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Real life experience has shown that intermittent faults are among the most challenging kinds of faults to detect and isolate, being present in the majority of production systems. Such a concern has made intermittent fault an active area of research in both discrete event and continuous-variable dynamic systems. In this paper, we present a review of the state-of-the art of intermittent fault diagnosis of discrete event systems modeled by finite state automata. To this end, we revisit the main definitions of diagnosability of intermittent faults, and present comparisons between them, consider verification and analysis techniques, and discuss available complexity results. Examples are used throughout the paper to illustrate the reviewed concepts and verification algorithms. We also look ahead, by suggesting some perspectives for future research.

Introduction

Fault diagnosis in dynamic systems is a crucial and challenging task to ensure reliability, safety, and correct operation of production systems. In this context, and to fulfill such requirements, the development of effective monitoring techniques becomes a concern that must be addressed. In particular, having efficient tools for monitoring and diagnosing fault occurrences is of paramount interest since such actions prevent, or at least mitigate, failure-related disturbances effects.

Fault diagnosis involves the following aspects: (i) detection of fault occurrences; (ii) isolation of the actual fault from other possible fault candidates, and; (iii) identification of the related damage caused to the system. In discrete event systems (DES) [START_REF] Cassandras | Introduction to discrete event systems[END_REF], fault diagnosis is often discussed through two main issues: online diagnosis and diagnosability analysis [START_REF] Lin | Diagnosability of discrete event systems and its applications[END_REF]Sampath et al., 1995Sampath et al., , 1996a)). Online diagnosis consists in inferring the occurrence of predetermined faults from the observed behavior of the system, while diagnosability is associated with the capacity of the system that performs the fault diagnosis -usually referred to as diagnoser -to provide a precise verdict as far as the fault occurrence is concerned. Thus, system diagnosability analysis consists in determining whether or not every predetermined failure can be detected and identified accurately within a finite delay after its occurrence (Sampath et al., 1995).

A fault is any deviation of the system from its normal or intended behavior. In the DES framework, faults are basically depicted as unobservable/silent, indistinguishable and uncontrollable events (or states). Moreover, faults can be classified on the basis of their individual behavior into three types (Sharma et al., 2015b;[START_REF] Zaytoon | Overview of fault diagnosis methods for discrete event systems[END_REF] 1. Permanent faults: when the fault occurs and does not disappear (i.e., the system remains in fault states) unless removed by some external intervention.

Typically, a permanent fault can be caused by subsystem failures, physical damage or design error. The terminology failure is often used to refer to permanent faults; 2. Drift-like faults: when the fault varies gradually and slowly develops into a large value. In DES, these faults can be seen as faults which may occur within an incremental frequency, or may evolve into permanent ones. Generally, diagnosing such faults is more involving than the permanent failures since they often evolve slowly and their effects can be confused with noise and model uncertainty; 3. Intermittent faults: which correspond to the case when the fault occurs and then suddenly disappears, and this process continues to repeat in either periodic or non-periodic manner, making the system switch between normal and faulty behaviors [START_REF] Isermann | Fault-diagnosis systems: an introduction from fault detection to fault tolerance[END_REF].

From the diagnosis point of view, it is important to distinguish between these fault types, especially between permanent and intermittent faults (Deng et al., 2014a). Intermittent faults can be spontaneously recovered by the occurrence of uncontrollable and unobservable reset events; therefore, the system oscillates between normal and faulty behavior. Permanent faults, on the other hand, may be associated with recovery events (repair/replacement) which are controllable and observable [START_REF] Huang | Rules based modeling of discrete event systems with faults and their diagnosis[END_REF]. It is worth remarking that, although in most part of the literature regarding model-based fault diagnosis of DESs, faults are assumed to be permanent, practical evidences have shown that intermittent faults are omnipresent and are among the most challenging kinds of faults to detect and isolate [START_REF] Fromherz | Model-based computing for design and control of reconfigurable systems[END_REF]. In this regard, frequent occurrences of intermittent faults may bring serious troubles and result in high safety risk, which may reduce the competitiveness and damage the reputation of the company. In addition, intermittent faults can induce overhead maintenance costs for companies due to several related problems, such as "Can Not Duplicate (CND)", "No Fault Found (NFF)", "False Alarms (FAs)", etc. [START_REF] Sorensen | An analyzer for detecting intermittent faults in electronic devices[END_REF]; in particular, NFF costs could be significantly high due to the need of extra tests to identify such failures [START_REF] Söderholm | A system view of the no fault found (NFF) phenomenon[END_REF].

In order to show the significance of intermittent faults and their impact in industry, in particular, their financial impacts, we enumerate a set of indicators gathered from the literature and from industrial reports, as follows:

-In the late 1960s, surveys provided by [START_REF] Hardie | Design and use of fault simulation for saturn computer design[END_REF] and [START_REF] Ball | Effects and detection of intermittent failures in digital systems[END_REF] indicate that intermittent faults comprise over 30% of predetermined faults/errors and about 90% of field failures in computer systems.

-Between 80% and 90% of failures in sequential circuits are caused by intermittent faults [START_REF] Roberts | A fault-tolerant scheme that copes with intermittent and transient faults in sequential circuits[END_REF]. A similar conclusion has been reached in wireless sensors networks by [START_REF] Banerjee | Performance analysis of distributed intermittent fault diagnosis in wireless sensor networks using clustering[END_REF]. -In 2001, over $10 million have been spent by F-16 plane customers in order to replace parts that were tested as NFF at the shop level [START_REF] Steadman | Reducing no fault found using statistical processing and an expert system[END_REF].

In addition, NFF observations reported by commercial airlines and military repair depots have been found to be as high as 50-60%. -The thick film integrated ignition module in Ford cars in the 1980 models led to a lawsuit and a settlement by Ford Motors Company due to intermittent faults, particularly NFFs [START_REF] Maul | Intermittency phenomena in electrical connectors[END_REF].

-Recently, a survey among 80 aerospace organizations [START_REF] Syed | Intermittent fault finding strategies[END_REF] ranked intermittent faults as the main perceived cause of the NFF problem and the highest cost source in terms of aerospace maintenance; -In digital electronic cruise control modules (CCM) used in automobiles, intermittent faults were the justification for the fact that 96% of the components that were returned to the vehicle manufacturer due to customer complaints actually operated properly [START_REF] Kimseng | Physics-of-failure assessment of a cruise control module[END_REF]; -In 1997, the Air Transport Association (ATA) estimated at $20M the annual NFF costs for an airline operating 200 aircrafts; or $100,000 per aircraft every year [START_REF] Erkoyuncu | A framework to estimate the cost of no-fault found events[END_REF]; -In 2005, a study by WDS mobile company found that NFFs due to intermittent faults account for about 63% of the mobile phones that were returned to the manufacturer, costing the industry $4.5 billion a year [START_REF] Overton | Ivf: Characterizing the vulnerability of microprocessor structures to intermittent faults[END_REF]. -The cost of exchange of F-16 avionics boxes due to intermittent faults was estimated at $20,000,000 [START_REF] Steadman | Attacking bad actor and no fault found electronic boxes[END_REF][START_REF] Steadman | Intermittent fault detection and isolation system[END_REF].

Overall, intermittent faults are a general phenomenon that affects industrial systems ranging from small components to large complex modules [START_REF] Shen | Intermittent faults parameter framework and stochastic Petri net based formalization model[END_REF]. Therefore, in several domains such as digital and electronic systems [START_REF] Chang | Detecting bridging faults in dynamic CMOS circuits[END_REF][START_REF] Gracia | Analysis of the influence of intermittent faults in a microcontroller[END_REF], aerospace industry [START_REF] Salvatore | Hybrid Automated Reliability Predictor Integrated Reliability Tool System HARP (Version 7.0). NASA Langley Technical Report Server Sampath M, Sengupta R, Lafortune S[END_REF], aircraft systems [START_REF] Anderson | Lab testing of neural networks for improved aircraft onboard-diagnostics on flight-ready hardware[END_REF][START_REF] Yang | Tolerance of intermittent faults in spacecraft attitude control: switched system approach[END_REF], modern industrial and chemical processes [START_REF] Madden | Monitoring and diagnosis of multiple incipient faults using fault tree induction[END_REF][START_REF] Yan | Robust detection of intermittent faults for linear discrete-time stochastic systems with parametric perturbations[END_REF], transportation systems [START_REF] Aydin | A new computer vision approach for active pantograph control[END_REF], machine driven systems [START_REF] Ismaeel | Test for detection and location of intermittent faults in combinational circuits[END_REF][START_REF] Kim | Electromagnetic radiation behavior of low-voltage arcing fault[END_REF] and computer systems [START_REF] Hsu | Novel model of intermittent faults for reliability and safety measures in long-life computer systems[END_REF], there is a need to deeply address issues related to intermittent fault diagnosis.

Generally, intermittent faults are characterized by three parameters, as follows:

1. Duration: which represents the time during which the fault is active at each occurrence; 2. Pseudo-period: which is defined as the mean time between two consecutive fault occurrences (or detections); being therefore, the average delay separating successive faults inside a sliding window. It is worth noticing that it would not be appropriate to define the average interval as a period, due to the asynchronous and random nature of faults; 3. Number of fault detections: which represents how many times the fault is detected.

In the literature, we can find several definitions of intermittent faults: [START_REF] Sorensen | An analyzer for detecting intermittent faults in electronic devices[END_REF] defines intermittent faults as "any temporary deviation from the nominal operating conditions of a circuit or device". In [START_REF] Syed | Intermittent fault finding strategies[END_REF], intermittent faults are defined as a temporary malfunction of a device. For Pan et al. (2012), an intermittent fault is "a hardware error which occurs frequently and irregularly for a period of time". According to the IEEE standard (Sharma et al., 2015a), intermittent faults are defined as "failures of an item for a limited period of time, following which the item recovers its ability to perform its required function without being subjected to any external corrective action. Moreover, such failures are often recurrent". In the context of DES, intermittent faults are defined as "faults which often occur intermittently, and can be seen as fault events followed, later on, by the corresponding reset events, (possibly) followed by new occurrences of fault events, and so forth" [START_REF] Contant | Diagnosis of Intermittent Faults[END_REF]. Another similar definition is given in Deng et al. (2014a), where intermittent faults are presented as faults that can at some point automatically reset once they have occurred.

This paper aims to provide a comprehensive and general review of the literature regarding intermittent fault diagnosis of DES modeled by finite state automata. We assume that the reader is familiar with DES theory and its classicallyrelated modeling formalism; the reader is referred to [START_REF] Cassandras | Introduction to discrete event systems[END_REF] for a background on the DES theory. Nevertheless, we also present a brief account of the main contributions on intermittent fault diagnosis using other DES frameworks, such as supervision pattern, temporal logic, discrimination between intermittent and permanent faults, and fault free models, and using different modeling formalism, such as Petri nets and stochastic automata.

The paper is organized as follows: we introduce the main notions and notations regarding DES and the intermittent fault modeling in Section 2; in Section 3, we synthesize the properties of diagnosability reported in the literature and review the main definitions of intermittent fault diagnosability; in Section 4, we review existing techniques to verify the various notions of intermittent fault diagnosability; in Section 5, we briefly discuss how intermittent fault diagnosability has been addressed using other formalisms, such as Petri nets and temporal logic specifications; in Section 6, we point towards the future by discussing some open problems and suggesting some research topics; finally, we draw some conclusions in Section 7.

Preliminaries

Discrete event system modeling

In this paper, the basic concepts and the main contributions in intermittent fault diagnosis of DES are based on finite state automaton (FSA) model; although, as will be seen in Section 5, other approaches to address this problem are possible.

An FSA is defined by the four-tuple G = (X, Σ, δ, x 0 ), where X is a finite set of states, Σ is a finite set of events, δ : X × Σ → 2 X is the partial transition function, and x 0 ∈ X is the initial state. A triple (x, σ, x ) ∈ X ×Σ ×X is called a transition if x ∈ δ(x, σ). The system behavior is described by the prefix-closed language L ⊆ Σ * generated by G, where Σ * denotes the Kleene-closure of Σ. We will partition the set of events Σ as Σ = Σo ∪Σu, where Σo and Σu denote the set of observable and unobservable events, respectively. We say that an event-sequence

s = σ 1 σ 2 • • • σn, with σ i ∈ Σ, is said to be associated with a state-sequence π = x 1 x 2 • • • x n+1 , if ∀i such that 0 < i ≤ n, x i+1 ∈ δ(x i , σ i ).
The partial transition function δ can be extended to event-sequences, i.e., x n+1 ∈ δ(x 1 , s). We denote by σ i (resp. π i ) the i-th event (resp. state) in s (resp. π). We write |s| to denote the length of s, i.e., the number of events in s. The post-language of L after s is L/s := {t ∈ Σ * |st ∈ L}. Notation s ≤ s indicates that s is a prefix of s .

To capture the observed behavior of the model, we define the projection mapping [START_REF] Lin | On observability of discrete-event systems[END_REF] 

P : Σ * → Σ *
o in the usual manner: P (σ) = σ for σ ∈ Σo; P (σ) = for σ ∈ Σu, and P (sσ) = P (s)P (σ), where s ∈ Σ * , σ ∈ Σ. When applied to a language L, the projection mapping can be extended as follows:

P : Σ * → Σ * o , where P (L) = {t ∈ Σ * o |(∃s ∈ L)[P (s) = t]}. The inverse projection operation P -1 L is defined by P -1 L (y) = {s ∈ L|P (s) = y}.

Modeling intermittent faults

Regarding how the system status evolves after the occurrence of intermittent faults, two modeling settings can be distinguished: recovery and normalization settings.

Recovery setting

In this setting, a distinction is made between the states reached by faulty-free sequences and the states reached by sequences that contain at least one fault event followed later on by its corresponding reset (or recovery) event [START_REF] Contant | Diagnosis of Intermittent Faults[END_REF][START_REF] Contant | On monitoring and diagnosing classes of discrete event systems[END_REF][START_REF] Contant | Failure diagnosis of discrete event system: the case of intermittent faults[END_REF]Boussif and Ghazel, 2016a;[START_REF] Carvalho | Robust diagnosability of discrete event systems subject to intermittent sensor failures[END_REF][START_REF] Carvalho | Diagnosability of intermittent sensor faults in discrete event systems[END_REF]. The occurrence of an intermittent fault switches the system from a normal status to a faulty one, after which the system is switched to a recovered status upon the occurrence of the corresponding reset event. Although, such a recovered status is regarded as safe, it is different from the normal status, in the sense that the system never goes back to a normal status once a fault has occurred. In order to capture the changes in the system status, the so-called label automaton Ω = ({N, F, R}, Σ, δ Ω , N ) (Boussif and Ghazel, 2016a;[START_REF] Jéron | Supervision patterns in discrete event systems diagnosis[END_REF][START_REF] Carvalho | Robust diagnosis of discrete event systems against intermittent loss of observations[END_REF][START_REF] Fabre | Diagnosability of repairable faults[END_REF][START_REF] Fabre | Diagnosability of repairable faults[END_REF] shown in Figure 1a is used. It is clear from the figure that Ω translates the system status according to the occurrence of different event types. When the label automaton Ω is in state N (N stands for the normal status), the system is running in its normal behavior, which indicates that no event of Σ f has occurred yet. However, when a fault event occurs, Ω definitely leaves the normal status and moves to state F (F stands for the faulty status) and remains in this state as long as no reset event occurs. Once the fault is recovered due to the occurrence of a reset event, Ω switches to state R (R stands for the recovered status), where it remains as long as no fault occurs. Since we are dealing with intermittent faults, the system can execute a fault event again. In this case, the label automaton Ω switches back to state F and so on. It is worth noticing that, if a reset event σr ∈ Σr occurs prior to any σ f ∈ Σ f occurrence, as can be seen from the label automaton Ω, the system will remain in normal status (state N in Ω).
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Normalization setting

In the normalization setting, a fault event makes the system status move from normal to faulty, whereas its corresponding reset event moves the system status back to normal, and so, there exist only two possible states for the system since no distinction is made between the normal states reached by fault-free event sequences and those reached by event sequences that have a recovered fault. The reset events in such a context are called normalization events and, thus, the change from faulty to normal status is called normalization. Such a modeling strategy has been used in [START_REF] Biswas | Diagnosability of discrete event systems for temporary failures[END_REF], [START_REF] Jiang | Diagnosis of repeated/intermittent failures in discrete event systems[END_REF], Boussif et al. (2016) and [START_REF] Boussif | Diagnosability analysis of intermittent faults in discrete event systems using a twin-plant structure[END_REF].

