

Isolation and characterization of polymorphic microsatellite markers in Abudefduf luridus (Pisces: Pomacentridae)

M. C. Carvalho, Réjane D Streiff, Thomas Guillemaud, P. Afonso, Ricardo Serrao Santos, M. Leonor Cancela

▶ To cite this version:

M. C. Carvalho, Réjane D Streiff, Thomas Guillemaud, P. Afonso, Ricardo Serrao Santos, et al.. Isolation and characterization of polymorphic microsatellite markers in Abudefduf luridus (Pisces: Pomacentridae). Molecular Ecology, 2000, 9 (7), pp.993-994. 10.1046/j.1365-294x.2000.00939.x. hal-02940561

HAL Id: hal-02940561 https://hal.science/hal-02940561

Submitted on 16 Sep 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Isolation and characterization of polymorphic microsatellite markers in *Abudefduf luridus* (Pisces: Pomacentridae)

M. C. CARVALHO,*R. STREIFF,*T. GUILLEMAUD,*† P. AFONSO,‡R. S. SANTOS‡ and M. L. CANCELA*

*Universidade do Algarve-UCTRA, Campus de Gambelas, 8000 Faro, Portugal, ‡Universidade dos Açores, Departamento de Oceanografia e Pescas, 9900 Horta (Açores), Portugal

Keywords: Abudefduf, DNA markers microsatellite

Correspondence: M. Leonor Cancela. Fax: +351 289818353; E-mail: lcancela ualg.pt †Present address: USVE-INRA, BP2078, 06606 Antibes cedex, France.

The bluefin damselfish, *Abudefduf luridus* is commonly found in rocky shallow waters of the Macaronesian Islands. During the breeding season males prepare and defend nests in an open rock within their territories. Females deposit egg masses in single layers (clutches) and return to their territories after spawning. Males care for the eggs until the hatching of planktonic larvae. Behaviour observations have shown that deserted nests are generally reoccupied by other males who take care of present eggs and begin attracting females, similar to the redlip blenny (Santos 1995). Competition for territories is high and is a central factor of mating and reproductive success of the males.

A. luridus is, therefore, a promising case study species for the genetic analysis of reproductive strategies and male mating success. For this purpose, we present in this paper the development of microsatellite markers for further population analysis.

Genomic DNA from A. luridus muscle tissue was isolated using a phenol-chloroform extraction protocol (Sambrook et al. 1989). Approximately 10 μ g of DNA was digested with Sau3A (Gibco) and size selected (300-800 bp) by 1.5% LMP (low melting point) agarose gel electrophoresis. Microsatellite enriched partial genomic library was performed according to the procedure of Kijas et al. (1994) with modifications. Sizeselected fragments were ligated to adaptors (AdapF: 5' CTCTTGCTTACGCGTGGACTC-3' and AdapR: 5'GATC-GAGTCGACGCGTAAGCAAGAGCACA-3') and hybridized with 5'biotinylated, 3'aminated (CT)₁₅ oligonucleotides bound to streptavidin-coated magnetic spheres (magnesphere, Promega, Madison, WI). The hybridization was followed by several washing steps in 2× SSPE (0.3 м NaCl, 20 mм NaH₂PO₄H₂O, 2 mM EDTA, pH 7.4) and the enriched DNA was then eluted in water. DNA fragments were polymerase chain reaction (PCR) amplified, using AdapF as a primer, and ligated into BamHI digested and dephosphorylated pUC19 vector (Promega). The ligation was performed overnight cycling between 10 $^{\circ}$ C 30 s and 30 $^{\circ}$ C 30 s, in 10 μ L using, 50 ng vector, 50 ng purified PCR product, 30 mм Tris-HCl pH 7.8; 10 тм MgCl₂; 10 тм DTT; 1 тм ATP and 10 U of T₄ ligase (Promega, madison, WI). One tenth of the ligation was transformed into 50 µL Escherichia coli DH5a supercompetent cells (Gibco BRL) following Sambrook et al. (1989). A total of 400 colonies were screened according to the method described in Waldbieser (1995), based on PCR amplification with pUC19 forward or reverse universal primers and a (CT)₁₀ primer. Forty-six clones with a clear amplification were digested with PvuII restriction enzyme (Gibco) to determine the insert size. Thirty positive clones were selected and sequenced using the dideoxy chain termination method (Sanger et al. 1977). The sequencing reactions were performed manually (T7 sequencing Kit, Pharmacia), using α 35S dATP and forward/reverse M13 universal primers. Sequencing products were then separated by electrophoresis on standard acrylamide denaturing gels. Among them, seven sequences allowed the definition of primers (Table 1). Clear amplification was obtained with the following conditions: 20 µL total volume containing 20-50 ng of genomic DNA, 20 mм Tris-HCl (pH 8.4), 50 mм KCl, 0.5–1.5 mм MgCl₂ (Table 1), 60 µм of dCTP, dGTP, and dTTP, 12 µm dATP, 0.16 µL α35S dATP (12.5 mCi/mL, 1250 Ci/mmol), 2 µм each primer, 1 U Taq DNA polymerase (Gibco Brl Life Technologies, Gaithersburg, MD). The PCR was performed in a Robocycler (Stratagene Cloning Systems, La Jolla, CA) and consisted of an initial denaturation of 4 min at 94 °C followed by 30 cycles for 60 s at 94 °C, 60 s at annealing temperature (Table 1), and 60 s at 72 °C, with a final elongation of 10 min at 72 °C. Microsatellite polymorphism was analysed in 25 adult individuals from three populations from the islands of Açores and Madeira. Parameters and tests were computed using the GENPOP software version 3.1b (Raymond & Rousset 1995). The seven loci show a relatively high polymorphism, with 2-13 alleles per locus. Both expected and observed heterozygosity were very similar over all populations (Table 1) for each locus, except for locus 5. Hardy-Weinberg equilibrium could not be rejected in each population, except for the same locus. A genotypic disequilibrium was found between locus 3 and 7 in population 2 (P < 0.05) and over all populations (P < 0.05). No genotypic nor genic differentiation was found between populations. This could be due to the small sample sizes (n = 11, 9 and 5).

