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Introduction

Throughout the paper, H is a real Hilbert space with inner product •, • and induced norm • , and f : H → R is a convex and differentiable function. We aim at developping fast numerical methods for solving the optimization problem (P) min x∈H f (x).

We denote by argmin H f the set of minimizers of the optimization problem (P), which is assumed to be non-empty. Our work is part of the active research stream that studies the close link between continuous dissipative dynamical systems and optimization algorithms. In general, the implicit temporal discretization of continuous gradient-based dynamics provides proximal algorithms that benefit from similar asymptotic convergence properties, see [START_REF] Peypouquet | Evolution equations for maximal monotone operators: asymptotic analysis in continuous and discrete time[END_REF] for a systematic study in the case of first-order evolution systems, and [START_REF] Attouch | Convergence rates of inertial forward-backward algorithms[END_REF][START_REF] Attouch | Accelerated forward-backward algorithms with perturbations[END_REF][START_REF] Attouch | First-order optimization algorithms via inertial systems with Hessian driven damping[END_REF][START_REF] Attouch | Fast proximal methods via time scaling of damped inertial dynamics[END_REF][START_REF] Attouch | Fast convex optimization via time scaling of damped inertial gradient dynamics[END_REF][START_REF] Bot | Second order forward-backward dynamical systems for monotone inclusion problems[END_REF][START_REF] Bot | Approaching nonsmooth nonconvex minimization through second order proximal-gradient dynamical systems[END_REF][START_REF] Bot | Tikhonov regularization of a second order dynamical system with Hessian damping[END_REF] for some recent results concerning second-order evolution equations. The main object of our study is the second-order in time differential equation

(IGS) γ,β,b ẍ(t) + γ(t) ẋ(t) + β(t)∇ 2 f (x(t)) ẋ(t) + b(t)∇f (x(t)) = 0,
where the coefficients γ, β : [t 0 , +∞[→ R + take account of the viscous and Hessiandriven damping, respectively, and b : R + → R + is a time scale parameter. We take for granted the existence and uniqueness of the solution of the corresponding Cauchy problem with initial conditions x(t 0 ) = x 0 ∈ H, ẋ(t 0 ) = v 0 ∈ H. Assuming that ∇f is Lipschitz continuous on the bounded sets, and that the coefficients are continuously differentiable, the local existence follows from the nonautonomous version of the Cauchy-Lipschitz theorem, see [START_REF] Haraux | Systèmes Dynamiques Dissipatifs et Applications[END_REF]Prop. 6.2.1]. The global existence then follows from the energy estimates that will be established in the next section. Each of these damping and rescaling terms properly tuned, improves the rate of convergence of the associated dynamics and algorithms. An original aspect of our work is to combine them in the same dynamic. Let us recall some classical facts.

Damped inertial dynamics and optimization

The continuous-time perspective gives a mechanical intuition of the behavior of the trajectories, and a valuable tool to develop a Lyapunov analysis. A first important work in this perspective is the heavy ball with friction method of B. Polyak [START_REF] Polyak | Some methods of speeding up the convergence of iteration methods[END_REF] (HBF) ẍ(t) + γ ẋ(t) + ∇f (x(t)) = 0.

It is a simplified model for a heavy ball (whose mass has been normalized to one) sliding on the graph of the function f to be minimized, and which asymptotically stops under the action of viscous friction, see [START_REF] Attouch | The heavy ball with friction method. The continuous dynamical system[END_REF] for further details. In this model, the viscous friction parameter γ is a fixed positive parameter. Due to too much friction (at least asymptotically) involved in this process, replacing the fixed viscous coefficient with a vanishing viscous coefficient (i.e. which tends to zero as t → +∞) gives Nesterov's famous accelerated gradient method [START_REF] Nesterov | A method of solving a convex programming problem with convergence rate O(1/k2)[END_REF] [START_REF] Nesterov | Introductory Lectures on Convex Optimization: A Basic Course[END_REF]. The other two basic ingredients that we will use, namely time rescaling, and Hessian-driven damping have a natural interpretation (cinematic and geometric, respectively) in this context. We will come back to these points later. Precisely, we seek to develop fast first-order methods based on the temporal discretization of damped inertial dynamics. By fast we mean that, for a general convex function f , and for each trajectory of the system, the convergence rate of the values f (x(t)) -inf H f which is obtained is optimal (i.e. is achieved of nearly achieved in the worst case). The importance of simple first-order methods, and in particular gradient-based and proximal algorithms, comes from the applicability of these algorithms to a wide range of large-scale problems arising from machine learning and/or engineering.

1.1.1 The viscous damping parameter γ(t).

A significant number of recent studies have focused on the case γ(t) = α t , β = 0 (without Hessian-driven damping), and b = 1 (without time rescaling), that is

(AVD) α ẍ(t) + α t ẋ(t) + ∇f (x(t)) = 0.
This dynamic involves an Asymptotically Vanishing Damping coefficient (hence the terminology), a key property to obtain fast convergence for a general convex function f . In [START_REF] Su | A differential equation for modeling Nesterov's accelerated gradient method: theory and insights[END_REF], Su, Boyd and Candès showed that for α = 3 the above system can be seen as a continuous version of the accelerated gradient method of Nesterov [START_REF] Nesterov | A method of solving a convex programming problem with convergence rate O(1/k2)[END_REF][START_REF] Nesterov | Introductory Lectures on Convex Optimization: A Basic Course[END_REF] with f (x(t)) -min H f = O(1 t 2 ) as t → +∞. The importance of the parameter α was put to the fore by Attouch, Chbani, Peypouquet and Redont [START_REF] Attouch | Fast convergence of inertial dynamics and algorithms with asymptotic vanishing damping[END_REF] and May [START_REF] May | Asymptotic for a second order evolution equation with convex potential and vanishing damping term[END_REF]. They showed that, for α > 3, one can pass from capital O estimates to small o. Moreover, when α > 3, each trajectory converges weakly, and its limit belongs to argmin f 1 . Recent research considered the case of a general damping coefficient γ(•) (see [START_REF] Attouch | Asymptotic stabilization of inertial gradient dynamics with timedependent viscosity[END_REF][START_REF] Attouch | Rate of convergence of inertial gradient dynamics with time-dependent viscous damping coefficient[END_REF]), thus providing a complete picture of the convergence rates for (AVD) α : [START_REF] Attouch | Rate of convergence of inertial gradient dynamics with time-dependent viscous damping coefficient[END_REF][START_REF] Attouch | Rate of convergence of the Nesterov accelerated gradient method in the subcritical case α ≤ 3[END_REF] and Apidopoulos, Aujol and Dossal [START_REF] Apidopoulos | Convergence rate of inertial Forward-Backward algorithm beyond Nesterov's rule[END_REF].

f (x(t)) -min H f = O(1/t 2 ) when α ≥ 3, and f (x(t)) -min H f = O 1/t 2α 3 when α ≤ 3, see
1.1.2 The Hessian-driven damping parameter β(t).

The inertial system

(DIN) γ,β ẍ(t) + γ ẋ(t) + β∇ 2 f (x(t)) ẋ(t) + ∇f (x(t)) = 0, was introduced by Alvarez, Attouch, Bolte, and Redont in [START_REF] Álvarez | A second-order gradient-like dissipative dynamical system with Hessian-driven damping[END_REF]. In line with (HBF), it contains a fixed positive friction coefficient γ. As a main property, the introduction of the Hessian-driven damping makes it possible to neutralize the transversal oscillations likely to occur with (HBF), as observed in [START_REF] Álvarez | A second-order gradient-like dissipative dynamical system with Hessian-driven damping[END_REF]. The need to take a geometric damping adapted to f had already been observed by Alvarez [START_REF] Álvarez | On the minimizing property of a second-order dissipative system in Hilbert spaces[END_REF] who considered the inertial system

ẍ(t) + D ẋ(t) + ∇f (x(t)) = 0,
where D : H → H is a linear positive definite anisotropic operator. But still this damping operator is fixed. For a general convex function, the Hessian-driven damping in (DIN) γ,β performs a similar operation in a closed-loop adaptive way. (DIN) stands shortly for Dynamical Inertial Newton, and refers to the link with the Levenberg-Marquardt regularization of the continuous Newton method. Recent studies have been devoted to the study of the inertial dynamic

ẍ(t) + α t ẋ(t) + β∇ 2 f (x(t)) ẋ(t) + ∇f (x(t)) = 0,
which combines asymptotic vanishing damping with Hessian-driven damping [START_REF] Attouch | Fast convex minimization via inertial dynamics with Hessian driven damping[END_REF].

1.1.3 The time rescaling parameter b(t).

In the context of non-autonomous dissipative dynamic systems, reparameterization in time is a simple and universal means to accelerate the convergence of trajectories. This is where the coefficient b(t) comes in as a factor of ∇f (x(t)).

In [11] [12], in the case of general coefficients γ(•) and b(•) without the Hessian damping, the authors made in-depth study. In the case γ(t) = α t , they proved that under appropriate conditions on α and b

(•), f (x(t)) -min H f = O( 1 t 2 b(t)
). Hence a clear improvement of the convergence rate by taking b(t) → +∞ as t → +∞.

