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Abstract—Feedback is known to enlarge the capacity region
of a Gaussian Broadcast Channel (GBC) with independent noise
realizations at the receivers, and an average power constraint
at the transmitter. The capacity enlargement may occur even
when there is noisy feedback from only one of the two receivers.
However, recent results show the existence of a feedback noise
threshold, beyond which one-sided feedback from only the
stronger receiver is futile in enlarging the capacity region. The
current paper presents a tight characterization of the feedback
noise threshold, which separates the regimes where feedback
from only the stronger receiver enlarges the capacity or leaves
it unchanged. The scheme used to prove this result also leads to
some interesting observations on noisy feedback from only the
weak receiver.

I. INTRODUCTION

That feedback does not improve the capacity of memoryless
point-to-point channels is well known [1]. A similar conclu-
sion for physically degraded discrete memoryless Broadcast
Channels (BC) and physically degraded memoryless Gaussian
Broadcast Channels (GBC) was shown by El Gamal in [2] and
[3] respectively. This property however does not necessarily
extend to other memoryless BCs, for example, the more
general stochastically degraded BC. The first example of a BC
where feedback can enlarge the capacity region was presented
by Dueck [4]. Ozarow and Leung developed a feedback
coding scheme for stochastically degraded GBCs, and showed
that perfect noiseless feedback from both the receivers can
enlarge the capacity region [5]. It was later shown that perfect
noiseless feedback from the stronger receiver was sufficient to
enlarge the capacity region of a two user GBC [6].

The optimism of capacity enlargement by feedback did
carry over to a variety of models. Recent works considered
BCs with noisy feedback [7], [8] and rate limited feedback [9].
In a related result, it was shown in [10] that noisy feedback
always enlarges the capacity region of a Gaussian Multiple
Access Channel (MAC), even when the feedback is only
available to a single transmitter. In fact, a MAC-BC duality
while employing linear feedback coding schemes with noise-
less feedback is known [11], allowing many of the MAC
results to be relevant for the BC as well. Furthermore, [12]
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showed that the gains due to feedback can be potentially
unbounded in correlated noise channels. In summary, capacity
enlargement for Gaussian BCs using noisy feedback used to
be the general optimism around, for models which are not
physically degraded. Somewhat surprisingly in this context,
it was recently shown that this optimism is not always well
founded [13]. More specifically, [13] proved that for GBCs that
are not physically degraded and have different noise variances
at the two receivers, passive noisy feedback only from the
stronger receiver does not enlarge the capacity region when
the feedback noise variance is above a certain threshold.

The main contribution of the current paper is twofold.
We first characterize the exact threshold which separates
the regime where passive noisy feedback from the stronger
receiver enlarges the capacity region from the regime where it
is left unchanged. The feedback scheme that we present also
enables us to show a capacity enlargement for several regimes
where the noisy feedback is only from the weaker user.

The paper is structured as follows: in the next section,
we describe the system model and state the main result of
the paper. The proof of capacity enlargement is provided by
constructing a suitable feedback scheme, and showing that the
achievable rates lead to a capacity enlargement. This is shown
in Section III for low average powers. The results are then
extended to arbitrary powers in Section IV. Finally Section V
concludes the paper.

II. SYSTEM MODEL AND MAIN RESULTS

Consider a memoryless two-user scalar GBC. Assume a
noisy feedback link from receiver 1 to the transmitter, as
shown in Figure 1.

In this model, Xi represents the transmitted signal at the
discrete time instant i. The symbols Y1,i and Y2,i denote the
respective outputs at receivers 1 and 2 at time instant i, where

Yk,i = Xi + Zk,i, k ∈ {1, 2}. (1)

The additive (forward) channel noise sequences {Z1,i} and
{Z2,i} are independent zero-mean memoryless Gaussian se-
quences with variances σ2

1 and σ2
2 respectively. At the end of

channel use i, the transmitter observes the causal noisy feed-
back signal Y1,i+Zfb,i, where the additive noise sequence on
the feedback channel {Zfb,i} is assumed to be a memoryless
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Ŵ1

Ŵ2
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Fig. 1. Scalar Gaussian broadcast channel with (causal) noisy feedback .

zero-mean Gaussian sequence with variance σ2
fb, independent

of the forward noise sequences {Z1,i} and {Z2,i}.
In this setup, we aim to send two independent messages,

say W1 and W2, to receivers 1 and 2. The transmitted symbol
at time i can be a function of the messages and the causal but
noisy feedback of user 1’s signal, i.e.,

Xi = gi(W1,W2, Y
i−1
1 + Zi−1fb ), (2)

where Zi−1fb , (Zfb,1, · · · , Zfb,i−1) and Y i−11 ,
(Y1,1, · · · , Y1,i−1). A pair of messages (W1,W2), uniformly
chosen from {1, · · · , 2nR1} × {1, · · · , 2nR2}, needs to be
conveyed using n uses of the channel. The transmissions are
power constrained to meet a long term average power of P . We
are interested in communication schemes which can achieve an
arbitrary small average decoding error probability, possibly by
taking n large enough. The definitions of achievable rates and
capacity region follow along standard lines, see [14]. We omit
the details and summarize the capacity region in the following
definition.