Figure 1b shows the label automaton Ω = ({N, F }, Σ, δ Ω , N ) that is used in the normalization setting. Notice that, when Ω is in state N , the system is running in its normal behavior, indicating that either no fault event of Σ f has occurred yet or, if some fault event has occurred, it has been normalized, due to the occurrence of a reset (normalizing) event. On the other hand, when a fault event occurs, Ω moves to state F and remains there as long as the system is in its faulty behavior (i.e., no new occurrences of the normalization event). When dealing with intermittent faults, the system may switch between these two state types indefinitely.

The different notions of diagnosability of intermittent faults

Broadly speaking, the notions of diagnosability reported in the literature can be divided into two classes: fault counting, and fault detection and identification.

These two categories will be discussed in the following sections. For the sake of clarity and without loss of generality1 , we make the following assumption: A1. Σ f = {σ f } and Σr = {σr}, i.e., there exist exactly one single fault event and one single reset event.

Fault count-based definitions of intermittent fault diagnosability

The definition of diagnosability of DES introduced in Sampath et al. (1995) is related to "the ability to infer, from the observed behavior of the system, the occurrence of faults". Such a property characterizes single time detection capability, which is suitable for dealing with permanent faults. However, no information regarding multiple occurrences of the same fault can be obtained using Sampath's approach.

Intermittent faults, on the other hand, occur repeatedly. Thus, it may be of interest to have a formalism that not only allows for determining fault occurrences, but also counts its occurrences. Such concepts have been firstly introduced in [START_REF] Jiang | Diagnosis of repeated/intermittent failures in discrete event systems[END_REF], in a state-based scheme within a normalization setting, and then investigated later on in [START_REF] Jiang | Diagnosis of repeated failures for discrete event systems with linear-time temporal-logic specifications[END_REF], [START_REF] Yoo | Event counting of partially-observed discrete-event systems with uniformly and nonuniformly bounded diagnosis delays[END_REF], [START_REF] Yoo | Event diagnosis of discrete-event systems with uniformly and nonuniformly bounded diagnosis delays[END_REF], [START_REF] Zhou | Computation of diagnosable fault-occurrence indices for systems with repeatable faults[END_REF], [START_REF] Yoo | Stochastic event counter for discrete-event systems under unreliable observations[END_REF], and [START_REF] Garcia | Model-based detection of routing events in discrete flow networks[END_REF].

Let us denote as N F s ∈ N + the number of fault events in a given event-sequence s ∈ Σ * . We now present the different notions of diagnosability for repeated faults.

Definition 1 (κ-diagnosability [START_REF] Jiang | Diagnosis of repeated/intermittent failures in discrete event systems[END_REF][START_REF] Yoo | Event diagnosis of discrete-event systems with uniformly and nonuniformly bounded diagnosis delays[END_REF])) Given a fixed κ ∈ N , a prefix-closed live language L is said to be κ-diagnosable w.r.t. P and Σ f if the following holds true:

(∃nκ ∈ N)(∀s ∈ L, N F s ≥ κ)(∀t ∈ L/s) (|t| ≥ nκ) ⇒ [(∀ω ∈ P -1 L (P (st))(N F ω ≥ κ)]
Notice that, according to Definition 1, a language is κ-diagnosable if for any event-sequence s containing at least κ faulty events, for every sufficiently long continuation t of s, and for every event-sequence ω indistinguishable from st, i.e., P (st) = P (ω), then ω must also contain at least κ faulty events.

Property 1 [START_REF] Jiang | Diagnosis of repeated/intermittent failures in discrete event systems[END_REF] κ-diagnosability is not monotone.

According to Property 1, κ-diagnosability does not imply (κ -1)-diagnosability. In addition, it is straightforward from the definition of κ-diagnosability that (κ -1)diagnosability does not ensure κ-diagnosability (for κ ≥ 2).

The lack of monotonicity of κ-diagnosability motivates a stronger notion of diagnosability, which is called [1, κ]-diagnosability.

Definition 2 ([1, κ]-diagnosability [START_REF] Jiang | Diagnosis of repeated/intermittent failures in discrete event systems[END_REF][START_REF] Yoo | Event diagnosis of discrete-event systems with uniformly and nonuniformly bounded diagnosis delays[END_REF])) Given a fixed κ ∈ N , a prefix-closed live language L is said to be [1, κ]-diagnosable w.r.t. P and Σ f if the following holds true:

(∃n ∈ N)(∀j, 1 ≤ j ≤ κ)(∀s ∈ L, N F s ≥ j)(∀t ∈ L/s)(|t| ≥ n) ⇒ [(∀ω ∈ P -1 L (P (st))(N F ω ≥ j)]
Definition 2 states that a language is [1, κ]-diagnosable if it is κ-diagnosable for every j, 1 ≤ j ≤ κ. The delay bound n that ensures [1, κ]-diagnosability is the maximal delay bound that ensures κ-diagnosability for 1 ≤ j ≤ κ, i.e., n = max j=,...,κ n j . The following property relates the definitions of κ-diagnosability, [1, κ]-diagnosability and the definition of diagnosability introduced in Sampath et al. (1995).

Property 2 If κ = 1, then [1, κ]-and κ-diagnosability properties are equivalent to the diagnosability definition introduced in Sampath et al. (1995).

Notice that [1, κ]-diagnosability allows for determining the first κ occurrences of faulty events within a finite delay. Therefore, in order to determine any number of fault occurrences, κ should be set to ∞. This has led to the definition of [1, ∞]diagnosability.

Definition 3 ([1, ∞]-diagnosability [START_REF] Jiang | Diagnosis of repeated/intermittent failures in discrete event systems[END_REF][START_REF] Yoo | Event diagnosis of discrete-event systems with uniformly and nonuniformly bounded diagnosis delays[END_REF][START_REF] Zhou | Computation of diagnosable fault-occurrence indices for systems with repeatable faults[END_REF])) A prefix-closed live language L is said to be [1, ∞]-diagnosable w.r.t. P and Σ f if the following holds true:

(∃n ∈ N)(∀s ∈ L)(∀t ∈ L/s) (|t| ≥ n) ⇒ [(∀ω ∈ P -1 L (P (st))(N F ω ≥ N F s )]
In the above definition, every sequence estimate ω ∈ P -1 L (P (st)) of the executed sequence st, with |t| ≥ n, must have at least the same number of fault occurrences as sequence s.

Property 3 If a language L is [1, ∞]-diagnosable, then ∀κ ≥ 1, L is κ-diagnosable and [1, κ]-diagnosable.
However, the converse does not necessarily hold true.

We will now illustrate the different notions of diagnosability introduced so far with an example.

Example 1 Consider the system models G 1 and G 2 , inspired by [START_REF] Jiang | Diagnosis of repeated/intermittent failures in discrete event systems[END_REF] and shown in Figure 2, with Σo = {a, b, c}, Σu = Σ f = {f }.

Initially, notice that there are only two different forms of event-sequences generated by G 1 , as follows: s

(m,n) 1 = ac m b(f c) n and s (m,n) 2 = f ac m b(f c) n , with P (s (m,n) 1 ) = P (s (m,n) 2 ) = ac m b(c) n (n, m ∈ N + ). Let us consider s (m,n) 1 = ac m b(f c) n , with n ≥ 2.
It is clear that s (m,n) 1 contains at least 2 occurrences of fault event f . On the other hand, for the same values of m and n, s (m,n) 2 contains at least 3 instances of fault event f . Therefore, G 1 is 2-diagnosable.

Let us now consider event sequence s = f ac p , which contains only one instance of fault event f . It can be seen from Figure 2a, that there exists in G 1 an event-sequence s = ac p ∈ L(G 1 ), with the same observation as s, i.e., P (s) = P (s ) = ac p , but s does not contain any occurrence of fault event f . Therefore, G 1 is not 1-diagnosable.

From the above analysis, one can infer that the language generated by G 1 is not

[1, 2]-diagnosable and, obviously, not [1, ∞]-diagnosable.

Let us now consider the system modeled by automaton G 2 . It can be easily verified that L(G 2 ) is κ-diagnosable ∀κ ∈ N + . This is so because every event-sequence s ∈ L(G 2 ) that has as observation P (s) = (ab) k , with k ∈ N + , has at least 2k occurrences of fault event f . So we can choose the delay in Definition 1 as nκ = 2k to satisfy the requirement for κ-diagnosability.

Since L(G 2 ) is κ-diagnosable ∀κ ∈ N + , then it is also [1, κ]-diagnosable ∀κ ∈ N + . On the other hand, L(G 2 ) is not [1, ∞]-diagnosable since
the delay bound associated with κ-diagnosability is an increasing function of k, and no 'uniform' delay bound can be found that works for every κ ∈ N + . The above diagnosability properties deal with fault counting assuming uniform bounded delays n ∈ N, which are independent of the current system execution. In other words, these properties are based on constant bounded delays imposed on the whole faulty behaviors. This notion of uniform delay diagnosability is suitable if a hard deadline for a diagnosis report is required. In several situations, when immediate reaction to fault occurrence is not required, uniformity requirement over diagnosis delays may be too strict. With such a concern in mind, [START_REF] Yoo | Event counting of partially-observed discrete-event systems with uniformly and nonuniformly bounded diagnosis delays[END_REF], [START_REF] Yoo | Event diagnosis of discrete-event systems with uniformly and nonuniformly bounded diagnosis delays[END_REF], [START_REF] Yoo | New results on discrete-event counting under reliable and unreliable observation information[END_REF], and [START_REF] Yoo | Stochastic event counter for discrete-event systems under unreliable observations[END_REF] proposed a different notion of diagnosability by relaxing the delay uniformity requirement. In this regard, the detection delays are associated with executed sequences and become nonuniform, i.e., they solely depend on the current event-sequence executed by the system. (Yoo andGarcia, 2009, 2004)) A prefix-closed live language L is said to be non-uniformly [1, ∞]-diagnosable w.r.t. P and Σ f if the following holds true:

Definition 4 (Nonuniform [1, ∞]-diagnosability
(∀s ∈ L)(∃ns ∈ N)(∀t ∈ L/s) (|t| ≥ ns) ⇒ [(∀ω ∈ P -1 L (P (st))(N F ω ≥ N F s )]
The above definition means that for every event-sequence s, one can find a finite delay ns to count the occurrence of faulty events in s. However, one may be able to find a trace s so that the required delay n s is larger than ns. It is worth noticing that similar definitions can be introduced for nonuniform κ-and [1, κ]-diagnosability properties. From now on, and for the sake of clarity, uniform [1, ∞]-diagnosability will be denoted as U[1, ∞]-diagnosability whereas nonuniform [1, ∞]-diagnosability will be denoted as NU[1, ∞]-diagnosability.

The following properties are straightforward from the corresponding definitions of uniform and nonuniform diagnosability properties. (Yoo andGarcia, 2009, 2004).

Property 4 U[1, ∞]-diagnosability implies NU[1, ∞]-diagnosability
Property 5 For regular languages, uniform and nonuniform κ-and [1, κ]-diagnosabilities are equivalent since detection delays can be uniformly bounded by |X| 2 , the number of states of the automaton that marks the regular language. However, this does not hold true for NU[1, ∞]-and U[1, ∞]-diagnosability [START_REF] Yoo | Event counting of partially-observed discrete-event systems with uniformly and nonuniformly bounded diagnosis delays[END_REF]. [START_REF] Yoo | Event diagnosis of discrete-event systems with uniformly and nonuniformly bounded diagnosis delays[END_REF].

Property 6 L is NU[1, ∞]-diagnosable iff L is κ-diagnosable ∀κ ∈ N +
Both definitions of uniform and nonuniform [1, ∞]-diagnosability requires that each intermittent fault occurrence be detected within a bounded delay that does not depend on the number of fault occurrences.

A variant diagnosability definition, called ∀κ-diagnosability, which does not require the diagnosis delay bound to be uniform with respect to κ is discussed in [START_REF] Zhou | Computation of diagnosable fault-occurrence indices for systems with repeatable faults[END_REF]. It is based on the fact that it is possible for each fault occurrence to be detectable within a bounded delay which can grow larger as the fault occurrence index κ becomes higher.

Definition 5 (∀κ-diagnosability [START_REF] Zhou | Computation of diagnosable fault-occurrence indices for systems with repeatable faults[END_REF] A prefix-closed live language L is said to be ∀κ-diagnosable (κ ≥ 1) w.r.t. P and Σ f if the following holds true:

(∀k : 1 ≤ k ≤ κ)(∃n κ k ∈ N)(∀s ∈ L, N F s ≥ k)(∀t ∈ L/s)(|t| ≥ n κ k ) ⇒ [(∀ω ∈ P -1 L (P (st))(N F ω ≥ k)]
Comparing Definitions 1 and 5, we can see that a language is ∀κ-diagnosable if it is κ-diagnosable ∀κ ≥ 1. Thus, ∀κ-diagnosability can be seen as a generalization of U[1, κ]-diagnosability, when κ tends to ∞. Notice that for a ∀κ-diagnosable system, the diagnosis delay bound may be a function of κ, and, although the diagnosis delay bound must be finite for each κ, the various delays may not be uniformly bounded with respect to κ, i.e., the system may not be U[1, ∞]diagnosable. Yoo andGarcia (2009, 2004), since the non-uniformity in Yoo andGarcia (2009, 2004) comes from the fact that the diagnosis delay bound is a function of the fault event-sequences, namely that the diagnosis delay bound for the κ-th occurrence of a fault can be different for different event-sequences. In contrast, in the case of ∀κ-diagnosability, the diagnosis delay bound for the κ-th occurrence of a fault is the same for all faulty sequences, namely that, for the detection of the κ-th fault occurrence, the same delay is needed in order for an accurate diagnosability verdict to be issued regardless of the fault-trace executed by the system [START_REF] Zhou | Computation of diagnosable fault-occurrence indices for systems with repeatable faults[END_REF].

