf

(a) Recovery modeling.

N F

Σf
Σ \Σf

Σr

Σ \Σr

(b) Normalization modeling.

Fig. 1 Label automaton Ω for recovery and normalization settings.

figure that Ω translates the system status according to the occurrence of different
event types. When the label automaton Ω is in state N (N stands for the normal
status), the system is running in its normal behavior, which indicates that no event
of Σf has occurred yet. However, when a fault event occurs, Ω definitely leaves the
normal status and moves to state F (F stands for the faulty status) and remains
in this state as long as no reset event occurs. Once the fault is recovered due to
the occurrence of a reset event, Ω switches to state R (R stands for the recovered
status), where it remains as long as no fault occurs. Since we are dealing with
intermittent faults, the system can execute a fault event again. In this case, the
label automaton Ω switches back to state F and so on. It is worth noticing that,
if a reset event σr ∈ Σr occurs prior to any σf ∈ Σf occurrence, as can be seen
from the label automaton Ω, the system will remain in normal status (state N in
Ω).

2.2.2 Normalization setting

In the normalization setting, a fault event makes the system status move from
normal to faulty, whereas its corresponding reset event moves the system status
back to normal, and so, there exist only two possible states for the system since no
distinction is made between the normal states reached by fault-free event sequences
and those reached by event sequences that have a recovered fault. The reset events
in such a context are called normalization events and, thus, the change from faulty
to normal status is called normalization. Such a modeling strategy has been used
in Biswas (2012), Jiang et al. (2003), Boussif et al. (2016) and Boussif and Ghazel
(2019).

Figure 1b shows the label automaton Ω = ({N,F}, Σ, δΩ , N) that is used in the
normalization setting. Notice that, when Ω is in state N , the system is running in
its normal behavior, indicating that either no fault event of Σf has occurred yet or,
if some fault event has occurred, it has been normalized, due to the occurrence of a
reset (normalizing) event. On the other hand, when a fault event occurs, Ω moves
to state F and remains there as long as the system is in its faulty behavior (i.e.,
no new occurrences of the normalization event). When dealing with intermittent
faults, the system may switch between these two state types indefinitely.

3 The different notions of diagnosability of intermittent faults

Broadly speaking, the notions of diagnosability reported in the literature can be
divided into two classes: fault counting, and fault detection and identification.
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These two categories will be discussed in the following sections. For the sake of
clarity and without loss of generality1, we make the following assumption:
A1. Σf = {σf} and Σr = {σr}, i.e., there exist exactly one single fault event and
one single reset event.

3.1 Fault count-based definitions of intermittent fault diagnosability

The definition of diagnosability of DES introduced in Sampath et al. (1995)
is related to “the ability to infer, from the observed behavior of the system,
the occurrence of faults”. Such a property characterizes single time detection
capability, which is suitable for dealing with permanent faults. However, no
information regarding multiple occurrences of the same fault can be obtained using
Sampath’s approach.

Intermittent faults, on the other hand, occur repeatedly. Thus, it may be of
interest to have a formalism that not only allows for determining fault occurrences,
but also counts its occurrences. Such concepts have been firstly introduced in Jiang
et al. (2003), in a state-based scheme within a normalization setting, and then
investigated later on in Jiang and Kumar (2006), Yoo and Garcia (2009), Yoo and
Garcia (2004), Zhou and Kumar (2009), Yoo and Garcia (2008), and Garcia and
Yoo (2005).

Let us denote as NF
s ∈ N+ the number of fault events in a given event-sequence

s ∈ Σ∗. We now present the different notions of diagnosability for repeated faults.

Definition 1 (κ-diagnosability (Jiang et al., 2003; Yoo and Garcia, 2004)) Given
a fixed κ ∈ N?, a prefix-closed live language L is said to be κ-diagnosable w.r.t. P
and Σf if the following holds true:

(∃nκ ∈ N)(∀s ∈ L,NF
s ≥ κ)(∀t ∈ L/s) (|t| ≥ nκ)⇒ [(∀ω ∈ P−1

L (P (st))(NF
ω ≥ κ)]

Notice that, according to Definition 1, a language is κ-diagnosable if for any
event-sequence s containing at least κ faulty events, for every sufficiently long
continuation t of s, and for every event-sequence ω indistinguishable from st, i.e.,
P (st) = P (ω), then ω must also contain at least κ faulty events.

Property 1 (Jiang et al., 2003) κ-diagnosability is not monotone. �

According to Property 1, κ-diagnosability does not imply (κ−1)-diagnosability. In
addition, it is straightforward from the definition of κ-diagnosability that (κ− 1)-
diagnosability does not ensure κ-diagnosability (for κ ≥ 2).

The lack of monotonicity of κ-diagnosability motivates a stronger notion of
diagnosability, which is called [1, κ]-diagnosability.

Definition 2 ([1, κ]-diagnosability (Jiang et al., 2003; Yoo and Garcia, 2004))
Given a fixed κ ∈ N?, a prefix-closed live language L is said to be [1, κ]-diagnosable
w.r.t. P and Σf if the following holds true:

(∃n ∈ N)(∀j, 1 ≤ j ≤ κ)(∀s ∈ L,NF
s ≥ j)(∀t ∈ L/s)(|t| ≥ n)

⇒ [(∀ω ∈ P−1
L (P (st))(NF

ω ≥ j)]
1 As shown in Santoro et al. (2017), the case of multiple intermittent faults (and consequently

recoveries) can be addressed by considering each fault type separately and assuming the other
fault types as ordinary unobservable events.
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Definition 2 states that a language is [1, κ]-diagnosable if it is κ-diagnosable for
every j, 1 ≤ j ≤ κ. The delay bound n that ensures [1, κ]-diagnosability is the
maximal delay bound that ensures κ-diagnosability for 1 ≤ j ≤ κ, i.e., n =
maxj=,...,κ nj . The following property relates the definitions of κ-diagnosability,
[1, κ]-diagnosability and the definition of diagnosability introduced in Sampath
et al. (1995).

Property 2 If κ = 1, then [1, κ]- and κ-diagnosability properties are equivalent to the

diagnosability definition introduced in Sampath et al. (1995). �

Notice that [1, κ]-diagnosability allows for determining the first κ occurrences
of faulty events within a finite delay. Therefore, in order to determine any number
of fault occurrences, κ should be set to ∞. This has led to the definition of [1,∞]-
diagnosability.

Definition 3 ([1,∞]-diagnosability (Jiang et al., 2003; Yoo and Garcia, 2004; Zhou
and Kumar, 2009)) A prefix-closed live language L is said to be [1,∞]-diagnosable
w.r.t. P and Σf if the following holds true:

(∃n ∈ N)(∀s ∈ L)(∀t ∈ L/s) (|t| ≥ n)⇒ [(∀ω ∈ P−1
L (P (st))(NF

ω ≥ NF
s )]

In the above definition, every sequence estimate ω ∈ P−1
L (P (st)) of the executed

sequence st, with |t| ≥ n, must have at least the same number of fault occurrences
as sequence s.

Property 3 If a language L is [1,∞]-diagnosable, then ∀κ ≥ 1, L is κ-diagnosable

and [1, κ]-diagnosable. However, the converse does not necessarily hold true. �

We will now illustrate the different notions of diagnosability introduced so far
with an example.

Example 1 Consider the system models G1 and G2, inspired by Jiang et al. (2003)

and shown in Figure 2, with Σo = {a, b, c}, Σu = Σf = {f}.
Initially, notice that there are only two different forms of event-sequences generated

by G1, as follows: s
(m,n)
1 = acmb(fc)n and s

(m,n)
2 = facmb(fc)n, with P (s

(m,n)
1 ) =

P (s
(m,n)
2 ) = acmb(c)n (n,m ∈ N+). Let us consider s

(m,n)
1 = acmb(fc)n, with n ≥ 2.

It is clear that s
(m,n)
1 contains at least 2 occurrences of fault event f . On the other

hand, for the same values of m and n, s
(m,n)
2 contains at least 3 instances of fault

event f . Therefore, G1 is 2-diagnosable.

Let us now consider event sequence s = facp, which contains only one instance of

fault event f . It can be seen from Figure 2a, that there exists in G1 an event-sequence

s′ = acp ∈ L(G1), with the same observation as s, i.e., P (s) = P (s′) = acp, but s′

does not contain any occurrence of fault event f . Therefore, G1 is not 1-diagnosable.

From the above analysis, one can infer that the language generated by G1 is not

[1, 2]-diagnosable and, obviously, not [1,∞]-diagnosable.

Let us now consider the system modeled by automaton G2. It can be easily verified

that L(G2) is κ-diagnosable ∀κ ∈ N+. This is so because every event-sequence s ∈
L(G2) that has as observation P (s) = (ab)k, with k ∈ N+, has at least 2k occurrences

of fault event f . So we can choose the delay in Definition 1 as nκ = 2k to satisfy the

requirement for κ-diagnosability. Since L(G2) is κ-diagnosable ∀κ ∈ N+, then it is also

[1, κ]-diagnosable ∀κ ∈ N+. On the other hand, L(G2) is not [1,∞]-diagnosable since

the delay bound associated with κ-diagnosability is an increasing function of k, and no

‘uniform’ delay bound can be found that works for every κ ∈ N+. �
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Fig. 2 Models of Example 1

The above diagnosability properties deal with fault counting assuming uniform
bounded delays n ∈ N, which are independent of the current system execution. In
other words, these properties are based on constant bounded delays imposed on
the whole faulty behaviors. This notion of uniform delay diagnosability is suitable
if a hard deadline for a diagnosis report is required. In several situations, when
immediate reaction to fault occurrence is not required, uniformity requirement
over diagnosis delays may be too strict. With such a concern in mind, Yoo and
Garcia (2009), Yoo and Garcia (2004), Yoo and Garcia (2005), and Yoo and
Garcia (2008) proposed a different notion of diagnosability by relaxing the delay
uniformity requirement. In this regard, the detection delays are associated with
executed sequences and become nonuniform, i.e., they solely depend on the current
event-sequence executed by the system.

Definition 4 (Nonuniform [1,∞]-diagnosability (Yoo and Garcia, 2009, 2004)) A
prefix-closed live language L is said to be non-uniformly [1,∞]-diagnosable w.r.t.
P and Σf if the following holds true:

(∀s ∈ L)(∃ns ∈ N)(∀t ∈ L/s) (|t| ≥ ns)⇒ [(∀ω ∈ P−1
L (P (st))(NF

ω ≥ NF
s )]

The above definition means that for every event-sequence s, one can find a
finite delay ns to count the occurrence of faulty events in s. However, one may
be able to find a trace s′ so that the required delay ns′ is larger than ns. It is
worth noticing that similar definitions can be introduced for nonuniform κ- and
[1, κ]-diagnosability properties. From now on, and for the sake of clarity, uniform
[1,∞]-diagnosability will be denoted as U[1,∞]-diagnosability whereas nonuniform
[1,∞]-diagnosability will be denoted as NU[1,∞]-diagnosability.

The following properties are straightforward from the corresponding definitions
of uniform and nonuniform diagnosability properties.

Property 4 U[1,∞]-diagnosability implies NU[1,∞]-diagnosability (Yoo and Garcia,

2009, 2004). �

Property 5 For regular languages, uniform and nonuniform κ- and [1, κ]-diagnosabili-

ties are equivalent since detection delays can be uniformly bounded by |X|2, the number

of states of the automaton that marks the regular language. However, this does not hold

true for NU[1,∞]- and U[1,∞]-diagnosability (Yoo and Garcia, 2009). �

Property 6 L is NU[1,∞]-diagnosable iff L is κ-diagnosable ∀κ ∈ N+ (Yoo and

Garcia, 2004). �
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Both definitions of uniform and nonuniform [1,∞]-diagnosability requires that
each intermittent fault occurrence be detected within a bounded delay that does
not depend on the number of fault occurrences.