Definition 1. The capacity region Cnoisy−fb is the closure of
the set of all achievable rate-pairs (R1, R2).

Denote by Cwo−fb the capacity region of the same broadcast
model without feedback. When σ2

1 < σ2
2 , it is well known that

Cwo−fb is the collection of all (R1, R2) such that for some
0 ≤ θ ≤ 1,

R1 ≤
1

2
log

(
1 +

θP

σ2
1

)
R2 ≤

1

2
log

(
1 +

(1− θ)P
θP + σ2

2

)
.

(3)

By renaming, when σ2
1 ≥ σ2

2 , the set of (R1, R2) such that

R1 ≤
1

2
log

(
1 +

(1− θ)P
θP + σ2

1

)
R2 ≤

1

2
log

(
1 +

θP

σ2
2

) (4)

for some θ ∈ [0, 1] determines the capacity region. Clearly,

Cwo−fb ⊆ Cnoisy−fb. (5)

For equal noise variances σ2
1 = σ2

2 , [8] showed that the
inclusion in (5) is strict, irrespective of the feedback noise
variance σ2

fb, i.e., noisy feedback from one of the two receivers
always enlarges the capacity region. However, [13] showed
that the inclusion (5) holds with equality, Cnoisy−fb = Cwo−fb,
whenever

σ2
1 < σ2

2 , (6)

and

σ2
fb

σ2
1

≥ 1
σ2
2

σ2
1
− 1

. (7)

Essentially, [13] constructs an outerbound to the capacity
region, and shows that under conditions (6) and (7) it matches
Cwo−fb. Thus, in this parameter regime, noisy feedback from
only the stronger receiver does not lead to an enlargement in
capacity. This regime is marked as the fully shaded region in
Figure 2. While it is known that each set of parameters in
the shaded portion makes the corresponding feedback futile in
enlarging the capacity region, it is unclear whether this region
extends further. Our main result here is that the boundary
of shaded portion is tight when there is feedback only from
the stronger receiver. That means, for any set of parameters
outside the shaded portion with σ2

1 < σ2
2 the inclusion

Cwo−fb ⊂ Cnoisy−fb is strict. We give a slightly more general
result below by proving that the inclusion is strict also for a
wide regime of parameters where σ2

1 > σ2
2 , see the patterned

region in Figure 2.

Theorem 1. Cwo−fb ⊂ Cnoisy−fb holds whenever

σ2
fb

σ2
2

− 1 <
σ2
fb

σ2
1

<
1

σ2
2

σ2
1
− 1

, (8)

where the inclusion is strict.

Notice that when σ2
1 = σ2

2 , the theorem implies a capacity
enlargement for any σ2

fb < ∞, as already shown in [8].
Achievable schemes which can enlarge Cwo−fb, while in the
patterned region of Figure 2, will be presented in the next two
sections, thereby proving the theorem. We like to point out
that no claim is made about the un-shaded portion in Figure 2,
though the achievable schemes presented here fail to enlarge
the capacity region in this regime.

III. ZERO-FORCING ACHIEVABLE SCHEME

While several achievable schemes incorporating feedback
are available, the main difficulty is to have tractable rate
expressions which can show the enlargement. Notice that rate
regions incorporating noisy feedback are typically stated in
terms of the intersections of several hyperplanes, and are thus
difficult to express in closed form. Some simplifications are
possible, for example, when σ2

1 = σ2
2 , the rate region proposed

in [8] is shown to achieve rate-pairs outside Cwo−fb, by suitable
substitution of auxiliary variables, and thereby simplifying
the expressions. However extending this to find the region
where such enlargement occurs seems intractable, beyond
approximations in the neighbourhood of the symmetric noise



model. Fortunately, it turns out that a simpler coding scheme
suffices to show the enlargement we check for, this maybe of
independent interest. We first show the desired enlargement
when the average power P is small enough. This in turn can
be used to show an enlargement for higher average powers
also, the latter result is given in the next section.

