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Summary 

The second messenger cAMP is responsible for β-adrenergic receptor (-AR) stimulation of 

cardiac function by catecholamines, but is also elevated in response to several other receptors 

which exert distinct functional effects on the heart. Evidences that spatial segregation of cAMP 

signalling may explain these observations are reviewed in this chapter. In particular, the role of 

cell architecture and the molecular mechanisms that restrict cAMP signals will be detailed. 
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Introduction 

The concept of compartmentalized signaling stems from studies of the cAMP pathway in the 

heart (reviewed in Steinberg & Brunton, 2001 [1]). In cardiac myocytes, intracellular cAMP 

levels can be augmented by catecholamine as well as by a large number of hormones and 

circulating factors. These different “first messengers” act through specific heptahelical receptors 

coupled to heterotrimeric Gs proteins, which activate cAMP synthesis by adenylyl cyclases (AC). 

In some cases, such as catecholamine or isoprenaline (ISO) binding to 1-adrenergic receptors 

(β1-AR), cAMP elevation causes a dramatic increase in cardiac beating frequency (positive 

chronotropy), in cardiac force of contraction (positive inotropy) and in cardiac relaxation speed 

(positive lusitropy). These effects are mainly due to the concerted phosphorylation of key 

proteins of the excitation-contraction coupling (ECC) by cAMP-dependent protein kinase 

(PKA): L-type Ca2+ channels (LTCC), phospholamban (PLB), ryanodine receptors (RyR) and 

troponin I (TnI) (Figure 1) [2]. However, in other cases, such as prostaglandin E1 (PGE1) 

binding to prostanoid receptors (EP-R), a comparable elevation of cAMP does not lead to 

phosphorylation of ECC proteins and does not produce the robust functional response that 

characterizes β1-AR stimulation. A first clue to this paradoxical observation was the 

identification of two PKA isozymes (PKAI and PKAII) in myocardium, differing by the nature 

of their regulatory subunits (called RI and RII) and by their distribution: whereas PKAI was 

mostly soluble, PKAII was associated to the particulate fraction [3,4]. It was shown subsequently 

that ISO increased cAMP and PKA in both the soluble and particulate fraction, whereas PGE1 

increased cAMP and PKA in only the soluble fraction [5,6]. These results constitute the initial 

evidence that the cAMP cascade is confined in distinct intracellular compartments in cardiac 

cells. Recently, electrophysiological and imaging approaches that resolve cAMP signals at the 



 4 

subcellular level in intact cardiomyocytes confirmed that cAMP generated by EP-R stimulation 

has no access to PKAII and does not regulate PKAII targets [7-9]. Moreover, other Gs protein-

coupled receptors (GsPCRs) that increase cAMP were shown to elicit specific responses in 

cardiomyocytes. This is the case of β2-ARs (see below), glucagon receptors (Glu-Rs) [10] and 

glucagon-like peptide-1 receptors (GLP1-Rs) [11]. The current view is that each receptor acts 

through a specific macromolecular complex that transmits the signal to the final effector(s) [12]. 

Scaffold proteins, and in particular A-kinase anchoring proteins (AKAPs), that tether PKA in the 

vicinity of its substrates, are key organizers of these complexes (for further information on this 

topic, see chapter by John Scott et al.) [13,14]. Nevertheless, such organization would not be 

sufficient to ensure specificity if cAMP would freely diffuse inside the cell. In addition to 

specialized membrane structures that influence the organization of the cAMP cascade, 

degradation of cAMP by cyclic nucleotide phosphodiesterases (PDEs) appears critical for the 

formation of dynamic cAMP microdomains. In this chapter, we will briefly summarize these 

aspects of cAMP signalling compartmentation in heart cells.  

Cell architecture 

Signal transduction cascades cannot be dissociated from the surrounding cell architecture 

which determines their organization. This is particularly true in large adult ventricular myocytes, 

which developed the transverse tubular network to increase the efficiency of ECC. T-tubules are 

invaginations of the plasma membrane occurring at the sarcomeric Z-line, whose major function 

is the synchronization of Ca2+ release [15]. Together with proteins involved in cellular Ca2+ 

cycling, several components of the cAMP pathway were shown to localize in T-tubules, 

including Gs proteins, AC type 5 and 6, and AKAPs [16-19]. However, ECC takes place mostly 

in specialized regions called dyads where T-tubule and SR meet [2]. To our knowledge, the truly 
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relevant question in terms of cAMP signalling compartmentation, i.e. whether 1-ARs are 

specifically enriched in dyads whereas, for instance, prostanoid receptors would be excluded 

from these domains is still unanswered.  

