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? LTCI, Télécom Paris, Université Paris-Saclay, Palaiseau, 91120, France
{pierre.escamilla@gmail.com, abdellatif.zaidi@u-pem.fr}

{michele.wigger@telecom-paristech.fr}

Abstract—This paper studies the problem of discriminating
two multivariate Gaussian distributions in a distributed manner.
Specifically, it characterizes in a special case the optimal type-
II error exponent as a function of the available communication
rate. As a side-result, the paper also presents the optimal type-II
error exponent of a slight generalization of the hypothesis testing
against conditional independence problem where the marginal
distributions under the two hypotheses can be different.

I. INTRODUCTION

Consider the single-sensor single-detector hypothesis testing
scenario in Fig. 1. The sensor observes a source sequence
Xn , (X1, . . . ,Xn) and communicates with the detector,
who observes source sequence Yn , (Y1, . . . ,Yn), over
a noise-free bit-pipe of rate R ≥ 0. Here, n is a positive
integer that denotes the blocklength and the sequence of pairs
{(Xt,Yt)}nt=1 is independent and identically distributed (i.i.d)
according to a jointly Gaussian distribution of zero-mean and
of joint covariance matrix that depends on the hypothesis
H ∈ {0, 1}. Under hypothesis

H = 0 :

{(
Xt

Yt

)}n
t=1

i.i.d. ∼ N (0,K), (1)

and under hypothesis

H = 1 :

{(
Xt

Yt

)}n
t=1

i.i.d. ∼ N (0, K̄). (2)

Based on its observations Yn and the message it receives
from the sensor, the Detector decides on the hypothesis by
producing Ĥ ∈ {0, 1}. The goal of this decision is to maximize
the exponential decrease of the probability of type-II error (i.e.,
of guessing Ĥ = 0 when H = 1), while ensuring that the
probability of type-I error (i.e., guessing Ĥ = 1 when H = 0)
goes to zero as n→∞ .

The described single-sensor single-detector problem has
previously been studied in [1]–[4] for various joint distribu-
tions on the i.i.d. observations. In particular, [4] identified the
largest type-II exponent that is achievable in a setup that they
termed testing against conditional independence. An explicit
expression for the vector Gaussian case was recently found
in [5] (see Theorem 2 therein which actually provides the
solution of a more general, distributed, setting). For all other
cases a computable single-letter characterization of the largest
achievable type-II error exponent remains open. This line of

works has also been extended to multiple sensors [2], [4]–
[6], multiple detectors [7], [8], interactive terminals [9]–[11],
multi-hop networks [12]–[16], noisy channels [17], [18] and
to scenarios with privacy constraints [19]–[21].

In this paper we present a computable single-letter charac-
terization of the largest type-II error exponent achievable for
the Gaussian vector hypothesis testing problem for a class of
matrices K and K̄. Our converse proof starts from the known
multi-letter expression for this problem [1] and connects it to
related results. The achievability proof is based on the coding
scheme proposed in [3].

We end this introductory section with some remarks on
notation. When two random variables (X,Y ) are independent
given a third random variable Z (i.e. PXY Z = PZPX|ZPY |Z),
we say (X,Z, Y ) form a Markov chain and write X−
−Z−
−Y .
Both D(PX‖PX̄) and D(X‖X̄) denote the Kullback-Leiber
divergence between two pmfs PX and PX̄ . h(·), I(·; ·) and
I(·; ·|·) denote continuous entropy, mutual information and
conditional mutual information. The set of all real numbers
is denoted by R. Boldface upper case letters denote ran-
dom vectors or deterministic matrices, e.g., X, where the
context should make the distinction clear. We denote the
covariance matrix of a real-valued vector X with distribution
PX by KX = EPX

[XX†], where † indicates the transpose
operation. Similarly, we denote the cross-correlation of two
zero-mean vectors X and Y with joint distribution PXY

by KXY = EPXY
[XY†], the conditional covariance matrix

of X given Y with p.d.f PXY and with p.d.f P̄XY by
KX|Y = EPXY

[XX†|Y] and K̄X|Y = EP̄XY
[XX†|Y],

respectively. Finally, for a matrix M, we denote its inverse (if it
exists) by M−1 its determinant (if it exists) by |M|, its Moore-
Penrose pseudo-inverse by M+ and its pseudo-determinant by
|M|+.