From damped inertial dynamics to proximal-gradient inertial algorithms

Let's review some classical facts concerning the close link between continuous dissipative inertial dynamic systems and the corresponding algorithms obtained by temporal discretization. Let us insist on the fact that, when the temporal scaling b(t) → +∞ as t → +∞, the transposition of the results to the discrete case naturally leads to consider an implicit temporal discretization, i.e. inertial proximal algorithms. The reason is that, since b(t) is in front of the gradient, the application of the gradient descent lemma would require taking a step size that tends to zero. On the other hand, the corresponding proximal algorithms involve a proximal coefficient which tends to infinity (large step proximal algorithms).

The case without the Hessian-driven damping

The implicit discretization of (IGS) γ,0,b gives the Inertial Proximal algorithm

(IP) α k ,λ k y k = x k + α k (x k -x k-1 ) x k+1 = prox λ k f (y k )
where α k is non-negative and λ k is positive. Recall that for any λ > 0, the proximity operator prox λf : H → H is defined by the following formula: for every x ∈ H prox λf (x) := argmin ξ∈H f (ξ) + 1 2λ

x -ξ 2 .

Equivalently, prox λf is the resolvent of index λ of the maximally monotone operator ∂f . When passing to the implicit discrete case, we can take f : H → R ∪ {+∞} a convex lower semicontinuous and proper function. Let us list some of the main results concerning the convergence properties of the algorithm (IP) α k ,λ k :

• 1. Case λ k ≡ λ > 0 and α k = 1 -α k .
When α = 3, the (IP) 1-3/k,λ algorithm has a similar structure to the original Nesterov accelerated gradient algorithm [START_REF] Nesterov | A method of solving a convex programming problem with convergence rate O(1/k2)[END_REF], just replace the gradient step with a proximal step. Passing from the gradient to the proximal step was carried out by Güler [START_REF] Güler | On the convergence of the proximal point algorithm for convex optimization[END_REF][START_REF] Güler | New proximal point algorithms for convex minimization[END_REF], then by Beck and Teboulle [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF] for structured optimization. A decisive step was taken by Attouch and Peypouquet in [START_REF] Attouch | The rate of convergence of Nesterov's accelerated forwardbackward method is actually faster than 1/k 2[END_REF] proving that, when α > 3,

f (x k ) -min H f = o 1 k 2 .
The subcritical case α < 3 was examined by Apidopoulos, Aujol, and Dossal [START_REF] Apidopoulos | Convergence rate of inertial Forward-Backward algorithm beyond Nesterov's rule[END_REF] and Attouch, Chbani, and Riahi [START_REF] Attouch | Rate of convergence of the Nesterov accelerated gradient method in the subcritical case α ≤ 3[END_REF] with the rate of convergence rate of values

f (x k ) -min H f = O 1 k 2α 3 .
• 2. For a general α k , the convergence properties of (IP) α k ,λ were analyzed by Attouch and Cabot [START_REF] Attouch | Convergence rates of inertial forward-backward algorithms[END_REF], then by Attouch, Cabot, Chbani, and Riahi [START_REF] Attouch | Accelerated forward-backward algorithms with perturbations[END_REF], in the presence of perturbations. The convergence rates are then expressed using the sequence (t k ) which is linked to (α k ) by the formula

t k := 1 + +∞ i=k i j=k α j . Under growth conditions on t k , it is proved that f (x k ) -min H f = O( 1 t 2 k
). This last results covers the special case α k = 1 -α k when α ≥ 3. • 3. For a general λ k , Attouch, Chbani, and Riahi first considered in [START_REF] Attouch | Fast proximal methods via time scaling of damped inertial dynamics[END_REF] the case α k = 1 -α k . They proved that under a growth condition on λ k , we have the estimate

f (x k ) -min H f = O( 1 k 2 λ k ).
This result is an improvement of the one discussed previously in [START_REF] Attouch | The rate of convergence of Nesterov's accelerated forwardbackward method is actually faster than 1/k 2[END_REF], because when λ k = k δ with 0 < δ < α-3, we pass from

O( 1 k 2 ) to O( 1 k 2+δ ).
Recently, in [START_REF] Attouch | Convergence rates of inertial proximal algorithms with general extrapolation and proximal coefficients[END_REF] the authors analyzed the algorithm (IP) α k ,λ k for general α k and λ k . By including the expression of t k previously used in [START_REF] Attouch | Convergence rates of inertial forward-backward algorithms[END_REF][START_REF] Attouch | Accelerated forward-backward algorithms with perturbations[END_REF],

they proved that f (x k ) -min H f = O 1/t 2 k λ k-1 under certain conditions on λ k and α k . They obtained f (x k ) -min H f = o 1/t 2
k λ k , which gives a global view of of the convergence rate with small o, encompassing [START_REF] Attouch | Convergence rates of inertial forward-backward algorithms[END_REF][START_REF] Attouch | Convergence rates of inertial proximal algorithms with general extrapolation and proximal coefficients[END_REF].

The case with the Hessian-driven damping

Recent studies have been devoted to the inertial dynamic

ẍ(t) + α t ẋ(t) + β∇ 2 f (x(t)) ẋ(t) + ∇f (x(t)) = 0,
which combines asymptotic vanishing viscous damping with Hessian-driven damping. The corresponding algorithms involve a correcting term in the Nesterov accelerated gradient method which reduces the oscillatory aspects, see Attouch-Peypouquet-Redont [START_REF] Attouch | Fast convex minimization via inertial dynamics with Hessian driven damping[END_REF], Attouch-Chbani-Fadili-Riahi [START_REF] Attouch | First-order optimization algorithms via inertial systems with Hessian driven damping[END_REF], Shi-Du-Jordan-Su [START_REF] Shi | Understanding the acceleration phenomenon via high-resolution differential equations[END_REF]. The case of monotone inclusions has been considered by Attouch and László [START_REF] Attouch | Newton-like inertial dynamics and proximal algorithms governed by maximally monotone operators[END_REF].

Contents

The paper is organized as follows. In section 2, we develop a new Lyapunov analysis for the continuous dynamic (IGS) γ,β,b . In Theorem 1, we provide a system of conditions on the damping parameters γ(•) and β(•), and on the temporal scaling parameter b(•) giving fast convergence of the values. Then, in sections 3 and 4, we present two different types of growth conditions for the damping and temporal scaling parameters, respectively based on the functions Γγ and pγ , and which satisfy the conditions of Theorem 1. In doing so, we encompass most existing results and provide new results, including linear convergence rates without assuming strong convexity. This will also allow us to explain the choice of certain coefficients in the associated algorithms, questions which have remained mysterious and only justified by the simplification of often complicated calculations. In section 5, we specialize our results to certain model situations and give numerical illustrations. Finally, we conclude the paper by highlighting its original aspects.

2 Convergence rate of the values. General abstract result

We will establish a general result concerning the convergence rate of the values verified by the solution trajectories x(•) of the second-order evolution equation

(IGS) γ,β,b ẍ(t) + γ(t) ẋ(t) + β(t)∇ 2 f (x(t)) ẋ(t) + b(t)∇f (x(t)) = 0.
The variable parameters γ(•), β(•) and b(•) take into account the damping, and temporal rescaling effects. They are assumed to be continuously differentiable.

To analyze the asymptotic behavior of the solutions trajectories of the evolution system (IGS) γ,β,b , we will use Lyapunov's analysis. It is a classic and powerful tool which consists in building an associated energy-like function which decreases along the trajectories. The determination of such a Lyapunov function is in general a delicate problem. Based on previous works, we know the global structure of such a Lyapunov function. It is a weighted sum of the potential, kinetic and anchor functions. We will introduce coefficients in this function that are a priori unknown, and which will be identified during the calculation to verify the property of decay.

Our approach takes advantage of the technics recently developed in [START_REF] Attouch | Asymptotic stabilization of inertial gradient dynamics with timedependent viscosity[END_REF], [START_REF] Attouch | Fast convex minimization via inertial dynamics with Hessian driven damping[END_REF], [START_REF] Attouch | Fast convex optimization via time scaling of damped inertial gradient dynamics[END_REF].

The general case

Let x(•) be a solution trajectory of (IGS) γ,β,b . Given z ∈ argmin H f , we introduce the Lyapunov function t → E(t) defined by

E(t) := c(t) 2 b(t) (f (x(t)) -f (z)) + θ(t)σ(t) 2 2 v(t) 2 + ξ(t) 2 x(t) -z 2 , (1) 
where

v(t) := x(t) -z + 1 σ(t) ( ẋ(t) + β(t)∇f (x(t))) .
The four variable coefficients c(t), θ(t), σ(t), ξ(t) will be adjusted during the calculation. According to the classical derivation chain rule, we obtain

d dt E(t) = d dt c 2 (t)b(t) (f (x(t)) -f (z)) + c(t) 2 b(t) ∇f (x(t)), ẋ(t) + 1 2 d dt (θ(t)σ 2 (t)) v(t) 2 + θ(t)σ 2 (t) v(t), v(t) + 1 2 ξ(t) x(t) -z 2 + ξ(t) ẋ(t), x(t) -z .
From now, without ambiguity, to shorten formulas, we omit the variable t.