Remark 1 It is worth noticing that ∀κ-diagnosability is different from NU[1, ∞]- diagnosability considered in
We now illustrate, by means of an example, the definitions of nonuniform and ∀κ-diagnosability properties.

Example 2 Let us consider, once again, system models G 1 and

G 2 of Example 1 shown in Figure 2. Since L(G 1 ) is not 1-diagnosable, then it is neither U[1, ∞]- diagnosable nor NU[1, ∞]-diagnosable. Regarding L(G 2 ), as shown in Example 1, it is not U[1, ∞]-diagnosable. However, L(G 2 ) is both NU[1, ∞]
-and ∀κ-diagnosable. This is so because every event-sequence s ∈ L(G 2 ) that has as observation P (s) = (ab) k , with k ∈ N + , has at least 2k occurrences of fault event f . So, we can choose delays

n k κ = 2k to satisfy the requirement of κ-diagnosability, ∀κ ∈ N + . The same reasoning can be used to conclude that L(G 2 ) is ∀κ-diagnosable.
We conclude this subsection by summarizing the relationships between the main fault counting diagnosability definitions discussed so far. As shown in Figure 3, U[1, ∞]-diagnosability is the strongest diagnosability definition and implies the other three definitions, namely ∀κ-diagnosability, N U [1, ∞]diagnosability and [1, κ]-diagnosability (notice that according to the definition of [1, κ]-diagnosability, κ is fixed a priori). In addition, ∀κ-diagnosability implies both NU[1, ∞]-diagnosability and [1, κ]-diagnosability Some further relationships could be established under some restrictions. For instance, N U [1, ∞]-diagnosability implies [1, κ]-diagnosability only if the language describing the system behavior is regular. Moreover if [1, κ]-diagnosability holds true ∀κ ∈ N, then the system is also ∀κ-diagnosable and N U [1, ∞]-diagnosable.

Fault detection-based definitions of intermittent fault diagnosability

The classic notion of diagnosability proposed by Sampath et al. (1995) relies on the fact that the faulty status of the system remains fixed after the fault occurrence, i.e., faults are permanent. As a result, fault detection also implies the identification of the faulty status of the system. In the case of intermittent faults, the system status may continuously evolve along with the system evolution. Therefore, detecting the occurrence of such faults does not mean that the current system status has been determined. Consequently, the notion of diagnosability in Sampath et al. (1995) does not take into account all the key issues associated with the diagnosis of intermittent faults.

In this section, we discuss the various notions of diagnosability reported in the literature, as far as intermittent fault detection and system status determination are concerned. For the sake of clarity, we adopt an event-based scheme within the recovery modeling setting.

Let us denote by ψ(Σ f ) the set of event-sequences in L that end with faulty event, i.e., ψ(

Σ f ) = {sσ f ∈ L : σ f ∈ Σ f }. Similarly, ψ(Σr) = {sσr ∈ L : σr ∈ Σr} and ψ(Σr) = {ss ∈ L : s ∈ ψ(Σ f ) ∧ s ∈ ψ(Σr)}.
Moreover, with a slight abuse of notation, we write Σ f ∈ s to indicate that a fault event from Σ f is an event in s, i.e., ∃σ f ∈ Σ f such that σ f ∈ s. We also recall that the set of system states can be partitioned into three subsets: Normal, Faulty and Recovered, which can be identified using the labeling function : L ⊆ Σ * → {N, F, R}, such that for a given event-sequence s ∈ L, we have:

-(s) = N if (Σ f / ∈ s) -(s) = F if ∃ s , s : (s = s s ) ∧ (s ∈ ψ(Σ f )) ∧ (Σr / ∈ s ) -(s) = R if ∃ s , s : (s = s s ) ∧ (Σ f ∈ s ) ∧ (s ∈ ψ(Σr)) ∧ (Σ f / ∈ s )
The first two notions of diagnosability to be discussed in the sequel deal only with the detection of fault occurrences and their recovery [START_REF] Contant | Diagnosis of Intermittent Faults[END_REF][START_REF] Contant | Failure diagnosis of discrete event system: the case of intermittent faults[END_REF] without necessarily identifying, at any time, the current status of the system. Such definitions are called "weak diagnosability" (Boussif and Ghazel, 2016a). Then, some restrictive versions of these definitions, which characterize the ability to identify the status of the system after either the occurrence of an intermittent fault or its recovery, will be discussed; they are usually referred to as "strong diagnosability". All of these notions were firstly introduced by [START_REF] Contant | Diagnosis of Intermittent Faults[END_REF], [START_REF] Contant | On monitoring and diagnosing classes of discrete event systems[END_REF], and [START_REF] Contant | Failure diagnosis of discrete event system: the case of intermittent faults[END_REF], and then revisited in Boussif and Ghazel (2016a), [START_REF] Boussif | Diagnosability analysis of input/output discrete event system using model checking[END_REF][START_REF] Boussif | A diagnoser-based approach for intermittent fault diagnosis of discrete-event systems[END_REF][START_REF] Carvalho | Diagnosability of intermittent sensor faults in discrete event systems[END_REF], in an event-based scheme within a recovery setting, and in [START_REF] Biswas | Diagnosability of discrete event systems for temporary failures[END_REF], Boussif et al. (2016) and [START_REF] Boussif | Diagnosability analysis of intermittent faults in discrete event systems using a twin-plant structure[END_REF], in a state-based scheme within a normalization setting.

Definition 6 (W F -diagnosability [START_REF] Contant | Diagnosis of Intermittent Faults[END_REF]Boussif and Ghazel, 2016a)) A prefix-closed live language L is said to be W F -diagnosable w.r.t. projection P and Σ f , if the following holds true:

(∃ n ∈ N)(∀s ∈ ψ(Σ f ))(∀t ∈ L/s)(|t| ≥ n) ⇒ [(∀ω ∈ [P -1 L (P (st))])(Σ f ∈ ω)]
In Definition 6, W stands for weak and F for fault occurrence. The notion of W F -diagnosability can be interpreted as follows: for every event-sequence s ending with a fault event in Σ f , and for all sufficiently long continuation t of s (|t| ≥ n), it is possible to ensure that a fault has occurred based on the captured observation. This implies that all event-sequences that are indistinguishable from st contain at least one fault from Σ f . It is worth remarking that this definition is exactly that by Sampath et al. (1995) for permanent fault diagnosability since σr is not part of the logical expression and, as such, σr must be treated as an ordinary subset of the unobservable event set. In other words, the notion of W F -diagnosability accounts only for detecting fault occurrence and is not interested in the system status regarding potential recovery from the fault.

Since we deal with intermittent faults, the fault occurrences are succeeded later on by their corresponding reset event. Therefore, it is worth discussing diagnosability properties that also take into account reset event occurrences.

Definition 7 (W R-diagnosability [START_REF] Contant | Diagnosis of Intermittent Faults[END_REF]Boussif and Ghazel, 2016a)) A prefix-closed live language L is said to be W R-diagnosable w.r.t. P , Σ f and Σr, if the following holds true:

(∃ n ∈ N)(∀s ∈ ψ(Σr))(∀t ∈ L/s)(|t| ≥ n) ⇒ [(∀ω ∈ [P -1 L (P (st))])(Σr ∈ ω)]
In Definition 7, W stands for weak and R stands for reset occurrence. The notion of W R-diagnosability has the following meaning: there always exists a delay n ∈ N, such that for every event-sequence s ending with a reset event in Σr (which means that at least one fault has occurred and was reset) and for all sufficiently long continuation t of s (|t| ≥ n), it is possible to detect that the fault has been reset; although it is not possible to infer that either the fault or reset events have occurred more than once. This implies that all of the event-sequences that are indistinguishable from st have necessarily experienced a fault occurrence and recovery. Notice that, similar to W F -diagnosability, there is no constraint regarding the determination of the system status when the recovery is diagnosed. It is worth noticing that, from Definition 7, if the system is W R-diagnosable, we are only capable to infer whether or not the system has recovered from the fault at least once, and so, it is not possible to state if the current status of the system is faulty or recovered.

The previous notions of intermittent fault diagnosability serve only to detect the occurrence of the fault (or its reset) but they provide no information regarding the system status at any time. In order to take the system status into account, strong versions have been introduced.

Definition 8 (SF -diagnosability [START_REF] Contant | Diagnosis of Intermittent Faults[END_REF])) A prefix-closed live language L is said to be SF -diagnosable w.r.t. P , Σ f and Σr, if the following holds true:

(∃n ∈ N)(∀s ∈ ψ(Σ f ))(∀t ∈ L/s)(|t| ≥ n) ⇒ ∃t ≤ t : ∀ω ∈ [P -1 L (P (st ))] ⇒ (ω) = F
In Definition 8, S stands for strong. SF -diagnosability states that for every event-sequence s that ends with a fault event in Σ f , and for all sufficiently long continuation t of s, one can detect the fault occurrence and determine, with certainty, the faulty status of the system after the occurrence of at most n events, based on the captured observations. This implies that all event-sequences that are indistinguishable from st lead the system to fault states at the same observation point, within a finite delay after the occurrence of the fault.

Similarly, SR-diagnosability, the dual notion of SF -diagnosability, can be introduced as follows.

Definition 9 (SR-diagnosability [START_REF] Contant | Diagnosis of Intermittent Faults[END_REF])) A prefix-closed live language L is said to be SR-diagnosable w.r.t. P , Σ f and Σr, if the following holds true:

(∃n ∈ N)(∀s ∈ ψ(Σr))(∀t ∈ L/s)(|t| ≥ n) ⇒ ∃t ≤ t : ∀ω ∈ [P -1 L (P (st ))] ⇒ (ω) = R
According to Definition 9, SR-diagnosability ensures that for every eventsequence s ending with a reset event in Σr, and for every sufficiently long continuation t of s, one can detect the reset of the fault and determine, with certainty, the recovery status of the system based on the captured observations. This implies that all of the event sequences that are indistinguishable from st lead to recover states at the same observation point, within a finite delay after the fault recovery.

Example 3 Consider the system model G (taken from [START_REF] Contant | Failure diagnosis of discrete event system: the case of intermittent faults[END_REF]), shown in Figure 4(a), with Σo = {a, b, c, d} and Σu = {f, r}, and assume that Σ f = {f } and Σr = {r}. The corresponding label automaton G = G Ω is depicted in Figure 4b. The faulty event-sequences in G are ρ 1 = f arb (f crd) * and ρ 2 = f ab (rcf d) * , with P (ρ 1 ) = P (ρ 2 ) = ab(cd) * . Thus, it is not difficult to see that L(G) is both W F -and W R-diagnosable, since it is possible to infer the occurrence of both fault and recover events (events f and r, respectively). However, L(G) is not SF -diagnosable, since no bound delay n exists, such that after this limit, both ρ 1 and ρ 2 lead to fault states at the same time, which means that it is not possible to determine the faulty status of the system. Similar reasoning leads to the conclusion that L(G) is not SR-diagnosable. These two points will be made clear in the next section when we introduce the notion of diagnoser. Diagnosability notions W F , W R, SF and SR consider the detection/ identification of the fault/reset occurrences within finite delays. However, they do not take into account the multiplicity of fault/reset occurrences. In other words, a fault can occur and reset several times before its detection/identification. In [START_REF] Boussif | Formal verification of intermittent fault diagnosability of discrete-event systems using model-checking[END_REF], [START_REF] Fabre | Diagnosability of repairable faults[END_REF][START_REF] Fabre | Diagnosability of repairable faults[END_REF], a stronger notion of intermittent diagnosability was introduced. It consists in not only detecting each fault occurrence within a finite delay, but also before its reset. Hereafter, we refer to this new property as Fr-diagnosability.

Definition 10 (Fr-diagnosability [START_REF] Boussif | Formal verification of intermittent fault diagnosability of discrete-event systems using model-checking[END_REF][START_REF] Fabre | Diagnosability of repairable faults[END_REF][START_REF] Fabre | Diagnosability of repairable faults[END_REF])) A prefix-closed live language L is said to be Fr-diagnosable w.r.t. P , Σ f and Σr, if the following holds true:

(∀s ∈ ψ(Σ f ))(∀t ∈ L/s : t ∈ ψ(Σr)) ⇒ ∃t < t : ∀ω ∈ [P -1 L (P (st ))] ⇒ (ω) = F , where ψ(Σr) = {s = σ 1 σ 2 . . . σn ∈ Σ * : (σ i / ∈ Σr, i = 1, 2, . . . , n -1) ∧ (σn ∈ Σr)}
is the set of finite event-traces in L/s whose unique event in Σr is the last one.

Definition 10 can be interpreted as follows: let s be a finite event-sequence in L that ends with a faulty event, and t be every finite continuation of s that ends with a reset event but does not have any reset event before its last event. Then, all the finite event-sequences that share the same observation with st, must take the system to a faulty status between the moment when the fault has occurred and its recovery. In other words, when a fault event occurs, one needs to be able to detect it and identify the faulty status of the system before it resets. Such a feature can be of interest for maintenance operation, for instance. Analogously, one may require to detect the recovered status of the system before a new occurrence of the fault, for this reason the dual version of Fr-diagnosability, the so-called R fdiagnosability that consists in detecting and identifying that the system reaches a recovered status after each occurrence of a reset event and before every new occurrence of the corresponding fault event, is defined.

Property 7 As expected: (a) Fr-diagnosability ⇒ SF -diagnosability ⇒ W F -diagnosability (b) R f -diagnosability ⇒ SR-diagnosability ⇒ W R-diagnosability
Property 7 summarizes the existing relationships between the main fault detection definitions discussed in this section. As it can be seen, Fr-diagnosability (resp. R f -diagnosability) is the strongest property regarding fault detection (resp. recovery detection) since it implies SF -diagnosability (resp. SR-diagnosability), which in turn implies W F -diagnosability (resp. W R-diagnosability). Notice that no relationship can be established between Fr-and R f -diagnosability definitions on one side, nor between SF -and SR-diagnosability on the other side. Regarding W Fand W R-diagnosability, an equivalence relation may exist under some assumptions, as will be discussed later on in the paper.

Diagnosability analysis and diagnoser synthesis

In this section, we summarize the main approaches developed for verifying the various notions of intermittent fault diagnosability for DES modeled by FSA. These approaches can be divided in three classes, as follows: (i) diagnoser-based approaches; (ii) twin-plant-based approaches, and; (iii) verifier-based approaches. They have been firstly introduced to deal with permanent failures, and, recently, they have been adapted to deal with intermittent faults.

(i) Diagnoser-based approaches. Diagnoser-based approaches are based on the construction of a deterministic automaton, called diagnoser, which keeps track of all possible state estimation of the system based on the observed eventsequences [START_REF] Cassandras | Introduction to discrete event systems[END_REF]Sampath et al., 1995;Hashtrudi Zad et al., 2003;Viana and Basilio, 2019). The diagnoser can be thought of as an extended observer that provides (i) an estimate of the current state of the system after the occurrence of an observable event and (ii) information on potential past failure occurrences in the form of labels, and so, each state of the diagnoser is composed of a set of the system state estimations which indicate that the system is in its normal or faulty behavior. They are used to check diagnosability by verifying the existence of particular ambiguous cycles, called indeterminate cycles (Sampath et al., 1995), and, once the system language is checked to be diagnosable, the diagnoser can also be used to perform online diagnosis.