II. FORMAL PROBLEM STATEMENT

The sequences Xn and Yn are as described before, where

Xn Sensor Detector
M ∈ {1, . . . ,Wn}

Yn

Ĥ ∈ {0, 1}

Fig. 1. Vector Gaussian hypothesis testing problem

we denote by m the dimension of each vector Xt and by q



the dimension of each vector Yt. The Sensor, which observes
Xn applies an encoding function

φn : Rm×n →M = {1, . . . ,Wn} (3)

to this sequence and sends the resulting index

M = φn(Xn) (4)

to the detector. Based on this message M and its observation
Yn, the detector then applies a decision function

ψn : M× Rq×n → {0, 1} (5)

to decide on the hypothesis

Ĥ = ψn(M,Yn). (6)

The Type-I and type-II error probabilities at the detector are
defined as:

αn , Pr
{
Ĥ = 1

∣∣H = 0} (7)

βn , Pr
{
Ĥ = 0

∣∣H = 1}. (8)

Definition 1. Given rate R ≥ 0, an error-exponent θ is said
achievable if for all blocklengths n there exist functions φn
and ψn as in (3) and (5) so that the following limits hold:

lim
n→∞

αn = 0, (9a)

θ ≤ lim
n→∞

− 1

n
log βn (9b)

and
lim
n→∞

1

n
log2 Wn ≤ R. (9c)

Definition 2 (Exponent-rate function). For any rate R ≥ 0,
the exponent-rate function E(R) is the supremum of the set
of all achievable error-exponents.

In essence, the problem of vector Gaussian hypothesis
testing that we study here amounts to discriminating two
covariance matrices. As we already mentioned the solution
of this problem is known only in few special cases, namely
the cases of testing against independence and testing against
conditional independence [1], [4], and [5, Theorem 2].

III. OPTIMAL EXPONENT FOR A CLASS OF COVARIANCE
MATRICES

Let KX and K̄X be m-by-m dimensional matrices, KY and
K̄Y be q-by-q dimensional matrices, and KXY and K̄XY be
m-by-q dimensional matrices such that

K =

[
KX KXY

K†XY KY

]
and K̄ =

[
K̄X K̄XY

K̄†XY K̄Y

]
. (10)

Further, define the condition C:

C : KXY=arg min
G

log

∣∣∣∣∣
[
I 0
0 K̄XYK̄−1

Y

]
K̄

[
I 0
0 K̄XYK̄−1

Y

]†∣∣∣∣∣
+

− log |Γ|

+Tr


([

I 0
0 K̄XYK̄−1

Y

]
K̄

[
I 0
0 K̄XYK̄−1

Y

]†)+

Γ


(11)

where the minimum is over all m-by-q matrices G such that
the matrix

Γ ,

[
KX G†K̄−1

Y K̄†XY

K̄XYK̄−1
Y G K̄XYK̄−1

Y KYK̄−1
Y K̄†XY

]
. (12)

is positive semi-definite, i.e.,

Γ � 0. (13)

The following theorem provides an explicit analytic expression
of the exponent-rate function of the vector Gaussian hypothesis
testing problem of Figure 1 when condition C in (11) is
fulfilled.

Theorem 1. If C is satisfied, then

E(R)

=
m

2
+
q

2
+

1

2
log
|K̄Y|
|KY|

+
1

2
Tr
(
K̄−1

Y KY

)
+

1

2
log |K̄X|Y| − log |KX −KXYK̄−1

Y

×K̄†XY(K̄XYK̄−1
Y KYK̄−1

Y K̄†XY)+K̄XYK̄−1
Y K†XY|

+
1

2
Tr
(
K̄−1

X|Y×(
KX −KXYK̄−1

Y K̄†XY

(
K̄XYK̄−1

Y KYK̄−1
Y K̄†XY

)+

×K̄XYK̄−1
Y K†XY

))
+ max min

{
R+

1

2
log
∣∣I−ΩKX|Y

∣∣,
1

2
log
∣∣∣I + ΩKXY

×

(
K−1

Y −K−1
Y K̄YK̄+

XYK̄XYK̄−1
Y

)
K†XY

∣∣∣} ,(14)

where the maximization in the last term is over all matrices
0 � Ω � K−1

X|Y and where K̄+
XY designates the Moore-

Penrose pseudo inverse of K̄XY.

Proof: See Section IV.