A variant diagnosability definition, called ∀κ-diagnosability, which does not
require the diagnosis delay bound to be uniform with respect to κ is discussed
in Zhou and Kumar (2009). It is based on the fact that it is possible for each fault
occurrence to be detectable within a bounded delay which can grow larger as the
fault occurrence index κ becomes higher.

Definition 5 (∀κ-diagnosability (Zhou and Kumar, 2009) A prefix-closed live
language L is said to be ∀κ-diagnosable (κ ≥ 1) w.r.t. P and Σf if the following
holds true:

(∀k : 1 ≤ k ≤ κ)(∃nκk ∈ N)(∀s ∈ L,NF
s ≥ k)(∀t ∈ L/s)(|t| ≥ nκk)

⇒ [(∀ω ∈ P−1
L (P (st))(NF

ω ≥ k)]

Comparing Definitions 1 and 5, we can see that a language is ∀κ-diagnosable if
it is κ-diagnosable ∀κ ≥ 1. Thus, ∀κ-diagnosability can be seen as a generalization
of U[1, κ]-diagnosability, when κ tends to ∞. Notice that for a ∀κ-diagnosable
system, the diagnosis delay bound may be a function of κ, and, although the
diagnosis delay bound must be finite for each κ, the various delays may not
be uniformly bounded with respect to κ, i.e., the system may not be U[1,∞]-
diagnosable.

Remark 1 It is worth noticing that ∀κ-diagnosability is different from NU[1,∞]-
diagnosability considered in Yoo and Garcia (2009, 2004), since the non-uniformity

in Yoo and Garcia (2009, 2004) comes from the fact that the diagnosis delay bound is

a function of the fault event-sequences, namely that the diagnosis delay bound for the

κ-th occurrence of a fault can be different for different event-sequences. In contrast,

in the case of ∀κ-diagnosability, the diagnosis delay bound for the κ-th occurrence of a

fault is the same for all faulty sequences, namely that, for the detection of the κ-th fault

occurrence, the same delay is needed in order for an accurate diagnosability verdict to

be issued regardless of the fault-trace executed by the system (Zhou and Kumar, 2009).

We now illustrate, by means of an example, the definitions of nonuniform and
∀κ-diagnosability properties.

Example 2 Let us consider, once again, system models G1 and G2 of Example 1

shown in Figure 2. Since L(G1) is not 1-diagnosable, then it is neither U[1,∞]-
diagnosable nor NU[1,∞]-diagnosable. Regarding L(G2), as shown in Example 1, it is

not U[1,∞]-diagnosable. However, L(G2) is both NU[1,∞]- and ∀κ-diagnosable. This

is so because every event-sequence s ∈ L(G2) that has as observation P (s) = (ab)k,

with k ∈ N+, has at least 2k occurrences of fault event f . So, we can choose delays

nkκ = 2k to satisfy the requirement of κ-diagnosability, ∀κ ∈ N+. The same reasoning

can be used to conclude that L(G2) is ∀κ-diagnosable.

We conclude this subsection by summarizing the relationships between
the main fault counting diagnosability definitions discussed so far. As shown
in Figure 3, U[1,∞]-diagnosability is the strongest diagnosability definition
and implies the other three definitions, namely ∀κ-diagnosability, NU [1,∞]-
diagnosability and [1, κ]-diagnosability (notice that according to the definition
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Fig. 3 Relationships between the fault counting-based intermittent fault
diagnosability notions.

of [1, κ]-diagnosability, κ is fixed a priori). In addition, ∀κ-diagnosability implies
both NU[1,∞]-diagnosability and [1, κ]-diagnosability Some further relationships
could be established under some restrictions. For instance, NU [1,∞]-diagnosability
implies [1, κ]-diagnosability only if the language describing the system behavior is
regular. Moreover if [1, κ]-diagnosability holds true ∀κ ∈ N, then the system is also
∀κ-diagnosable and NU [1,∞]-diagnosable.

3.2 Fault detection-based definitions of intermittent fault diagnosability

The classic notion of diagnosability proposed by Sampath et al. (1995) relies
on the fact that the faulty status of the system remains fixed after the fault
occurrence, i.e., faults are permanent. As a result, fault detection also implies
the identification of the faulty status of the system. In the case of intermittent
faults, the system status may continuously evolve along with the system evolution.
Therefore, detecting the occurrence of such faults does not mean that the current
system status has been determined. Consequently, the notion of diagnosability
in Sampath et al. (1995) does not take into account all the key issues associated
with the diagnosis of intermittent faults.

In this section, we discuss the various notions of diagnosability reported in the
literature, as far as intermittent fault detection and system status determination
are concerned. For the sake of clarity, we adopt an event-based scheme within the
recovery modeling setting.

Let us denote by ψ(Σf ) the set of event-sequences in L that end with faulty
event, i.e., ψ(Σf ) = {sσf ∈ L : σf ∈ Σf}. Similarly, ψ(Σr) = {sσr ∈ L : σr ∈ Σr}
and ψ(Σr) = {ss′ ∈ L : s ∈ ψ(Σf ) ∧ s′ ∈ ψ(Σr)}. Moreover, with a slight abuse
of notation, we write Σf ∈ s to indicate that a fault event from Σf is an event
in s, i.e., ∃σf ∈ Σf such that σf ∈ s. We also recall that the set of system states
can be partitioned into three subsets: Normal, Faulty and Recovered, which can be
identified using the labeling function ` : L ⊆ Σ∗ → {N,F,R}, such that for a given
event-sequence s ∈ L, we have:

– `(s) = N if (Σf /∈ s)
– `(s) = F if ∃ s′, s′′ : (s = s′s′′) ∧ (s′ ∈ ψ(Σf )) ∧ (Σr /∈ s′′)
– `(s) = R if ∃ s′, s′′ : (s = s′s′′) ∧ (Σf ∈ s′) ∧ (s′ ∈ ψ(Σr)) ∧ (Σf /∈ s′′)

The first two notions of diagnosability to be discussed in the sequel deal only
with the detection of fault occurrences and their recovery (Contant et al., 2004,
2002) without necessarily identifying, at any time, the current status of the system.
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Such definitions are called “weak diagnosability” (Boussif and Ghazel, 2016a).
Then, some restrictive versions of these definitions, which characterize the ability
to identify the status of the system after either the occurrence of an intermittent
fault or its recovery, will be discussed; they are usually referred to as “strong
diagnosability”. All of these notions were firstly introduced by Contant et al.
(2004), Contant (2005), and Contant et al. (2002), and then revisited in Boussif
and Ghazel (2016a), Boussif and Ghazel (2017), and Carvalho et al. (2017), in
an event-based scheme within a recovery setting, and in Biswas (2012), Boussif
et al. (2016) and Boussif and Ghazel (2019), in a state-based scheme within a
normalization setting.

Definition 6 (WF -diagnosability (Contant et al., 2004; Boussif and Ghazel,
2016a)) A prefix-closed live language L is said to be WF -diagnosable w.r.t.
projection P and Σf , if the following holds true:

(∃ n ∈ N)(∀s ∈ ψ(Σf ))(∀t ∈ L/s)(|t| ≥ n)⇒ [(∀ω ∈ [P−1
L (P (st))])(Σf ∈ ω)]

In Definition 6, W stands for weak and F for fault occurrence. The notion of
WF -diagnosability can be interpreted as follows: for every event-sequence s ending
with a fault event in Σf , and for all sufficiently long continuation t of s (|t| ≥ n), it
is possible to ensure that a fault has occurred based on the captured observation.
This implies that all event-sequences that are indistinguishable from st contain at
least one fault from Σf . It is worth remarking that this definition is exactly that
by Sampath et al. (1995) for permanent fault diagnosability since σr is not part
of the logical expression and, as such, σr must be treated as an ordinary subset
of the unobservable event set. In other words, the notion of WF -diagnosability
accounts only for detecting fault occurrence and is not interested in the system
status regarding potential recovery from the fault.

Since we deal with intermittent faults, the fault occurrences are succeeded
later on by their corresponding reset event. Therefore, it is worth discussing
diagnosability properties that also take into account reset event occurrences.

Definition 7 (WR-diagnosability (Contant et al., 2004; Boussif and Ghazel,
2016a)) A prefix-closed live language L is said to be WR-diagnosable w.r.t. P ,
Σf and Σr, if the following holds true:

(∃ n ∈ N)(∀s ∈ ψ(Σr))(∀t ∈ L/s)(|t| ≥ n)⇒ [(∀ω ∈ [P−1
L (P (st))])(Σr ∈ ω)]

In Definition 7, W stands for weak and R stands for reset occurrence. The
notion of WR-diagnosability has the following meaning: there always exists a delay
n ∈ N, such that for every event-sequence s ending with a reset event in Σr
(which means that at least one fault has occurred and was reset) and for all
sufficiently long continuation t of s (|t| ≥ n), it is possible to detect that the fault
has been reset; although it is not possible to infer that either the fault or reset
events have occurred more than once. This implies that all of the event-sequences
that are indistinguishable from st have necessarily experienced a fault occurrence
and recovery. Notice that, similar to WF -diagnosability, there is no constraint
regarding the determination of the system status when the recovery is diagnosed.
It is worth noticing that, from Definition 7, if the system is WR-diagnosable, we
are only capable to infer whether or not the system has recovered from the fault
at least once, and so, it is not possible to state if the current status of the system
is faulty or recovered.
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The previous notions of intermittent fault diagnosability serve only to detect
the occurrence of the fault (or its reset) but they provide no information regarding
the system status at any time. In order to take the system status into account,
strong versions have been introduced.

Definition 8 (SF -diagnosability (Contant et al., 2004)) A prefix-closed live
language L is said to be SF -diagnosable w.r.t. P , Σf and Σr, if the following
holds true:

(∃n ∈ N)(∀s ∈ ψ(Σf ))(∀t ∈ L/s)(|t| ≥ n)⇒[
∃t′ ≤ t : ∀ω ∈ [P−1

L (P (st′))]⇒ `(ω) = F
]

In Definition 8, S stands for strong. SF -diagnosability states that for every
event-sequence s that ends with a fault event in Σf , and for all sufficiently long
continuation t of s, one can detect the fault occurrence and determine, with
certainty, the faulty status of the system after the occurrence of at most n events,
based on the captured observations. This implies that all event-sequences that are
indistinguishable from st lead the system to fault states at the same observation
point, within a finite delay after the occurrence of the fault.

Similarly, SR-diagnosability, the dual notion of SF -diagnosability, can be
introduced as follows.

Definition 9 (SR-diagnosability (Contant et al., 2004)) A prefix-closed live
language L is said to be SR-diagnosable w.r.t. P , Σf and Σr, if the following
holds true:

(∃n ∈ N)(∀s ∈ ψ(Σr))(∀t ∈ L/s)(|t| ≥ n)⇒[
∃t′ ≤ t : ∀ω ∈ [P−1

L (P (st′))]⇒ `(ω) = R
]

According to Definition 9, SR-diagnosability ensures that for every event-
sequence s ending with a reset event in Σr, and for every sufficiently long
continuation t of s, one can detect the reset of the fault and determine, with
certainty, the recovery status of the system based on the captured observations.
This implies that all of the event sequences that are indistinguishable from st lead
to recover states at the same observation point, within a finite delay after the fault
recovery.

Example 3 Consider the system model G (taken from Contant et al. (2002)), shown

in Figure 4(a), with Σo = {a, b, c, d} and Σu = {f, r}, and assume that Σf = {f} and

Σr = {r}. The corresponding label automaton G` = G ‖ Ω is depicted in Figure 4b.