(ii) Twin-plant-based approaches. A twin-plant is a non-deterministic automaton whose states are composed of a pair of system states (which can be normal or faulty), and whose paths correspond to a pair of event-sequences in the system model that share the same observation. Its structure is exploited to analyse diagnosability by searching for 'bad' cycles (called F -confused cycles, or infinite critical pair) [START_REF] Cimatti | Formal verification of diagnosability via symbolic model checking[END_REF]Boussif and Ghazel, 2015). An F -confused cycle is composed exclusively of ambiguous states, i.e., states in the twin-plant containing one normal and one faulty state. Using the twin-plant, diagnosability of permanent faults can be checked using polynomial-time algorithm(s) [START_REF] Jiang | A polynomial algorithm for testing diagnosability of discrete-event systems[END_REF][START_REF] Schumann | Scalable diagnosability checking of event-driven system[END_REF].

(iii) Verifier-based approaches. Verifier-based approaches [START_REF] Yoo | Polynomial-time verification of diagnosability of partially observed discrete-event systems[END_REF][START_REF] Moreira | Polynomial time verification of decentralized diagnosability of discrete event systems[END_REF][START_REF] Grastien | Symbolic testing of diagnosability[END_REF][START_REF] Qiu | Decentralized failure diagnosis of discrete event systems[END_REF] usually rely on the construction of a non-deterministic automaton2 V Σ f called Σ f -verifier, where Σ f is the fault class. Verifiers are built by performing a parallel composition of the system model with itself (regarding the observable events) augmented with a tagging function. Differently from twin-plants, verifiers are built directly from the system model, and, for this reason, possess both observable and unobservable events. Like twin-plants, verifier states are composed of a pair of system states (which can be normal or faulty). The diagnosability analysis is based on the search for F -confused cycles.

In the following two sections, we discuss the existing works that rely on these techniques for checking the various notions of intermittent fault diagnosability.

Verification of fault counting-based diagnosability notions

The verification of fault counting properties are mostly based on some variant of the verification automaton used to carry it out. We, start by making the following assumption3 : A2. Language L is live, i.e., for all x ∈ X, there exist σ ∈ Σ and x ∈ X such that δ(x, σ) = x . [START_REF] Jiang | Diagnosis of repeated/intermittent failures in discrete event systems[END_REF] proposed a verifier-like automaton to check κ-and [1, κ]diagnosability properties, which is a transition graph, i.e., no event labels are associated with transitions. For an automaton G = (X, Σ, δ, x 0 ), the verifier-like automaton is denoted as V = (X , R, x 00 ), where X = X × X is the set of states, x 00 = (x 0 , x 0 ) is the initial state, and R ⊆ X × X is the state transition defined as follows: two states x 12 = (x 1 , x 2 ) and x 12 = (x 1 , x 2 ), x 12 , x 12 ∈ X , are such that x 12 → x 12 ∈ R, if, and only if, one of the two following conditions holds true:

Verification of uniform diagnosability

1. x 1 = x 1 (resp. x 2 = x 2 ), and ∃σ ∈ Σu such that (x 2 , σ, x 2 ) ∈ δ (resp. (x 1 , σ, x 1 ) ∈ δ); 2. ∃σ ∈ Σo such that (x 1 , σ, x 1 ) ∈ δ and (x 2 , σ, x 2 ) ∈ δ;
In order to keep tracking of the number of fault occurrences, transition graph V is augmented with some counters and Boolean variables, being renamed as V 1 , as follows:

a tagging value-pair (min{N F s1 , κ}, min{N F s2 , κ}) associated with each state (x 1 , x 2 ) in V, with x 1 ∈ δ(x 0 , s 1 ) and x 2 ∈ δ(x 0 , s 2 ), where, as defined before,

N F
si is the number of fault events in a given event-sequence s i ; -a Boolean variable v ∈ {0, 1} that indicates whether or not x 1 or x 2 is reachable by a state-trace ρ, sufficiently long, which has a higher number of faults.

The general structure of a state-pair x 12 in the augmented transition graph

V 1 is then x 1,2 = ((x 1 , x 2 ), (min{N F s1 , κ}, min{N F s2 , κ}), v).
Theorem 1 [START_REF] Jiang | Diagnosis of repeated/intermittent failures in discrete event systems[END_REF] -Under assumption A2:

a system model G is κ-diagnosable w.r.t. P and Σ f iff no cycle containing a state-

pair ((x 1 , x 2 ), (κ, i), 1) with i < κ, exists in V 1 . -a system model G is [1, κ]-diagnosable w.r.t. P and Σ f iff no cycle containing a state-pair ((x 1 , x 2 ), (j, i), 1) with i < j, exists in V 1 , ∀1 ≤ j ≤ κ.
We will now illustrate the verification method proposed by [START_REF] Jiang | Diagnosis of repeated/intermittent failures in discrete event systems[END_REF] with the following example.

Example 4 Consider, again, system model G 1 of Figure 2a. A relevant part of the augmented transition graph V 1 associated with G 1 is shown in Figure 5, from which we can notice that V 1 contains a cycle (self-loop) composed of state ((3, 3), (1, 0), 1), which implies that G 1 is not 1-diagnosable. In fact, this result is expected since, as discussed in Example 2, the fault counting process fails when it comes to handle sequences ac * . To establish its relationship with verifier V 1 , first notice that trace ac * is an observed sequence, which corresponds in model G 1 (Figure 5) to two sequences, one faulty and another non-faulty, both leading to state 3 of the system model G 1 ; hence the pair (3, 3) in the verifier state ((3, 3), (1, 0), 1), which corresponds to the states reached by these two sequences. In addition, the second component ((1, 0)) indicates that one sequence has a fault event, while the second one does not. Finally, since the faulty sequence is infinite (i.e., it leads to the self-loop), then the Boolean variable in the verifier state is equal to '1'. Such a configuration ensures that fault counting process fails in detecting the number of faults, when dealing with observable sequence ac * .

The above approach consists in counting the number of fault occurrences in each event-sequence. Such an approach cannot be used directly for the analysis of U[1, ∞]-diagnosability, since automaton V 1 may be unbounded, i.e., if one keeps track of the number of faults with each state-trace in each state-trace pair, then one may get a transition graph with an infinite number of states. In order to overcome this drawback, instead of keeping track of the number of faults with each state-trace in each trace-pair, we only keep tracking of the difference between the number of faults with the state-pair traces. Although the difference in terms of the number of faults in the state pairs may still be unbounded, it can be shown that if it goes above an upper bound, say |X| 2 , the system model is not U[1, ∞]diagnosable [START_REF] Jiang | Diagnosis of repeated/intermittent failures in discrete event systems[END_REF]. Hence, in order to verify U[1, ∞]-diagnosability, the label of the vertices of transition graph V must be augmented, with the following parameters: a fault-difference counter d f = N F s1 -N F s2 associated with each state pair (x 1 , x 2 ) in V, with x 1 ∈ δ(x 0 , s 1 ) and x 2 ∈ δ(x 0 , s 2 ); -a Boolean variable b ∈ {0, 1} that indicates whether or not the current fault occurrence must be reported, i.e., whether or not both event-sequences associated with the trace-pair (in V) contain, after the fault occurrence, at least one fault event each. -a Boolean variable v ∈ {0, 1} that indicates whether or not the reached state pair (x 1 , x 2 ) results from an extension of an state-trace with higher number of faults.

The general structure of a state-pair in the augmented transition graph, denoted as V 2 , will, therefore, be x 12 = ((x 1 , x 2 ), d f , b, v), starting from the initial vertex:

x 12 = ((x 1 , x 2 ), 0, 0, 0). Given a vertex x 12 = ((x 1 , x 2 ), d f , b, v), a new vertex x 12 = ((x 1 , x 2 ), d f , b , v
) is defined accordance with the following rule:

If ∃ σ ∈ Σo s.t. δ(x 1 , σ) = y 1 and δ(x 2 , σ) = y 2 , then (x 1 , x 2 ) = (y 1 , y 2 ), d f = d f , b = 0, v = 1 if d f = 0 0 otherwise ; If ∃ σ 1 , σ 2 ∈ Σ f s.t. δ(x 1 , σ 1 ) = y 1 and δ(x 2 , σ 2 ) = y 2 , then (x 1 , x 2 ) = (y 1 , y 2 ), d f = d f , b = 1, v = 1 if d f = 0 0 otherwise ; If ∃ σ ∈ Σu s.t. δ(x 1 , σ) = y 1 , then (x 1 , x 2 ) = (y 1 , x 2 ), d f = d f + 1, if σ ∈ Σ f d f , otherwise , b = 1, if |d f | < |d f | 0, otherwise , v = 1, if d f > 0 0, otherwise ; If ∃ σ ∈ Σu s.t. δ(x 2 , σ) = y 2 , then (x 1 , x 2 ) = (x 1 , y 2 ), d f = d f -1, if σ ∈ Σ f d f , otherwise , b = 1, if |d f | < |d f | 0, otherwise , v = 1, if d f < 0 0, otherwise .
Theorem 2 [START_REF] Jiang | Diagnosis of repeated/intermittent failures in discrete event systems[END_REF] -Under assumption A2, the language generated by a system model G is U[1, ∞]-diagnosable w.r.t. P and Σ f , iff:

(a) the augmented transition graph V 2 corresponding to G is finite, and

(b) no cycle containing a state-pair ((x 1 , x 2 ), d f , 0, 1), with d f = 0, exists in V 2 .
Let us now illustrate the verification of U [1, ∞]-diagnosability using V 2 .

Example 5 Let us consider once again automaton G 1 of Figure 2a. The augmented transition graph V 2 associated with G 1 is shown in Figure 6, from where we can see that V 2 contains cycles that have some states ((x 1 , x 2 ), d f , 0, 1) where d f = 0; e.g., state ((4, 4), -1, 0, 1).

Thus, L(G 1 ) is not U [1, ∞]-diagnosable.
Remark 2 (Complexity analysis [START_REF] Jiang | Diagnosis of repeated/intermittent failures in discrete event systems[END_REF])) The number of states and

transitions of V 1 (resp. V 2 ) for checking κ-/[1, κ]-diagnosability (resp. U[1, ∞]-
diagnosability) using the above approach are, in the worst case, 2|X| 2 × (κ + 1) 2 and 8|X| 4 × +4|X| 2 (resp. 2|X| 4 × (κ + 1) 2 and 8|X| 6 + 4|X| 4 ), where |X| is the number of states in the plant automaton. For the verification, [START_REF] Jiang | Diagnosis of repeated/intermittent failures in discrete event systems[END_REF] proceed as follows: first, particular states in the augmented transition graphs are searched, and then, it is checked if such states belong to some cycles or not; e.g., for U [1, ∞]diagnosability, states of form ((x 1 , x 2 ), d f , 0, 1) are investigated. For deterministic systems, the overall complexity for analyzing κ/-[1, κ]-diagnosability 

(resp. U[1, ∞]- diagnosability) is O(|X| 2 |Σ| 2 ) (resp. O(|X| 4 |Σ| 2 ).
|X| × (κ + 1) (for κ-and [1, κ]-diagnosis) and |X| × (|X| 2 + 1) (for U[1, ∞]-diagnosis).

Verification of nonuniform intermittent fault diagnosabilities

Regarding NU[1, ∞]-diagnosability, [START_REF] Yoo | Event counting of partially-observed discrete-event systems with uniformly and nonuniformly bounded diagnosis delays[END_REF] and [START_REF] Yoo | Event diagnosis of discrete-event systems with uniformly and nonuniformly bounded diagnosis delays[END_REF] proposed another verifier variant that is based on the construction of a weighted graph which can be leveraged to compute shortest-paths [START_REF] Goldberg | Scaling algorithms for the shortest paths problem[END_REF][START_REF] Cherkassky | Shortest paths algorithms: Theory and experimental evaluation[END_REF].

The weighted graph, denoted as W = (V, E, w, v 0 ),where V ⊆ X × X is a finite set of vertices, E ⊆ V × V is a finite set of edges, v 0 = (x 0 , x 0 ) is the initial vertex, and w : E → S is the edge weighting function, with S = {-1, 0 + , 0 -, 0, 0, +1} being the set of weight symbols. In this regard, for two vertices v 1 , v 2 ∈ V , there can be associated an edge

(v 1 , v 2 ) ∈ E possessing weight w[v 1 , v 2 ] ∈ S. We write v 1 i -→ v 2 to denote that i ∈ w[v 1 , v 2 ].
Regarding the edges of W, they are defined as follows:

let x 1 , x 1 , x 2 , x 2 ∈ X and σ 1 , σ 2 ∈ Σ, with δ(x 1 , σ 1 ) = x 1 and δ(x 2 , σ 2 ) = x 2 . Then, (i) If σ 1 = σ 2 ∈ Σo, then (x 1 , x 2 ) 0 --→ (x 1 , x 2 ) if (δ(x 1 , σ 1 ) = x 1 ∧ δ(x 2 , σ 2 ) = x 2 ) (ii) If σ 1 , σ 2 ∈ Σu, then (x 1 , x 2 )                      -1 ---→ (x 1 , x 2 ) if (σ 1 ∈ Σ f ) ∧ (δ(x 1 , σ 1 ) = x 1 ); +1 ---→ (x 1 , x 2 ) if (σ 2 ∈ Σ f ) ∧ (δ(x 2 , σ 2 ) = x 2 ); 0 - ---→ (x 1 , x 2 ) if (σ 1 / ∈ Σ f ) ∧ (δ(x 1 , σ 1 ) = x 1 ); 0 + ---→ (x 1 , x 2 ) if (σ 2 / ∈ Σ f ) ∧ (δ(x 2 , σ 2 ) = x 2 ); 0 --→ (x 1 , x 2 ) if (σ 1 , σ 2 ∈ Σ f ) ∧ (δ(x 1 , σ 1 ) = x 1 ∧ δ(x 2 , σ 2 ) = x 2 ); 0 --→ (x 1 , x 2 ) if (σ 1 , σ 2 / ∈ Σ f ) ∧ (δ(x 1 , σ 1 ) = x 1 ∧ δ(x 2 , σ 2 ) = x 2 )
.

Essentially, W is obtained by performing a synchronized product of the FSA G 1 with itself, in accordance with the above rules.

For a path ρ = v 0 , v 1 , . . . , v k in W of length k, the weight of ρ is the sum of the minimum weights of its constituent edges, that is:

w[ρ] = k i=1 w[v i-1 , v i ],
where the zero weights 0, 0 + , 0 -, and 0 are all considered as 0 when the above operations over the weights is performed.