We will resort to linear feedback coding schemes, however
the use of feedback will be limited to successive transmissions
only. More specifically, we construct two separate code-books
for the two messages, and convey them as follows. Let U
denote the symbols to the first receiver, and V be the symbols
to the second receiver. In order to send the pair of symbols
(ui, vi), the transmitter will choose

x2i−1 = ui + vi (9)

x2i =
√
α
(
ui − vi + β (Z1,2i−1 + Zfb,2i−1)

)
, (10)

where α and β are appropriate scaling parameters. Notice that
the encoder can compute Z1,2i−1+Zfb,2i−1 using the feedback
from instant 2i− 1.

We choose the parameters in a way that the input power
at each time instant equals P . In particular, to ensure the
power constraint for input x2i−1, let U ∼ N (0, θ′P ) and
V ∼ N (0, (1− θ′)P ) for some θ′ ∈ [0, 1]. Further, let

Ẑi ,
σ2
1

σ2
1 + σ2

fb

(Z1,2i−1 + Zfb,2i−1) (11)

be the MMSE estimate of Z1,2i−1 given Z1,2i−1+Zfb,2i−1 and
K , σ4

1

σ2
1+σ

2
fb

, its variance, and set β , γ K
σ2
1

. These definitions
allow us to rewrite (10) as

x2i =
√
α
(
ui − vi + γẐi

)
. (12)

To ensure the power constraint for input x2i we choose α and
γ such that

αP + αγ2K = P (13)

and thus in particular 1
α = 1+ γ2K

P . The receivers operate as
follows.
Decoder 1. After every two consecutive channel uses, de-
coder 1 computes

Y1,2i−1 +
Y1,2i√
α

= 2ui + γẐi + Z1,2i−1 +
Z1,2i√
α
. (14)

Decoder 2. After every two consecutive channel uses, de-
coder 2 computes

Y2,2i−1 −
Y2,2i√
α

= 2vi − γẐi + Z2,2i−1 −
Z2,2i√
α
. (15)

Analysis of the probability of error: Notice that our receivers
are essentially Zero-Forcing receivers, resulting in single user
channels to each receiver. The achievable rate pair (R̃1, R̃2)
using Gaussian codebooks can now be computed in a straight-
forward fashion as

R̃1 =
1

4
log2

(
1 +

4(1− θ′)P
σ2
1(2 + γ2K/P ) + (γ2 + 2γ)K

)
(16)

R̃2 =
1

4
log2

(
1 +

4θ′P

σ2
2(2 + γ2K/P ) +Kγ2

)
. (17)
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Fig. 2. Noisy feedback from the stronger user does not enlarge the capacity
region when the noise variances fall in the shaded region.

It is worthwhile to note here that Ẑi and Z1,2i−1 are
correlated with covariance K, and this works in our favor.
Notice that small negative values of γ assist in improving the
signal to interference ratio (SINR) in (16) because of the linear
γ term in the denominator.

We will now consider the case when σ2
1 < σ2

2 . In order
to show that one can achieve rate-pairs outside the region
Cwo−fb, we first show that this is indeed possible at low average
powers. We will target a specific rate pair in the boundary
of Cwo−fb, and show that this is dominated by another rate-
pair obtained by the proposed feedback scheme. In fact, we
choose the rate-pair (r1, r2) corresponding to θ = 1

2 in (3).
Using (16)–(17) we can have a rate-pair (R̃1, R̃2) dominating
(r1, r2), if we can choose a θ′ ∈ [0, 1] such that

1 +
4(1− θ′)P

σ2
1(2 + γ2K/P ) + (γ2 + 2γ)K

>

(
1 +

P

2σ2
1

)2

1 +
4θ′P

σ2
2(2 + γ2K/P ) +Kγ2

≥
(
1 +

P/2

P/2 + σ2
2

)2

.

Equivalently,

4(1− θ′)
σ2
1(2 + γ2K/P ) + (γ2 + 2γ)K

>
P

4σ4
1

+
1

σ2
1

(18)

4θ′

σ2
2(2 + γ2K/P ) + γ2K

≥ P

4(P2 + σ2
2)

2
+

1
P
2 + σ2

2

.