The faulty event-sequences in G are ρ1 = farb (fcrd)∗ and ρ2 = fab (rcfd)∗, with

P (ρ1) = P (ρ2) = ab(cd)∗. Thus, it is not difficult to see that L(G) is both WF - and

WR-diagnosable, since it is possible to infer the occurrence of both fault and recover

events (events f and r, respectively). However, L(G) is not SF -diagnosable, since no

bound delay n exists, such that after this limit, both ρ1 and ρ2 lead to fault states at

the same time, which means that it is not possible to determine the faulty status of

the system. Similar reasoning leads to the conclusion that L(G) is not SR-diagnosable.

These two points will be made clear in the next section when we introduce the notion

of diagnoser.
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Fig. 4 Automata G and G` for Example 3

Diagnosability notionsWF ,WR, SF and SR consider the detection/ identification
of the fault/reset occurrences within finite delays. However, they do not take into
account the multiplicity of fault/reset occurrences. In other words, a fault can
occur and reset several times before its detection/identification. In Boussif and
Ghazel (2018), Fabre et al. (2016), and Fabre et al. (2018), a stronger notion of
intermittent diagnosability was introduced. It consists in not only detecting each
fault occurrence within a finite delay, but also before its reset. Hereafter, we refer
to this new property as Fr-diagnosability.

Definition 10 (Fr-diagnosability (Boussif and Ghazel, 2018; Fabre et al., 2016,
2018)) A prefix-closed live language L is said to be Fr-diagnosable w.r.t. P , Σf and
Σr, if the following holds true:

(∀s ∈ ψ(Σf ))(∀t ∈ L/s : t ∈ ¯̄ψ(Σr))⇒[
∃t′ < t : ∀ω ∈ [P−1

L (P (st′))]⇒ `(ω) = F
]
,

where ¯̄ψ(Σr) = {s = σ1σ2 . . . σn ∈ Σ∗ : (σi /∈ Σr, i = 1, 2, . . . , n− 1) ∧ (σn ∈ Σr)} is
the set of finite event-traces in L/s whose unique event in Σr is the last one.

Definition 10 can be interpreted as follows: let s be a finite event-sequence in
L that ends with a faulty event, and t be every finite continuation of s that ends
with a reset event but does not have any reset event before its last event. Then, all
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the finite event-sequences that share the same observation with st, must take the
system to a faulty status between the moment when the fault has occurred and
its recovery. In other words, when a fault event occurs, one needs to be able to
detect it and identify the faulty status of the system before it resets. Such a feature
can be of interest for maintenance operation, for instance. Analogously, one may
require to detect the recovered status of the system before a new occurrence of
the fault, for this reason the dual version of Fr-diagnosability, the so-called Rf -
diagnosability that consists in detecting and identifying that the system reaches
a recovered status after each occurrence of a reset event and before every new
occurrence of the corresponding fault event, is defined.

Property 7 As expected:

(a) Fr-diagnosability ⇒ SF -diagnosability ⇒ WF -diagnosability

(b) Rf -diagnosability ⇒ SR-diagnosability ⇒ WR-diagnosability �

Property 7 summarizes the existing relationships between the main fault
detection definitions discussed in this section. As it can be seen, Fr-diagnosability
(resp. Rf -diagnosability) is the strongest property regarding fault detection (resp.
recovery detection) since it implies SF -diagnosability (resp. SR-diagnosability),
which in turn implies WF -diagnosability (resp. WR-diagnosability). Notice that
no relationship can be established between Fr- and Rf -diagnosability definitions on
one side, nor between SF - and SR-diagnosability on the other side. Regarding WF -
and WR-diagnosability, an equivalence relation may exist under some assumptions,
as will be discussed later on in the paper.

4 Diagnosability analysis and diagnoser synthesis

In this section, we summarize the main approaches developed for verifying the
various notions of intermittent fault diagnosability for DES modeled by FSA.
These approaches can be divided in three classes, as follows: (i) diagnoser-based
approaches; (ii) twin-plant-based approaches, and; (iii) verifier-based approaches.
They have been firstly introduced to deal with permanent failures, and, recently,
they have been adapted to deal with intermittent faults.

(i) Diagnoser-based approaches. Diagnoser-based approaches are based on the
construction of a deterministic automaton, called diagnoser, which keeps track
of all possible state estimation of the system based on the observed event-
sequences (Cassandras and Lafortune, 2008; Sampath et al., 1995; Hashtrudi Zad
et al., 2003; Viana and Basilio, 2019). The diagnoser can be thought of as an
extended observer that provides (i) an estimate of the current state of the system
after the occurrence of an observable event and (ii) information on potential past
failure occurrences in the form of labels, and so, each state of the diagnoser is
composed of a set of the system state estimations which indicate that the system is
in its normal or faulty behavior. They are used to check diagnosability by verifying
the existence of particular ambiguous cycles, called indeterminate cycles (Sampath
et al., 1995), and, once the system language is checked to be diagnosable, the
diagnoser can also be used to perform online diagnosis.
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(ii) Twin-plant-based approaches. A twin-plant is a non-deterministic automaton
whose states are composed of a pair of system states (which can be normal or
faulty), and whose paths correspond to a pair of event-sequences in the system
model that share the same observation. Its structure is exploited to analyse
diagnosability by searching for ‘bad’ cycles (called F -confused cycles, or infinite
critical pair) (Cimatti et al., 2003; Boussif and Ghazel, 2015). An F -confused
cycle is composed exclusively of ambiguous states, i.e., states in the twin-plant
containing one normal and one faulty state. Using the twin-plant, diagnosability
of permanent faults can be checked using polynomial-time algorithm(s) (Jiang
et al., 2001; Schumann and Pencole, 2007).

(iii) Verifier-based approaches. Verifier-based approaches (Yoo and Lafortune,
2002; Moreira et al., 2011; Grastien, 2009; Qiu and Kumar, 2006) usually rely on
the construction of a non-deterministic automaton2 VΣf

called Σf -verifier, where
Σf is the fault class. Verifiers are built by performing a parallel composition of
the system model with itself (regarding the observable events) augmented with
a tagging function. Differently from twin-plants, verifiers are built directly from
the system model, and, for this reason, possess both observable and unobservable
events. Like twin-plants, verifier states are composed of a pair of system states
(which can be normal or faulty). The diagnosability analysis is based on the search
for F -confused cycles.

In the following two sections, we discuss the existing works that rely on these
techniques for checking the various notions of intermittent fault diagnosability.

4.1 Verification of fault counting-based diagnosability notions

The verification of fault counting properties are mostly based on some variant of
the verification automaton used to carry it out. We, start by making the following
assumption3:
A2. Language L is live, i.e., for all x ∈ X, there exist σ ∈ Σ and x′ ∈ X such that
δ(x, σ) = x′.

4.1.1 Verification of uniform diagnosability

Jiang et al. (2003) proposed a verifier-like automaton to check κ- and [1, κ]-
diagnosability properties, which is a transition graph, i.e., no event labels are
associated with transitions. For an automaton G = (X,Σ, δ, x0), the verifier-like
automaton is denoted as V = (X ′,R, x′00), where X ′ = X ×X is the set of states,
x′00 = (x0, x0) is the initial state, and R ⊆ X ′ ×X ′ is the state transition defined
as follows: two states x12 = (x1, x2) and x′12 = (x′1, x

′
2), x12, x

′
12 ∈ X ′, are such

that x12 → x′12 ∈ R, if, and only if, one of the two following conditions holds true:

1. x1 = x′1 (resp. x2 = x′2), and ∃σ ∈ Σu such that (x2, σ, x
′
2) ∈ δ (resp. (x1, σ, x

′
1) ∈

δ);

2 The only exception is the verifier proposed by Moreira et al. (2011). See also Kumar and
Takai (2014) and Moreira et al. (2016).

3 Every made assumption is to be applied to the remainder of the text unless explicitly
indicated. Nevertheless, for the sake of clarity, we will indicate in all results which assumptions
are being required.
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2. ∃σ ∈ Σo such that (x1, σ, x
′
1) ∈ δ and (x2, σ, x

′
2) ∈ δ;

In order to keep tracking of the number of fault occurrences, transition graph
V is augmented with some counters and Boolean variables, being renamed as V1,
as follows:

– a tagging value-pair (min{NF
s1 , κ},min{N

F
s2 , κ}) associated with each state

(x1, x2) in V, with x1 ∈ δ(x0, s1) and x2 ∈ δ(x0, s2), where, as defined before,
NF
si is the number of fault events in a given event-sequence si;

– a Boolean variable v ∈ {0, 1} that indicates whether or not x1 or x2 is reachable
by a state-trace ρ, sufficiently long, which has a higher number of faults.

The general structure of a state-pair x12 in the augmented transition graph V1
is then x1,2 = ((x1, x2), (min{NF

s1 , κ},min{N
F
s2 , κ}), v).

Theorem 1 (Jiang et al., 2003) — Under assumption A2:

– a system model G is κ-diagnosable w.r.t. P and Σf iff no cycle containing a state-

pair ((x1, x2), (κ, i), 1) with i < κ, exists in V1.

– a system model G is [1, κ]-diagnosable w.r.t. P and Σf iff no cycle containing a

state-pair ((x1, x2), (j, i), 1) with i < j, exists in V1, ∀1 ≤ j ≤ κ.

We will now illustrate the verification method proposed by Jiang et al. (2003)
with the following example.

Example 4 Consider, again, system model G1 of Figure 2a. A relevant part of the

augmented transition graph V1 associated with G1 is shown in Figure 5, from which we

can notice that V1 contains a cycle (self-loop) composed of state ((3, 3), (1, 0), 1), which

implies that G1 is not 1-diagnosable. In fact, this result is expected since, as discussed

in Example 2, the fault counting process fails when it comes to handle sequences ac∗.
To establish its relationship with verifier V1, first notice that trace ac∗ is an observed

sequence, which corresponds in model G1 (Figure 5) to two sequences, one faulty and

another non-faulty, both leading to state 3 of the system model G1; hence the pair (3, 3)
in the verifier state ((3, 3), (1, 0), 1), which corresponds to the states reached by these

two sequences. In addition, the second component ((1, 0)) indicates that one sequence

has a fault event, while the second one does not. Finally, since the faulty sequence is

infinite (i.e., it leads to the self-loop), then the Boolean variable in the verifier state is

equal to ‘1’. Such a configuration ensures that fault counting process fails in detecting

the number of faults, when dealing with observable sequence ac∗.

The above approach consists in counting the number of fault occurrences in
each event-sequence. Such an approach cannot be used directly for the analysis
of U[1,∞]-diagnosability, since automaton V1 may be unbounded, i.e., if one keeps
track of the number of faults with each state-trace in each state-trace pair, then
one may get a transition graph with an infinite number of states. In order to
overcome this drawback, instead of keeping track of the number of faults with
each state-trace in each trace-pair, we only keep tracking of the difference between
the number of faults with the state-pair traces. Although the difference in terms
of the number of faults in the state pairs may still be unbounded, it can be shown
that if it goes above an upper bound, say |X|2, the system model is not U[1,∞]-
diagnosable (Jiang et al., 2003). Hence, in order to verify U[1,∞]-diagnosability,
the label of the vertices of transition graph V must be augmented, with the
following parameters:
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Fig. 5 Augmented transition graph V1 associated with model G1 of Example 1.

– a fault-difference counter df = NF
s1−N

F
s2 associated with each state pair (x1, x2)

in V, with x1 ∈ δ(x0, s1) and x2 ∈ δ(x0, s2);
– a Boolean variable b ∈ {0, 1} that indicates whether or not the current

fault occurrence must be reported, i.e., whether or not both event-sequences
associated with the trace-pair (in V) contain, after the fault occurrence, at
least one fault event each.