According to the definition of v, and the equation (IGS) γ,β,b , we have

v = ẋ - σ σ 2 ( ẋ + β∇f (x)) + 1 σ d dt ( ẋ + β∇f (x)) = ẋ - σ σ 2 ( ẋ + β∇f (x)) + 1 σ ẍ + β∇ 2 f (x) ẋ + β∇f (x) = ẋ - σ σ 2 ( ẋ + β∇f (x)) + 1 σ -γ ẋ -b∇f (x) + β∇f (x) = 1 - σ σ 2 - γ σ ẋ + β σ - σβ σ 2 - b σ ∇f (x). Therefore, v, v = 1 - σ σ 2 - γ σ ẋ + β σ - σβ σ 2 - b σ ∇f (x) , x -z + 1 σ ( ẋ + β∇f (x)) = 1 - σ σ 2 - γ σ ẋ , x -z + 1 - σ σ 2 - γ σ 1 σ ẋ 2 + 1 - σ σ 2 - γ σ β σ + β σ - σβ σ 2 - b σ 1 σ ∇f (x) , ẋ + β σ - σβ σ 2 - b σ ∇f (x) , x -z + β σ - σβ σ 2 - b σ β σ ∇f (x) 2 .
According to the definition of v(t), after developing v(t) 2 , we get

v 2 = x -z 2 + 1 σ 2 ẋ 2 + β 2 ∇f (x) 2 + 2 σ ẋ , x -z + 2β σ ∇f (x) , x -z + 2β σ 2 ∇f (x) , ẋ .
Collecting the above results, we obtain

d dt E(t) = d dt c 2 b (f (x) -f (z)) + c 2 b ∇f (x), ẋ + 1 2 ξ x -z 2 + ξ ẋ, x -z + 1 2 d dt (θσ 2 ) x -z 2 + 1 σ 2 ẋ 2 + β 2 ∇f (x) 2 + 2 σ ẋ , x -z + 1 2 d dt (θσ 2 ) 2β σ ∇f (x) , x -z + 2β σ 2 ∇f (x) , ẋ +θσ 2 1 - σ σ 2 - γ σ ẋ , x -z + 1 - σ σ 2 - γ σ 1 σ ẋ 2 +θσ 2 1 - σ σ 2 - γ σ β σ + β σ - σβ σ 2 - b σ 1 σ ∇f (x) , ẋ +θσ 2 β σ - σβ σ 2 - b σ ∇f (x) , x -z + β σ - σβ σ 2 - b σ β σ ∇f (x) 2 .
In the second member of the above formula, let us examine the terms that contain ∇f (x) , x -z . By grouping these terms, we obtain the following expression

β σ d dt (θσ 2 ) + θσ 2 β σ - σβ σ 2 - b σ ∇f (x) , x -z .
To majorize it, we use the convex subgradient inequality ∇f (x), x -z ≥ f (x)f (z), and we make a first hypothesis

β σ d dt (θσ 2 ) + θσ 2 β σ -σβ σ 2 -b σ ≤ 0. Therefore, d dt E(t) ≤ d dt c 2 b + β σ d dt (θσ 2 ) + θσ 2 β σ - σβ σ 2 - b σ (f (x) -f (z)) + c 2 b + β σ 2 d dt (θσ 2 ) + θσ 1 - σ σ 2 - γ σ β + β σ - σβ σ 2 - b σ ∇f (x) , ẋ + 1 σ d dt (θσ 2 ) + θσ 2 1 - σ σ 2 - γ σ + ξ ẋ , x -z + 1 2 d dt (θσ 2 ) + ξ x -z 2 + 1 2σ 2 d dt (θσ 2 ) + θσ 1 - σ σ 2 - γ σ ẋ 2 + β 2 2σ 2 d dt (θσ 2 ) + θσβ β σ - σβ σ 2 - b σ ∇f (x) 2 . ( 2 
)
To get d dt E(t) ≤ 0, we are led to make the following assumptions:

(i) β σ d dt (θσ 2 ) + θσ 2 β σ - σβ σ 2 - b σ ≤ 0 (ii) d dt c 2 b + β σ d dt (θσ 2 ) + θσ 2 β σ - σβ σ 2 - b σ ≤ 0, (iii) c 2 b + β σ 2 d dt (θσ 2 ) + θσ 1 - σ σ 2 - γ σ β + β σ - σβ σ 2 - b σ = 0, (iv) 1 σ d dt (θσ 2 ) + θσ 2 1 - σ σ 2 - γ σ + ξ = 0, (v) d dt 
(θσ 2 ) + ξ ≤ 0, (vi) 1 2σ 2 d dt (θσ 2 ) + θσ 1 - σ σ 2 - γ σ ≤ 0, (vii) 
β 2 2σ 2 d dt (θσ 2 ) + θσβ β σ - σβ σ 2 - b σ ≤ 0.
After simplification, we get the following equivalent system of conditions: A: Lyapunov system of inequalities involving c(t), θ(t), σ(t), ξ(t).

(i)

d dt (βθσ) -θbσ ≤ 0 (ii) d dt c 2 b + βθσ -θbσ ≤ 0, (iii) b(c 2 -θ) + βθ(σ -γ) + d dt (βθ) = 0, (iv) d dt (θσ) + θσ (σ -γ) + ξ = 0, (v) d dt (θσ 2 + ξ) ≤ 0, (vi) θ + 2(σ -γ)θ ≤ 0, (vii) β β θ + 2 β -b θ ≤ 0.
Let's simplify this system by eliminating the variable ξ. From (iv) we get ξ = -d dt (θσ) -θσ (σ -γ), that we replace in (v), and recall that ξ is prescribed to be nonnegative. Now observe that the unkown function c can also be eliminated. Indeed, it enters the above system via the variable bc 2 , which according to (iii) is equal to bc 2 = bθ -βθ(σ -γ) -d dt (βθ). Replacing in (ii), which is the only other equation involving bc 2 , we obtain the equivalent system involving only the variables θ(t), σ(t). B: Lyapunov system of inequalities involving the variables:

θ(t), σ(t) (i) d dt (βθσ) -θbσ ≤ 0, (ii) d dt (bθ + βθγ) -d 2 dt 2 (βθ) -θbσ ≤ 0, (iii) bθ -βθ(σ -γ) -d dt (βθ) ≥ 0, (iv) d dt (θσ) + θσ (σ -γ) ≤ 0, (v) d dt -d dt (θσ) + θσγ ≤ 0, (vi) θ + 2(σ -γ)θ ≤ 0, (vii) β β θ + 2 β -b θ ≤ 0.
Then, the variables ξ and c are obtained by using the formulas

ξ = - d dt (θσ) -θσ (σ -γ) bc 2 = bθ -βθ(σ -γ) - d dt (βθ).
Thus, under the above conditions, the function E(•) is nonnegative and nonincreasing. Therefore, for every t ≥ t 0 , E(t) ≤ E(t 0 ), which implies that

c 2 (t)b(t)f (x(t)) -min H f ) ≤ E(t 0 ). Therefore, as t → +∞ f (x(t)) -min H f = O 1 c 2 (t)b(t) .
Moreover, by integrating (2) we obtain the following integral estimates: a) On the values:

+∞ t0 θ(t)b(t)σ(t) - d dt c 2 (t)b(t) + β(t)θ(t)σ(t) f (x(t)) -inf H f dt < +∞;
where we use the equality:

-d dt c 2 b + β σ d dt (θσ 2 ) + θσ 2 β σ -σβ σ 2 -b σ = θbσ -d dt c 2 b
+ βθσ and the fact that, according to (ii), this quantity is nonnegative. b) On the norm of the gradients:

+∞ t0 q(t) ∇f (x(t)) 2 dt < +∞.
where q is the nonnegative weight function defined by

q(t) := θ(t)β(t) σ(t)β(t) σ(t) + b(t) -β(t) - β 2 (t) 2σ 2 (t) d dt (θσ 2 )(t) = b(t)θ(t)β(t) - 1 2 d dt (θβ 2 )(t). (3) 
We can now state the following Theorem, which summarizes the above results.

Theorem 1 Let f : H → R be a convex differentiable function with argmin H f = ∅.
Let x(•) be a solution trajectory of

(IGS) γ,β,b ẍ(t) + γ(t) ẋ(t) + β(t)∇ 2 f (x(t)) ẋ(t) + b(t)∇f (x(t)) = 0.
Suppose that γ(•), β(•), and b(•), are C 1 functions on [t 0 , +∞[ such that there exists auxiliary functions c(t), θ(t), σ(t), ξ(t) that satisfy the conditions (i) -(vii) above. Set

E(t) := c(t) 2 b(t) (f (x(t)) -f (z)) + θ(t)σ(t) 2 2 v(t) 2 + ξ(t) 2 x(t) -z 2 , ( 4 
)
with z ∈ argmin H f and v(t) = x(t) -z + 1 σ(t) ( ẋ(t) + β(t)∇f (x(t))).
Then, t → E(t) is a nonincreasing function. As a consequence, for all t ≥ t 0 ,

(i) f (x(t)) -min H f ≤ E(t 0 ) c 2 (t)b(t) ; (5) (ii) 
+∞ t0 θ(t)b(t)σ(t) - d dt c 2 b + βθσ (t) f (x(t)) -inf H f dt < +∞; (6) (iii) +∞ t0 b(t)θ(t)β(t) - 1 2 d dt θβ 2 (t) ∇f (x(t)) 2 dt < +∞. ( 7 
)
2.2 Solving system (i) -(vii)

The system of inequalities (i) -(vii) of Theorem 1 may seem complicated at first glance. Indeed, we will see that it simplifies notably in the classical situations. Moreover, it makes it possible to unify the existing results, and discover new interesting cases. We will present two different types of solutions to this system, respectively based on the following functions:

pγ (t) = exp t t0 γ(u) du , (8) 
and

Γγ(t) = pγ (t) +∞ t du pγ (u) . ( 9 
)
The use of Γγ has been considered in a series of articles that we will retrieve as a special case of our approach, see [START_REF] Attouch | Asymptotic stabilization of inertial gradient dynamics with timedependent viscosity[END_REF], [START_REF] Attouch | Convergence rates of inertial forward-backward algorithms[END_REF], [START_REF] Attouch | Rate of convergence of inertial gradient dynamics with time-dependent viscous damping coefficient[END_REF], [START_REF] Attouch | Fast convex optimization via time scaling of damped inertial gradient dynamics[END_REF]. Using pγ will lead to new results, see section 4.