The shortest-path weight from v 0 to v k is:

short[v 0 , v k ] = min(w[ρ]) if v k is reachable from v 0 via ρ ∞ otherwise
In order to formulate a necessary and sufficient condition for NU[1, ∞]diagnosability, [START_REF] Yoo | Event diagnosis of discrete-event systems with uniformly and nonuniformly bounded diagnosis delays[END_REF] define a T -cycle (T ⊆ S) in W as follows. Let V cl = {v 1 , v 2 , . . . , vn} be a set of vertices that forms a cycle in W. Then the T -cycle of W associated with V cl is a set of edges formed as follows:

T = {t ∈ S : (∃v i , v j ∈ V cl )[v i t -→ v j ]}.
Theorem 3 [START_REF] Yoo | Event diagnosis of discrete-event systems with uniformly and nonuniformly bounded diagnosis delays[END_REF]) -Under assumption A2, the language L(G) generated by an automaton G is NU[1, ∞]-diagnosable w.r.t. P and Σ f , if, and only if, the following three conditions hold true: 

(a) ∀ T -cycle in W, if -1 ∈ T then either 0 ∈ T or +1 ∈ T ; (b) ∀ v ∈ {0 -}-cycle in W then short[v 0 , v] ≥ 0. (c) ∀ v ∈ T -cycle in W, such that T ∈ {{0}, {0 -, 0}, {0 + , 0}, {0 -, 0, 0 + }} then short[v 0 , v] = 0.
-1 --→ (1, 2) 0 -→ (3, 3). It is not difficult to check that short[(1, 1), (3, 3)] = -1, which violates condition (c) of Theorem 3. Thus, model G 1 is not NU[1, ∞]
-diagnosable, which is consistent with the analysis carried out in Example 2.

Remark 4 (Complexity analysis (Yoo andGarcia, 2009, 2004) ) Since the number of states and transitions in the weighted graph W are |X| 2 and |X| 2 × |Σ| 2 , respectively, and the verification algorithm is based on the search for strongly connected components,the verification algorithm proposed by [START_REF] Yoo | Event counting of partially-observed discrete-event systems with uniformly and nonuniformly bounded diagnosis delays[END_REF] has lower computation complexity when compared to that of [START_REF] Jiang | Diagnosis of repeated/intermittent failures in discrete event systems[END_REF]. Thus, the overall computational complexity for checking NU[1, ∞]-and U[1, ∞]-diagnosabilities of a deterministic system model according to the above procedure is O(min(|X| 3 × |Σ| 2 , |X| 5 )) time and O(min(|X| 2 × |Σ| 2 , |X| 4 )) space, where |X| and |Σ| are the numbers of states and events in the system model, respectively.

Remark 5 (Online diagnosis) [START_REF] Yoo | Event counting of partially-observed discrete-event systems with uniformly and nonuniformly bounded diagnosis delays[END_REF] proposed an online algorithm for counting, in an efficient way, the number of fault occurrences, which is based on a recursive computation of min{N F s :

s ∈ P -1 L (ω)}, with ω ∈ Σ *
o being an observable event-sequence. The idea behind this recursive computation is to record the model state estimations and the corresponding minimum number of fault occurrences in the diagnoser state, and so, Q d = {(q 1 , i 1 ), . . . (qn, in)} ∈ 2 X×N , where min j=1...n (i j ) will be the current fault count. Such an online algorithm can be conducted with

O(|Σ + log|X|) × |X|) complexity.

Verification of ∀κ-diagnosability

In order to check ∀κ-diagnosability, [START_REF] Zhou | Computation of diagnosable fault-occurrence indices for systems with repeatable faults[END_REF] proposed an approach based on the construction of the so-called indistinguishable-pair automaton (IPA). The IPA is a variant of the verifier automaton where the set of states contains pairs of the form ((x + , x -), (w(x + ), w(x -))) ∈ X 2 × {0, 1} 2 , with (w(x + ), w(x -)) ∈ {0, 1} 2 is a vector-weight associated with state-pair (x + , x -) ∈ X 2 and used to count the fault occurrences. The set of events contains pairs of the form (σ

+ , σ -) ∈ (Σ 2 \ Σ 2 u ), with Σ = Σ ∪ { }. Formally, the IPA is defined as G I = (Y, Σ I , δ I , y 0 ), where Y ∈ X 2 × {0, 1} 2 is the set of states, Σ I = Σ 2 \ Σ 2
u is the set of events, y 0 = ((x 0 , x 0 ), (0, 0)) is the initial state, and δ I : Y × Σ I → Y is the transition function, being each transition of the form (y, (σ + , σ -), y ), with y = ((x + , x -), (w(x + ), w(x -)) and y = ((x + , x -), (w(x + ), w(x -)), where:

(x + , x -) =        (δ(x + , σ + ), δ(x -, σ -)), if σ + = σ -∈ Σo ∧ δ(x + , σ + )! ∧ δ(x -, σ -)!, (δ(x + , σ + ), x -), if σ + ∈ Σu ∧ σ -= ∧ δ(x + , σ + )!, (x + , δ(x -, σ -)), if σ -∈ Σu ∧ σ + = ∧ δ(x -, σ -)!, undefined,
otherwise.

and

w(x + ) = 1, if x + = δ(x + , σ + ) ∧ (σ + ∈ Σ f ), 0, otherwise,
and similarly for w(x -). In the equations above, δ(x, σ)! is defined, i.e., there exists a state x ∈ X such that δ(x, σ) = x . The vector-weight components w(x + ) and w(x -) are called the positive and negative weight of y, respectively, and are denoted by +ve and -ve. The weight of a state y is given by w(y) = w(x + ) -w(x -), and the weight of a sequence of states π = y 1 , . . . , yn of G I is given by w

(π) = n i=1 w(y i ) = w + (π) -w -(π)
, where w + (π) = n i=1 w(x i+ ) and w -(π) = n i=1 w(x i-). Several types of state-sequences (possibly cycles) can be distinguished with respect to the sequence weight. For a given state-sequence π in G I , we say that π is:

fault-free, if w + (π) = w -(π) = 0; -a +ve-path (resp. a -ve-path), if w(π) > 0 (resp. w(π) < 0); -a +ve-part fault-free (resp. -ve-part fault-free) path, if w + (π) = 0 (resp.

w -(π) = 0); -a +ve-vocal (resp. -ve-vocal) path, if π contains a transition (σ + , σ -) with σ + ∈ Σo (resp. σ -∈ Σo).

Notice that vocality ensures the execution of at least one observable event along the path. In addition, based on these path definitions, it is possible to identify cyclic state-sequences; for example, a +ve-vocal cycle cl is a cycle that contains a transition (σ + , σ -) with σ + ∈ Σo.

Recall that, according to Definition 5, a system is not ∀κ-diagnosable if, and only if, there exists a pair of indistinguishable sequences π and π infinitely-long, such that N F π < κ while N F π ≥ κ (or, symmetrically, the converse) and the path with the larger number of faults is infinitely vocal, i.e., the path continues to execute observable events regularly. Based on automaton G I , the following necessary and sufficient condition for ∀κ-diagnosability can be stated.

Theorem 4 [START_REF] Zhou | Computation of diagnosable fault-occurrence indices for systems with repeatable faults[END_REF] -Under assumption A2, language L(G) generated by system model G is not ∀κ-diagnosable w.r.t. P and Σ f , if, and only if, either one of the following two conditions holds true:

(a) there exists a cycle cl in G I that is both +ve-part fault-free and -ve-vocal;

(b) there exists a -ve-path that begins at the initial state of G I and is connected to a cycle that is simultaneously fault-free and -ve-vocal.

The next example illustrates both the construction of IPA G I and Theorem 4.

Example 7 Consider the system model G 3 in Figure 8, where Σo = {a, b, c} and

Σu = Σ f = {f }. Figure 9 depicts the IPA G 3 I corresponding to model G 3 . From G 3 I ,
we can see that both conditions of Theorem 4 hold true, as follows:

(a) Cyclic path π c = ((4, 4), (0, 0)) f --→ ((5, 4), (1, 0)) cc --→ ((4, 4), (0, 0)) is both +ve-part fault-free and -ve-vocal, since π = ((4, 4), (0, 0)), ((5, 4), (1, 0)), ((4, 4), (0, 0)), w + (π c ) = 1 and for (x + , x -) = (5, 4), δ(4, c) = 4, with c ∈ Σo;

(b) Path π = ((1, 1), (0, 0)) f --→ ((1, 2), (0, 1)) aa ---→ ((3, 3), (0, 0)) is a -ve-path since w(π ) = 0 -1 = -1
, that starts at the initial state of G 3 I and is connected to cyclic path π c = ((3, 3), (0, 0)) cc --→ ((3, 3), (0, 0)) that is both fault-free and -ve-vocal, since δ(3, f ) is not defined and δ(3, c) = 3, with c ∈ Σo.

Therefore, the language generated by G 3 is not ∀κ-diagnosable.

Remark 6

-According to [START_REF] Zhou | Computation of diagnosable fault-occurrence indices for systems with repeatable faults[END_REF], the indistinguishable-pair automaton can also be used to check U[1, ∞]-diagnosability. The verification algorithm proposed in [START_REF] Zhou | Computation of diagnosable fault-occurrence indices for systems with repeatable faults[END_REF] has proved to have lower complexity than those proposed in [START_REF] Jiang | Diagnosis of repeated/intermittent failures in discrete event systems[END_REF], [START_REF] Yoo | Event counting of partially-observed discrete-event systems with uniformly and nonuniformly bounded diagnosis delays[END_REF], and [START_REF] Yoo | Event diagnosis of discrete-event systems with uniformly and nonuniformly bounded diagnosis delays[END_REF]). -For system models that fail the ∀κ-diagnosability test, [START_REF] Zhou | Computation of diagnosable fault-occurrence indices for systems with repeatable faults[END_REF] also presented an algorithm to compute the set of fault occurrence indices κ for which the system is not κ-diagnosable.

Remark 7 (Complexity analysis [START_REF] Zhou | Computation of diagnosable fault-occurrence indices for systems with repeatable faults[END_REF])) 

Verification of fault detection-based diagnosability notions

The verification of fault detection properties is carried out by using variants of diagnoser, twin-plant, and/or verifier automata. Thus, besides Assumption A2, the following assumptions are also required4 :

A3. There is no cycle of unobservable events in the system model G; A4. Each fault event f has its corresponding reset event r. A5. There exists at least one observable event between the occurrence of a fault event f and its corresponding reset event r and also between the occurrence of a reset event r and a new occurrence of its corresponding fault event f . A6. Each occurrence of fault event f is followed later on by the occurrence of its corresponding reset event r within a finite delay, and vice-versa, i.e., each occurrence of a reset event r is followed later on by a new occurrence of the corresponding fault event f within a finite delay.

It is worth noticing that Assumption A3 is the usual assumption in fault diagnosis of permanent faults, and Assumption A6 implies that the fault and reset events occur with some regularity (pseudo-periodicity). These notions are called Σ frecurrence and Σr-recurrence respectively [START_REF] Contant | Diagnosis of Intermittent Faults[END_REF].

Property 8 Under assumption A6, W F -diagnosability and W R-diagnosability are equivalent.

Regarding Property 8, it is worth noticing that Assumptions A1-A5 are not required.

Verification of fault detection-based diagnosability notions using diagnosers

• Verification of W F -, W R-, SF -, and SR-diagnosability notions [START_REF] Contant | Diagnosis of Intermittent Faults[END_REF], [START_REF] Contant | On monitoring and diagnosing classes of discrete event systems[END_REF] and [START_REF] Contant | Failure diagnosis of discrete event system: the case of intermittent faults[END_REF] proposed an extension of the diagnoser approach firstly introduced in Sampath et al. (1995) by modifying its structure to deal with intermittent faults. The proposed diagnoser for a model G = (X, Σ, δ, x 0 ) is a deterministic FSA G d = (Q, Σ d , δ d , q 0 ) associated with a tagging function Diag : Xo → 2 ∆ , where ∆ = {N, F, R}, with N standing for normal, F for faulty, and R for recovered, and

Xo = {x 0 } ∪ {x ∈ X : ∃((x , σ) ∈ X × Σo)[x ∈ δ(x , σ)]}
is the finite set of reached state after the occurrence of an observable event. In addition, Q ⊆ 2 (X×∆) , Σ d = Σo, q 0 = (x 0 , N ), and δ d :

Q × Σ d → Q, where δ d is defined as follows: given two states q 1 , q 2 ∈ Q, then q 2 = δ d (q 1 , σ) ⇔ ∀(x 2 , l 2 ) ∈ q 2 , (∃uσ ∈ Σ * u Σo)(∃(x 1 , l 1 ) ∈ q 1 ) : x 2 = δ(x 1 , σ),
with l 1 , l 2 ∈ {N, F, R} being the labels associated with each state according to the tagging function Diag. Notice that each state q ∈ Q has the form q = {(x 1 , 1 ), . . . , (xn, n)},

with x i ∈ Xo and i ∈ ∆. If ∀i = 1, . . . , n, i = N (resp. i = F , i = R) then, diagnoser state q is said to be N -certain (resp. F -certain, R-certain), otherwise, it is an uncertain state.
Based on G d , [START_REF] Contant | Diagnosis of Intermittent Faults[END_REF] proposed necessary and sufficient conditions for W F -, W R-, SF -, and SR-diagnosabilities, defined according to Definitions 6, 7, 8, and 9, using the notion of indeterminate cycles. In this regard, a cycle cl in diagnoser G d is a W F -indeterminate cycle if the following two conditions are satisfied: (i) no state in cl is F -certain, and; (ii) there exist, at least, two cycles cl 1 and cl 2 in the system model G consistent5 with cycle cl, such that one cycle is formed with normal states only, and the other one contains states with labels F and/or R.

The notion of W F -indeterminate cycle is crucial, and leads to the following necessary and sufficient condition for W F -diagnosability.

Theorem 5 [START_REF] Contant | Diagnosis of Intermittent Faults[END_REF] As discussed in Section 3.2, SF -diagnosability implies W F -diagnosability, and, thus, the necessary and sufficient condition for W F -diagnosability is a necessary condition for SF -diagnosability. Nevertheless, [START_REF] Contant | Diagnosis of Intermittent Faults[END_REF] has presented a necessary and sufficient condition for SF -diagnosability based on the notion of SF -indeterminate cycles. According to [START_REF] Contant | Diagnosis of Intermittent Faults[END_REF], an SF -indeterminate cycle is a cycle cl in diagnoser G d (with s cl its corresponding event-sequence), composed of non F -certain states only, and for which there exists a corresponding cycle cl 1 in G (with s 1 its corresponding event-sequence, and P (s 1 ) = s cl ) such that cl 1 has states with labels F and/or R.

Theorem 6 [START_REF] Contant | Diagnosis of Intermittent Faults[END_REF] Under assumptions A2-A6, the language generated by a system model G is SF -diagnosable w.r.t. P , Σ f , Σr if, and only if, diagnoser G d has no SF -indeterminate cycle.

Remark 8 Since W F -and W R-diagnosability (resp. SF -and SR-diagnosability) are dual properties, necessary and sufficient conditions such as those stated in Theorems 5 and 6 can be developed for W R-and SR-diagnosability, respectively, in the same manner.

Remark 9 (Computational Complexity [START_REF] Contant | Diagnosis of Intermittent Faults[END_REF][START_REF] Rintanen | Diagnosers and diagnosability of succinct transition systems[END_REF]))

The number of states and transitions in the diagnoser are at most 2 |X| and 2 |X| × |Σo| respectively. Thus, the computational complexity for building the diagnoser is O(2 |X| × |Σo|), with |X| and |Σo| being respectively the numbers of states and observable events in the system model. Generally, verification algorithms for checking diagnosability properties using diagnoser approaches are based on the search for cycles, which has a factorial computation complexity [START_REF] Johnson | Finding all the elementary circuits of a directed graph[END_REF], being therefore exponential. Recently, [START_REF] Viana | Computation of the maximum time for failure diagnosis of discrete-event systems[END_REF] and Viana and Basilio (2019) proposed a verification technique (which has a linear complexity) based on the search for strongly connected components in a diagnoser-like automaton.