– a Boolean variable v ∈ {0, 1} that indicates whether or not the reached state
pair (x1, x2) results from an extension of an state-trace with higher number of
faults.

The general structure of a state-pair in the augmented transition graph,
denoted as V2, will, therefore, be x12 = ((x1, x2), df , b, v), starting from the initial
vertex: x12 = ((x1, x2), 0, 0, 0). Given a vertex x12 = ((x1, x2), df , b, v), a new vertex
x′12 = ((x′1, x

′
2), d′f , b

′, v′) is defined accordance with the following rule:

If ∃ σ ∈ Σo s.t. δ(x1, σ) = y1 and δ(x2, σ) = y2, then (x′1, x
′
2) = (y1, y2),

d′f = df , b′ = 0, v′ =

{
1 if df 6= 0
0 otherwise

;

If ∃ σ1, σ2 ∈ Σf s.t. δ(x1, σ1) = y1 and δ(x2, σ2) = y2, then (x′1, x
′
2) = (y1, y2),

d′f = df , b′ = 1, v′ =

{
1 if df 6= 0
0 otherwise

;

If ∃ σ ∈ Σu s.t. δ(x1, σ) = y1, then (x′1, x
′
2) = (y1, x2),

d′f =

{
df + 1, if σ ∈ Σf
df , otherwise

, b′ =

{
1, if |d′f | < |df |
0, otherwise

, v′ =

{
1, if df > 0
0, otherwise

;

If ∃ σ ∈ Σu s.t. δ(x2, σ) = y2, then (x′1, x
′
2) = (x1, y2),

d′f =

{
df − 1, if σ ∈ Σf
df , otherwise

, b′ =

{
1, if |d′f | < |df |
0, otherwise

, v′ =

{
1, if df < 0
0, otherwise

.

Theorem 2 (Jiang et al., 2003) — Under assumption A2, the language generated

by a system model G is U[1,∞]-diagnosable w.r.t. P and Σf , iff:

(a) the augmented transition graph V2 corresponding to G is finite, and

(b) no cycle containing a state-pair ((x1, x2), df , 0, 1), with df 6= 0, exists in V2.

Let us now illustrate the verification of U [1,∞]-diagnosability using V2.

Example 5 Let us consider once again automaton G1 of Figure 2a. The augmented

transition graph V2 associated with G1 is shown in Figure 6, from where we can see
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Fig. 6 Augmented transition graph V2 associated with model G1 of Example 1.

that V2 contains cycles that have some states ((x1, x2), df , 0, 1) where df 6= 0; e.g.,

state ((4, 4),−1, 0, 1). Thus, L(G1) is not U [1,∞]-diagnosable.

Remark 2 (Complexity analysis (Jiang et al., 2003)) The number of states and

transitions of V1 (resp. V2) for checking κ-/[1, κ]-diagnosability (resp. U[1,∞]-
diagnosability) using the above approach are, in the worst case, 2|X|2 × (κ + 1)2 and

8|X|4 ×+4|X|2 (resp. 2|X|4 × (κ+ 1)2 and 8|X|6 + 4|X|4), where |X| is the number

of states in the plant automaton. For the verification, Jiang et al. (2003) proceed as

follows: first, particular states in the augmented transition graphs are searched, and

then, it is checked if such states belong to some cycles or not; e.g., for U [1,∞]-
diagnosability, states of form ((x1, x2), df , 0, 1) are investigated. For deterministic

systems, the overall complexity for analyzing κ/−[1, κ]-diagnosability (resp. U[1,∞]-
diagnosability) is O(|X|2|Σ|2) (resp. O(|X|4|Σ|2).

Remark 3 (Online diagnosis) Jiang et al. (2003) developed a systematic procedure

for online diagnosis of κ-, [1, κ]- and U[1,∞]-diagnosable systems, whose idea behind

its construction is that it must determine the potential states of the system after each

observation. The procedure consists in maintaining a state estimator (Qd, Id) ∈ 2X×N×
N, where Qd is a set of state estimations that can be reached following an observed

event-sequence, and Id is a count indicator used to store either the total number of

detected faults (for κ- and [1, κ]-diagnosis) or the total number of newly detected faults

(for U[1,∞]-diagnosis). According to Jiang et al. (2003), the size of Qd is bounded by

|X|× (κ+1) (for κ- and [1, κ]-diagnosis) and |X|× (|X|2 +1) (for U[1,∞]-diagnosis).

4.1.2 Verification of nonuniform intermittent fault diagnosabilities

Regarding NU[1,∞]-diagnosability, Yoo and Garcia (2009) and Yoo and Garcia
(2004) proposed another verifier variant that is based on the construction of a
weighted graph which can be leveraged to compute shortest-paths (Goldberg, 1995;
Cherkassky et al., 1996).
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The weighted graph, denoted as W = (V,E,w, v0),where V ⊆ X ×X is a finite
set of vertices, E ⊆ V ×V is a finite set of edges, v0 = (x0, x0) is the initial vertex,
and w : E → S is the edge weighting function, with S = {−1, 0+, 0−, 0, 0̂,+1} being
the set of weight symbols. In this regard, for two vertices v1, v2 ∈ V , there can be

associated an edge (v1, v2) ∈ E possessing weight w[v1, v2] ∈ S. We write v1
i−→ v2

to denote that i ∈ w[v1, v2]. Regarding the edges of W, they are defined as follows:
let x1, x

′
1, x2, x

′
2 ∈ X and σ1, σ2 ∈ Σ, with δ(x1, σ1) = x′1 and δ(x2, σ2) = x′2. Then,

(i) If σ1 = σ2 ∈ Σo, then (x1, x2)
0−−→ (x′1, x

′
2) if (δ(x1, σ1) = x′1 ∧ δ(x2, σ2) = x′2)

(ii) If σ1, σ2 ∈ Σu, then

(x1, x2)



−1−−−→ (x′1, x2) if (σ1 ∈ Σf ) ∧ (δ(x1, σ1) = x′1);
+1−−−→ (x1, x

′
2) if (σ2 ∈ Σf ) ∧ (δ(x2, σ2) = x′2);

0−−−−→ (x′1, x2) if (σ1 /∈ Σf ) ∧ (δ(x1, σ1) = x′1);
0+

−−−→ (x1, x
′
2) if (σ2 /∈ Σf ) ∧ (δ(x2, σ2) = x′2);

0̂−−→ (x′1, x
′
2) if (σ1, σ2 ∈ Σf ) ∧ (δ(x1, σ1) = x′1 ∧ δ(x2, σ2) = x′2);

0−−→ (x′1, x
′
2) if (σ1, σ2 /∈ Σf ) ∧ (δ(x1, σ1) = x′1 ∧ δ(x2, σ2) = x′2)

.

Essentially, W is obtained by performing a synchronized product of the FSA G1

with itself, in accordance with the above rules.

For a path ρ = v0, v1, . . . , vk in W of length k, the weight of ρ is the sum of the
minimum weights of its constituent edges, that is:

w[ρ] =
k∑
i=1

w[vi−1, vi],

where the zero weights 0, 0+, 0−, and 0̂ are all considered as 0 when the above
operations over the weights is performed.

The shortest-path weight from v0 to vk is:

short[v0, vk] =

{
min(w[ρ]) if vk is reachable from v0 via ρ
∞ otherwise

In order to formulate a necessary and sufficient condition for NU[1,∞]-
diagnosability, Yoo and Garcia (2004) define a T -cycle (T ⊆ S) in W as follows.
Let Vcl = {v1, v2, . . . , vn} be a set of vertices that forms a cycle in W. Then the
T -cycle of W associated with Vcl is a set of edges formed as follows: T = {t ∈ S :

(∃vi, vj ∈ Vcl)[vi
t−→ vj ]}.

Theorem 3 (Yoo and Garcia, 2004) — Under assumption A2, the language L(G)
generated by an automaton G is NU[1,∞]-diagnosable w.r.t. P and Σf , if, and only

if, the following three conditions hold true:

(a) ∀ T -cycle in W, if −1 ∈ T then either 0̂ ∈ T or +1 ∈ T ;

(b) ∀ v ∈ {0−}-cycle in W then short[v0, v] ≥ 0.

(c) ∀ v ∈ T -cycle in W, such that T ∈ {{0}, {0−, 0}, {0+, 0}, {0−, 0, 0+}} then

short[v0, v] = 0.
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Fig. 7 The weighted graph W associated with model G1 of Example 1.

Example 6 Figure 7 shows the weighted graph W that corresponds to model G1 in

Example 1 (cf. Figure 2a), from where, it is possible to see that W contains four T-

cycles: T1 = {+1,−1, 0}, T2 = T1, T3 = {0, 0̂} and T4 = {0}, associated with the sets

of vertices V1 = {(4, 4), (4, 5), (5, 5)}, V2 = {(4, 4), (5, 4), (5, 5)}, V3 = {(4, 4), (5, 5)}
and V4 = {(3, 3)} respectively. Notice that T-cycles T1, T2 and T3 satisfy condition (a),

and trivially satisfy conditions (b) and (c) of Theorem 3. Regarding T4-cycle, it can be

seen that it trivially satisfies conditions (a) and (b). Let us check condition (c). There

are various paths that connect the initial vertex to the edge that forms the {0}-cycle in

vertex (3, 3), for example, paths ρ1 = (1, 1)
+1−−→ (2, 1)

0−→ (3, 3), and ρ2 = (1, 1)
−1−−→

(1, 2)
0−→ (3, 3). It is not difficult to check that short[(1, 1), (3, 3)] = −1, which violates

condition (c) of Theorem 3. Thus, model G1 is not NU[1,∞]-diagnosable, which is

consistent with the analysis carried out in Example 2.

Remark 4 (Complexity analysis (Yoo and Garcia, 2009, 2004) ) Since the number

of states and transitions in the weighted graph W are |X|2 and |X|2 × |Σ|2,

respectively, and the verification algorithm is based on the search for strongly connected

components,the verification algorithm proposed by Yoo and Garcia (2009) has lower

computation complexity when compared to that of Jiang et al. (2003). Thus, the

overall computational complexity for checking NU[1,∞]- and U[1,∞]-diagnosabilities

of a deterministic system model according to the above procedure is O(min(|X|3 ×
|Σ|2, |X|5)) time and O(min(|X|2 × |Σ|2, |X|4)) space, where |X| and |Σ| are the

numbers of states and events in the system model, respectively.

Remark 5 (Online diagnosis) Yoo and Garcia (2009) proposed an online algorithm

for counting, in an efficient way, the number of fault occurrences, which is based on a

recursive computation of min{NF
s : s ∈ P−1

L (ω)}, with ω ∈ Σ∗o being an observable

event-sequence. The idea behind this recursive computation is to record the model

state estimations and the corresponding minimum number of fault occurrences in the

diagnoser state, and so, Qd = {(q1, i1), . . . (qn, in)} ∈ 2X×N, where minj=1...n(ij)
will be the current fault count. Such an online algorithm can be conducted with

O(|Σ + log|X|)× |X|) complexity.
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4.1.3 Verification of ∀κ-diagnosability

In order to check ∀κ-diagnosability, Zhou and Kumar (2009) proposed an approach
based on the construction of the so-called indistinguishable-pair automaton (IPA).
The IPA is a variant of the verifier automaton where the set of states contains
pairs of the form ((x+, x−), (w(x+), w(x−))) ∈ X2×{0, 1}2, with (w(x+), w(x−)) ∈
{0, 1}2 is a vector-weight associated with state-pair (x+, x−) ∈ X2 and used to
count the fault occurrences. The set of events contains pairs of the form (σ+, σ−) ∈
(Σ2

ε \Σ2
u), with Σε = Σ ∪ {ε}.