Results based on the function Γγ

In this section, we will systematically assume that condition (H 0 ) is satisfied.

(H 0 ) +∞ t0 ds p(s) < +∞.
Under (H 0 ), the function Γγ(•) is well defined. It can be equally defined as the solution of the linear non autonomous differential equation Γγ(t) -γ(t)Γγ (t) + 1 = 0, [START_REF] Attouch | Rate of convergence of the Nesterov accelerated gradient method in the subcritical case α ≤ 3[END_REF] which satisfies the limit condition lim t→+∞ Γγ (t)

pγ (t) = 0.
3.1 The case without the Hessian, i.e. β ≡ 0

The dynamic writes

(IGS) γ,0,b ẍ(t) + γ(t) ẋ(t) + b(t)∇f (x(t)) = 0.
To solve the system (i) -(vii) of Theorem 1, we choose

ξ ≡ 0, c(t) = Γγ(t), σ(t) = 1 Γγ(t) , θ(t) = Γγ (t) 2 .
According to [START_REF] Attouch | Rate of convergence of the Nesterov accelerated gradient method in the subcritical case α ≤ 3[END_REF], we can easily verify that conditions (i), (iii) -(vii) are satisfied, and (ii) becomes

d dt Γγ(t) 2 b(t) -Γγ(t)b(t) ≤ 0.
After dividing by Γγ(t), and using [START_REF] Attouch | Rate of convergence of the Nesterov accelerated gradient method in the subcritical case α ≤ 3[END_REF], we obtain the condition

0 ≥ Γγ(t) ḃ(t) -(3 -2γ(t)Γγ(t))b(t).
This leads to the following result obtained by Attouch, Chbani and Riahi in [START_REF] Attouch | Fast convex optimization via time scaling of damped inertial gradient dynamics[END_REF].

Theorem 2 [12, Theorem 2.1] Suppose that for all t ≥ t 0

Γγ(t) ḃ(t) ≤ b(t) (3 -2γ(t)Γγ(t)) , ( 11 
)
where Γγ is defined from γ by [START_REF] Attouch | Fast convergence of inertial dynamics and algorithms with asymptotic vanishing damping[END_REF]. Let x : [t 0 , +∞[→ H be a solution trajectory of (IGS) γ,0,b . Given z ∈ argmin H f , set

E(t) := Γ 2 γ (t)b(t) (f (x(t)) -f (z)) + 1 2 x(t) -z + Γγ(t) ẋ(t) 2 . ( 12 
)
Then, t → E(t) is a nonincreasing function. As a consequence, as t → +∞

f (x(t)) -min H f = O 1 Γγ(t) 2 b(t) . ( 13 
)
Precisely, for all t ≥ t 0

f (x(t)) -min H f ≤ C Γγ(t) 2 b(t) , ( 14 
)
with C = Γγ(t 0 ) 2 b(t 0 ) (f (x(t 0 )) -min H f ) + d(x(t 0 ), argmin f ) 2 + Γγ(t 0 ) 2 ẋ(t 0 ) 2 .
Moreover,

+∞ t0 Γγ(t) b(t) (3 -2γ(t)Γγ(t)) -Γγ(t) ḃ(t) (f (x(t)) -min H f )dt < +∞. Remark 1 When b ≡ 1, condition (11) reduces to γ(t)Γγ (t) ≤ 3 2 , introduced in [4].

Combining Nesterov acceleration with Hessian damping

Let us specialize our results in the case β(t) > 0, and γ(t) = α t . We are in the case of a vanishing damping coefficient (i.e. γ(t) → 0 as t → +∞). According to Su, Boyd and Candès [START_REF] Su | A differential equation for modeling Nesterov's accelerated gradient method: theory and insights[END_REF], the case α = 3 corresponds to a continuous version of the accelerated gradient method of Nesterov. Taking α > 3 improves in many ways the convergence properties of this dynamic, see section 1.1.1. Here, it is combined with the Hessian-driven damping and temporal rescaling. This situation was first considered by Attouch, Chbani, Fadili and Riahi in [START_REF] Attouch | First-order optimization algorithms via inertial systems with Hessian driven damping[END_REF]. Then the dynamic writes

(IGS) α/t,β,b ẍ(t) + α t ẋ(t) + β(t)∇ 2 f (x(t)) ẋ(t) + b(t)∇f (x(t)) = 0.
Elementary calculus gives that (H 0 ) is satisfied as soon as α > 1. In this case,

Γγ(t) = t α -1
.

After [START_REF] Attouch | First-order optimization algorithms via inertial systems with Hessian driven damping[END_REF], let us introduce the following quantity which will simplify the formulas:

w(t) := b(t) -β(t) - β(t) t . (15) 
The following result will be obtained as a consequence of our general abstract Theorem 1. Precisely, we will show that under an appropriate choice of the functions c(t), θ(t), σ(t), ξ(t), the conditions (i) -(vii) of Theorem 1 are satisfied. 

(IGS) α/t,β,b ẍ(t) + α t ẋ(t) + β(t)∇ 2 f (x(t)) ẋ(t) + b(t)∇f (x(t)) = 0.
Suppose that α > 1, and that the following growth conditions are satisfied: for t ≥ t 0

(G 2 ) b(t) > β(t) + β(t) t ; (G 3 ) t ẇ(t) ≤ (α -3)w(t).
Then, w(t) := b(t) -β(t) -β(t) t is positive and

(i) f (x(t)) -min H f = O 1 t 2 w(t)
as t → +∞;

(ii)

+∞ t0 t (α -3)w(t) -t ẇ(t) (f (x(t)) -min H f )dt < +∞; (iii) +∞ t0 t 2 β(t)w(t) ∇f (x(t)) 2 dt < +∞.
Proof Take θ(t) = Γγ(t) 2 , σ(t) = 1 Γγ (t) , ξ(t) ≡ 0, and

c(t) 2 = 1 (α -1) 2 t b(t) tb(t) -β(t) -t β(t) . ( 16 
)
This formula for c(t) will appear naturally during the calculation. Note that the condition (G 2 ) ensures that the second member of the above expression is positive, which makes sense to think of it as a square. Let us verify that the conditions (i) and (iv), (v), (vi), (vii) are satisfied. This is a direct consequence of the formula [START_REF] Attouch | Rate of convergence of the Nesterov accelerated gradient method in the subcritical case α ≤ 3[END_REF] and the condition (G 2 ):

(i) d dt (βθσ) -θbσ = d dt βΓ -Γb = 1 α-1 d dt (tβ) -tb = t α-1 β + β t -b ≤ 0. (iv) d dt (θσ) + θσ (σ -γ) + ξ = Γ + Γ 1 Γ -γ = Γ + 1 -γΓ = 0. (v) Since θσ 2 ≡ 1 and ξ ≡ 1, we have d dt (θσ 2 + ξ) = 0. (vi) θ + 2(σ -γ)θ = 2Γ Γ + 2(Γ -γΓ 2 ) = 2Γ( Γ + 1 -γΓ) = 0. (vii) β θ + 2 β -b θ = 2Γ(β Γ + ( β -b)Γ) = 2Γ 2 ( β -b + β t ) ≤ 0.
Let's go to the conditions (ii) and (iii). The condition (iii) gives the formula [START_REF] Attouch | The rate of convergence of Nesterov's accelerated forwardbackward method is actually faster than 1/k 2[END_REF] for c(t). Then replacing c(t) 2 by this value in (ii) gives the condition (G 3 ). Note then that b(t)c(t) 2 = 1 (α-1) 2 t 2 ω(t), which gives the convergence rate of the values

f (x(t)) -min H f = O 1 t 2 w(t) .
Let us consider the integral estimate for the values. According to the definition ( 16) for c 2 b and the definition of w, we have

θbσ - d dt c 2 b + βθσ = 1 α -1 tb - d dt 1 α -1 t 2 w(t) + 1 α -1 tβ = t (α -1) 2 (α -1)b -2w -t ẇ -(α -1)( β + β t ) = t (α -1) 2 (α -3)w -t ẇ .
According to Theorem 1 (ii)

+∞ t0 t (α -3)w(t) -t ẇ(t) (f (x(t)) -min H f )dt < +∞.
Moreover, since θσ 2 = 1, the formula giving the weighting coefficient q(t) in the integral formula simplifies, and we get

q(t) = θ(t)σ(t)β(t) σ(t)β(t) σ 2 (t) + b(t) σ(t) - β(t) σ(t) = β(t)Γγ (t) -β(t) Γγ(t) + b(t)Γγ (t) -β(t)Γγ(t) = β(t)Γγ (t) 2 ω(t).
According to Theorem 1 (iii)

+∞ t0 t 2 β(t)w(t) ∇f (x(t)) 2 dt < +∞
which gives the announced convergence rates.

