
HAL Id: hal-02940427
https://hal.science/hal-02940427

Submitted on 16 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Storage-Computation-Communication Tradeoff in
Distributed Computing: Fundamental Limits and

Complexity
Qifa Yan, Sheng Yang, Michèle Wigger

To cite this version:
Qifa Yan, Sheng Yang, Michèle Wigger. Storage-Computation-Communication Tradeoff in Distributed
Computing: Fundamental Limits and Complexity. IEEE Transactions on Information Theory, inPress.
�hal-02940427�

https://hal.science/hal-02940427
https://hal.archives-ouvertes.fr

1

Storage-Computation-Communication Tradeoff

in Distributed Computing: Fundamental Limits

and Complexity
Qifa Yan, Sheng Yang, and Michèle Wigger

Abstract

Distributed computing has become one of the most important frameworks in dealing with large computation tasks.

In this paper, we propose a systematic construction of coded computing schemes for MapReduce-type distributed

systems. The construction builds upon placement delivery arrays (PDA), originally proposed by Yan et al. for coded

caching schemes. The main contributions of our work are three-fold. First, we identify a class of PDAs, called

Comp-PDAs, and show how to obtain a coded computing scheme from any Comp-PDA. We also characterize the

normalized number of stored files (storage load), computed intermediate values (computation load), and communicated

bits (communication load), of the obtained schemes in terms of the Comp-PDA parameters. Then, we show that

the performance achieved by Comp-PDAs describing Maddah-Ali and Niesen’s coded caching schemes matches a

new information-theoretic converse, thus establishing the fundamental region of all achievable performance triples. In

particular, we characterize all the Comp-PDAs achieving the pareto-optimal storage, computation, and communication

(SCC) loads of the fundamental region. Finally, we investigate the file complexity of the proposed schemes, i.e., the

smallest number of files required for implementation. In particular, we describe Comp-PDAs that achieve pareto-

optimal SCC triples with significantly lower file complexity than the originally proposed Comp-PDAs.

Index Terms

Distributed computing, storage, communication, MapReduce, placement delivery array

I. INTRODUCTION

Massively large distributed systems have emerged as one of the most important forms to run big data and

machine learning algorithms, so that data-parallel computations can be executed accross clusters of many individual

computing nodes. In particular, distributed programs like MapReduce [2] and Dryad [3] have become popular and

Q. Yan and M. Wigger are with LTCI, Téĺecom ParisTech, Universit́e Paris-Saclay, 75013 Paris, France. E-mails: qifa.yan@telecom-paristech.fr,
michele.wigger@telecom-paristech.fr.

S. Yang is with L2S, (UMR CNRS 8506), CentraleSupélec-CNRS-Universit́e Paris-Sud, 91192 Gif-sur-Yvette, France. Email:
sheng.yang@centralesupelec.fr.

This paper was presented in part in 2018 IEEE Information Theory Workshop (ITW) [1].

2

can handle computing tasks involving data sizes as large as tens of terabytes. As illustrated in Fig. 1 and detailed in

the following, computations in these systems are typically decomposed into “map” functions and “reduce” functions.

Consider the task of computing K output functions at K nodes and that each output function is of the form

φk(w1, . . . , wN) = hk(gk,1(w1), . . . , gk,N (wN)), k = 1, . . . ,K. (1)

Here, each output function φk depends on all N data blocks w1, . . . , wN , but can be decomposed into:

• N map functions gk,1, . . . , gk,N , each only depending on one block; and

• a reduce function hk that combines the outcomes of the N map functions.

Fig. 1: A computing task with N = 6 files and K = 3 output functions. The small and big red circles, green squares, and blue triangles denote
IVAs and results belonging to different output functions.

Computation of such functions can be performed in a distributed way following three phases: In the first phase,

the map phase, each node k = 1, . . . ,K locally stores a subset of the input data Mk ⊆ {w1, . . . , wN}, and

calculates all intermediate values (IVAs) that depend on the stored data:

Ck , {gq,n(wn) : q ∈ {1, . . . ,K}, n ∈Mk}. (2)

In the subsequent shuffle phase, the nodes exchange the IVAs computed during the map phase, so that each node k

is aware of all the IVAs gk,1(w1), . . . , gk,N (wN) required to calculate its own output function φk. In the final

reduce phase, each node k combines the IVAs with the reduce function hk as indicated in (1).

Recently, Li et al. [4] proposed a so-called coded distributed computing (CDC) that stores files multiple times

across different nodes in the map phase so as to create multicast opportunities for the shuffle phase. This approach

can significantly reduce the communication load over traditional uncoded schemes, and was proved in [4] to have

the smallest communication load among all coded computing schemes with the same total storage requirements. It is

worth mentioning that Li et al. in [4] used the term computation-communication tradeoff, because they assumed that

each node calculates all the IVAs that can be obtained from the data stored at that node, irrespective of whether these

IVAs are used in the sequel or not. In this sense, the total number of calculated IVAs is actually a measure of the

total storage load consumed across the nodes. This is why we would rather refer to it as the storage-communication

tradeoff.

In this paper, we investigate a more general setup, where each node is allowed to choose for each IVA that it can

3

calculate from its locally stored data, whether or not to perform this calculation. The number of IVAs effectively

calculated at all the nodes, normalized by the total number of IVAs, is then used to measure the real computation

load. Thus, we extend the storage-communication tradeoff in [4] to a storage-computation-communication tradeoff.