Example 8 Figure 10 depicts diagnoser G d , built in accordance with [START_REF] Contant | Diagnosis of Intermittent Faults[END_REF] that corresponds to system model G shown in Figure 4a and considered in Example 3. Notice that diagnoser G d has only one cycle, which is composed of states {5R, 9F } and {7F, 11R}. Although this cycle is composed of non F -certain states, it is not a W F -indeterminate cycle, since there does not exist a corresponding normal cycle in the system model G (as shown in Example 3). Thus, according to Theorem 5, G is W F -diagnosable and thus, W R-diagnosable (cf. Property 8). In contrast, the cycle in G d is SF -indeterminate, since it contains no F -certain states and, in addition, there exists a corresponding cycle in G which has experienced as least one fault occurrence (cf. Example 3). Consequently, G is not SF -diagnosable. Using the same reasoning, we can show that G is not SR-diagnosable either. Finally, since G is not SF -diagnosable (resp. not SR-diagnosable), then according to the relationships between the fault detection properties summarized in Property 7, G is not Fr-diagnosable (resp. not R f -diagnosable).

We will now make a brief account of related works to [START_REF] Contant | Diagnosis of Intermittent Faults[END_REF]. We start with the work by [START_REF] Correcher | Intermittent failure diagnosis in industrial processes[END_REF], where it is proposed a strategy to diagnose intermittent faults in industrial processes. The approach is applied to a classic pump/valve case-study (Sampath et al., 1996b), whose simulation is performed with Matlab, employing Simulink, for modeling the continuous behavior, and Stateflow, for the DES diagnoser. [START_REF] Biswas | Diagnosability of discrete event systems for temporary failures[END_REF] considers the verification of intermittent fault diagnosability notions in a statebased diagnosis framework, using the normalization setting. Two diagnosability notions, which correspond to SF -and SR-diagnosabilities, have been addressed, being the approach proposed to analyze such notions an extension of the statebased diagnoser introduced in Hashtrudi Zad et al. (2003). For each notion of diagnosability, a necessary and sufficient conditions were established by [START_REF] Biswas | Diagnosability of discrete event systems for temporary failures[END_REF]. [START_REF] Carvalho | Robust diagnosis of discrete event systems against intermittent loss of observations[END_REF] investigate the problem of robust diagnosability against intermittent sensor faults assuming that either some sensors do not operate properly all the time or some observed events may not reach the diagnoser, i.e., temporary loss of event observation may take place. Such a problem is formalized as an intermittent fault diagnosis one and a necessary and sufficient condition for robust diagnosability is presented. More recently, [START_REF] Carvalho | Diagnosability of intermittent sensor faults in discrete event systems[END_REF] addressed the problem of diagnosing intermittent sensor faults in an eventbased diagnosis framework within the recovery setting. They have modified the model of intermittent loss of observation to account for sensor malfunction only. Then, the problem of detecting intermittent sensor faults is transformed into a problem of diagnosing intermittent faults, in the same sense as in [START_REF] Contant | Diagnosis of Intermittent Faults[END_REF]. A diagnoser similar to the one developed in [START_REF] Cassandras | Introduction to discrete event systems[END_REF] is used in [START_REF] Carvalho | Diagnosability of intermittent sensor faults in discrete event systems[END_REF] to check some diagnosability notions, equivalent (under some modeling restrictions) to W F -and W R-diagnosabilities. Using such a diagnoser, the assumption that no cycle involving only unobservable events exists in the system model can be relaxed. It is worth remarking that the necessary and sufficient conditions developed in [START_REF] Carvalho | Diagnosability of intermittent sensor faults in discrete event systems[END_REF] consider both indeterminate observed cycles (equivalent to those in [START_REF] Contant | Diagnosis of Intermittent Faults[END_REF]) and indeterminate hidden cycles, i.e., cycles of states connected by unobservable events only. Finally, [START_REF] Boussif | A diagnoser-based approach for intermittent fault diagnosis of discrete-event systems[END_REF] proposed a variant of the diagnoser presented in [START_REF] Cassandras | Introduction to discrete event systems[END_REF] in order to perform the verification of the above-mentioned diagnosability notions, using an event-based diagnosis framework within a recovery setting. The main idea behind the variant diagnoser is to separate normal, faulty and recovered states in each diagnoser node. By exploiting some features of the new diagnoser structure, necessary and sufficient conditions for checking W F -, W R-, SF -and SR-diagnosability notions are presented.

• Verification of Fr-diagnosability

Regarding the verification of Fr-diagnosability, [START_REF] Fabre | Diagnosability of repairable faults[END_REF] approach this problem in a normalization setting within state-based framework. Applying the same idea as in [START_REF] Viana | Computation of the maximum time for failure diagnosis of discrete-event systems[END_REF], the approach proposed in Fabre et al. ( 2018) is based on the construction of an augmented diagnoser, Ga which is a parallel composition between the labeled system model and its diagnoser.

Formally, given a system model G = (X, Σ, δ, x 0 ) and its corresponding diagnoser G d = (Q, Σ d , δ d , q 0 )6 , we first compute the labeled system model G as G = G Ω = (X , Σ, δ , x 0 ), with X = X × {N, F, R}, X 0 = (x 0 , N ), and δ : X × Σ → X . We then compute augmented diagnoser Ga = G G d = (Xa, Σ, δa, x a0 ), with Xa = X × Q, x a0 = (x 0 , q 0 ), and δa : Xa × Σ → Xa.

In order to simplify notation, let us consider that labels N and R are indistinguishable and denoted by F . As a result, each state of the augmented diagnoser will have components in {F, F } × {F, F , U }, where U represents an uncertain diagnoser state, i.e., a diagnoser state that is neither F -certain nor F -certain. The necessary and sufficient condition for Fr-diagnosability is based on the notion of minimally faulty states: a state xa = (x , q) in the augmented diagnoser Ga is said to be minimally faulty if x = F is directly reachable from a state x a = (x , q ) where x = F .

Theorem 7 [START_REF] Fabre | Diagnosability of repairable faults[END_REF] Under assumptions A2-A5, the language generated by a deterministic automaton G is not Fr-diagnosable if, and only if, there exists in the augmented diagnoser a reachable minimally faulty state (x, q) of type (F, ( F )) or (F, (U )) and either:

1. there exists a state (x , q ) of type ( F , ( F )) or ( F , (U )), or 2. there exists a cycle composed exclusively of (F, (U )) states that is reachable from (x, q) through a (possibly empty) sequence of (F, ( F )) states followed by a sequence of (F, (U )) states.

Theorem 7 provides the two conditions that leads to violation of Fr-diagnosability. The first condition accounts for the existence of two finite event-sequences s 1 and s 2 in the system model such that s 1 exhibits a faulty behavior and s 2 exhibits either a normal or a recovered behavior, meaning that the diagnoser was not able to identify that the system has recovered from the fault, whereas the second condition considers cyclic event-sequences.

Remark 10 As shown in Viana and Basilio (2019), where a similar structure is used to perform diagnosability of permanent fault verification, there is no need to search for cycles that satisfy Condition (2) of Theorem 7. In this regard, Condition (2) could be replaced by the search of non-trivial strongly connected components that have states whose second elements are labeled by U and the first elements have both F and F labels in different states.

Example 9 Let us consider again system model G introduced in Example 3 and depicted in Figure 4(a). The labeled system model G is depicted in Figure 4(b), and the augmented diagnoser Ga is depicted in Figure 11(a). An abstracted version of Ga showing only the label elements associated with each state is depicted in Figure 11(b).

Notice that the augmented diagnoser state xa 11 = (12F, (7F, 11R)) is a minimally faulty state since it is of type (F, (U )), and it is directly reachable from state xa 10 = (11R, (7F, 11R))) which is of type ( F , (U )). In addition, notice that there exists state xa 9 = (10R, (4R, 9F ) of type ( F , (U )) which is reachable from state xa 11 through state xa 8 = (9F, (5R, 9F )), which is of type (F, (U )). Hence, state sequence xa 11 , xa 8 , xa 9 satisfies condition (1) of Theorem 7, and, thus, system model G is non Fr-diagnosable. Remark 11 (Computational Complexity [START_REF] Fabre | Diagnosability of repairable faults[END_REF])) The number of states and transitions of the augmented diagnoser are at most 2 |X| × |X| and 2 |X| × |X| × Σ transitions, respectively. In addition, as proved in [START_REF] Fabre | Diagnosability of repairable faults[END_REF], analyzing Frdiagnosability of a system model G is a PSPACE-complete problem, while deciding the SF -diagnosability is PSPACE-hard problem. [START_REF] Fabre | Diagnosability of repairable faults[END_REF] have also addressed the run-time fault counting issue, i.e., for a given event-sequence, determine how many times the faults have occurred. Firstly, they show that Fr-diagnosability notion is not strong enough to correctly count fault occurrences. Indeed, associating a fault counter to the computed diagnoser does not ensure a correct counting of faults. Also, Fabre et al. prove that the problem of deciding if an automaton is fault countable is an NLOGSPACE problem. This result is stated without providing the fault counter construction; although they provide a run-time function that can be used to count the number of faults the diagnoser is able to detect.

Remark 12 (Online diagnosis) It is worth noticing that advantage of using the diagnoser-based approaches comes from the fact that for diagnosable languages, the constructed diagnoser can also be used to perform online diagnosis, as detailed in Sampath et al. (1995).

Verification of intermittent fault diagnosability notions using the twin-plants

The verification of weak and strong diagnosability notions have also been addressed using the twin-plant approach [START_REF] Boussif | Diagnosability analysis of input/output discrete event system using model checking[END_REF]Ghazel, 2016a, 2019), where an extension of the twin-plant developed in [START_REF] Jiang | A polynomial algorithm for testing diagnosability of discrete-event systems[END_REF] has been presented (by modifying its structure) in order to deal with the intermittent faults.

The twin-plant of a model G is a non-deterministic automaton P = (Q, Σo, γ, q 0 ), where

Q ⊆ Xo ×Xo, with Xo = {x 0 }∪{x ∈ X : (∃(x , σ) ∈ X ×Σo)[x ∈ δ(x , σ)}, γ is the transition function defined as follows: γ : Q × Σo → 2 Q , for q = (x 1 , x 2 ), q = (x 1 , x 2 ) ∈ Q, q ∈ γ(q, σ) if, and only if, x 1 = δ(x 1 , u 1 σ) and x 2 = δ(x 2 , u 2 σ), for some u 1 , u 2 ∈ Σ *
u , and q 0 = (x 0 , x 0 ) ∈ Q. Notice that X is the finite set of states of the system model (as defined in Section 2), and Xo ⊆ X is the finite set of states in X which are (directly) reached by the occurrence of an observable event. For example, Xo = {1, 3, 9, 11, 5, 7} for model G in Figure 4a.

The fault propagation is preserved in the twin-plant using the fault-assignment function Ψ : Q → {N, F, R} × {N, F, R}, allowing different types of states to be distinguished in the twin-plant, as follows:

-N -state (resp. F -state, R-state) is a state q = (x, x ) ∈ Q, such that Ψ (q) = (N, N ) (resp. Ψ (q) = (F, F ), Ψ (q) = (R, R)); -N F -state (resp. N R-state) is a state q = (x, x ) ∈ Q, such that Ψ (q) = (N, F ) (resp. Ψ (q) = (N, R))
. F N and RN -state are defined similarly; -N 1-state is a state q = (x, x ) ∈ Q, such that Ψ (q) = (N, ) with ∈ {N, F, R}; -non-N -state (resp. non-F -state, non-R-state) is a state which is not an N -state (resp. F -state, R-state).

The twin-plant structure is symmetric in the sense that a path containing F Nstates has its symmetric path which contains the symmetric N F -states, and vice versa.

Checking W F -diagnosability using the twin-plant consists in seeking for Fconfused cycles. An F -confused cycle in the twin-plant corresponds to two cycles in the original model G, whose corresponding event-sequence have the same observable projection, such that one event-sequence has no fault event (a fault-free cycle) while the second one contains at least one fault event (which is ensured by the existence of an N F -state in the cycle). Formally, an F -confused cycle is defined as follows.

Definition 11 (F -confused cycles) An F -confused cycle is a cycle cl = (q 1 , q 2 , . . . , qn, q n+1 = q 1 ) of the twin-plant, such that ∀ 1 ≤ i ≤ n, q i is an N 1-state, and ∃ 1 ≤ j ≤ n, such that q j is an N F -state.

Theorem 8 [START_REF] Boussif | Diagnosability analysis of intermittent faults in discrete event systems using a twin-plant structure[END_REF] Under assumptions A2-A6, a language L(G) generated by an automaton G is W F -diagnosable w.r.t. P , Σ f , and Σr if, and only if, there exists no F -confused cycle in twin-plant P associated with G.

It is worth noticing that since W F -diagnosability does not ensure SFdiagnosability, the necessary and sufficient condition for W F -diagnosability given in Theorem 8 represents only a necessary condition for the SF -diagnosability. Indeed, SF -diagnosability cannot be checked by only seeking some F -confused cycles, as in the case of permanent faults and W F -diagnosability since it cannot be characterized by paths of the twin-plant taken individually [START_REF] Fabre | Diagnosability of repairable faults[END_REF][START_REF] Fabre | Diagnosability of repairable faults[END_REF].

The necessary and sufficient conditions for SF -and SR-diagnosabilities are based on the notion of generated prime state-path in the twin-plant, which has been inspired by [START_REF] Zhou | Computation of diagnosable fault-occurrence indices for systems with repeatable faults[END_REF] and [START_REF] Basilio | Computation of minimal event bases that ensure diagnosability[END_REF]). We start by defining state-path in the twin plant P as a sequence of states (q 1 , q 2 , . . . , qn) such that ∀q i , i = 1, 2, . . . , n -1, ∃σ i ∈ Σo such that q i+1 = γ(q i , σ i ). A state-path that starts at the initial state q 0 is called a generated state-path, a state-path that does not include any state that is visited twice, i.e., ∀i, j ∈ {1, • • • , n} and i = j, we have q i = q j , is called elementary state-path, and an elementary cyclic state-path is a state cycle (q 1 , q 2 , . . . , qn) such that q i = q j , ∀i, j ∈ {1, • • • , n -1} with i = j; and q 1 = qn. Finally, a generated prime state-path is a generated state path ℘ = ℘ cl that is composed of an elementary state-path ℘ and an elementary cyclic statepath cl. Given observable event-sequence s = σ 0 σ 1 . . . σn ∈ Σ * o , we can define an associated set Π(s) of all generated prime state-paths corresponding to s, being formally defined as follows:

Π(s) = {℘ = (q 0 , q 1 , . . . , qn) ∈ P : (℘ is a generated prime state-path) ∧ (q i+1 ∈ γ(q i , σ i ), 0 ≤ i < n, ) ∧ ((q j ∈ γ(qn, σn), for some 0 ≤ j ≤ n)}.