Formally, the IPA is defined as GI = (Y,ΣI , δI , y0), where Y ∈ X2 × {0, 1}2
is the set of states, ΣI = Σ2

ε \ Σ2
u is the set of events, y0 = ((x0, x0), (0, 0)) is

the initial state, and δI : Y × ΣI → Y is the transition function, being each
transition of the form (y, (σ+, σ−), y′), with y = ((x+, x−), (w(x+), w(x−)) and
y′ = ((x′+, x

′
−), (w(x′+), w(x′−)), where:

(x′+, x
′
−) =


(δ(x+, σ+), δ(x−, σ−)), if σ+ = σ− ∈ Σo ∧ δ(x+, σ+)! ∧ δ(x−, σ−)!,
(δ(x+, σ+), x−), if σ+ ∈ Σu ∧ σ− = ε ∧ δ(x+, σ+)!,
(x+, δ(x−, σ−)), if σ− ∈ Σu ∧ σ+ = ε ∧ δ(x−, σ−)!,
undefined, otherwise.

and

w(x′+) =

{
1, if x′+ = δ(x+, σ+) ∧ (σ+ ∈ Σf ),
0, otherwise,

and similarly for w(x′−). In the equations above, δ(x, σ)! is defined, i.e., there exists
a state x′ ∈ X such that δ(x, σ) = x′.

The vector-weight components w(x′+) and w(x′−) are called the positive and
negative weight of y, respectively, and are denoted by +ve and −ve. The weight
of a state y is given by w(y) = w(x+) − w(x−), and the weight of a sequence of
states π = y1, . . . , yn of GI is given by w(π) =

∑n
i=1 w(yi) = w+(π)−w−(π), where

w+(π) =
∑n
i=1 w(xi+) and w−(π) =

∑n
i=1 w(xi−).

Several types of state-sequences (possibly cycles) can be distinguished with
respect to the sequence weight. For a given state-sequence π in GI , we say that π
is:

– fault-free, if w+(π) = w−(π) = 0;
– a +ve-path (resp. a −ve-path), if w(π) > 0 (resp. w(π) < 0);
– a +ve-part fault-free (resp. −ve-part fault-free) path, if w+(π) = 0 (resp.
w−(π) = 0);

– a +ve-vocal (resp. −ve-vocal) path, if π contains a transition (σ+, σ−) with
σ+ ∈ Σo (resp. σ− ∈ Σo).

Notice that vocality ensures the execution of at least one observable event along
the path. In addition, based on these path definitions, it is possible to identify
cyclic state-sequences; for example, a +ve-vocal cycle cl is a cycle that contains a
transition (σ+, σ−) with σ+ ∈ Σo.

Recall that, according to Definition 5, a system is not ∀κ-diagnosable if, and
only if, there exists a pair of indistinguishable sequences π and π′ infinitely-long,
such that NF

π < κ while NF
π′ ≥ κ (or, symmetrically, the converse) and the path

with the larger number of faults is infinitely vocal, i.e., the path continues to
execute observable events regularly.
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Fig. 8 System model G3 of Example 7

Based on automaton GI , the following necessary and sufficient condition for
∀κ-diagnosability can be stated.

Theorem 4 (Zhou and Kumar, 2009) — Under assumption A2, language L(G)
generated by system model G is not ∀κ-diagnosable w.r.t. P and Σf , if, and only if,

either one of the following two conditions holds true:

(a) there exists a cycle cl in GI that is both +ve-part fault-free and −ve-vocal;

(b) there exists a −ve-path that begins at the initial state of GI and is connected to a

cycle that is simultaneously fault-free and −ve-vocal.

The next example illustrates both the construction of IPA GI and Theorem 4.

Example 7 Consider the system model G3 in Figure 8, where Σo = {a, b, c} and

Σu = Σf = {f}. Figure 9 depicts the IPA G3I corresponding to model G3. From G3I ,

we can see that both conditions of Theorem 4 hold true, as follows:

(a) Cyclic path πc` = ((4, 4), (0, 0))
fε−−→ ((5, 4), (1, 0))

cc−−→ ((4, 4), (0, 0)) is

both +ve-part fault-free and −ve-vocal, since π = ((4, 4), (0, 0)),((5, 4), (1, 0)),

((4, 4), (0, 0)), w+(πc`) = 1 and for (x+, x−) = (5, 4), δ(4, c) = 4, with c ∈ Σo;

(b) Path π′ = ((1, 1), (0, 0))
εf−−→ ((1, 2), (0, 1))

aa−−−→ ((3, 3), (0, 0)) is a −ve-path

since w(π′) = 0 − 1 = −1, that starts at the initial state of G3I and is connected

to cyclic path π′c` = ((3, 3), (0, 0))
cc−−→ ((3, 3), (0, 0)) that is both fault-free and

−ve-vocal, since δ(3, f) is not defined and δ(3, c) = 3, with c ∈ Σo.

Therefore, the language generated by G3 is not ∀κ-diagnosable.

Remark 6

– According to Zhou and Kumar (2009), the indistinguishable-pair automaton can

also be used to check U[1,∞]-diagnosability. The verification algorithm proposed in

Zhou and Kumar (2009) has proved to have lower complexity than those proposed

in Jiang et al. (2003), Yoo and Garcia (2009), and Yoo and Garcia (2004).

– For system models that fail the ∀κ-diagnosability test, Zhou and Kumar (2009) also

presented an algorithm to compute the set of fault occurrence indices κ for which

the system is not κ-diagnosable.

Remark 7 (Complexity analysis (Zhou and Kumar, 2009)) The number of states

and transitions in the indistinguishable-pair automaton I are, in the worst case, 2|X|2
and 2|X|2×|Σ|2. The verification algorithm is based on the search of strongly connected

components and the computation of the shortest paths, which can be performed in

O(|X|2) and O(|X|3 × |Σ|2) respectively. Thus, the overall complexity to check ∀κ-

diagnosability is O(|X|3 × |Σ|2), with |X| and |Σ| being respectively the numbers of

states and events in the system model to diagnose.
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Fig. 9 The IPA G3I associated with system model G3 of Example 7.

4.2 Verification of fault detection-based diagnosability notions

The verification of fault detection properties is carried out by using variants of
diagnoser, twin-plant, and/or verifier automata. Thus, besides Assumption A2,
the following assumptions are also required4:

A3. There is no cycle of unobservable events in the system model G;
A4. Each fault event f has its corresponding reset event r.
A5. There exists at least one observable event between the occurrence of a fault

event f and its corresponding reset event r and also between the occurrence of
a reset event r and a new occurrence of its corresponding fault event f .

A6. Each occurrence of fault event f is followed later on by the occurrence of
its corresponding reset event r within a finite delay, and vice-versa, i.e., each
occurrence of a reset event r is followed later on by a new occurrence of the
corresponding fault event f within a finite delay.

It is worth noticing that Assumption A3 is the usual assumption in fault diagnosis
of permanent faults, and Assumption A6 implies that the fault and reset events

4 Some assumptions can be relaxed for some approaches. When it is the case, it will be
indicated explicitly.
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occur with some regularity (pseudo-periodicity). These notions are called Σf -
recurrence and Σr-recurrence respectively (Contant et al., 2004).

Property 8 Under assumption A6, WF -diagnosability and WR-diagnosability are

equivalent.

Regarding Property 8, it is worth noticing that Assumptions A1–A5 are not
required.

4.2.1 Verification of fault detection-based diagnosability notions using diagnosers

• Verification of WF -, WR-, SF -, and SR-diagnosability notions

Contant et al. (2004), Contant (2005) and Contant et al. (2002) proposed an
extension of the diagnoser approach firstly introduced in Sampath et al. (1995) by
modifying its structure to deal with intermittent faults. The proposed diagnoser
for a model G = (X,Σ, δ, x0) is a deterministic FSA Gd = (Q, Σd, δd, q0) associated
with a tagging function Diag : Xo → 2∆, where ∆ = {N,F,R}, with N standing
for normal, F for faulty, and R for recovered, and Xo = {x0} ∪ {x ∈ X : ∃((x′, σ) ∈
X × Σo)[x ∈ δ(x′, σ)]} is the finite set of reached state after the occurrence of
an observable event. In addition, Q ⊆ 2(X×∆), Σd = Σo, q0 = (x0, N), and δd :
Q×Σd → Q, where δd is defined as follows: given two states q1, q2 ∈ Q, then q2 =
δd(q1, σ)⇔ ∀(x2, l2) ∈ q2, (∃uσ ∈ Σ∗uΣo)(∃(x1, l1) ∈ q1) : x2 = δ(x1, σ), with l1, l2 ∈
{N,F,R} being the labels associated with each state according to the tagging
functionDiag. Notice that each state q ∈ Q has the form q = {(x1, `1), . . . , (xn, `n)},
with xi ∈ Xo and `i ∈ ∆. If ∀i = 1, . . . , n, `i = N (resp. `i = F , `i = R) then,
diagnoser state q is said to be N-certain (resp. F -certain, R-certain), otherwise, it
is an uncertain state.

Based on Gd, Contant et al. (2004) proposed necessary and sufficient
conditions for WF -, WR-, SF -, and SR-diagnosabilities, defined according to
Definitions 6, 7, 8, and 9, using the notion of indeterminate cycles. In this regard, a
cycle cl in diagnoser Gd is a WF -indeterminate cycle if the following two conditions
are satisfied: (i) no state in cl is F -certain, and; (ii) there exist, at least, two cycles
cl1 and cl2 in the system model G consistent5 with cycle cl, such that one cycle is
formed with normal states only, and the other one contains states with labels F
and/or R.

The notion of WF -indeterminate cycle is crucial, and leads to the following
necessary and sufficient condition for WF -diagnosability.

Theorem 5 (Contant et al., 2004) Under assumptions A2–A6, a system model

G is WF -diagnosable w.r.t. P , Σf , Σr if, and only if, diagnoser Gd has no WF -

indeterminate cycle.

As discussed in Section 3.2, SF -diagnosability implies WF -diagnosability, and,
thus, the necessary and sufficient condition for WF -diagnosability is a necessary
condition for SF -diagnosability. Nevertheless, Contant et al. (2004) has presented

5 Given a cycle cl in the diagnoser, we say that two cycles cl1 and cl2 in the system model
are consistent with cl if event-sequences s1 and s2 associated with cl1 and cl2 respectively, and
the event-sequence s associated with cl, share the same observation, i.e., P (s1) = P (s2) = scl.
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a necessary and sufficient condition for SF -diagnosability based on the notion of
SF -indeterminate cycles. According to Contant et al. (2004), an SF -indeterminate
cycle is a cycle cl in diagnoser Gd (with scl its corresponding event-sequence),
composed of non F -certain states only, and for which there exists a corresponding
cycle cl1 in G (with s1 its corresponding event-sequence, and P (s1) = scl) such
that cl1 has states with labels F and/or R.

Theorem 6 (Contant et al., 2004) Under assumptions A2–A6, the language generated

by a system model G is SF -diagnosable w.r.t. P , Σf , Σr if, and only if, diagnoser Gd
has no SF -indeterminate cycle.

Remark 8 Since WF - and WR-diagnosability (resp. SF - and SR-diagnosability) are

dual properties, necessary and sufficient conditions such as those stated in Theorems 5

and 6 can be developed for WR- and SR-diagnosability, respectively, in the same

manner.

Remark 9 (Computational Complexity (Contant et al., 2004; Rintanen et al., 2007))

The number of states and transitions in the diagnoser are at most 2|X| and 2|X|×|Σo|
respectively. Thus, the computational complexity for building the diagnoser is O(2|X|×
|Σo|), with |X| and |Σo| being respectively the numbers of states and observable events

in the system model. Generally, verification algorithms for checking diagnosability

properties using diagnoser approaches are based on the search for cycles, which

has a factorial computation complexity (Johnson, 1975), being therefore exponential.