Remark 2 Take β = 0. Then, according to the definition (15) of w, we have w = b, and the conditions of Theorem 3 reduce to 

t ḃ(t) -(3 -α)b(t) ≤ 0 for t ∈ [
f = O 1 t 2 b(t)
as t → +∞.

The case

γ(t) = α t , β constant
Due to its practical importance, consider the case γ(t) = α t , β(t) ≡ β where β is a fixed positive constant. In this case, the dynamic (IGS) γ,β,b is written as follows

ẍ(t) + α t ẋ(t) + β∇ 2 f (x(t)) ẋ(t) + b(t)∇f (x(t)) = 0. ( 17 
)
The set of conditions (G 2 ), (G 3 ) boils down to:

for t ≥ t 0 (G 2 ) b(t) > β t ; (G 3 ) t ẇ(t) ≤ (α -3)w(t),
where

w(t) = b(t) -β t . Therefore, b(•) must satisfy the differential inequality t d dt b(t) - β t ≤ (α -3) b(t) - β t .
Equivalently

t d dt b(t) -(α -3)b(t) + β(α -2) 1 t ≤ 0.
Let 

ẍ(t) + α t ẋ(t) + β∇ 2 f (x(t)) ẋ(t) + β t + d(t)t α-3 ∇f (x(t)) = 0 ( 18 
)
where d(•) is a nonincreasing positive function. Then, the following properties are satisfied:

(i) f (x(t)) -min H f = O 1 t α-1 d(t) as t → +∞; (ii) +∞ t0 -ḋ(t)t α-1 (f (x(t)) -inf H f )dt < +∞. (iii) +∞ t0 t α-1 d(t) ∇f (x(t)) 2 dt < +∞.
Proof According to the definition of w(t) and b(t), we have the equalities

t 2 w(t) = t 2 b(t) -β t = t 2 d(t)t α-3 = t α-1 d(t).
Then apply Theorem 3.

Particular cases

According to Theorem 3 and Proposition 1, let us discuss the role and the importance of the scaling coefficient b(t) in front of the gradient term.

a) The first inertial dynamic system based on the Nesterov method, and which includes a damping term driven by the Hessian, was considered by Attouch, Peypouquet, and Redont in [START_REF] Attouch | Fast convex minimization via inertial dynamics with Hessian driven damping[END_REF]. This corresponds to b(t) ≡ 1, which gives:

ẍ(t) + α t ẋ(t) + β∇ 2 f (x(t)) ẋ(t) + ∇f (x(t)) = 0.
In this case, we have w(t) = 1 -β t , and we immediately get that (G 2 ), (G 3 ) are satisfied by taking α > 3 and t > β. This corresponds to take

d(t) = 1 t α-3 -β t α-2 , which is nonincreasing when t ≥ α-2 α-3 .
Corollary 

ẍ(t) + α t ẋ(t) + β∇ 2 f (x(t)) ẋ(t) + ∇f (x(t)) = 0. ( 19 
)
Then,

(i) f (x(t)) -min H f = O 1 t 2 as t → +∞; (ii) +∞ t0 t(f (x(t)) -inf H f )dt < +∞; (iii) +∞ t0 t 2 ∇f (x(t)) 2 dt < +∞. b)
Another important situation is obtained by taking d(t) = 1 t α-3 . This is the limiting case where the following two properties are satisfied: d(•) is nonincreasing, and the coefficient of ∇f (x(t)) is bounded. This offers the possibility of obtaining similar results for the explicit temporal discretized dynamics, that is to say the gradient algorithms. Precisely, we obtain the dynamic system considered by Shi, Du, Jordan, and Su in [START_REF] Shi | Understanding the acceleration phenomenon via high-resolution differential equations[END_REF], and Attouch, Chbani, Fadili, and Riahi in [START_REF] Attouch | First-order optimization algorithms via inertial systems with Hessian driven damping[END_REF].

Corollary 2 [8, Theorem 3], [START_REF] Shi | Understanding the acceleration phenomenon via high-resolution differential equations[END_REF]Theorem 5] Suppose that α ≥ 3. Let x : [t 0 , +∞[→ H be a solution trajectory of

ẍ(t) + α t ẋ(t) + β∇ 2 f (x(t)) ẋ(t) + 1 + β t ∇f (x(t)) = 0 (20)
Then, the conclusions of Theorem 3 are satisfied:

(i) f (x(t)) -min H f = O 1 t 2 as t → +∞; (ii) When α > 3, +∞ t0 t(f (x(t)) -inf H f )dt < +∞. (iii) +∞ t0 t 2 ∇f (x(t)) 2 dt < +∞.
Note that (20) has a slight advantage over [START_REF] Bot | Second order forward-backward dynamical systems for monotone inclusion problems[END_REF]: the growth conditions are valid for t > 0, while for [START_REF] Bot | Second order forward-backward dynamical systems for monotone inclusion problems[END_REF] one has to take t > β. Accordingly, the estimates involve the quantity 1 t 2 instead of

1 t 2 (1-β t )
. c) Take d(t) = 1 t s with s > 0. According to Proposition 1, for any solution trajectory

x : [t 0 , +∞[→ H of ẍ(t) + α t ẋ(t) + β∇ 2 f (x(t)) ẋ(t) + β t + t α-3-s ∇f (x(t)) = 0 ( 21 
)
we have:

(i) f (x(t)) -min H f = O 1 t α-1-s as t → +∞; (ii) +∞ t0 t α-s-2 (f (x(t)) -inf H f )dt < +∞, +∞ t0 t α-s-1 ∇f (x(t)) 2 dt < +∞.
4 Results based on the function pγ

In this section, we examine another set of growth conditions for the damping and rescaling parameters that guarantee the existence of solutions to the system (i) -(vii) of Theorem 1. In the following theorems, the Lyapunov analysis and the convergence rates are formulated using the function pγ : [t 0 , +∞[→ R + defined by

pγ (t) := exp t t0 γ(s)ds .
In Theorems 2 and 3, in line with the previous articles devoted to these questions (see [START_REF] Attouch | Asymptotic stabilization of inertial gradient dynamics with timedependent viscosity[END_REF], [START_REF] Attouch | Rate of convergence of inertial gradient dynamics with time-dependent viscous damping coefficient[END_REF], [START_REF] Attouch | Fast convex optimization via time scaling of damped inertial gradient dynamics[END_REF]), the convergence rate of the values was formulated using the function

Γγ (t) = pγ (t) +∞ t 1 pγ (s) ds.
In fact, each of the two functions pγ and Γγ captures the properties of the viscous damping coefficient γ(•), but their growths are significantly different. To illustrate this, in the model case γ(t) = α t , α > 1, we have pγ (t) = t t0 α , while Γγ (t) = t α-1 . Therefore, pγ grows faster than Γγ as t → +∞, and we can expect to get better convergence rates when formulating them using pγ . Moreover, pγ makes sense and allows to analyze the case α ≤ 1, while Γγ does not. Thus, we will see that the approach based on pγ provides results that cannot be captured by the approach based on Γγ . To illustrate this, we start with a simple situation, then we consider the general case.

A model situation

Consider the system

(IGS) γ,0,b ẍ(t) + γ(t) ẋ(t) + b(t)∇f (x(t)) = 0 with γ(t) = γ 0 (t) + 1 p0(t) and p 0 (t) = exp t t0 γ 0 (s) ds . Choose ξ ≡ 0, c(t) = p 0 (t), σ(t) = 1 p 0 (t) , θ(t) = p 0 (t) 2 .
According to ṗ0 (t) = γ 0 (t)p 0 (t), we can easily verify that the conditions (i), (iii) -(vii) of Theorem 1 are satisfied, and (ii) becomes d dt p 0 (t) 2 b(t) -p 0 (t)b(t) ≤ 0. Then, a direct application of Theorem 1 gives the following result.

Theorem 4 Suppose that for all t ≥ t 0 p 0 (t) ḃ(t) + 2γ 0 (t)p 0 (t) -1 b(t) ≤ 0.

(

) 22 
Let x : [t 0 , +∞[→ H be a solution trajectory of (IGS) γ,0,b . Then, as t → +∞

f (x(t)) -min H f = O 1 p 0 (t) 2 b(t) . ( 23 
) Moreover, +∞ t0 p 0 (t) 1 -(2γ 0 (t)p 0 (t)) -p 0 (t) ḃ(t) (f (x(t)) -min H f )dt < +∞.
Remark 3 Let us rewrite the linear differential inequality [START_REF] Güler | On the convergence of the proximal point algorithm for convex optimization[END_REF] as follows:

ḃ(t) b(t) ≤ 1 p 0 (t) -2 ṗ0 (t) p 0 (

t)

.

A solution corresponding to equality is b(t) = p 0 (t) -2 exp t t0 1 p 0 (s) ds .