A twin-plant based necessary and sufficient condition for SF -diagnosability (resp. SR-diagnosability) has been proposed in [START_REF] Boussif | Diagnosability analysis of intermittent faults in discrete event systems using a twin-plant structure[END_REF], which is based on the concept of F -Interception condition, defined formally as follows.

Definition 12 (F -Interception condition) Let s ∈ Σ * o be an observable event-trace in P. Then, we say that s satisfies the F -Interception if ∃k ∈ N, ∀℘ = ℘ cl = (q 0 , q 1 , . . . , qn) ∈ Π(s): q k ∈ cl, and q k is an F -state.

According to Definition 12, the F -Interception condition ensures that, after a finite delay, all generated prime state-paths that correspond to s reach Fstates, in their corresponding elementary cycles at the same time (i.e., after k -1 observations). The necessary and sufficient condition for SF -diagnosability is given by the following theorem.

Theorem 9 [START_REF] Boussif | Diagnosability analysis of intermittent faults in discrete event systems using a twin-plant structure[END_REF]-Under assumptions A2-A6, a language L(G) is SF -diagnosable w.r.t. P , Σ f , and Σr iff the F -Interception condition is satisfied by each event-trace s obtained from twin-plant P constructed from model G.

Remark 13 (Computational Complexity [START_REF] Jiang | A polynomial algorithm for testing diagnosability of discrete-event systems[END_REF][START_REF] Boussif | Diagnosability analysis of input/output discrete event system using model checking[END_REF])) The number of states and transitions of the twin-plant are at most 4 × |X| 2 and 8 × |X| 4 × |Σo|, respectively. The verification of W F -diagnosability can be performed with linear complexity with respect to the twin-plant size (using the procedure presented in [START_REF] Jiang | A polynomial algorithm for testing diagnosability of discrete-event systems[END_REF]. Thus, the overall complexity of checking W F -diagnosability using the twin-plant approach is O(|X| 4 × |Σo|), which is polynomial in the number of states of the model. The verification of SF -diagnosability involves, in the worst case, the search of all elementary cycles in the twin-plant. As pointed out before, such a procedure has a factorial computation complexity in the worst case [START_REF] Johnson | Finding all the elementary circuits of a directed graph[END_REF].

Fig. 12 The twin-plant P corresponding to model G of Example 3 (Figure 4). 4.2.3 Analysis of fault detection properties using the verifier-based approach [START_REF] Carvalho | Diagnosability of intermittent sensor faults in discrete event systems[END_REF] discussed the intermittent sensor fault detection problem, addressing three cases regarding sensor faults, as follows: (i) when the sensor under consideration never recovers after it fails, (ii) when the sensor never fails again after the last time it recovers from the failure, and (iii) when the sensor fails at some point and can or cannot recover from the fail. Such configurations can be viewed as weak diagnosability properties (under some restrictions). The authors discuss the analysis of such properties using a verifer-based approach.

The verification process is based on the construction of three verifier automata V N F , V N R , and V F R whose constructions are carried out according to Algorithm 1 of [START_REF] Carvalho | Diagnosability of intermittent sensor faults in discrete event systems[END_REF]. In this context, the analysis of weak diagnosability properties can be performed using verifiers V N F and V N R . To this end, three subautomata need to be computed from the augmented system model G = G||Ω (with Ω being the label automaton illustrated in Figure 1a), as follows: (1) G N , the sub-automaton that depicts only the normal behavior of G ; (2) G F , the subautomaton that depicts the faulty behavior of G , and; (3) G R , the sub-automaton that depicts the recovered behavior of G . Verifier

V N F = G R N ||G F (resp. V N R = G R N ||G R )
, where G R N is identical to G N except that the unobservable events of G N are renamed in order to make them private in the parallel composition, is then computed. Notice that by considering Assumptions A1-A4, we have

V N F = V N R .
Checking W F -diagnosability using verifier V N F consists in seeking bad cycles, which are equivalent to the F -confused cycles in the twin-plant, and correspond to cycles cl = (q 1 , q 2 , . . . , qn, q n+1 = q 1 ) in verifier V N F , such that q i , i = 1, 2, . . . , n is an N 1-state, and q j , j = 1, 2, . . . , n, is an N F -state. Remark 14 (Complexity analysis [START_REF] Moreira | Polynomial time verification of decentralized diagnosability of discrete event systems[END_REF][START_REF] Carvalho | Diagnosability of intermittent sensor faults in discrete event systems[END_REF])) The number of states and transitions in the verifier automaton of [START_REF] Moreira | Polynomial time verification of decentralized diagnosability of discrete event systems[END_REF] are at most 2|X| 2 and 2|X| 2 × |Σ|, respectively. The verification of weak diagnosability is based on the search for strongly connected components, which is performed with linear complexity. Thus, the overall complexity for checking the weak diagnosability properties using the verifier approaches is O(|X| 2 × |Σ|), which is polynomial in the number of states in the model.

To conclude this section, we summarize in Table 1 the general results in the literature up to date regarding the verification of intermittent fault diagnosability properties and their corresponding complexity. ) [START_REF] Jiang | Diagnosis of repeated/intermittent failures in discrete event systems[END_REF] Weighting graph

O(min(|X| 3 × |Σ| 2 , |X| 5
)) (Yoo andGarcia, 2009, 2004) IPA )) (Yoo andGarcia, 2009, 2004) ∀κ-diagnosability

O(|X| 3 × |Σ| 2 ) (Zhou
IPA O(|X| 3 × |Σ| 2
) [START_REF] Zhou | Computation of diagnosable fault-occurrence indices for systems with repeatable faults[END_REF]) [START_REF] Contant | Diagnosis of Intermittent Faults[END_REF][START_REF] Carvalho | Diagnosability of intermittent sensor faults in discrete event systems[END_REF], [START_REF] Boussif | A diagnoser-based approach for intermittent fault diagnosis of discrete-event systems[END_REF][START_REF] Carvalho | Diagnosability of intermittent sensor faults in discrete event systems[END_REF] Twin-plant O(|X| 4 × |Σo|) [START_REF] Jiang | A polynomial algorithm for testing diagnosability of discrete-event systems[END_REF][START_REF] Boussif | Diagnosability analysis of intermittent faults in discrete event systems using a twin-plant structure[END_REF] Verifier O(|X| 2 × |Σ|) [START_REF] Moreira | Polynomial time verification of decentralized diagnosability of discrete event systems[END_REF][START_REF] Carvalho | Diagnosability of intermittent sensor faults in discrete event systems[END_REF] SF -diagnosability Diagnoser O(2 |X| × |Σo|) [START_REF] Contant | Diagnosis of Intermittent Faults[END_REF][START_REF] Boussif | A diagnoser-based approach for intermittent fault diagnosis of discrete-event systems[END_REF] Fr-diagnosability Augmented diagnoser [START_REF] Fabre | Diagnosability of repairable faults[END_REF][START_REF] Fabre | Diagnosability of repairable faults[END_REF] 5 Other approaches that deal with intermittent fault diagnosis Besides the works on intermittent fault diagnosis described in the previous sections, where automaton formalism is used, the intermittent fault diagnosis problem has also been addressed using different frameworks, such as supervision pattern, temporal logic, discrimination between intermittent and permanent faults, and fault free models, and different modeling formalism, such as Petri nets and stochastic automata. In this section, we review the main contributions within these approaches.

W F -diagnosability Diagnoser O(2 |X| × |Σo|)
O(2 |X| × |X| × Σ)

Intermittent fault diagnosis as supervision pattern diagnosis

A supervision pattern is a formal model (automaton, Petri net, etc.) whose language is the set of trajectories to be diagnosed [START_REF] Jéron | Supervision patterns in discrete event systems diagnosis[END_REF]Gougam et al., 2013a). It is general enough to cover a broad class of diagnosis objectives found in the literature, e.g., diagnosis of multiple and repeated faults, sequences of significant events, repair of faults, etc. For example, the label automaton of Figure 1a, used to determine the system status w.r.t. the occurrence of faults and their recovery (normal, faulty, or recovered), can be seen as a supervision pattern, in the sense that it is a formal model that characterizes a specific behavior of the system as a partial order of observable events or states.

Supervision patterns extend the expressiveness of faulty models by introducing more complex faulty behaviors (Gougam et al., 2013b), being useful in the generalization of the diagnosis definitions and to clarify the separation between the diagnosis objectives and the system specifications. In this regard, the results obtained from the diagnosis task can be simply re-utilized to deal with similar diagnosis issues, due to their generic nature [START_REF] Lamperti | Diagnosis of discrete-event systems by separation of concerns, knowledge compilation, and reuse[END_REF].

The supervision pattern diagnosis problem is generally achieved based on the matching between the real behavior of the system and the compiled faulty behavior [START_REF] Zaytoon | Discussion on fault diagnosis methods of discrete event systems[END_REF]. In the context of fault diagnosability, it can be formulated as follow: given a DES model and a supervision pattern, is the supervisor (or the diagnoser) always able to determine with certainty that some pattern has occurred or not in the system after observing a finite sequence of events? Supervision pattern diagnosis of DES has been first addressed by [START_REF] Jéron | Supervision patterns in discrete event systems diagnosis[END_REF]. After that, further works followed. [START_REF] Ye | An incremental approach for pattern diagnosability in distributed discrete event systems[END_REF], [START_REF] Yan | Diagnosability for patterns in distributed discrete event systems[END_REF] and [START_REF] Ye | A general algorithm for pattern diagnosability of distributed discrete event systems[END_REF] deal with the diagnosis of patterns in distributed DESs modeled by finite state automata. [START_REF] Gougam | Discriminability analysis of supervision patterns by net unfoldings[END_REF] discuss the discriminability7 of supervision patterns in a Petri net framework (in that work, both the system model and patterns are Petri net models). The diagnosability of Petri net patterns has also been discussed in Gougam et al. (2013b) and [START_REF] Gougam | Diagnosability analysis of patterns on bounded labeled prioritized petri nets[END_REF]. In [START_REF] Pencolé | Diagnosis of supervision patterns on bounded labeled petri nets by model checking[END_REF], the diagnosis of patterns is formulated as a pattern matching problem, and to this end, they use bounded and labeled prioritized Petri nets and tackle this problem using model checking techniques.

It is worth remarking that the work by [START_REF] Jéron | Supervision patterns in discrete event systems diagnosis[END_REF] remains the unique work that deals with intermittent fault diagnosability as a supervision pattern diagnosability problem. Indeed, [START_REF] Jéron | Supervision patterns in discrete event systems diagnosis[END_REF] have proposed two patterns that model the faulty behaviours corresponding to k occurrences of a fault and the intermittent fault occurrence with a repair. In order to verify such patterns, [START_REF] Jéron | Supervision patterns in discrete event systems diagnosis[END_REF] have used the twin-plant approach of [START_REF] Jiang | Diagnosis of repeated/intermittent failures in discrete event systems[END_REF], in which the synchronous product between the system model and the supervision pattern is used as the input of the twin-plant algorithm. It is worth remarking that, with slight modifications, the diagnoser and verifier approaches can also be used to check the diagnosability of supervision patterns.

Intermittent fault diagnosis using temporal logic specifications

Due to their expressiveness, temporal logics [START_REF] Emerson | Temporal and modal logic[END_REF] have been used for a long time in supervisory control of DES [START_REF] Thistle | Control problems in a temporal logic framework[END_REF][START_REF] Lin | Analysis and synthesis of discrete event systems using temporal logic[END_REF]. Regarding fault diagnosis, temporal logics provide another way to specify fault properties. In addition to expressing fault event occurrences and reachability of faulty states, temporal logics can also be used to express complex types of fault properties such as the violation of liveness, safety, invariance, recurrence and stability properties [START_REF] Jiang | Failure diagnosis of discrete-event systems with lineartime temporal logic specifications[END_REF].

In the context of temporal logic-based diagnosis, the occurrence of intermittent faults can be expressed using linear (LTL) or branching (CTL) temporal logic formulae. Therefore, analyzing intermittent fault related properties can be translated as model-checking problems, and tackled using the associated verification engines [START_REF] Jiang | Diagnosis of repeated failures for discrete event systems with linear-time temporal-logic specifications[END_REF]Boussif and Ghazel, 2016b).

In [START_REF] Jiang | Diagnosis of repeated failures for discrete event systems with linear-time temporal-logic specifications[END_REF], fault counting of repeated failures is discussed in a temporal logic framework. Notions of diagnosability and prediagnosability8 for intermittent faults are formulated in a temporal logic setting. A polynomial test algorithm for prediagnosability verification is provided. The authors also discuss the various notions of diagnosability related to the multiplicity of fault occurrences, adapted from [START_REF] Jiang | Diagnosis of repeated/intermittent failures in discrete event systems[END_REF], in a linear-time temporal logic (LTL) setting.

In Boussif and Ghazel (2016a), a model-checking framework to deal with intermittent fault diagnosis, which is an extension of the practical verification approaches for analyzing diagnosability of permanent faults using modelchecking [START_REF] Cimatti | Formal verification of diagnosability via symbolic model checking[END_REF]Boussif and Ghazel, 2015) is proposed. Firstly, the authors revise the weak intermittent fault diagnosability properties, i.e., W Fand W R-diagnosability, and then, necessary and sufficient conditions based on the twin-plant proposed in Boussif et al. (2016) are expressed as linear temporal logic (LTL) model-checking problems (Boussif and Ghazel, 2016b). A benchmark is used to illustrate the various steps and to assess the efficiency and the scalability of the approach. This technique has then been extended in [START_REF] Boussif | Formal verification of intermittent fault diagnosability of discrete-event systems using model-checking[END_REF] to deal with Fr-diagnosability.

Discriminating intermittent faults from permanent faults

Almost all the works that approach the fault diagnosis problem in DES consider only one type of faults, namely, permanent, intermittent, or transient faults.

However, real-life systems often exhibit more than one type of faults. Therefore, it is common for diagnosis systems to misjudge some types of faults or presume that all faults are of the same type.

A more general framework is proposed in Deng et al. (2014a), Deng et al. (2014b), and[START_REF] Deng | A novel fault diagnosis approach based on environmental stress level evaluation[END_REF], where fault models that include both permanent and intermittent faults are considered. In order to diagnose faults in such a setting, the authors propose an approach that first discriminates between the fault classes. The approach is based on an extension of the diagnoser proposed in [START_REF] Contant | Diagnosis of Intermittent Faults[END_REF], where the label propagation function is modified in order to account for each fault class dynamic. The authors show that the fault types can be diagnosed (and discriminated) within bounded delay if the system is diagnosable with respect to each fault type. The approach is firstly discussed within ordinary automata (Deng et al., 2014a) and then extended to stochastic ones (Deng et al., 2014b[START_REF] Deng | A novel fault diagnosis approach based on environmental stress level evaluation[END_REF].