Remark 1. The theorem recovers the result of [4, Theorem
7] in the special case of testing against independent and m =
q = 1. In this case, when the distribution PXY used under
the null hypothesis H = 0 describes the channel Y = X +N
with X and N independent Gaussian both with zero mean
and respective variances σ2

X and σ2
N , and the joint law P̄XY

under H = 1 describes a pair of independent Gaussians of
variances σ2

X + σ2
N and σ2

N , then:

E(R) =
1

2
log

(
σ2
X + σ2

N

σ2
N + 2−2Rσ2

X

)
. (15)

IV. PROOF OF THEOREM 1
We first derive an auxiliary result. Consider a slight gen-

eralization of the discrete memoryless single-sensor single-
detector hypothesis testing against conditional independence
problem where the marginals are not identical under the two
hypotheses. Specifically, consider the problem of Figure 2
where under

H = 0 : {(Xt, Ut, Vt)}nt=1 i.i.d. ∼ PXUV (16a)



Xn Sensor Detector
M ∈ {1, . . . ,Wn}

(Un, V n)

Ĥ2 ∈ {0, 1}

Fig. 2. Hypothesis testing with two detector observations.

H = 1 : {(Xt, Ut, Vt)}nt=1 i.i.d. ∼ P̄XUV = P̄U P̄X|U P̄V |U .

(16b)

for arbitrary distributions PXUV , P̄U , P̄X|U , and P̄V |U .
In this new setup the message M and the decision Ĥ are

obtained as described in the previous section if the observation
Yn is replaced by the pair of sequences Un , (U1, . . . ,Un)
and Vn , (V1, . . . ,Vn). Type-I and type-II error proba-
bilities, achievable exponents, and exponent-rate function are
defined as in Section II.

Lemma 1. If the joint distribution PXU under the null
hypothesis satisfies

PXU = arg min
P̃XU :P̃X=PX
P̃U=PU

D(P̃XU‖P̄XU ), (17)

the rate exponent function is given by

E(R) = D(PXU‖P̄XU ) + EPU
[
D(PV |U‖P̄V |U )

]
+ max I(S;V |U) (18)

where in (18) the maximization is over all conditionals p.m.f.s
PS|X for which I(S;X|U) ≤ R.

Proof of Lemma 1: By [1, Theorem 4]:

E(R) = lim
n→∞

En(R), (19)

where

En(R) , max
φn :

log2 |φn|≤nR

1

n
D(Pφn(Xn)UnV n‖P̄φn(Xn)UnV n).

(20)
Next, notice that by the chain rule for KL divergence, the
data processing inequality, and some simple manipulations,
we have

D(Pφn(Xn)UnV n‖P̄φn(Xn)UnV n)

= D(Pφn(Xn)Un‖P̄φn(Xn)Un)

+EPφn(Xn)Un

[
D(PV n|φn(Xn)Un‖P̄V n|Un)

]
(21)

= D(Pφn(Xn)Un‖P̄φn(Xn)Un) + I(V n;φn(Xn)|Un)

+nEPU
[
D(PV |U‖P̄V |U )

]
(22)

(a)

≤ nD(PXU‖P̄XU ) + I(V n;φn(Xn)|Un)

+nEPU
[
D(PV |U‖P̄V |U )

]
, (23)

where (a) holds by the data-processing inequality for KL-
divergence and because Xn and Un are i.i.d.

We can thus bound E(R) as:

E(R) ≤ D(PXU‖P̄XU ) + EPU
[
D(PV |U‖P̄V |U )

]
+ lim
n→∞

max
φn :

log2 |φn|≤nR

1

n
I(V n;φn(Xn)|Un). (24)

Next we use that by [1, Theorem 4] and [4, Theorem 3] both
sides of

lim
n→∞

max
φn :

log2 |φn|≤nR

1

n
· (I(φn(Xn);V n|Un))

= max
PS|X :

I(S;X|U)≤R

I(S;V |U) (25)

characterize the optimal type-II error exponent of a hypothesis
testing against conditional independence problem at rate R,
and thus coincide.

Combining (19) and (25) we obtain:

E(R) ≤ D(PXU‖P̄XU ) + EPU
[
D(PV |U‖P̄V |U )

]
+ max I(S;V |U). (26)

The reverse inequality follows from the achievable type-
II error exponent of Shimokawa-Han-Amari (SHA) [3] (see
[22, Section IV] for an analysis) which states that for every
choice of the conditional distribution PS|X satisfying R ≥
I(S;X|U, V ) the following lower bound holds:

E(R) ≥ min

{
min
P̃SXY :

P̃SX=PSX
P̃SUV =PSUV

D(P̃SXUV ‖PS|X P̄XU P̄V |U ),

min
P̃SXUV :
P̃SX=PSX
P̃UV =PUV

H(S|UV )≤HP̃SUV (S|UV )

D(P̃SXUV ‖PS|X P̄XU P̄V |U )

+R− I(S;X|UV )

}
(27)

where the mutual information I(S;X|UV ) is calculated ac-
cording to PS|XPUVX . In what follows we show that the
SHA result implies that the error exponent on the RHS of
(18) is achievable. As in [4], we restrict to distributions PS|X
satisfying

R ≥ I(S;X|U) (28)

and drop the condition H(S|U, V ) ≤ HP̃SUV
(S|U, V ) in the

minimization. These changes can lead to a smaller exponent
than in [3], and thus the resulting exponent is still achievable.