Acknowledgements

This work was partially supported by a Praxis grant PATER-PBICT/BIA/2055/95. P.A. was the recipient of a investigation fellowship PRAXIS XXI/BIC/2938/96 and T.G. was the recipient of a postdoctoral fellowship (BPD/4470/96) from the Portuguese Science Foundation.

References

Kijas JMH, Fowler JCS, Garbett CA, Thomas MR (1994) Enrichement of microsatellites rom the citrus genome using biotinylated oligonucleotide sequences bound to streptavidin/ coated magnetic particles. *Biotechniques*, **16**, 657–662.

Table 1 Characteristics of seven microsatellite loci in *Abudefduf luridus*. Primer sequences, repeat motifs, annealing temperatures (T_a) , PCR final concentrations of MgCl₂, number of alleles (for n = 25 individuals), observed (H_C) and expected (H_E) heterozygosities are shown

Primer sequences 5'-3'	Repeat motif	T _a ℃	MgCl ₂ (mM)	Sizs (bp)	No. of alleles	$H_{\rm E}$	H _O	Accession no.
F: CAAGTCAGACTCTGAACTCG	(CT) ₂₉	52	1	243	13	0.90	0.92	AF208493
R: TCAATGACTGAACCAGACAC								
F: TTCTGTACCATCGGTTGCGT	(AG) ₄ C(GA) ₁₀ GGA(GGTA) ₃	50	1	190	5	0.59	0.64	AF209036
R: TGTTCTACTTCGGGTTCCTC	1 10 0							
F: TAGTCTACCCCAGGGGAGAA	(GA) ₁₀	52	1	151	9	0.84	0.88	AF209037
R: CCATAATCCACACTCCTGTC								
	(CT)(CT).	52	1	235	9	0.87	0.88	AF209038
	(01)10(01)8		•	200	-	0.07	0.00	111 207 000
	(ΛC) $(\Lambda \Lambda C)$ (ΛC)	50	0.5	127	8	0.76	0.56	AF209039
	$(AC)_3 \dots (AAG)_8 G_5 A(AG)_4$	50	0.5	127	0	0.70	0.50	AI-209039
		50	1	1(0	2	0.46	0.44	A E200040
	$(GGGA)_2(AGG)_6$	52	1	168	2	0.46	0.44	AF209040
R: CATAGACGCACATTGACTGG								
F: ATCCTGCCCGGCCTTCAGTA	(GT) ₁₇	51	1.5	131	3	0.34	0.32	AF209041
R: TGTTCAGAGTGTTCTGCCCT								
	F: CAAGTCAGACTCTGAACTCG R: TCAATGACTGAACCAGACAC F: TTCTGTACCATCGGTTGCGT R: TGTTCTACTTCGGGTTCCTC F: TAGTCTACCCCAGGGGAGAA R: CCATAATCCACACTCCTGTC F: GTCCTCTGAGCCACAGTGTA R: TGTCGTGAACTCCGCTGATG F: GACGCTGCTTCCCTGTTGGC R: CCTCTGCGTGGTCATTTCTC F: ATGACACGCATGGCTAACCT R: CATAGACGCACATTGACTGG F: ATCCTGCCCGGCCTTCAGTA	F:CAAGTCAGACTCTGAACTCG $(CT)_{29}$ R:TCAATGACTGAACCAGACAC(AG) ₄ C(GA) ₁₀ GGA(GGTA) ₃ F:TTCTGTACCATCGGTTGCGT(AG) ₄ C(GA) ₁₀ GGA(GGTA) ₃ R:TGTTCTACTTCGGGTTCCTC(AG) ₁₉ R:CCATAATCCACACTCCTGTC(CT) ₁₀ (CT) ₈ R:TGTCGTGAACTCCGCTGATG(CC) ₁₀ (CT) ₈ F:GACGCTGCTTCCCTGTTGGC(AC) ₃ (AAG) ₈ G ₅ A(AG) ₄ R:CCTCTGCGTGGTCATTTCTC(GGGA) ₂ (AGG) ₆ F:ATGACACGCATGGCTAACCT(GGGA) ₂ (AGG) ₆ F:ATCCTGCCCGGCCTTCAGTA(GT) ₁₇	F: CAAGTCAGACTCTGAACTCG R: TCAATGACTGAACCAGACAC(CT)52F: TCTGTACCATCGGTTGCGT F: TTCTGTACCATCGGGTGCGT(AG) 50 R: TGTTCTACTTCGGGTTGCGT F: TAGTCTACCCCAGGGGAGAA(GA) 50 R: CCATAATCCACACTCCTGTC F: GTCCTCTGAGCCACAGTGTA F: GTCCTCTGAGCCACAGTGTA F: GACGCTGCTTCCCTGTTGGC F: ATGACACGCATGGCTAACCT F: ATGACACGCATGGCTAACCT(GA)F: AGACGCTGCTTCCCTGTTGGC F: ATGACACGCATGGCTAACCT F: ATGACACGCATGGCTAACCT(GC) 50 R: CCTCTGCGTGGTCATTTCTC F: ATGACACGCATGGCTAACCT(GGA) 50 R: CATAGACGCACAGTGTA F: ATGACACGCATGGCTAACCT(GGGA) 51	F: CAAGTCAGACTCTGAACTCG (CT) ₂₉ 52 1 R: TCAATGACTGAACCAGACAC (CT) ₂₉ 52 1 F: TTCTGTACCATCGGTTGCGT (AG) ₄ C(GA) ₁₀ GGA(GGTA) ₃ 50 1 R: TGTTCTACTTCGGGTTCCTC (GA) ₁₉ 52 1 F: TAGTCTACCCCAGGGGAGAA (GA) ₁₉ 52 1 R: CCATAATCCACACTCCTGTC (CT) ₁₀ (CT) ₈ 52 1 F: GTCCTCTGAGCCACAGTGTA (CT) ₁₀ (CT) ₈ 52 1 R: TGTCGTGAACTCCGCTGATG (CT) ₁₀ (CT) ₈ 52 1 F: GACGCTGCTTCCCTGTTGGC (AC) ₃ (AAG) ₈ G ₅ A(AG) ₄ 50 0.5 R: CCTCTGCGGTGGTCATTTCTC (GGGA) ₂ (AGG) ₆ 52 1 F: ATGACACGCACATGGCTAACCT (GGGA) ₂ (AGG) ₆ 52 1 R: CATAGACGCACATTGACTGG (GT) ₁₇ 51 1.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Primer sequences 5'-3' Repeat motif T_a °C MgCl ₂ (mM) (bp) alleles H_E F: CAAGTCAGACTCTGAACTCG (CT) ₂₉ 52 1 243 13 0.90 R: TCAATGACTGAACCAGACAC (AG) ₄ C(GA) ₁₀ GGA(GGTA) ₃ 50 1 190 5 0.59 F: TGTCTGTACCACGGGGGGAGAA (GA) ₁₉ 52 1 151 9 0.84 R: CCATAATCCACACGGTGGTA (CT) ₁₀ (CT) ₈ 52 1 235 9 0.87 R: TGTCGTGGAACTCCGGTGGTG (AC) ₃ (AG) ₈ G ₅ A(AG) ₄ 50 0.55 127 8 0.76 F: ATGACACGCACAGTGGTAACCT (GGGA) ₂ (AGG) ₆ 52 1 168 2 0.46 R: CCTCTGCGCGGCCTTCAGTA (GT) ₁₇ 51 1.5 131 3 0.34	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

- Raymond M, Rousset F (1995) GENEPOP (Version 3.1b) population genetics software for exact test and ecumenicism. *Journal* of *Heredity*, **86**, 248–249.
- Sambrook J, Fritscher EF, Maniatis T (1989) *Molecular Cloning: a Laboratory Manual*. 2nd edn. Cold Spring Harbor Laboratory Press, New York.
- Sanger F, Nicklen S, Coulson AR (1977) DNA Sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the USA, 74, 5463–5467.
- Santos RS (1995) Allopaternal care in the redlip blenny. *Journal of Fish Biology*, **47**, 350–353.
- Waldbieser GC (1995) PCR-based identification of AT-Rich triand tetranucleotide repeat loci in an enriched plasmid library. *Biotechniques*, **19**, 742–744.