Other microdomains of interest for signal transduction are caveolae. These small invaginations 

of the plasma membrane enriched in cholesterol and sphingolipids, are defined by their principal 

structural protein, caveolin 3 in striated muscles [20]. A number of components of the cAMP 

pathway including GPCRs, G proteins, AC5/6 isoforms and PKA regulatory subunits were 

shown to segregate between caveolar and non caveolar fractions of the membrane [21-27]. For 

instance, in canine heart, caveolae contain the type II regulatory subunit of PKA, but not the type 

I [22]. Also excluded from caveolae, are the prostanoid E2 receptors [24] and this location was 

suggested to account for the lack of effect of PGE1 on L-type Ca2+ channel current (ICa,L) and 

cAMP measured with PKAII-based FRET sensors [8]. Ostrom et al. (2001) [24] also found both 

1-ARs and 2-ARs in caveolae, together with AC6. However, the group of Steinberg proposed 

that segregation of 1-ARs and 2-ARs subtypes, respectively in non caveolar and caveolar 

domains of the membrane, underlies the functional differences between -AR subtypes [25]. 

Indeed, in contrast to 1-AR stimulation, in some species activation of 2-ARs appears restricted 

to the plasma membrane and LTCC phosphorylation, thus inducing a modest inotropic effect 

without hastening relaxation [28,29] (but see [30]). In line with these findings, co-

immunoprecipitation experiments identified a macromolecular signalling complex linking 2-

ARs to LTCCs in cardiomyocyte caveolae [12]. Caveolae disruption with cholesterol binding 

agents selectively enhances 2-ARs but not 1-ARs responses [12,26,31,32]. In particular, 

caveolae disruption allows 2-AR stimulation to phosphorylate PLB and TnI, thus accelerating 

relaxation [32]. Collectively, these observations support the idea that receptor location in distinct 
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microdomains of the plasma membrane is an important determinant of functional 

compartmentation. 

 

Receptor coupling to Gi 

GPCRs positively coupled to cAMP may not act exclusively through the classical 

Gs/cAMP/PKA cascade. In particular, certain GPCRs such as histamine, serotonin, and glucagon 

can also couple to Gi proteins in cardiac cells [33]. However, the best example of such coupling 

is the 2-AR, and this peculiarity has been proposed to explain the distinct effects of 1-ARs and 

2-ARs in cardiomyocytes [34-36]. Indeed, Gi inhibition with pertussis toxin (PTX) specifically 

potentiates 2-AR stimulation of Ca2+ transients and contraction [31,32,34,37], and allows 2-AR 

to phosphorylate PLB and accelerate relaxation [36]. Thus, 2-AR coupling to Gi appears to 

circumvent the concurrent Gs/cAMP/PKA activation and to prevent global actions of 2-ARs. 

Surprisingly however, this does not seem to be due to concomitant inhibition of AC since PTX 

treatment has no effect on 2-AR evoked cAMP accumulation or PKA activation [36,38,39]. The 

mechanisms acting downstream of Gi are not fully elucidated. In rat ventricular myocytes, Gi 

signaling probably involves activation of phosphatidyl-inositol-3 kinases (PI3K) and 

phosphatases, since inhibition of these enzymes reproduce the effects of PTX [36,40]. An 

alternative signalling pathway, previously shown in chick embryonic myocytes, involves Gi 

activation of cytosolic phospholipase A2 (cPLA2) [37]. Similarly to PI3K inhibition, cPLA2 

inhibition enhances 2-AR evoked Ca2+ transients and uncovers PLB phosphorylation by PKA. 