By the Markov chain S −
−X −
− (U, V ), Condition (28)
implies

R− I(S;X|U, V ) ≥ I(S;V |U). (29)

Moreover, by the chain rule and the nonnegativity and con-
vexity of KL divergence, for any P̃SXUV :

D(P̃SXUV ‖PS|X P̄XU P̄V |U )

≥ D(P̃XUV ‖P̄XU P̄V |U ) (30)

= D(P̃XU‖P̄XU ) + EP̃XU [D(P̃V |XU‖P̄V |U )] (31)

≥ D(P̃XU‖P̄XU ) + EP̃U [D(P̃V |U‖P̄V |U )]. (32)

By (29) and (32) and since the second minimization in (27)
is over distributions P̃SXUV satisfying P̃UV = PUV , we
conclude that under conditions (17) and (28) the second term
in (27) is lower bounded by

θ , D(PXU‖P̄XU ) + EPU [D(PV |U‖P̄ |V |U )] + I(S;V |U).
(33)



We now lower bound the first term in (27). By the chain rule
and the nonnegativity and convexity of KL divergence, for any
P̃SXUV where P̃SX = PS|XPX :

D(P̃SXUV ‖PS|X P̄XU P̄V |U )

= D(P̃XU‖P̄XU ) + EP̃XU [D(P̃SV |XU‖PS|X P̄V |U )]

≥ D(P̃XU‖P̄XU ) + EP̃U [D(P̃SV |U‖PSP̄V |U )]. (34)

Where in the last inequality we used that∑
xP̃X(x)PS|X(s|x) = PS(s) because P̃X = PX . We now

notice that the first miniminization in (27) is only over
distributions P̃SXUV satisfying P̃SUV = PSUV and therefore:

EP̃U [D(P̃SV |U‖PSP̄V |U )]

= EPU [D(PSV |U‖PSP̄V |U )] (35)
= I(S;V |U) + EPU [D(PV |U‖P̄V |U )]. (36)

Combining (34) and (36), we conclude that under Condition
(17) also the first term in the minimization in (27) is lower
bounded by θ. This establishes the achievability of the right-
hand side of (18).

We turn to the proof of Theorem 1. Define

U = EP̄ [X|Y] (37)
V = Y (38)

and notice that under H = 1 they satisfy the Markov chain

X−
−U−
−V. (39)

In what remains, we assume that instead of Yn the decoder
observes the pair of sequences (Un,Vn) which is i.i.d ac-
cording to the joint distribution of (U,V). This new system
is depicted in Figure 2. Since there is a bijection between Yn

and (Un,Vn), the error exponent of the new system coincides
with the error exponent of the original system. Moreover, by
the Markov chain (39) the new system is a generalized testing
against conditional independence problem as described in (16).
We next argue that under condition C in Theorem 1 and
because PXnUnVn and P̄XnUnVn are multivariate Gaussian
distributions, the new system also satisfies Condition (17)
in Lemma 1. The optimal exponent E(R) will then follow
immediately from this Lemma 1.
To show that for multivariate Gaussian distributions PXnUnVn

and P̄XnUnVn condition C in (11) implies (17), we first show
that under this Gaussian assumption the minimizer of

arg min
P̃XU:P̃X=PX

P̃U=PU

D(P̃XU‖P̄XU) (40)

is a multivariate Gaussian distribution. To see this fix any
distribution P̃XU with P̃X = PX and P̃U = PU and let P̃GXU
be a multivariate Gaussian distribution with same covariance
matrix as P̃XU. Then:

D(P̃XU‖P̄XU) = −h(P̃XU)− EP̃
[
log P̄XU

]
≥ −h(P̃GXU)− EP̃

[
log P̄XU

]
= −h(P̃GXU)− EP̃G

[
log P̄XU

]
, (41)

where the inequality holds because a Gaussian distribution
maximizes differential entropy under a fixed covariance ma-
trix constraint and where the last equality holds because

E[log P̄UX ] only depends on the covariance matrix of (U,X)
which is the same under P̃ and P̃G. By straightforward
algebra, it can then be shown that if condition C in (11)
holds, then PUX is the multivariate Gaussian distribution that
minimizes (17).