(19)

We will show that the desired choices for θ′ ∈ [0, 1] and γ exist
under the conditions in the theorem and when the power P is
sufficiently small. In particular, we couple θ′ and γ and choose
them to depend on the power P . To make these dependencies
explicit, we reparametrize above equations in terms of a single
real parameter a that does not depend on P . (The exact choice



of a will be explained later). For convenience of notation we
use the short-hand

µ ,
a2

2
− 1

4σ2
2

. (20)

Moreover, we restrict the power P such that |µP | ≤ 1 and set

θ′ =
1

2
(1 + µP ) (21)

γ = −a P√
K
. (22)

Substituting these terms into (18)–(19), we have to show that

4(1− 1
2 (1 + µP ))

σ2
1(2 + a2P ) + (a2P 2 − 2aP

√
K)

>
P

4σ4
1

+
1

σ2
1

(23)

2(1 + µP )

σ2
2(2 + a2P ) + a2P 2

≥ P

4(P2 + σ2
2)

2
+

1
P
2 + σ2

2

. (24)

Notice that both the above expressions hold with equality at
P = 0. We will show that the derivates of the expressions
on the Left-Hand Sides (LHS) dominate the derivates of the
expressions on the Right-Hand Sides (RHS) as P → 0+.
Differentiating the above LHS and RHS, while setting P = 0,
we obtain the following conditions,

−µσ2
1 −

1

2
(σ2

1a
2 − 2a

√
K) >

1

4
(25)

4µσ2
2 − 2σ2

2a
2 ≥ −1. (26)

In order to show the required dominance, it is sufficient to
show equality in (26), along with strict inequality in (25).
Clearly (26) is satisfied by the definition of µ in (20). Let
us focus on (25) where we substitute the expression for µ in
(20) to obtain:

−σ2
1a

2 +
√
Ka+

1

4

(
σ2
1

σ2
2

− 1

)
> 0. (27)

Solving the quadratic will give the possible solutions for a.
Checking the discriminant, a real solution is possible when

σ2
fb

σ2
1

<
1

σ2
2

σ2
1
− 1

,

which is indeed the relevant condition when σ2
1 < σ2

2 . We
conclude that one can achieve a strictly higher rate to user 1
than the no feedback rate considered, while maintaining the
the corresponding no feedback rate to user 2, in the limit of
small P . This completes the proof of our result when σ2

1 < σ2
2

and P small enough.
We now turn our attention to the case where the noisy

feedback is only from the weaker receiver. Assume σ2
1 > σ2

2

now. While our technique essentially remains the same as
before, a judicious choice of the parameters is required. We
choose the rate pair (r1, r2) corresponding to θ =

σ2
2

σ2
1+σ

2
2

in (4). Using (16)–(17) we can have a rate-pair (R̃1, R̃2)
dominating (r1, r2) if there exists a θ′ ∈ [0, 1] such that

1 +
4(1− θ′)P

σ2
1(2 + γ2K/P ) + (γ2 + 2γ)K

>

(
1 +

P

L

)2

1 +
4θ′P

σ2
2(2 + γ2K/P ) +Kγ2

≥
(
1 +

P

σ2
1 + σ2

2

)2

,

where L =
σ2
2P

σ2
1

+ σ2
1 + σ2

2 . Equivalently

4(1− θ′)
σ2
1(2 + γ2K/P ) + (γ2 + 2γ)K

>
P

L2
+

2

L
(28)

4θ′

σ2
2(2 + γ2K/P ) + γ2K

≥ P

(σ2
1 + σ2

2)
2
+

2

σ2
1 + σ2

2

.

(29)

Let us couple θ′ and γ and reparameterize both of them in
terms of the single parameter a that we choose to be real. For
convenience we again introduce the short-hand

µ ,
a2

2
+

1

2(σ2
1 + σ2

2)
(30)

and restrict the power P such that −1 ≤ µP ≤ σ2
1

σ2
2

. We then
set

θ′ =
σ2
2

σ2
1 + σ2

2

(1 + µP ) (31)

γ = −a P√
K
. (32)

and substitute these terms into (28)–(29) leading to

4(1− σ2
2

σ2
1+σ

2
2
(1 + µP ))

σ2
1(2 + a2P ) + (a2P 2 − 2aP

√
K)

>
P

L2
+

2

L
(33)

4
σ2
2

σ2
1+σ

2
2
(1 + µP )

σ2
2(2 + a2P ) + a2P 2

≥ P

(σ2
1 + σ2

2)
2
+

2

σ2
1 + σ2

2

. (34)

Since we have equality in both the above expressions at
P = 0, we will now show that the derivates of the LHS
expressions dominate those of the RHS in the limit of small P .
Differentiating and setting P = 0 will yield the new conditions
as

−µσ2
1 −

1

2
(σ2

1a
2 − 2a

√
K) >

σ2
2(σ

2
1 − 2σ2

2)