This signaling cascade is recruited to caveolae upon 2-AR stimulation [31]. Together, these data 

are consistent with the hypothesis that spatial restriction of 2-AR cAMP signalling by Gi occurs 

within the context of caveolae [32]. 
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Receptor coupling to different adenylyl cyclase isoforms 

The heart expresses several AC isoforms (AC4-6, AC9), among which AC5 and AC6 represent 

the major forms [41]. AC5 and AC6 share strong similarities in sequence and functional 

characteristics: both are activated by Gs subunits and forskolin and inhibited by Gi and G 

subunits [42,43], Ca2+ ions [44,45], and PKA phosphorylation [41,42,46,47]. There are very few 

evidences that AC5 and AC6 mediate distinct hormonal responses in the heart. However, over-

expression of AC6 in neonatal cardiomyocytes selectively enhances -AR cAMP accumulation 

vs. EP-R, histamine H2 receptors, Glu-R or adenosine A2-R [23]. A subsequent study in adult 

cardiomyocytes further demonstrated that AC6 over-expression selectively increased 1-AR 

contractile response but not that of 2-AR [48]. In contrast, purinergic receptors seem to couple 

selectively to AC5 in cardiomyocytes [49].  

Restriction of cAMP diffusion 

Spatial restriction of cAMP in cardiomyocytes was shown directly by electrophysiological and 

imaging techniques. Patch clamp recordings of ICa,L showed that 2-ARs are unable to regulate 

remote LTCC, implying that cAMP diffusion can be strongly restricted [50,51]. The use of 

fluorescent resonance energy transfer (FRET)–based sensors [39,52] and cyclic nucleotide-gated 

(CNG) channels [53] to measure directly cAMP in living cells confirmed spatial confinement of 

the second messenger. Combination of both techniques revealed distinct temporal characteristics 

of -AR signals at the membrane and in the cytosol, thus suggesting the existence of cAMP 

gradients in cardiomyocytes [54]. At least four different mechanisms may explain why cAMP 

does not diffuse: cAMP buffering, physical barriers, cAMP degradation and cAMP extrusion. 
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Early biochemical studies and recent models indicate that PKA regulatory subunits can 

effectively buffer cAMP, and thus likely participate in cAMP compartmentation [55,56]. CNG 

channel measurements revealed that upon hormonal stimulation cAMP raises to higher level sat 

the plasma membrane than in the bulk cytosol, implying the existence of physical barriers, 

possibly formed by caveolae and endoplasmic reticulum juxtaposition [57]. Emerging evidence 

supports the notion that cAMP export, in particular through multidrug resistance-associated 

proteins 4, may participate in the functional compartmentation of cAMP in certain tissues 

[58,59]. However, the most documented mechanism for preventing cAMP diffusion in cardiac 

myocytes is cAMP degradation by cyclic nucleotide phosphodiesterases (PDEs). At present, at 

least eleven PDE families have been identified, among which PDE1, PDE2, PDE3, and PDE4 

are responsible for cAMP degradation in heart [60-62]. Among these, PDE1-3 can hydrolyze 

both cAMP and cGMP, whereas PDE4 hydrolyzes exclusively cAMP. PDE1 is stimulated by 

Ca2+-calmodulin; PDE2 is stimulated by cGMP; PDE3 is inhibited by cGMP; and PDE4 is 

activated by PKA. The PDE1 family is encoded by three genes (PDE1A-C), PDE2 is encoded by 

one gene (PDE2A), the PDE3 family is encoded by two genes (PDE3A and PDE3B) and PDE4 

is encoded by four genes (PDE4A-D). Cardiac myocytes express two forms of PDE2A [63], 

three forms of PDE3A [64] and >5 forms of PDE4 derived from PDE4A, B and D genes [65,66]. 

Whether cardiac PDE1 is expressed predominantly in fibroblasts or cardiomyocytes is unknown 

and might depend on the species considered [67,68]. In addition, the lack of selective inhibitors 

largely precludes investigation of PDE1 function in cardiomyocytes. In contrast, selective 

inhibitors of PDE2 (EHNA), PDE3 (cilostamide) and PDE4 (rolipram or Ro 201724) allows 

dissection of the respective role of these PDEs in cardiac function. Although basal PDE2 activity 

is much smaller than that of PDE3 and PDE4 in cardiomyocytes, it can effectively suppress -
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AR responses when cGMP levels are elevated [61,69]. However, the main control over ECC is 

provided by the dominant PDE3 and PDE4 subtypes. PDE3 is about 10 times more sensitive to 

cAMP than PDE4, which may explain why PDE3 inhibitors exert direct positive inotropic effects 

especially in large mammals [70], whereas PDE4 exert positive inotropic effects only in the 

presence of elevated cAMP [62,71]. 