We conclude that the optimal exponent E(R) is given by
(18) in Lemma 1. We evaluate (18) for our problem. For
simplicity, we rewrite

D(PXU‖P̄XU) + EPU

[
D(PV|U‖P̄V|U)

= D(PUV||P̄UV) + EPU

[
D(PX|U||P̄X|U)

]
, (42)

and proceed to compute

D(PUV||P̄UV) =
q

2
+

1

2
log
|K̄Y|
|KY|

+
1

2
Tr
(
K̄−1

Y KY

)
(43)

and

D(PX||P̄X|U)=
m

2
+

1

2
log |K̄X|Y| − log |KX −KXYK̄−1

Y

×K̄†XY(K̄XYK̄−1
Y KYK̄−1

Y K̄†XY)+K̄XYK̄−1
Y K†XY|

+
1

2
Tr
(
K̄−1

X|Y×(
KX −KXYK̄−1

Y K̄†XY

(
K̄XYK̄−1

Y KYK̄−1
Y K̄†XY

)+

×K̄XYK̄−1
Y K†XY

))
. (44)

It remains to find max I(S; Y|U) where the maximum is
over all test channels PS|X satisfying I(S; X|U) ≤ R. Let
Ũ = U + εZ where Z ∼ (0, I). Applying the result of [5,
Theorem 2] on the triple (X,Y, Ũ), which is Gaussian, and
then taking the limit ε→ 0 we get:

max
PS|X :

I(S;X|U)≤R

I(S; Y|U) = max min

{
R+

1

2
log
∣∣I−ΩKX|Y

∣∣ ;

1

2
log
∣∣∣I + ΩKXY

×

(
K−1

Y −K−1
Y K̄YK̄+

XYK̄XYK̄−1
Y

)
K†XY

∣∣∣} , (45)

where the maximization in the last term is over all matrices
0 � Ω � K−1

X|Y and where K̄+
XY designates the Moore-

Penrose pseudo inverse of K̄XY.
Summing (43)–(45) we obtain the desired result in (14),

which completes the proof of Theorem 1.
�

V. DISCUSSION

In what follows, we show that constraint C as given by (11)
is fulfilled for a large class of sources even when m = 1 and
q = 2. Let X be a scalar source that is observed at the sensor
and Y = (Y1, Y2) a 2-dimensional source that is observed at
the detector. For convenience, let

K=

 σ2
X σXY1

σXY2

σXY1 σ2
Y1

σY1Y2

σXY2 σY1Y2 σ2
Y2

 and K̄=

 σ̄2
X σ̄XY1

σ̄XY2

σ̄XY1 σ̄2
Y1

σ̄Y1Y2

σ̄XY2 σ̄Y1Y2 σ̄2
Y2

.
(46)



Also, let

a=
(
σ̄XY2 σ̄Y1Y2−σ̄XY1 σ̄

2
Y2

)
and b=

(
σ̄XY1 σ̄Y1Y2−σ̄XY2 σ̄

2
Y1

)
.

For this example the constraint C as given by (11) reduces to

i) σ2
X = σ̄2

X , (47a)
ii) a(σXY − σ̄XY ) + b(σXZ − σ̄XZ) = 0 (47b)
iii) a2(σ2

Y − σ̄2
Y ) + 2ab(σY Z − σ̄Y Z) + b2(σ2

Z − σ̄2
Z) = 0

(47c)

For example, if all components have unit variance under
both P and P̄ , i.e., σ2

X = σ2
Y1

= σ2
Y2

= 1 and σ̄2
X = σ̄2

Y1
=

σ̄2
Y2

= 1 then all definite positive matrices K and K̄ of the
form

K =

[
1 a12 h(ā12, ā13, ā23, a12)
a12 1 ā23

h(ā12, ā13, ā23, a12) ā23 1

]
,

(48)
and

K̄ =

[
1 a12 ā13

a12 1 ā23

ā13 ā23 1

]
(49)

for some arbitrary parameters a12, ā12, ā13, ā23, satisfy the
constraint (47). Here

h(x, y1, y2, t) = y1 − (t− y2)
y1y2 − x
xy2 − y1

. (50)

Example 1. Let

K =

[
1 0.4 α

0.4 1 0.1
α 0.1 1

]
and K̄ =

[
1 0.1 −0.8

0.1 1 0.1
−0.8 0.1 1

]
,

(51)
with α ≈ −0.73333. It is easy to see that (47) is fulfilled.

Figure 3 shows the evolution of the optimal exponent E as a
function of the communication rate R as given by Theorem 1
for this example. Notice that Han’s exponent [2, Theorem 2]
is strictly suboptimal for this example1.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Communication rate (Nat.)

0.00
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Rate-exponent function (see Theorem 1)
Han lower bound (see [2, Theorem 2])

Fig. 3. Rate-exponent region for Example 1.
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