Recently, Viana et al. (2015) and Viana and Basilio (2019) proposed a verification

technique (which has a linear complexity) based on the search for strongly connected

components in a diagnoser-like automaton.

Example 8 Figure 10 depicts diagnoser Gd, built in accordance with Contant et al.

(2004) that corresponds to system model G shown in Figure 4a and considered in

Example 3. Notice that diagnoser Gd has only one cycle, which is composed of states

{5R, 9F} and {7F, 11R}. Although this cycle is composed of non F -certain states, it is

not a WF -indeterminate cycle, since there does not exist a corresponding normal cycle

in the system model G (as shown in Example 3). Thus, according to Theorem 5, G

is WF -diagnosable and thus, WR-diagnosable (cf. Property 8). In contrast, the cycle

in Gd is SF -indeterminate, since it contains no F -certain states and, in addition,

there exists a corresponding cycle in G which has experienced as least one fault

occurrence (cf. Example 3). Consequently, G is not SF -diagnosable. Using the same

reasoning, we can show that G is not SR-diagnosable either. Finally, since G is not

SF -diagnosable (resp. not SR-diagnosable), then according to the relationships between

the fault detection properties summarized in Property 7, G is not Fr-diagnosable (resp.

not Rf -diagnosable).

We will now make a brief account of related works to Contant et al. (2004).
We start with the work by Correcher et al. (2003), where it is proposed a
strategy to diagnose intermittent faults in industrial processes. The approach
is applied to a classic pump/valve case-study (Sampath et al., 1996b), whose
simulation is performed with Matlab, employing Simulink, for modeling the
continuous behavior, and Stateflow, for the DES diagnoser. Biswas (2012)
considers the verification of intermittent fault diagnosability notions in a state-
based diagnosis framework, using the normalization setting. Two diagnosability
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Fig. 10 Diagnoser Gd corresponding to the model of Example 3.

notions, which correspond to SF - and SR-diagnosabilities, have been addressed,
being the approach proposed to analyze such notions an extension of the state-
based diagnoser introduced in Hashtrudi Zad et al. (2003). For each notion of
diagnosability, a necessary and sufficient conditions were established by Biswas
(2012). Carvalho et al. (2012) investigate the problem of robust diagnosability
against intermittent sensor faults assuming that either some sensors do not operate
properly all the time or some observed events may not reach the diagnoser,
i.e., temporary loss of event observation may take place. Such a problem is
formalized as an intermittent fault diagnosis one and a necessary and sufficient
condition for robust diagnosability is presented. More recently, Carvalho et al.
(2017) addressed the problem of diagnosing intermittent sensor faults in an event-
based diagnosis framework within the recovery setting. They have modified the
model of intermittent loss of observation to account for sensor malfunction only.
Then, the problem of detecting intermittent sensor faults is transformed into a
problem of diagnosing intermittent faults, in the same sense as in Contant et al.
(2004). A diagnoser similar to the one developed in Cassandras and Lafortune
(2008) is used in Carvalho et al. (2017) to check some diagnosability notions,
equivalent (under some modeling restrictions) to WF - and WR-diagnosabilities.
Using such a diagnoser, the assumption that no cycle involving only unobservable
events exists in the system model can be relaxed. It is worth remarking that the
necessary and sufficient conditions developed in Carvalho et al. (2017) consider
both indeterminate observed cycles (equivalent to those in Contant et al. (2004))
and indeterminate hidden cycles, i.e., cycles of states connected by unobservable
events only. Finally, Boussif and Ghazel (2017) proposed a variant of the diagnoser
presented in Cassandras and Lafortune (2008) in order to perform the verification
of the above-mentioned diagnosability notions, using an event-based diagnosis
framework within a recovery setting. The main idea behind the variant diagnoser
is to separate normal, faulty and recovered states in each diagnoser node. By
exploiting some features of the new diagnoser structure, necessary and sufficient
conditions for checking WF -, WR-, SF - and SR-diagnosability notions are
presented.

• Verification of Fr-diagnosability
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Regarding the verification of Fr-diagnosability, Fabre et al. (2018) approach
this problem in a normalization setting within state-based framework. Applying
the same idea as in Viana et al. (2015), the approach proposed in Fabre et al.
(2018) is based on the construction of an augmented diagnoser, Ga which is a
parallel composition between the labeled system model and its diagnoser.

Formally, given a system model G = (X,Σ, δ, x0) and its corresponding
diagnoser Gd = (Q, Σd, δd, q0)6, we first compute the labeled system model G`
as G` = G ‖ Ω = (X`, Σ, δ`, x`0), with X` = X × {N,F,R}, X`0 = (x0, N), and
δ` : X` × Σ → X`. We then compute augmented diagnoser Ga = G` ‖ Gd =
(Xa, Σ, δa, xa0), with Xa = X` ×Q, xa0 = (x`0, q0), and δa : Xa ×Σ → Xa.

In order to simplify notation, let us consider that labels N and R are
indistinguishable and denoted by F̄ . As a result, each state of the augmented
diagnoser will have components in {F, F̄} × {F, F̄ , U}, where U represents an
uncertain diagnoser state, i.e., a diagnoser state that is neither F -certain nor
F̄ -certain. The necessary and sufficient condition for Fr-diagnosability is based
on the notion of minimally faulty states: a state xa = (x`, q) in the augmented
diagnoser Ga is said to be minimally faulty if x` = F is directly reachable from a
state x′a = (x′`, q

′) where x′` = F̄ .

Theorem 7 (Fabre et al., 2018) Under assumptions A2–A5, the language generated

by a deterministic automaton G is not Fr-diagnosable if, and only if, there exists in

the augmented diagnoser a reachable minimally faulty state (x, q) of type (F, (F̄ )) or

(F, (U)) and either:

1. there exists a state (x′, q′) of type (F̄ , (F̄ )) or (F̄ , (U)), or

2. there exists a cycle composed exclusively of (F, (U)) states

that is reachable from (x, q) through a (possibly empty) sequence of (F, (F̄ )) states

followed by a sequence of (F, (U)) states.

Theorem 7 provides the two conditions that leads to violation of Fr-diagnosability.
The first condition accounts for the existence of two finite event-sequences s1 and
s2 in the system model such that s1 exhibits a faulty behavior and s2 exhibits
either a normal or a recovered behavior, meaning that the diagnoser was not
able to identify that the system has recovered from the fault, whereas the second
condition considers cyclic event-sequences.

Remark 10 As shown in Viana and Basilio (2019), where a similar structure is used

to perform diagnosability of permanent fault verification, there is no need to search

for cycles that satisfy Condition (2) of Theorem 7. In this regard, Condition (2) could

be replaced by the search of non-trivial strongly connected components that have states

whose second elements are labeled by U and the first elements have both F and F̄ labels

in different states.

Example 9 Let us consider again system model G introduced in Example 3 and

depicted in Figure 4(a). The labeled system model G` is depicted in Figure 4(b), and

the augmented diagnoser Ga is depicted in Figure 11(a). An abstracted version of Ga

6 The diagnoser computation is presented at the beginning of this section (cf. Section 4.2.1).
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showing only the label elements associated with each state is depicted in Figure 11(b).

Notice that the augmented diagnoser state xa11 = (12F, (7F, 11R)) is a minimally

faulty state since it is of type (F, (U)), and it is directly reachable from state xa10 =
(11R, (7F, 11R))) which is of type (F̄ , (U)). In addition, notice that there exists state

xa9 = (10R, (4R, 9F ) of type (F̄ , (U)) which is reachable from state xa11 through state

xa8 = (9F, (5R, 9F )), which is of type (F, (U)). Hence, state sequence xa11 , xa8 , xa9

satisfies condition (1) of Theorem 7, and, thus, system model G is non Fr-diagnosable.

(a) The augmented diagnoser Ga (b) An abstraction version of Ga

Fig. 11 Augmented diagnoser Ga of Example 9 and its abstraction version.

Remark 11 (Computational Complexity (Fabre et al., 2018)) The number of states

and transitions of the augmented diagnoser are at most 2|X| × |X| and 2|X| × |X| ×Σ
transitions, respectively. In addition, as proved in Fabre et al. (2018), analyzing Fr-

diagnosability of a system model G is a PSPACE-complete problem, while deciding the

SF -diagnosability is PSPACE-hard problem.

Fabre et al. (2018) have also addressed the run-time fault counting issue, i.e.,
for a given event-sequence, determine how many times the faults have occurred.
Firstly, they show that Fr-diagnosability notion is not strong enough to correctly
count fault occurrences. Indeed, associating a fault counter to the computed
diagnoser does not ensure a correct counting of faults. Also, Fabre et al. prove that
the problem of deciding if an automaton is fault countable is an NLOGSPACE
problem. This result is stated without providing the fault counter construction;
although they provide a run-time function that can be used to count the number
of faults the diagnoser is able to detect.
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Remark 12 (Online diagnosis) It is worth noticing that advantage of using the

diagnoser-based approaches comes from the fact that for diagnosable languages, the

constructed diagnoser can also be used to perform online diagnosis, as detailed

in Sampath et al. (1995).

4.2.2 Verification of intermittent fault diagnosability notions using the twin-plants

The verification of weak and strong diagnosability notions have also been addressed
using the twin-plant approach (Boussif and Ghazel, 2016a, 2019), where an
extension of the twin-plant developed in Jiang et al. (2001) has been presented
(by modifying its structure) in order to deal with the intermittent faults.

The twin-plant of a model G is a non-deterministic automaton P = (Q, Σo, γ,
q0), where Q ⊆ Xo×Xo, with Xo = {x0}∪{x ∈ X : (∃(x′, σ) ∈ X×Σo)[x ∈ δ(x′, σ)},
γ is the transition function defined as follows: γ : Q × Σo → 2Q, for q = (x1, x2),
q′ = (x′1, x

′
2) ∈ Q, q′ ∈ γ(q, σ) if, and only if, x′1 = δ(x1, u1σ) and x′2 = δ(x2, u2σ),

for some u1, u2 ∈ Σ∗u, and q0 = (x0, x0) ∈ Q. Notice that X is the finite set of states
of the system model (as defined in Section 2), and Xo ⊆ X is the finite set of states
in X which are (directly) reached by the occurrence of an observable event. For
example, Xo = {1, 3, 9, 11, 5, 7} for model G in Figure 4a.

The fault propagation is preserved in the twin-plant using the fault-assignment

function Ψ : Q → {N,F,R} × {N,F,R}, allowing different types of states to be
distinguished in the twin-plant, as follows:

– N-state (resp. F -state, R-state) is a state q = (x, x′) ∈ Q, such that Ψ(q) =
(N,N) (resp. Ψ(q) = (F, F ), Ψ(q) = (R,R));

– NF -state (resp. NR-state) is a state q = (x, x′) ∈ Q, such that Ψ(q) = (N,F )
(resp. Ψ(q) = (N,R)). FN and RN-state are defined similarly;

– N1-state is a state q = (x, x′) ∈ Q, such that Ψ(q) = (N,4) with 4 ∈ {N,F,R};
– non-N-state (resp. non-F -state, non-R-state) is a state which is not an N-state

(resp. F -state, R-state).

The twin-plant structure is symmetric in the sense that a path containing FN-
states has its symmetric path which contains the symmetric NF -states, and vice
versa.

Checking WF -diagnosability using the twin-plant consists in seeking for F -
confused cycles. An F -confused cycle in the twin-plant corresponds to two cycles
in the original model G, whose corresponding event-sequence have the same
observable projection, such that one event-sequence has no fault event (a fault-free
cycle) while the second one contains at least one fault event (which is ensured by
the existence of an NF -state in the cycle). Formally, an F -confused cycle is defined
as follows.