Role of phosphodiesterases in cardiac cAMP compartmentation 

Early evidence for a contribution of PDEs to cAMP compartmentation comes from the 

differential effect of ISO and PDE inhibitors such as IBMX (a broad spectrum PDE inhibitor) or 

milrinone (a selective PDE3 inhibitor) on PLB and TnI phosphorylation in guinea pig hearts, 

[72] which were attributed to different expression of PDEs at the membrane and in the cytosol 

[70]. In a subsequent study, the fact that PDE inhibition decreased the proportion of particulate 

vs. cytosolic cAMP suggested that these enzymes limit the amount of cAMP diffusing from the 

membrane to the cytosol upon -AR stimulation [73]. Similar conclusions were drawn from ICa,L 

or direct cAMP measurements in intact cells with CNG channels or FRET-based biosensors 

[39,50,52,53]. A number of subsequent studies showed that PDE2, PDE3 and mainly PDE4 

shape -AR cAMP signals in cardiomyocytes [7,54,74-78]. The property of PDE4 long forms to 

be phosphorylated and activated by PKA [79] and to bind to AKAPs [80] allows efficient 

suppression of -AR cAMP by these enzymes (Figure 2) [53,54]. Interestingly, a distinct pattern 

of PDEs regulate cAMP generated by different GsPCRs. Indeed, cAMP generated by glucagon 

receptors is specifically controlled by PDE4, whereas both PDE3 and PDE4 regulate cAMP 

elicited by 1-ARs and 2-ARs and both PDE3, PDE4 plus other PDEs regulate EP-R cAMP in 

adult cardiac myocytes [7]. Studies in mice deficient for the PDE4 genes, and biochemical 

approaches suggest that products of the PDE4D gene are the dominant PDE4 involved in -AR 
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signaling. Indeed, -AR stimulation of beating frequency is significantly prolonged in neonatal 

cardiomyocytes lacking the PDE4D gene [81]. In addition, distinct variants of the PDE4D gene 

were shown to be transiently associated to 1-ARs and 2-ARs [82,83]. However, the use of 

dominant negatives approaches rather points to a role of PDE4B2 in the termination of -AR 

cAMP signals [76]. This example shows that, although obvious progress were made since the 

initial proposition that cAMP is compartmentalized, much work remains to be done to provide an 

exhaustive molecular description of the cAMP signaling pathways in cardiac cells. 

Understanding these details may not only satisfy academic curiosity, but might also prove useful 

to envisage new therapeutic strategies in pathological hypertrophy and heart failure. This is 

suggested by two recent studies in which disruption of a single isoform of PDE3 or PDE4 was 

shown to favor the development of cardiac dysfunction [84,85]. 
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Figure legends 

 

Figure 1. Autonomic regulation of cardiac excitation-contraction coupling. Noradrenaline 

liberated by sympathetic nerves binds to -ARs (the most classical case of 1-ARs is 

represented) at the surface of cardiac myocytes. 1-ARs stimulate cAMP synthesis by adenylyl 

cyclases (AC) through coupling to Gs proteins. The second messenger in turn activates cAMP-

dependent protein kinase (PKA), which phosphorylates a large number of target proteins in 

cardiomyocytes. Among these, the concerted phosphorylation of L-type Ca2+ channels (LTCC), 

ryanodine receptor subtype 2 (RyR2), phospholamban (PLB) and troponin I (TnI) are 

responsible for the positive inotropic effect of -AR stimulation. 

Figure 2. Control of -AR cAMP signals by PDE4 in cardiac myocytes. Upon -AR 

stimulation, elevation of cAMP activates PKA (1), which in turn phosphorylates and activates 

PDE4 (2) to limit cAMP accumulation (3). This negative feedback loop is facilitated by the close 

proximity of PKA and PDE4 through their binding to the same A-kinase anchoring protein 

(AKAP).  
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