σ2
1

(35)

4µσ2
2 − 2σ2

2a
2 ≥ σ2

2

σ2
1 + σ2

2

. (36)

Since (36) is automatically satisfied by the definition of µ in
(30), we can focus on (35). Similar to the previous case we
get a quadratic equation in a by substituting the expression
for µ in (35) to get

−σ2
1a

2 + 2
σ2
1

σ2
1 + σ2

2

a
√
K − c(c− 1)

(c+ 1)2
> 0. (37)



where c =
σ2
1

σ2
2

. Solving the quadratic will give the possible
solutions for a. Checking the discriminant, a real solution is
indeed possible when

σ2
fb

σ2
2

− 1 <
σ2
fb

σ2
1

,

which is the other condition of Theorem ??. In fact this is the
relevant condition when σ2

1 > σ2
2 . Essentially, we have shown

a capacity enlargement at small values of P , whenever the
conditions in the theorem are satisfied. Let us now consider
higher values of P in the next section.

IV. SCHEME FOR ARBITRARY POWERS

We restricted our attention to the low power regime in the
previous section. We show that an enlargement at low powers
will naturally lead to an enlargement at high powers. For
brevity we will only prove this for the case where feedback is
available from the stronger receiver. The proof is similar when
feedback is available from the weaker receiver.

Let us split the message M2 into 2 sub-messages M2,1

and M2,2 of respective rates R̃2,1 and R2,2. Only a small
fraction of the available power will be spent towards conveying
(M1,M2,1) to the respective users. Assume that a power of ε
is set aside for these. The remaining power of P − ε is solely
used to convey the information in M2,2. We will choose the
power ε small enough such that the analysis in Section III
holds true, and hence we assume that there is a capacity
enlargement when the power is indeed ε. Let us encode M2,1 to
the variable V1 ∼ N (0, (1−θ′)ε) and M2,2 to the independent
variable V2 ∼ N (0, P − ε). Message M1 is encoded using
U ∼ N (0, θ′ε) similar to the previous section. The details
of the random coding arguments and error computation are
omitted, these are available in standard textbooks [14]. Now,
similar to the previous section, over two successive channel
uses, the sender transmits

x2i−1 = ui + v1,i + v2,2i−1 (38)

x2i =
√
α(ui − v1,i + γẐi) + v2,2i (39)

As in the last section, the parameters α and γ are chosen to
satisfy the average power criteria of P . We now infer the
message via the following steps:
• Infer message M2,2 by treating everything as noise.

Clearly the transmissions in successive instants are in-
dependent, and we can treat the rest of the transmissions
as memoryless Gaussian noise sequences while decoding
the V2 codewords.

• After inferring this, subtract the V2 codewords to obtained
a clean broadcast channel with remaining transmit power
ε, and apply the decodings discussed in Section III.

Therefore, operating at an enlarged rate-pair under the average
power ε by suitable choice of parameters in the feedback
coding scheme of Section III, we can show the achievability
of a rate pair (R̃1, R̃2) that satisfies

R̃1 >
1

2
log2

(
1 +

θε

σ2
1

)
=

1

2
log2

(
1 +

θ′′P

σ2
1

)
(40)

and

R̃2 = R̃2,1 +R2,2

=
1

2
log2

(
1 +

(1− θ)ε
θε+ σ2

2

)
+

1

2
log2

(
1 +

P − ε
ε+ σ2

2

)
(41)

=
1

2
log2

(
1 +

(1− θ′′)P
θ′′P + σ2

2

)
, (42)

where θ is appropriately chosen, and θ′′ = θ εP . In short, we
used the enlargement for small values of power, and allotted
all the remaining power for transmissions to the weak receiver.
This allowed us to breach the no-feedback capacity region.

V. CONCLUSION

We characterized the feedback noise variance thresholds
which determine whether feedback from the stronger receiver
leads to a capacity enlargement on the Gaussian BC or not.
Interestingly the known thresholds indeed turned out sharp,
though the earlier results were derived for a genie-aided
feedback model [13]. This is mildly surprising, since access
to the feedback noise realizations at the receiver will always
help improve the rate pairs obtained in Section III (since the
receiver can always subtract the noise added due to feedback to
obtain the exact realization of Z1). While we chose a scheme
simple enough to make the analysis possible, this may not
be optimal for achieving the feedback capacity region. This
is the reason why we cannot claim a no enlargement regime
for the weak receiver feedback, though our scheme fails for
high feedback noise variances there too. Showing thresholds
for noisy feedback from the weaker receiver is an interesting
problem, which is part of our future work.
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