Definition 11 (F -confused cycles) An F -confused cycle is a cycle cl = (q1, q2, . . . ,
qn, qn+1 = q1) of the twin-plant, such that ∀ 1 ≤ i ≤ n, qi is an N1-state, and
∃ 1 ≤ j ≤ n, such that qj is an NF -state.

Theorem 8 (Boussif and Ghazel, 2019) Under assumptions A2–A6, a language

L(G) generated by an automaton G is WF -diagnosable w.r.t. P , Σf , and Σr if, and

only if, there exists no F -confused cycle in twin-plant P associated with G.
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It is worth noticing that since WF -diagnosability does not ensure SF -
diagnosability, the necessary and sufficient condition for WF -diagnosability given
in Theorem 8 represents only a necessary condition for the SF -diagnosability.
Indeed, SF -diagnosability cannot be checked by only seeking some F -confused
cycles, as in the case of permanent faults and WF -diagnosability since it cannot
be characterized by paths of the twin-plant taken individually (Fabre et al., 2016,
2018).

The necessary and sufficient conditions for SF - and SR-diagnosabilities are
based on the notion of generated prime state-path in the twin-plant, which has
been inspired by Zhou and Kumar (2009) and Basilio et al. (2012)). We start by
defining state-path in the twin plant P as a sequence of states (q1, q2, . . . , qn) such
that ∀qi, i = 1, 2, . . . , n− 1, ∃σi ∈ Σo such that qi+1 = γ(qi, σi). A state-path that
starts at the initial state q0 is called a generated state-path, a state-path that does
not include any state that is visited twice, i.e., ∀i, j ∈ {1, · · · , n} and i 6= j, we have
qi 6= qj , is called elementary state-path, and an elementary cyclic state-path is a
state cycle (q1, q2, . . . , qn) such that qi 6= qj , ∀i, j ∈ {1, · · · , n − 1} with i 6= j; and
q1 = qn. Finally, a generated prime state-path is a generated state path ℘ = ℘′cl
that is composed of an elementary state-path ℘′ and an elementary cyclic state-
path cl. Given observable event-sequence s = σ0σ1 . . . σn ∈ Σ∗o , we can define an
associated set Π(s) of all generated prime state-paths corresponding to s, being
formally defined as follows:

Π(s) = {℘ = (q0, q1, . . . , qn) ∈ P : (℘ is a generated prime state-path) ∧
(qi+1 ∈ γ(qi, σi), 0 ≤ i < n, ) ∧ ((qj ∈ γ(qn, σn), for some 0 ≤ j ≤ n)}.

A twin-plant based necessary and sufficient condition for SF -diagnosability
(resp. SR-diagnosability) has been proposed in Boussif and Ghazel (2019), which
is based on the concept of F -Interception condition, defined formally as follows.

Definition 12 (F -Interception condition) Let s ∈ Σ∗o be an observable event-trace
in P. Then, we say that s satisfies the F -Interception if ∃k ∈ N, ∀℘ = ℘′cl =
(q0, q1, . . . , qn) ∈ Π(s): qk ∈ cl, and qk is an F -state.

According to Definition 12, the F -Interception condition ensures that, after
a finite delay, all generated prime state-paths that correspond to s reach F -
states, in their corresponding elementary cycles at the same time (i.e., after k − 1
observations). The necessary and sufficient condition for SF -diagnosability is given
by the following theorem.

Theorem 9 (Boussif and Ghazel, 2019)— Under assumptions A2–A6, a language

L(G) is SF -diagnosable w.r.t. P , Σf , and Σr iff the F -Interception condition is

satisfied by each event-trace s obtained from twin-plant P constructed from model G.

Remark 13 (Computational Complexity (Jiang et al., 2001; Boussif, 2016)) The

number of states and transitions of the twin-plant are at most 4× |X|2 and 8× |X|4×
|Σo|, respectively. The verification of WF -diagnosability can be performed with linear

complexity with respect to the twin-plant size (using the procedure presented in Jiang

et al. (2001). Thus, the overall complexity of checking WF -diagnosability using the

twin-plant approach is O(|X|4 × |Σo|), which is polynomial in the number of states of

the model. The verification of SF -diagnosability involves, in the worst case, the search

of all elementary cycles in the twin-plant. As pointed out before, such a procedure has

a factorial computation complexity in the worst case (Johnson, 1975).
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Fig. 12 The twin-plant P corresponding to model G of Example 3 (Figure 4).

Example 10 Figure 12 depicts the twin-plant P corresponding to model G shown in

figure 4a and considered in Example 3. An inspection of Figure 12 reviews that G

is WF -diagnosable since there is no F -confused cycle in P. However, the model is

non SF -diagnosable since, as discussed in Example 3, event-sequence ab(cd)∗ does not

satisfy the F -Interception condition.

4.2.3 Analysis of fault detection properties using the verifier-based approach

Carvalho et al. (2017) discussed the intermittent sensor fault detection problem,
addressing three cases regarding sensor faults, as follows: (i) when the sensor under
consideration never recovers after it fails, (ii) when the sensor never fails again after
the last time it recovers from the failure, and (iii) when the sensor fails at some
point and can or cannot recover from the fail. Such configurations can be viewed
as weak diagnosability properties (under some restrictions). The authors discuss
the analysis of such properties using a verifer-based approach.

The verification process is based on the construction of three verifier automata
VNF , VNR, and VFR whose constructions are carried out according to Algorithm 1
of Carvalho et al. (2017). In this context, the analysis of weak diagnosability
properties can be performed using verifiers VNF and VNR. To this end, three sub-
automata need to be computed from the augmented system model G` = G||Ω
(with Ω being the label automaton illustrated in Figure 1a), as follows: (1) GN ,
the sub-automaton that depicts only the normal behavior of G`; (2) GF , the sub-
automaton that depicts the faulty behavior of G`, and; (3) GR, the sub-automaton
that depicts the recovered behavior of G`. Verifier VNF = GRN ||GF (resp. VNR =
GRN ||GR), where GRN is identical to GN except that the unobservable events of GN
are renamed in order to make them private in the parallel composition, is then
computed. Notice that by considering Assumptions A1–A4, we have VNF = VNR.
Checking WF -diagnosability using verifier VNF consists in seeking bad cycles,
which are equivalent to the F -confused cycles in the twin-plant, and correspond
to cycles cl = (q1, q2, . . . , qn, qn+1 = q1) in verifier VNF , such that qi, i = 1, 2, . . . , n
is an N1-state, and qj , j = 1, 2, . . . , n, is an NF -state.
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Fig. 13 Verifier VNF corresponding to model G of Example 3 (Figure 4).

Theorem 10 Under assumptions A2–A6, a language L(G) is WF -diagnosable (resp.

WR-diagnosable) w.r.t. P , Σf , and Σr iff no F -confused (resp. R-confused) cycle exists

in verifier VNF .

Example 11 Figure 13 depicts a relevant part of verifier VNF corresponding to model

G depicted in Figure 4a and considered in Example 3. We can infer that VNF is WF -

and WR-diagnosable since no F -confused cycle exists in VNF .

Remark 14 (Complexity analysis (Moreira et al., 2011; Carvalho et al., 2017)) The

number of states and transitions in the verifier automaton of Moreira et al. (2011) are

at most 2|X|2 and 2|X|2 × |Σ|, respectively. The verification of weak diagnosability is

based on the search for strongly connected components, which is performed with linear

complexity. Thus, the overall complexity for checking the weak diagnosability properties

using the verifier approaches is O(|X|2 × |Σ|), which is polynomial in the number of

states in the model.

To conclude this section, we summarize in Table 1 the general results in the
literature up to date regarding the verification of intermittent fault diagnosability
properties and their corresponding complexity.
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5 Other approaches that deal with intermittent fault diagnosis

Besides the works on intermittent fault diagnosis described in the previous sections,
where automaton formalism is used, the intermittent fault diagnosis problem
has also been addressed using different frameworks, such as supervision pattern,
temporal logic, discrimination between intermittent and permanent faults, and
fault free models, and different modeling formalism, such as Petri nets and
stochastic automata. In this section, we review the main contributions within
these approaches.

5.1 Intermittent fault diagnosis as supervision pattern diagnosis

A supervision pattern is a formal model (automaton, Petri net, etc.) whose
language is the set of trajectories to be diagnosed (Jéron et al., 2006; Gougam
et al., 2013a). It is general enough to cover a broad class of diagnosis objectives
found in the literature, e.g., diagnosis of multiple and repeated faults, sequences
of significant events, repair of faults, etc. For example, the label automaton of
Figure 1a, used to determine the system status w.r.t. the occurrence of faults and
their recovery (normal, faulty, or recovered), can be seen as a supervision pattern,
in the sense that it is a formal model that characterizes a specific behavior of the
system as a partial order of observable events or states.

Supervision patterns extend the expressiveness of faulty models by introducing
more complex faulty behaviors (Gougam et al., 2013b), being useful in the
generalization of the diagnosis definitions and to clarify the separation between
the diagnosis objectives and the system specifications. In this regard, the results
obtained from the diagnosis task can be simply re-utilized to deal with similar
diagnosis issues, due to their generic nature (Lamperti and Zanella, 2004).

The supervision pattern diagnosis problem is generally achieved based on
the matching between the real behavior of the system and the compiled faulty
behavior (Zaytoon and Sayed-Mouchaweh, 2012). In the context of fault
diagnosability, it can be formulated as follow: given a DES model and a supervision
pattern, is the supervisor (or the diagnoser) always able to determine with
certainty that some pattern has occurred or not in the system after observing
a finite sequence of events?

Supervision pattern diagnosis of DES has been first addressed by Jéron et al.
(2006). After that, further works followed. Ye et al. (2009), Yan et al. (2010) and Ye
and Dague (2012) deal with the diagnosis of patterns in distributed DESs modeled
by finite state automata. Gougam et al. (2014) discuss the discriminability7 of
supervision patterns in a Petri net framework (in that work, both the system
model and patterns are Petri net models). The diagnosability of Petri net patterns
has also been discussed in Gougam et al. (2013b) and Gougam et al. (2017).
In Pencolé and Subias (2018), the diagnosis of patterns is formulated as a pattern
matching problem, and to this end, they use bounded and labeled prioritized Petri
nets and tackle this problem using model checking techniques.

It is worth remarking that the work by Jéron et al. (2006) remains the unique
work that deals with intermittent fault diagnosability as a supervision pattern

7 Differently from diagnosability, discriminability is the possibility to detect the exclusive
occurrence of a particular behavior of interest.
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diagnosability problem. Indeed, Jéron et al. (2006) have proposed two patterns
that model the faulty behaviours corresponding to k occurrences of a fault and
the intermittent fault occurrence with a repair. In order to verify such patterns,
Jéron et al. (2006) have used the twin-plant approach of Jiang et al. (2003), in
which the synchronous product between the system model and the supervision
pattern is used as the input of the twin-plant algorithm. It is worth remarking
that, with slight modifications, the diagnoser and verifier approaches can also be
used to check the diagnosability of supervision patterns.

5.2 Intermittent fault diagnosis using temporal logic specifications

Due to their expressiveness, temporal logics (Emerson et al., 1990) have been used
for a long time in supervisory control of DES (Thistle and Wonham, 1986; Lin,
1991). Regarding fault diagnosis, temporal logics provide another way to specify
fault properties. In addition to expressing fault event occurrences and reachability
of faulty states, temporal logics can also be used to express complex types of
fault properties such as the violation of liveness, safety, invariance, recurrence and
stability properties (Jiang and Kumar, 2004).