Intermittent fault diagnosis using fault-free models

Fault diagnosis using fault-free models is based on the comparison between the actual system output and the model nominal output. The fault is detected if the observed behavior of the system cannot be reproduced by its model. In a series of works, [START_REF] Soldani | Intermittent fault detection through message exchanges: a coherence based approach[END_REF]Soldani et al. ( , 2007a,b) ,b) discuss the detection and isolation of intermittent faults in a fault-free DES modeling setting in both automata (Soldani et al., 2007a) and Petri net (Soldani et al., 2007b). In those works, failures may imply either the occurrence (insertion) of spurious events or the lack of foreseen events. The proposed approach consists of three steps:

1. System modeling (offline). A model that expresses the nominal behavior of the system to be diagnosed is firstly constructed based on the design data whereby only the observable actions are represented [START_REF] Soldani | Intermittent fault detection through message exchanges: a coherence based approach[END_REF]. The built models can be either automata or Petri nets. 2. Intermittent and fugitive fault detection (online). The fault detection process consists of comparing the observable event sequences issued by the system with the expected event sequences from the model. A faulty behavior is detected if there exists some inconsistency between the received event and the expected one [START_REF] Soldani | Intermittent fault detection through message exchanges: a coherence based approach[END_REF]. 3. Online fault localization. Fault localization succeeds the detection process and consists of determining the events that are prospectively responsible for the fault. The technique is based on the construction of two diagnosers, one for localizing the missing events, and the other one for localizing the inserted events.

Intermittent fault diagnosis using Petri net as modeling formalism

Fault diagnosis of intermittent faults has been also investigated using Petri net as the modeling formalism. García et al. (2008b) proposed a new methodology to deal with fault diagnosis of both permanent and intermittent faults using colored Petri nets (CPNs), in which, in order to model the faults, the set of colored tokens is divided in two subsets: the subset of normal tokens, representing the nominal dynamic behavior of subnets system, and the subset of tokens, representing the faulty behaviors to be diagnosed. Then, the so-called Fault Latent Nestling (FLN) Method (see García et al. (2008a)) is used to nestle faults into each place of the initial PN using a folding technique with CPNs and the characteristics of sensor readings to isolate faults in a specific place or detect them. Such a combination of CPN modeling and FLN method allows for efficiently tackling the combinatorial explosion that often arises when it comes to diagnose large systems. The proposed approach has been firstly applied on an academic example in García et al. (2008b), and then on a real application in [START_REF] Rodriguez | Application of latent nestling method using coloured Petri nets for the fault diagnosis in the wind turbine subsets[END_REF], namely a wind turbine system. This approach has been recently extended to deal with intermittent fault diagnosis of hybrid colored Petri nets in [START_REF] Rodriguez-Urrego | Diagnosis of intermittent faults in IGBTs using the latent nestling method with hybrid coloured Petri nets[END_REF], and applied to a digital electronic module, namely an insulated-gate bipolar transistor (IGBT).

Recently, and with the same objective as García et al. (2008b[START_REF] Trigos | Unmanned helicopter faults diagnosis based on Petri nets[END_REF] proposed a PN fault diagnosis approach to deal with both permanent and intermittent faults, where Petri nets are used for depicting the system behavior and building the PN diagnoser using a data acquisition system. In practice, a fault diagnosis algorithm is designed to perform this task. The proposed approach has been firstly applied to a liquid packaging process [START_REF] Martínez | Fault diagnosis and modeling of the liquids packaging process. a research based on Petri nets[END_REF] to deal with permanent faults, and afterwards to an unmanned aerial vehicle [START_REF] Trigos | Unmanned helicopter faults diagnosis based on Petri nets[END_REF] to deal with intermittent faults.

Intermittent fault diagnosis of stochastic models

A few works have been devoted to intermittent fault diagnosis of stochastic models. In [START_REF] Yoo | New results on discrete-event counting under reliable and unreliable observation information[END_REF], a counting strategy that accommodates stochastic automata was presented, which, strictly speaking, is deterministic in the sense that the discussed counting algorithm seeks the minimum count of the associated state estimate rather than using the probabilistic distribution of the state estimate of the stochastic automaton; essentially, it deals with possibility rather than probability. The work by [START_REF] Yoo | Stochastic event counter for discrete-event systems under unreliable observations[END_REF] is an extension of previous works (Yoo andGarcia, 2009, 2004;[START_REF] Zhou | Computation of diagnosable fault-occurrence indices for systems with repeatable faults[END_REF] in the framework of deterministic FSA, and attempts to fully utilize the probabilistic aspects of stochastic FSA in developing algorithms for event counting. Such an approach is based on updating the active counter information state sequentially with available observations. Deng et al. (2014b) and [START_REF] Deng | A novel fault diagnosis approach based on environmental stress level evaluation[END_REF] extend their previous work in Deng et al. (2014a) regarding the discrimination of intermittent faults from permanent ones to stochastic FSA, by enlarging the model presented in Sampath et al. (1995) to consider both permanent and intermittent faults. By assuming that environmental stress is the main cause of faults, the authors treat it as a fault event. Therefore, a stress level evaluation algorithm based on interval grey relational degree is developed to identify the fault events by computing the level of the correlative environmental stress. In Deng et al. (2014b), the notions of A-and AAdiagnosability of permanent faults for stochastic FSA [START_REF] Thorsley | Diagnosability of stochastic discrete-event systems[END_REF] were extended to deal with intermittent faults. As far as diagnosability analysis is concerned, the authors propose a diagnoser-approach with a probability matrix appended to each transition, which can be used to update the probability distribution on the state estimate. With the knowledge of each state transition probability, it is possible to distinguish event-sequences or states that are more likely from those that are less probable to occur or achieve, respectively.

Using a different model formalism, [START_REF] Lefebvre | Stochastic petri net identification for the fault detection and isolation of discrete event systems[END_REF] presented an approach to deal with intermittent fault based on stochastic Petri net identification techniques. The authors proposed two learning algorithms to design and identify stochastic Petri net models (that are used as reference models for FDI) according to causal and temporal specifications. Then, an FDI algorithm to perform the online detection and isolation of intermittent faults (which are considered as behaviors that do not satisfy the causal or temporal specifications) is established.

6 Looking backwards to point towards the future This section provides some remarks regarding the existing works that approach the intermittent fault diagnosis problem in DES and suggests some perspectives for further research.

According to the discussed literature review, it can be inferred that most of the contributions focus on the analysis of some diagnosability definition and the synthesis of diagnosers to perform online diagnosis. However, no works have discussed the complementary issues directly related to fault diagnosis, such as fault prediction, decentralized/modular diagnosis, sensor selection and dynamic sensor activation, robust diagnosis, active diagnosis and fault tolerant control, which are widely discussed in the case of permanent fault diagnosis [START_REF] Zaytoon | Overview of fault diagnosis methods for discrete event systems[END_REF]. Those are open problems that still need further investigation in the context of intermittent faults. Deng et al. (2014a), Deng et al. (2014b), and[START_REF] Deng | A novel fault diagnosis approach based on environmental stress level evaluation[END_REF] have discussed the issue of discriminating intermittent faults from permanent ones, which is an interesting issue from system maintenance point of view. Indeed, maintenance actions could greatly differ according to the nature of failure (permanent or intermittent), and, consequently, maintenance costs could be reduced by avoiding unnecessary shutdown and repair operations (Deng et al., 2014a). In this regard, it would be interesting to also consider a correlated phenomenon, which is the evolution of intermittent faults to become permanent ones. In this case, intermittent faults can be viewed as a symptom of the degradation of some physical aspects in the system. As degradation increases, the rate and severity of intermittent symptoms may increase until the intermittent faults eventually become permanent [START_REF] Syed | Intermittent fault finding strategies[END_REF]. An intuitive way to deal with such a setting would be to consider the persistence feature of intermittent faults, i.e., the frequency of occurrence. In this regard, a frequency threshold can be proposed to determine when an intermittent fault can be assimilated to a permanent one. Nevertheless, this issue still needs more investigation from both the theoretical and practical points of view.

As reported in Section 3, intermittent fault diagnosis of DES has been discussed according to two distinct points of view: fault counting and fault detection. Various definitions and different verification techniques to deal with these two problems have been proposed. However, no effective connection can be perceived between these two perspectives. We believe that these issues should be addressed more jointly. The relationships between the various properties need to be discussed, and more expressive diagnosability definitions that address both fault counting and fault detection could be proposed. Practitioners would appreciate diagnosers that address both fault counting and fault detection requirements for monitoring and maintenance purposes. The works in [START_REF] Boussif | Formal verification of intermittent fault diagnosability of discrete-event systems using model-checking[END_REF], [START_REF] Fabre | Diagnosability of repairable faults[END_REF][START_REF] Fabre | Diagnosability of repairable faults[END_REF] can be seen as first steps in this direction.

To conclude this section, notice that no useful connection has yet been made between the various diagnosability definitions discussed in the paper and the three indicators (duration, pseudo-periodicity, and the number of fault occurrences) presented in the introduction. This is so because, unlike in the permanent failure problem, where some works investigated fault diagnosis by also considering temporal aspects (see [START_REF] Zaytoon | Overview of fault diagnosis methods for discrete event systems[END_REF] and, more recently, Viana and Basilio (2019) and Viana et al. (2019)), the majority of works that deal with intermittent fault diagnosis consider untimed DES models. Up to now, as far as intermittent fault is concerned, only the logical features of the system and fault dynamics are taken into account, i.e., the logical order and the number of event occurrences, which is inadequate when it is necessary to consider real time aspects. However, as shown in [START_REF] Ghazel | State observer for DES under partial observation with time Petri nets[END_REF], temporal information has shown to be determinant in several diagnosis problems. Therefore, diagnosis of intermittent faults of discrete event systems with timing structure also appears as a promising research topic.

Conclusion

In this paper, we have provided a detailed review of the literature on intermittent fault diagnosis in DES modeled by automata. We also highlighted the main contributions to intermittent fault diagnosis by applying other frameworks, such as supervision pattern, temporal logic, discrimination between intermittent and permanent faults, and fault free models, and different modeling formalism, such as Petri nets and stochastic automata. As far as future research on intermittent fault diagnosis is concerned, we listed several open problems and proposed new research topics. We hope this review will serve as a helpful guide for future studies in the field and as a background for those who want to pursue some research in intermittent fault diagnosis.
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 1 Fig. 1 Label automaton Ω for recovery and normalization settings.
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 3 Fig. 3 Relationships between the fault counting-based intermittent fault diagnosability notions.
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 4 Fig. 4 Automata G and G for Example 3

Fig. 5

 5 Fig. 5 Augmented transition graph V 1 associated with model G 1 of Example 1.

Fig. 6

 6 Fig. 6 Augmented transition graph V 2 associated with model G 1 of Example 1.

Remark 3 (

 3 Online diagnosis)[START_REF] Jiang | Diagnosis of repeated/intermittent failures in discrete event systems[END_REF] developed a systematic procedure for online diagnosis of κ-, [1, κ]-and U[1, ∞]-diagnosable systems, whose idea behind its construction is that it must determine the potential states of the system after each observation. The procedure consists in maintaining a state estimator (Q d , I d ) ∈ 2 X×N × N, where Q d is a set of state estimations that can be reached following an observed event-sequence, and I d is a count indicator used to store either the total number of detected faults (for κ-and [1, κ]-diagnosis) or the total number of newly detected faults (for U[1, ∞]-diagnosis). According to[START_REF] Jiang | Diagnosis of repeated/intermittent failures in discrete event systems[END_REF], the size of Q d is bounded by

Fig. 7

 7 Fig. 7 The weighted graph W associated with model G 1 of Example 1.
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 8 Fig. 8 System model G 3 of Example 7

Fig. 9

 9 Fig. 9 The IPA G 3 I associated with system model G 3 of Example 7.
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 10 Fig. 10 Diagnoser G d corresponding to the model of Example 3.
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 a Fig. 11 Augmented diagnoser Ga of Example 9 and its abstraction version.

Example 10

 10 Figure 12 depicts the twin-plant P corresponding to model G shown in figure 4a and considered in Example 3. An inspection of Figure 12 reviews that G is W F -diagnosable since there is no F -confused cycle in P. However, the model is non SF -diagnosable since, as discussed in Example 3, event-sequence ab(cd) * does not satisfy the F -Interception condition.

Fig. 13

 13 Fig. 13 Verifier V N F corresponding to model G of Example 3 (Figure 4).

Theorem 10

 10 Under assumptions A2-A6, a language L(G) is W F -diagnosable (resp. W R-diagnosable) w.r.t. P , Σ f , and Σr iff no F -confused (resp. R-confused) cycle exists in verifier V N F .Example 11 Figure13depicts a relevant part of verifier V N F corresponding to model G depicted in Figure4aand considered in Example 3. We can infer that V N F is W Fand W R-diagnosable since no F -confused cycle exists in V N F .

  [START_REF] Zhou | Computation of diagnosable fault-occurrence indices for systems with repeatable faults[END_REF])NU[1, ∞]-diagnosability Weighting graph O(min(|X| 3 × |Σ| 2 , |X| 5

  The number of states and transitions in the indistinguishable-pair automaton I are, in the worst case, 2|X| 2 and 2|X| 2 ×|Σ| 2 . The verification algorithm is based on the search of strongly connected components and the computation of the shortest paths, which can be performed in O(|X| 2 ) and O(|X| 3 × |Σ| 2 ) respectively. Thus, the overall complexity to check ∀κdiagnosability is O(|X| 3 × |Σ| 2 ), with |X| and |Σ| being respectively the numbers of states and events in the system model to diagnose.

  Under assumptions A2-A6, a system model G is W F -diagnosable w.r.t. P , Σ f , Σr if, and only if, diagnoser G d has no W Findeterminate cycle.

Table 1 A

 1 summary regarding the verification of intermittent fault diagnosability properties

	References	(Jiang et al., 2003)	
	Complexity order	) O(|X| 4	O(|X| 6
	Technique	Transition graph	Transition graph
	Problem	κ-, [1, κ]-diagnosability	U[1, ∞]-diagnosability

As shown in[START_REF] Santoro | Computation of minimal diagnosis bases of discrete-event systems using verifiers[END_REF], the case of multiple intermittent faults (and consequently recoveries) can be addressed by considering each fault type separately and assuming the other fault types as ordinary unobservable events.

The only exception is the verifier proposed by[START_REF] Moreira | Polynomial time verification of decentralized diagnosability of discrete event systems[END_REF]. See also[START_REF] Kumar | Comments on "polynomial time verification of decentralized diagnosability of discrete event systems" versus "decentralized failure diagnosis of discrete event systems": Complexity clarification[END_REF] and[START_REF] Moreira | Polynomial time verification of decentralized diagnosability of discrete event systems" versus "Decentralized failure diagnosis of discrete event systems": A critical appraisal[END_REF].

Every made assumption is to be applied to the remainder of the text unless explicitly indicated. Nevertheless, for the sake of clarity, we will indicate in all results which assumptions are being required.

Some assumptions can be relaxed for some approaches. When it is the case, it will be indicated explicitly.

Given a cycle cl in the diagnoser, we say that two cycles cl 1 and cl 2 in the system model are consistent with cl if event-sequences s 1 and s 2 associated with cl 1 and cl 2 respectively, and the event-sequence s associated with cl, share the same observation, i.e., P (s 1 ) = P (s 2 ) = s cl .

The diagnoser computation is presented at the beginning of this section (cf. Section 4.2.1).

Differently from diagnosability, discriminability is the possibility to detect the exclusive occurrence of a particular behavior of interest.

Prediagnosability consists in detecting the occurrence of an indicator trace which ensures that the fault occurrence is inevitable.
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