In the case γ 0 (t

)(t) = α t , 0 < α < 1, t 0 = 1, we have p 0 (t) = t α , which gives b(t) = t -2α exp t 1-α -1 1 -α .
Therefore, for 0 < α < 1, and for this choice of b, [START_REF] Güler | New proximal point algorithms for convex minimization[END_REF] gives

f (x(t)) -min H f = O 1 exp t 1-α 1-α . ( 24 
)
Thus, we obtain an exponential convergence rate in a situation that cannot be covered by the Γγ approach. Suppose that r and m are positive parameters which satisfy 0 < r ≤ 1 3 and 2r ≤ m ≤ 1 -r. Suppose that the following growth conditions are satisfied: for t ≥ t 0

(H 1 ) ξ 0 (t) ≥ 0; (H 2 ) ξ 0 (t) 2σ(t) -(m + r)γ(t) - 1 2 ξ0 (t) + m -(1 -r) γ(t)σ 2 (t) ≥ 0, (H 3 ) b(t) -β(t) + β(t) σ(t) -γ(t) ≥ 0, (H 4 ) d dt θ(w + βσ) (t) -θ(t)b(t)σ(t) ≤ 0.
where

ξ 0 (t) := (1 -2(r + m))γ(t) + σ(t) σ(t) -σ(t), (25) 
σ(t) := mγ(t) + 1 3 ḃ(t) b(t) . ( 26 
)
w(t) = b(t) -β(t) + β(t)σ(t) + (1 -2r -2m)γ(t)β(t). ( 27 
)
Then, for each solution trajectory of x : [t 0 , +∞[→ H of (IGS) γ,β,b , we have,

(i) f (x(t)) -min H f = O 1 pγ (t) 2r w(t)b(t) - 2 
3 as t → +∞ ( 28 
) (ii) +∞ t0 p 2r γ (t)Υ (t) f (x(t)) -inf H f dt < +∞, ( 29 
) (iii) +∞ t0 p 2r γ (t)b 1 3 (t)β(t) - d dt p 2r γ b -2 3 β 2 (t) ∇f (x(t)) 2 dt < +∞. ( 30 
)
Here Υ (t

) := 3σ(t) -2(r + m)γ(t) w(t) -ẇ(t) -2(1 -r -m)γ(t).
Proof According to Theorem 1, it suffices to show that, under the hypothesis (H 1 )-(H 4 ), there exists c, θ, σ, ξ which satisfy the conditions (i)-(vii) of Theorem 1. To perform the corresponding derivative calculation, let's start by establishing some preliminary results.

• ln pγ (t) = t t0 γ(s)ds, which by derivation gives ṗγ pγ = γ, that is to say ṗγ = γpγ . • According to the definition of σ,

d dt p 2r γ b -2 3 = 2p 2r γ b -2 3 rγ - 1 3 ḃ b (31) = 2θ ((r + m)γ -σ) . (32) 
Let us show that the following choice of the unknown parameters c, θ, σ, ξ satisfies the conditions (i) -(vii) of Theorem 1:

θ := p 2r γ b -2 3 , σ := mγ + 1 3 ḃ b , ξ := θξ 0 ,
and

c 2 b := θw := θ b -β + βσ + (1 -2r -2m)γβ , (33) 
where ξ 0 has been defined in [START_REF] May | Asymptotic for a second order evolution equation with convex potential and vanishing damping term[END_REF]. We underline that under condition (H 3 ),

c 2 b = θ b -β + βσ -γβ ≥0 +2 (1 -r -m) ≥0 γβ ≥ 0.
Also, according to (32), we have θ = 2θ (r + m)γ -σ .

(i) d dt (βθσ) -θbσ = βθσ + β( θσ + θ σ) -bθσ = θ βσ + 2 (r + m)γ -σ βσ + β σ -bσ because θ = 2((r + m)γ -σ) = θ -βξ 0 -σ(b -β + βσ -γβ) .
(34) Since b is nondecreasing, then σ ≥ 0, so by (H 1 ) and (H 3 ), we get

d dt (βθσ) -θbσ = θ -βξ 0 -σ (b -β + βσ -γβ) ≥0 ≤ 0
(ii) According to the derivation chain rule and (H 4 ), we conclude that

d dt c 2 b + d dt (βθσ) -θbσ = d dt (θw) + d dt (βθσ) -θbσ = d dt (θw + βθσ) -θbσ ≤ 0. (iii) b(c 2 -θ) + βθ(σ -γ) + d
dt (βθ) = 0 results from (33). (iv) According to the derivation chain rule, [START_REF] Siegel | Accelerated first-order methods: Differential equations and Lyapunov functions[END_REF], and the definition of σ d dt

(θσ) + θσ (σ -γ) + ξ = θσ + θ σ + θσ (σ -γ) + ξ = 2θσ (r + m)γ -σ + θ σ + θσ (σ -γ) + ξ = θ σ -σ (1 -2r -2m)γ + σ + ξ.
For this quantity to be equal to zero, we therefore take ξ = θξ 0 , where ξ 0 is defined in [START_REF] Nesterov | A method of solving a convex programming problem with convergence rate O(1/k2)[END_REF]. (v) According to our choice ξ = θξ 0 , we have

(v) ⇐⇒ d dt θ(σ 2 + ξ 0 ) ≤ 0.
Let's compute this quantity. According to the derivation chain rule and (32)

d dt θ(σ 2 + ξ 0 ) = θ ξ0 + θ(σ 2 + ξ 0 ) + 2θ σσ = 2θ 1 2 ξ0 + (σ 2 + ξ 0 ) ((r + m)γ -σ) + σσ = 2θ 1 2 ξ0 + ξ 0 (r + m)γ -2σ + σ ξ 0 + σ (r + m)γ -σ + σ .
By definition of ξ 0 , we have

ξ 0 + σ = (1 -2(r + m))γ + σ σ. Therefore d dt θ(σ 2 + ξ 0 ) = 2θ 1 2 ξ0 + ξ 0 ((r + m)γ -2σ) + γσ 2 (1 -(r + m)) .
So, (v) is satisfied under the condition

1 2 ξ0 + ξ 0 (r + m)γ -2σ + γσ 2 1 -(r + m) ≤ 0, which is precisely (H 2 ). (vi) Let's compute θ + 2(σ -γ)θ = 2θ rγ - 1 3 ḃ b + (m -1)γ + 1 3 ḃ b = 2 (r + m -1) θγ.
According to the assumption m ≤ 1 -r, this quantity is less or equal than zero.

We have (vii

) ⇐⇒ β(β θ + 2( β -b)θ) ≤ 0.
According to condition H 3 and the assumption m ≤ 1 -r, we conclude

β θ + 2( β -b)θ = 2θ β(r + m)γ -βσ -b = 2θ -(b -β + βσ -γσ) ≥0 -βγ (1 -r -m) ≥0 ≤ 0.

So, (vii) is satisfied

According to Theorem 1, we obtain ( 28)-( 29)-( 30) which completes the proof.

The case without the Hessian

Let us specialize the previous results in the case β = 0, i.e. without the Hessian:

(IGS) γ,0,b ẍ(t) + γ(t) ẋ(t) + b(t)∇f (x(t)) = 0.
Theorem 6 Suppose that the conditions (H 1 ) and (H 2 ) of Theorem 5 are satisfied. Then, for each solution trajectory x : [t 0 , +∞[→ H of (IGS) γ,0,b , we have, as

t → +∞ f (x(t)) -min H f = O 1 pγ (t) 2r b(t) 1 3 
.

Moreover, when m > 2r +∞ t0 pγ (t) 2r b(t)

1 3 γ(t) f (x(t)) -inf H f dt < +∞. ( 36 
)
Proof Conditions (H 1 ) and (H 2 ) in Theorem 5 remain unchanged since they are independent of β. We just need to verify (H 4 ), because (H 3 ) is written b(t) ≥ 0 and becomes obvious. Since β = 0, we have (H 4 )

⇐⇒ d dt θb (t) -θ(t)b(t)σ(t) ≤ 0. According to d dt θb (t) -θ(t)b(t)σ(t) = θ(t)b(t) + θ(t) ḃ(t) -θ(t)b(t) mγ + ḃ(t) 3b(t) = b(t) 1/3 d dt θ(t)b(t) 2/3 -mγ(t) θ(t)b(t) 2/3 = b(t) 1/3 d dt pγ (t) 2r -mγ(t) pγ (t) 2r = (2r -m)γ(t)b(t) 1/3 pγ (t) 2r ≤ 0 since 2r ≤ m,
we conclude that (H 4 ) holds, which completes the proof. Next, we show that the condition (H 2 ) on the coefficients γ(•) and b(•) can be formulated in simpler form which is useful in practice.