In the context of temporal logic-based diagnosis, the occurrence of intermittent
faults can be expressed using linear (LTL) or branching (CTL) temporal
logic formulae. Therefore, analyzing intermittent fault related properties can
be translated as model-checking problems, and tackled using the associated
verification engines (Jiang and Kumar, 2006; Boussif and Ghazel, 2016b).

In Jiang and Kumar (2006), fault counting of repeated failures is discussed in
a temporal logic framework. Notions of diagnosability and prediagnosability8 for
intermittent faults are formulated in a temporal logic setting. A polynomial test
algorithm for prediagnosability verification is provided. The authors also discuss
the various notions of diagnosability related to the multiplicity of fault occurrences,
adapted from Jiang et al. (2003), in a linear-time temporal logic (LTL) setting.

In Boussif and Ghazel (2016a), a model-checking framework to deal with
intermittent fault diagnosis, which is an extension of the practical verification
approaches for analyzing diagnosability of permanent faults using model-
checking (Cimatti et al., 2003; Boussif and Ghazel, 2015) is proposed. Firstly,
the authors revise the weak intermittent fault diagnosability properties, i.e., WF -
and WR-diagnosability, and then, necessary and sufficient conditions based on the
twin-plant proposed in Boussif et al. (2016) are expressed as linear temporal logic
(LTL) model-checking problems (Boussif and Ghazel, 2016b). A benchmark is used
to illustrate the various steps and to assess the efficiency and the scalability of the
approach. This technique has then been extended in Boussif and Ghazel (2018) to
deal with Fr-diagnosability.

5.3 Discriminating intermittent faults from permanent faults

Almost all the works that approach the fault diagnosis problem in DES consider
only one type of faults, namely, permanent, intermittent, or transient faults.

8 Prediagnosability consists in detecting the occurrence of an indicator trace which ensures
that the fault occurrence is inevitable.
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However, real-life systems often exhibit more than one type of faults. Therefore,
it is common for diagnosis systems to misjudge some types of faults or presume
that all faults are of the same type.

A more general framework is proposed in Deng et al. (2014a), Deng et al.
(2014b), and Deng et al. (2013), where fault models that include both permanent
and intermittent faults are considered. In order to diagnose faults in such a
setting, the authors propose an approach that first discriminates between the
fault classes. The approach is based on an extension of the diagnoser proposed
in Contant et al. (2004), where the label propagation function is modified in order
to account for each fault class dynamic. The authors show that the fault types can
be diagnosed (and discriminated) within bounded delay if the system is diagnosable
with respect to each fault type. The approach is firstly discussed within ordinary
automata (Deng et al., 2014a) and then extended to stochastic ones (Deng et al.,
2014b, 2013).

5.4 Intermittent fault diagnosis using fault-free models

Fault diagnosis using fault-free models is based on the comparison between the
actual system output and the model nominal output. The fault is detected if the
observed behavior of the system cannot be reproduced by its model. In a series
of works, Soldani et al. (2006, 2007a,b) discuss the detection and isolation of
intermittent faults in a fault-free DES modeling setting in both automata (Soldani
et al., 2007a) and Petri net (Soldani et al., 2007b). In those works, failures may
imply either the occurrence (insertion) of spurious events or the lack of foreseen
events. The proposed approach consists of three steps:

1. System modeling (offline). A model that expresses the nominal behavior of the
system to be diagnosed is firstly constructed based on the design data whereby
only the observable actions are represented (Soldani et al., 2006). The built
models can be either automata or Petri nets.

2. Intermittent and fugitive fault detection (online). The fault detection process
consists of comparing the observable event sequences issued by the system with
the expected event sequences from the model. A faulty behavior is detected if
there exists some inconsistency between the received event and the expected
one (Soldani et al., 2006).

3. Online fault localization. Fault localization succeeds the detection process and
consists of determining the events that are prospectively responsible for the
fault. The technique is based on the construction of two diagnosers, one for
localizing the missing events, and the other one for localizing the inserted
events.

5.5 Intermittent fault diagnosis using Petri net as modeling formalism

Fault diagnosis of intermittent faults has been also investigated using Petri net
as the modeling formalism. Garćıa et al. (2008b) proposed a new methodology to
deal with fault diagnosis of both permanent and intermittent faults using colored
Petri nets (CPNs), in which, in order to model the faults, the set of colored tokens
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is divided in two subsets: the subset of normal tokens, representing the nominal
dynamic behavior of subnets system, and the subset of tokens, representing the
faulty behaviors to be diagnosed. Then, the so-called Fault Latent Nestling (FLN)
Method (see Garćıa et al. (2008a)) is used to nestle faults into each place of the
initial PN using a folding technique with CPNs and the characteristics of sensor
readings to isolate faults in a specific place or detect them. Such a combination of
CPN modeling and FLN method allows for efficiently tackling the combinatorial
explosion that often arises when it comes to diagnose large systems. The proposed
approach has been firstly applied on an academic example in Garćıa et al. (2008b),
and then on a real application in Rodriguez et al. (2008), namely a wind turbine
system. This approach has been recently extended to deal with intermittent fault
diagnosis of hybrid colored Petri nets in Rodriguez-Urrego et al. (2015), and
applied to a digital electronic module, namely an insulated-gate bipolar transistor
(IGBT).

Recently, and with the same objective as Garćıa et al. (2008b), Trigos et al.
(2016) proposed a PN fault diagnosis approach to deal with both permanent and
intermittent faults, where Petri nets are used for depicting the system behavior
and building the PN diagnoser using a data acquisition system. In practice, a fault
diagnosis algorithm is designed to perform this task. The proposed approach has
been firstly applied to a liquid packaging process (Mart́ınez and Moreno, 2008) to
deal with permanent faults, and afterwards to an unmanned aerial vehicle (Trigos
et al., 2016) to deal with intermittent faults.

5.6 Intermittent fault diagnosis of stochastic models

A few works have been devoted to intermittent fault diagnosis of stochastic models.
In Yoo and Garcia (2005), a counting strategy that accommodates stochastic
automata was presented, which, strictly speaking, is deterministic in the sense
that the discussed counting algorithm seeks the minimum count of the associated
state estimate rather than using the probabilistic distribution of the state estimate
of the stochastic automaton; essentially, it deals with possibility rather than
probability. The work by Yoo and Garcia (2008) is an extension of previous
works (Yoo and Garcia, 2009, 2004; Zhou and Kumar, 2009) in the framework
of deterministic FSA, and attempts to fully utilize the probabilistic aspects of
stochastic FSA in developing algorithms for event counting. Such an approach is
based on updating the active counter information state sequentially with available
observations. Deng et al. (2014b) and Deng et al. (2013) extend their previous
work in Deng et al. (2014a) regarding the discrimination of intermittent faults from
permanent ones to stochastic FSA, by enlarging the model presented in Sampath
et al. (1995) to consider both permanent and intermittent faults. By assuming that
environmental stress is the main cause of faults, the authors treat it as a fault event.
Therefore, a stress level evaluation algorithm based on interval grey relational
degree is developed to identify the fault events by computing the level of the
correlative environmental stress. In Deng et al. (2014b), the notions of A- and AA-
diagnosability of permanent faults for stochastic FSA (Thorsley and Teneketzis,
2005) were extended to deal with intermittent faults. As far as diagnosability
analysis is concerned, the authors propose a diagnoser-approach with a probability
matrix appended to each transition, which can be used to update the probability
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distribution on the state estimate. With the knowledge of each state transition
probability, it is possible to distinguish event-sequences or states that are more
likely from those that are less probable to occur or achieve, respectively.

Using a different model formalism, Lefebvre and Leclercq (2011) presented an
approach to deal with intermittent fault based on stochastic Petri net identification
techniques. The authors proposed two learning algorithms to design and identify
stochastic Petri net models (that are used as reference models for FDI) according to
causal and temporal specifications. Then, an FDI algorithm to perform the online
detection and isolation of intermittent faults (which are considered as behaviors
that do not satisfy the causal or temporal specifications) is established.

6 Looking backwards to point towards the future

This section provides some remarks regarding the existing works that approach
the intermittent fault diagnosis problem in DES and suggests some perspectives
for further research.

According to the discussed literature review, it can be inferred that most
of the contributions focus on the analysis of some diagnosability definition and
the synthesis of diagnosers to perform online diagnosis. However, no works have
discussed the complementary issues directly related to fault diagnosis, such as fault
prediction, decentralized/modular diagnosis, sensor selection and dynamic sensor
activation, robust diagnosis, active diagnosis and fault tolerant control, which are
widely discussed in the case of permanent fault diagnosis (Zaytoon and Lafortune,
2013). Those are open problems that still need further investigation in the context
of intermittent faults.

Deng et al. (2014a), Deng et al. (2014b), and Deng et al. (2013) have discussed
the issue of discriminating intermittent faults from permanent ones, which is an
interesting issue from system maintenance point of view. Indeed, maintenance
actions could greatly differ according to the nature of failure (permanent or
intermittent), and, consequently, maintenance costs could be reduced by avoiding
unnecessary shutdown and repair operations (Deng et al., 2014a). In this regard,
it would be interesting to also consider a correlated phenomenon, which is
the evolution of intermittent faults to become permanent ones. In this case,
intermittent faults can be viewed as a symptom of the degradation of some
physical aspects in the system. As degradation increases, the rate and severity
of intermittent symptoms may increase until the intermittent faults eventually
become permanent (Syed et al., 2013). An intuitive way to deal with such a
setting would be to consider the persistence feature of intermittent faults, i.e.,
the frequency of occurrence. In this regard, a frequency threshold can be proposed
to determine when an intermittent fault can be assimilated to a permanent one.
Nevertheless, this issue still needs more investigation from both the theoretical
and practical points of view.

As reported in Section 3, intermittent fault diagnosis of DES has been discussed
according to two distinct points of view: fault counting and fault detection. Various
definitions and different verification techniques to deal with these two problems
have been proposed. However, no effective connection can be perceived between
these two perspectives. We believe that these issues should be addressed more
jointly. The relationships between the various properties need to be discussed,
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and more expressive diagnosability definitions that address both fault counting
and fault detection could be proposed. Practitioners would appreciate diagnosers
that address both fault counting and fault detection requirements for monitoring
and maintenance purposes. The works in Boussif and Ghazel (2018), Fabre et al.
(2016), and Fabre et al. (2018) can be seen as first steps in this direction.

To conclude this section, notice that no useful connection has yet been made
between the various diagnosability definitions discussed in the paper and the three
indicators (duration, pseudo-periodicity, and the number of fault occurrences)
presented in the introduction. This is so because, unlike in the permanent
failure problem, where some works investigated fault diagnosis by also considering
temporal aspects (see Zaytoon and Lafortune (2013) and, more recently, Viana
and Basilio (2019) and Viana et al. (2019)), the majority of works that deal with
intermittent fault diagnosis consider untimed DES models. Up to now, as far as
intermittent fault is concerned, only the logical features of the system and fault
dynamics are taken into account, i.e., the logical order and the number of event
occurrences, which is inadequate when it is necessary to consider real time aspects.
However, as shown in Ghazel et al. (2009), temporal information has shown to be
determinant in several diagnosis problems. Therefore, diagnosis of intermittent
faults of discrete event systems with timing structure also appears as a promising
research topic.

7 Conclusion

In this paper, we have provided a detailed review of the literature on intermittent
fault diagnosis in DES modeled by automata. We also highlighted the main
contributions to intermittent fault diagnosis by applying other frameworks, such
as supervision pattern, temporal logic, discrimination between intermittent and
permanent faults, and fault free models, and different modeling formalism, such
as Petri nets and stochastic automata. As far as future research on intermittent
fault diagnosis is concerned, we listed several open problems and proposed new
research topics. We hope this review will serve as a helpful guide for future studies
in the field and as a background for those who want to pursue some research in
intermittent fault diagnosis.
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