Theorem 7 The conclusions of Theorem 6 remain true when we replace (H 2 ) by

(H + 2 ) σ(t) σ(t) -(r + m)γ(t) 2σ(t) + 1 -2(r + m) γ(t) + 1 2 σ(t) ≥ 0,
and assume moreover that b(•) is log-concave, i.e., d 2 dt 2 (ln(b(t))) ≤ 0. Proof According to Theorem 6, it suffices to show that (H 2 ) is satisfied under the hypothesis (H + 2 ). By definition of σ, we have

2σ(t) -(m + r)γ(t) = (m -r)γ(t) + 2 3 ḃ(t) b(t) .
So (H 2 ) can be written equivalently as A ≥ 0, where

A =: ξ 0 (t) (m -r)γ(t) + 2 3 ḃ(t) b(t) - 1 2 ξ0 (t) + m + r -1 γ(t)σ 2 (t). (37) 
A calculation similar to the one above gives

ξ 0 (t) = (1 -2r -m)γ(t) -mγ(t) + σ(t) σ(t) -σ(t), = (1 -2r -m)γ(t) + 1 3 ḃ(t) b(t) σ(t) -σ(t). (38) 
In (37), let's replace ξ 0 (•) by its formulation (38), we obtain

A = 1 2 d 2 dt 2 σ(t) - 1 2 d dt σ(t) (1 -2r -m)γ(t) + 1 3 ḃ(t) b(t) -σ(t) (m -r)γ(t) + 2 3 ḃ(t) b(t) 
+ m + r -1 γ(t)σ 2 (t) + (m -r)γ(t) + 2 3 ḃ(t) b(t) (1 -2r -m)γ(t) + 1 3 ḃ(t) b(t) σ(t).
Set

B := m + r -1 γ(t)σ 2 (t) + (m -r)γ(t) + 2 3 ḃ(t) b(t) (1 -2r -m)γ(t) + 1 3 ḃ(t) b(t) σ(t),
then we have (by omitting the variable t to shorten the formulas)

B = σ (m + r -1)γσ + (m -r)γ(t) + 2 3 ḃ b (1 -2r -m)γ + 1 3 ḃ b = σ (m + r -1)γσ + -rγ + 1 3 ḃ b + σ (1 -2r)γ + 2 3 ḃ b -σ = σ (m + r -1)γσ -σ 2 + γσ (-m + 1 -r) + σ 2 + -rγ + 1 3 ḃ b (1 -2r)γ + 2 3 ḃ b = σ -rγ + 1 3 ḃ b (1 -2r)γ + 2 3 ḃ b .
Replacing B in A, we obtain

A = σ(t) σ(t) -(m + r)γ(t) 2σ(t) + (1 -2(m + r))γ(t) + 1 2 d 2 dt 2 σ(t) + C(t) (39) 
where

C(t) := -σ(t) (m -r)γ(t) + 2 3 ḃ(t) b(t) - 1 2 d dt σ(t) (1 -2r -m)γ(t) + 1 3 ḃ(t) b(t) .
Let us show that C(t) is nonnegative. After replacing σ(t) by its value mγ(t)+ 1 3 ḃ(t) b(t) , and developing, we get

C(t) = -m γ(t)γ(t)(1 -3r) - 1 6 (4m -2r + 1) γ(t) ḃ(t) b(t) - 1 6 
d 2 dt 2 (ln(b(t))) (1 + 2(m -2r))γ(t) + 2 ḃ(t) b(t) .
By assumption, m -2r ≥ 0, 1 -3r ≥ 0, γ(•) is nonincreasing, b(•) is nondecreasing, and d 2 dt 2 (ln(b(t))) ≤ 0. We conclude that C(t) ≥ 0. According to (39), we obtain

A ≥ σ(t) σ(t) -(m + r)γ(t) 2σ(t) + (1 -2(m + r))γ(t) + 1 2 d 2 dt 2 σ(t).
The condition (H + 2 ) expresses that the second member of the above is nonnegative. Therefore (H + 2 ) implies (H 2 ), which gives the claim.

Comparing the two approaches

As we have already underlined, Theorems 2 and 7 are based on the Lyapunov analysis of the dynamic (IGS) γ,0,b using the functions Γγ and pγ , respectively. As such, they lead to significantly different growth conditions on the coefficients of the dynamic. Precisely, using the following example, we will show that Theorem 7 better captures the case where b has an exponential growth. Take b(t) = e µt q and γ(t) = α t 1-q with α = µq > 0, q ∈ (0, 1). 

= (µq) 3 m + 1 3 1 3 -r 5 3 -2r 1 t 3-3q + 1 2 µq m + 1 3 (1 -q)(2 -q) 1 t 3-q
which is nonnegative because of the hypothesis r ≤ 1 3 and q < 1. b) Let us now examine the growth condition used in Theorem 2:

Γ (t) ḃ(t) ≤ b(t) 3 -2γ(t)Γ (t) where Γ (t) := p(t) +∞ t ds p(s) . (40) 
Here pt) = e µ(t q -t q 0 ) . Therefore Γ (t) = e µt q +∞ t e -µs q ds, which gives

Γ (t) ḃ(t) -b(t) 3 -2γ(t)Γ (t) = 3e µt q
µqt q-1 e µt q +∞ t e -µs q ds -1 .

Let us analyze the sign of the above quantity, which is the same as D(t) := µqt q-1 e µt q +∞ t e -µs q ds -1 = -µqt q-1 e µt q +∞ t d ds e -µs q 1 µq s 1-q ds -1

After integration by parts, we get D(t) := 1 q -1 + 1 -q q t q-1 e µt q +∞ t e -µs q 1 s q ds > 1 q -1 > 0.

Therefore, the condition (40) is not satisfied.

Illustration of the results

Let us particularize our results in some important special cases, and compare them with the existing litterature. We do not detail the proofs which result from the direct applications of the previous theorems and the classical differential calculus.

5.1 The case b(t) = p(t) 3p0 .

Recall that p(t) = exp t t0 γ(s)ds . We start with results in [START_REF] Attouch | Rate of convergence of inertial gradient dynamics with time-dependent viscous damping coefficient[END_REF] concerning the rate of convergence of values in the case b(t) = c 0 p(t) 3p0 with p 0 ≥ 0 and c 0 ≥ 0. In this case, the system (IGS) γ,0,b becomes:

ẍ(t) + γ(t) ẋ(t) + c 0 exp 3p 0 t t0 γ(s)ds ∇f (x(t) = 0. ( 41 
)
Observe that ḃ(t) 3b(t) = p 0 γ(t) and ξ 0 (t) = (m + p 0 ) (1 -2r -m + p 0 )γ 2 (t) -γ(t) . Therefore, conditions (H 1 ) and (H 2 ) of Theorem 6 become after simplification:

(H 1 ) [(p 0 -r) + (1 -r -m)]γ 2 (t) -γ(t) ≥ 0; (H 2 ) 2(p 0 -r) (1 + 2(p 0 -r)) γ 3 (t) -2 (1 + 3(p 0 -r)) γ(t) γ(t) + γ(t) ≥ 0.
Since m ≤ 1 -r, instead of (H 1 ), it suffices to verify (H + 1 ) p 0 -r γ 2 (t) -γ(t) ≥ 0.

Theorem 8 Let γ : [t 0 , +∞) → R + be a nonincreasing and twice continuously differentiable function. Suppose that there exists r ∈ (0,

1 3 such that γ(t) ≥ 2 min(0, p 0 -r) 2 γ 3 (t) on [t 0 , +∞). ( 42 
)
Then, for each solution trajectory x(•) of (41), we have as

t → +∞ f (x(t)) -min H f = O 1 p(t) 2r+p0 . ( 43 
)
Proof To prove the claim, we use Theorem 5 and distinguish two cases: Suppose p -r ≥ 0, then (42) implies γ(t) ≥ 0, and since γ is a nonincreasing, we also have γ(t) ≤ 0; thus both conditions (H + 1 ) and (H 2 ) are satisfied. Suppose p -r < 0, then (42) becomes γ(t) ≥ (2p -r) 2 γ 3 (t) on [t 0 , +∞).

(44)

Since γ(•) is a positive and nonincreasing, lim t→+∞ γ(t) = exists and is equal to zero. Otherwise, by integrating (44) on [t 0 , t] for t > t 0 , we would have

γ(t) -γ(t 0 ) ≥ 2(p -r) 2 t t0 γ(s) 3 ds ≥ 2(p -r) 2 3 (t -t 0 ).
This in turn gives lim t→+∞ γ(t) = +∞, which implies lim t→+∞ γ(t) = +∞, that is a contradiction. Then, multiply (44) by γ(t). Since γ(•) is nonincreasing, we obtain

γ(t) γ(t) ≤ 2(p -r) 2 γ 3 (t) γ(t) ⇐⇒ 1 2 d dt ( γ(t) 2 ) ≤ (p -r) 2 2 d dt (γ 4 (t)).
By integrating this inequality from t to T > t, we get

γ(T ) 2 -γ(t) 2 ≤ (p -r) 2 (γ 4 (T ) -γ 4 (t)),
Letting T → +∞, and using lim T →+∞ γ(T ) = 0, we obtain γ2 (t)

≥ (p -r) 2 γ 4 (t), which is equivalent to | γ(t)| ≥ |p -l|γ 2 (t). Since γ(t) ≤ 0 and p < r, this gives -γ(t) ≥ (r -p)γ 2 (t), ∀t > t 0 , that is (H + 1 ). We have [(p -r) + (1 -r -m)]γ 2 (t) -γ(t) = -2(p -r) 2 γ 3 (t) + γ(t)
≥0 by ( 44)

+2 (1 -3r + 3p) ≥0 since p<r γ(t) (p -r)γ 2 (t) -γ(t) ≥0 by (H + 1 )
≥ 0.

Therefore, (H + 1 ) and (H 2 ) are satisfied. Applying Theorem 5, we conclude. As a particular case of Theorem 8, with p 0 = 0, we obtain the following result. 

ẍ(t) + γ(t) ẋ(t) + c 0 ∇f (x(t) = 0. ( 45 
)
Suppose that (Hr,γ) ∃r > 0 such that -2r 2 γ 3 (t) + γ(t) ≥ 0 for t large enough.

Then, f (x(t)) -min H f = O e -2 min(r, 1 
3 ) t t 0 γ(s)ds as t → +∞.

Remark 4 The case γ(t) = 1 t(ln t) ρ , for 0 ≤ ρ ≤ 1, was developed in [START_REF] Attouch | Rate of convergence of inertial gradient dynamics with time-dependent viscous damping coefficient[END_REF]. In that case condition (H 3,γ ) writes as 2(ln t) 2 + 3ρ ln t + ρ(ρ + 1) ≥ 2r 2 (ln t) 2(1-ρ) , which is satisfied for any r ≤ 1 and any t ≥ e.

-If ρ = 1, then p(t) = exp 

(x(t)) -min H f = O 1 (ln t) 2 3 
.

-If 0 ≤ ρ < 1, then p(t) = exp ln t ln t0

1 u ρ du = exp 1 1-ρ (ln t) 1-ρ -(ln t 0 ) 1-ρ ,
and, for r = 1 3 , we also get

f (x(t)) -min H f = O 1 exp 2 3(1-ρ) (ln t) 1-ρ . 5.2 The case b(t) = c 0 t q and γ(t) = α t .
When b(t) = c 0 t q and γ(t) = α t where α > 0 and q ≥ 0, we first observe that p(t) = exp t t0 γ(s)ds = t t0 α . The second-order continuous system becomes:

ẍ(t) + α t ẋ(t) + c 0 t q ∇f (x(t)) = 0. ( 46 
)
Applying Theorem 8, we obtain the following new result.

Theorem 10 Let x(•) be a solution trajectory of (46) with α > 1 and q ≥ 0. Suppose that 1 < α ≤ 3 + q. Then,

f (x(t)) -min H f = O 1 t 2α+q 3 , as t → +∞. (47) 
Remark 5 Taking q = 0, a direct application of the above result covers the results obtained in [START_REF] Attouch | Fast convergence of inertial dynamics and algorithms with asymptotic vanishing damping[END_REF][START_REF] Su | A differential equation for modeling Nesterov's accelerated gradient method: theory and insights[END_REF] (case α ≥ 3), and in [START_REF] Apidopoulos | Convergence rate of inertial Forward-Backward algorithm beyond Nesterov's rule[END_REF][START_REF] Attouch | Rate of convergence of the Nesterov accelerated gradient method in the subcritical case α ≤ 3[END_REF], (case α ≤ 3). It suffices to take γ(t) = α t and r = 1 α . More precisely, we get :

-if 0 < α ≤ 3 then f (x(t)) -min H f = O(t - 2α 
3 ),

-if α > 3 then f (x(t)) -min H f = O( 1 t 2 ).
5.3 The case b(t) = e µt q and γ(t) = α t 1-q .

Suppose that µ ≥ 0 , 0 ≤ q ≤ 1 and α > 0. This will allow us to obtain the following exponential convergence rate of the values. 

ẍ(t) + α t 1-q ẋ(t) + e µt q ∇f (x(t)) = 0. ( 48 
) Suppose that α ≤ µq, then, as t → +∞ f (x(t)) -min H f = O e -2α+µq 3 t q .
Remark 6 a) For q = µ = 0, (48) reduces to the system initiated in [START_REF] Su | A differential equation for modeling Nesterov's accelerated gradient method: theory and insights[END_REF], i.e.

ẍ(t) +

α t ẋ(t) + ∇f (x(t)) = 0.

Just assuming α > 0, we obtain lim

t→+∞ f (x(t)) -min H f = 0. b) For q = 1 2 we get -If α ≤ µ, then f (x(t)) -min H f = O e -2(2α+µ) 3 ) √ t .
-If α ≥ µ, then f (x(t)) -min H f = O e -2µ √ t .

c) For q = 1, direct application of Theorem 11 gives: Let us illustrate these results. Take f (x 1 , x 2 ) := 1 2 x 2 1 + x 2 2 -ln(x 1 x 2 ), which is a strongly convex function. Trajectories of ẍ(t) + α ẋ(t) + e µt ∇f (x(t)) + ce νt ∇ 2 f (x(t)) ẋ(t) = 0, corresponding to different values of the parameters α, µ, ν, and c, are plotted in Figure 1 2 . The parameter c shows the importance of the Hessian-damping. (2020) [START_REF] Attouch | First-order optimization algorithms via inertial systems with Hessian driven damping[END_REF] Fig. 2 Convergence rate of f (x(t)) -min f for instances of Theorem 1 and general f .

Numerical comparison

Figure 2 summarizes our convergence results, according to the behavior of the parameters γ(t), β(t), b(t). Let's comment on them and compare them, separately considering f to be strongly convex or not.

Strongly convex case

Suppose that f is s-strongly convex. Following Polyak's [START_REF] Polyak | Some methods of speeding up the convergence of iteration methods[END_REF], the system ẍ(t) + 2 √ s ẋ(t) + ∇f (x(t)) = 0 (50) provides the linear convergence rate f (x(t)) -inf H f ≤ Ce - √ st , see also [31, Theorem 2.2]. In the presence of an additional Hessian-driven damping term ẍ(t) + 2 √ s ẋ(t) + β∇ 2 f (x(t)) ẋ(t) + ∇f (x(t)) = 0 (β ≥ 0) (51) a related linear rate of convergence can be found in [8, Theorem 7]. Let us insist on the fact that, in Corollary 3, we obtain a linear convergence rate for a general convex differentiable function f . In Figure 1, for the strongly convex function f (x 1 , x 2 ) = 1 2 x 2 1 + x 2 2 -ln(x 1 x 2 ), we can observe that some values of µ give a better speed of convergence of f (x(t))-min f . We can also note that for µ correctly set, the system (49) provides a better linear convergence rate than the system (50).

Non-strongly convex case

We illustrate our results on the following simple example of a non strongly convex minimization problem, with non unique solutions. min

R 2 f (x 1 , x 2 ) = 1 2 (x 1 + 10 3 x 2 ) 2 . ( 52 
)
From Figure 3 we get the following properties: a) The convergence rate of the values is in accordance with Figure 2. b) The system (49) is best for its linear convergence of values. c) The Hessian-driven damping reduces the oscillations of the trajectories. 

Conclusion, perspectives

Our study is one of the first works to simultaneously consider the combination of three basic techniques for the design of fast converging inertial dynamics in convex optimization: general viscous damping (and especially asymptotic vanishing damping in relation to the Nesterov accelerated gradient method), Hessian-driven damping which has a spectacular effect on the reduction of the oscillatory aspects (especially for ill-conditionned minimization problems), and temporal rescaling.

We have introduced a system of equations-inequations whose solutions provide the coefficients of a general Lyapunov functions for these dynamics. We have been able to encompass most of the existing results and find new solutions for this system, thus providing new Lyapunov functions. Also, we have been able to explain the mysterious coefficients which have been used in recent algorithmic developements, and which were just justified until now by the simplification of complicated calculations. Finally, by playing on fast rescaling methods, we have obtained linear convergence results for general convex functions. This work provides a basis for the development of corresponding algorithmic results.

4. 2

 2 The general case, with the Hessian-driven dampingTheorem 5 Let f : H → R be a convex function of class C 1 such that argmin H f = ∅.Suppose that γ(•), β(•) are C 1 functions and b(•) is a C 2 function which is nondecreasing.

Theorem 9 [ 7 ,

 97 Theorem 2.1] Let γ(•) be a nonncreasing function of class C 2 , and x(•) a solution trajectory of

  and for r =1 3 , we get f

Corollary 3 (

 3 Linear convergence) Let x : [t 0 , +∞[→ H be a solution trajectory of ẍ(t) + α ẋ(t) + e µt ∇f (x(t)) = 0. (49)If α ≤ µ, then f (x(t)) -min H f = O e -2α+µ3t .

Fig. 1 x 2 1 + x 2 2 -

 122 Fig.1Evolution of f (x(t)) -min f for solutions of (49), (50), andf (x 1 , x 2 ) = 1 2 x 2 1 + x 2 2ln(x 1 x 2 ).

Fig. 3

 3 Fig.3Evolution of f (x(t)) -min f for systems in Figure2, and f(x 1 , x 2 ) = 1 2 x 2 1 + 10 3 x 2 2 .

  t 0 , +∞[.

	We recover the condition introduced in [12, Corollary 3.4]. Under this condition,
	each solution trajectory x of			
	(IGS) α/t,0,b	ẍ(t) +	α t	ẋ(t) + b(t)∇f (x(t)) = 0,
	satisfies			
	f (x(t)) -min H			

  1 [17, Theorem 1.10, Proposition 1.11] Suppose that α > 3 and β > 0. Let x : [t 0 , +∞[→ H be a solution trajectory of
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	γ(t) β(t) b(t)		f (x(t)) -min f	Reference
	Cte	0	1		O t -1		(1964) [29]
	Cte	Cte	1		O t -1		(2002) [2]
	α/t	0	1		O t -2 3 α if 0 < α ≤ 3 O t -2 if α ≥ 3	(2019) [10] (2014) [32]
	α/t	Cte	1		O t -2 if α ≥ 3, β > 0	(2016) [17]
	γ(t)	0	b(t)	O where p(t) := exp p(t) +∞ (p(s)) -1 ds t t 0 γ(s)ds -2 t	(b(t)) -1	(2019) [10]
	α/t	β(t) b(t)	O	t 2 b(t) -β(t) -	t β(t)	-1

Recall that for α = 3 the convergence of the trajectories is an open question