Notice that other interesting extensions have recently been proposed. For example, [6]–[15] included straggler

nodes but restricted to map functions that are matrix-vector or matrix-matrix multiplications; straggler nodes with

general linear map functions were considered in [16]; [17] studied optimal allocation of computation resources;

[18]–[21] investigated distributed computing in wireless networks; [22]–[24] investigated the iterative procedures

of data computing and shuffling; [25] studied the case when each node has been randomly allocated files; [26]

investigated the case with random connectivity between nodes; [27]–[30] designed codes for computing gradient

distributedely, which is particularly useful in machine learning.

One of our main contributions is a framework to construct a coded computing scheme from a given placement

delivery array (PDA) [32], and to characterize the storage, computation, and communication (SCC) loads of the

resulting scheme in terms of the PDA parameters. In this paper we focus on a class of PDAs that we call PDAs for

distributed computing, for short Comp-PDA. Notice that PDAs were introduced in [32] to describe placement and

delivery phases in a shared-link caching network. The connections between this caching network and the proposed

distributed computing systems have been noticed and exploited in various previous works [4], [35], [36]. Here, we

make the connection precise in the case of Comp-PDA based schemes, by exactly characterizing the SCC loads of

these schemes for distributed computing. Notice that in contrast to shared-link caching systems, for the proposed

distributed computing system, Comp-PDA based schemes turn out to be optimal. It means that they can attain all

achievable SCC loads, and in particular the pareto-optimal SCC surface. Such optimality is proved in this paper by

means of an information-theoretic converse that is not restricted to Comp-PDA based schemes.

Our results show that the (3-dimensional) pareto-optimal tradeoff surface can be obtained by sequentially pasting

K − 2 triangles next to each other. The corner points of these triangles are achieved by Comp-PDAs that also

describe Maddah-Ali and Niesen’s coded caching scheme [31]1 and the corresponding coded computing schemes

coincide with the scheme proposed by Ezzeldin et al. [5] and with Li et al.’s CDC scheme if the unused IVAs are

removed. These schemes all require a minimum number of N ≥
(
K
g

)
files, where g is an integer between 1 and K

and depends on the corner point under consideration. In this paper, we show that no Comp-PDA based scheme can

achieve the corner points with a smaller number of files for g ≥ 2. However, pareto-optimal SCC points that are

close to the corner points can be achieved with a significantly smaller number of files. We prove this through new

explicit Comp-PDA constructions, which include the PDAs proposed in [32, Construction A] as a special case.

Finally, we present necessary and sufficient conditions for a Comp-PDA scheme to achieve pareto-optimal SCC

loads. Our results implies in particular that most of the Comp-PDA schemes based on existing PDA constructions

[32], [33], and [34] have pareto-optimal SCC loads.

1The connection between these PDAs and the coded caching scheme in [31] was formalized in [32]. As explained previously, Comp-PDAs
are also PDAs.

4

Paper Organization: Section II presents the system model. Section III introduces Comp-PDAs and explains at

hand of an example how to obtain a distributed coded computing scheme from a Comp-PDA. The main results are

summarized in Section IV. Proofs of the main results are provided in Section V–VII, where the more technical

details are deferred to the appendices. Finally, Section VIII concludes the paper.

Notations: Let N+ be the set of positive integers, and F2 be the binary field. For m,n ∈ N+, denote the n-

dimensional vector space over F2 by Fn2 , and the integer set {1, . . . , n} by [n]. If m < n, we use [m : n] to denote

the set {m,m+1, . . . , n}. We also use interval notations, e.g., [a, b] , {x : a ≤ x ≤ b} and [a, b) , {x : a ≤ x < b}

for real numbers a, b such that a < b. The notation (a)+ is used to denote the number max{a, 0}. The bitwise

exclusive OR (XOR) operation is denoted by ⊕. To denote scalar or vector quantities, we use the standard font,

e.g., a or A, for arrays we use upper case bold font, e.g., A, for sets we use upper case calligraphic font, e.g., A.

A line segment with end points A1, A2 or a line through the points A1, A2 is denoted by A1A2. A triangle with

vertices A1, A2, A3 is denoted by 4A1A2A3. A trapezoid with the four edges A1A2, A2A3, A3A4, and A4A1,

where A1A2 is parallel to A3A4, is denoted by �A1A2A3A4. Let F be a set of facets, if the facets in F form a

continuous surface, then we refer to this surface simply as F .

II. SYSTEM MODEL

Consider a system consisting of K distributed computing nodes

K , {1, . . . ,K} (3)

and N files,

W = {w1, . . . , wN}, wn ∈ FW2 ,∀ n ∈ [N], (4)

each of size W bits, where K,N,W ∈ N. The goal of node k, k ∈ K, is to compute an output function2

φk : FNW2 → FU2 , (5)

which maps all the files to a bit stream

uk = φk(w1, . . . , wN) ∈ FU2 (6)

of length U , for a given U ∈ N.

Following the conventions in [4], we assume that each output function φk decomposes as:

φk(w1, . . . , wN) = hk(fk,1(w1), . . . , fk,N (wN)), (7)

where:

2See Remark 2 for a relaxed assumption.

5

• Each “map” function fk,n is of the form

fk,n : FW2 → FV2 , (8)

and maps the file wn into the IVA

vk,n , gk,n(wn) ∈ FV2 , (9)

for a given V ∈ N.

• The “reduce” function hk is of the form

hk : FNV2 → FU2 , (10)

and maps the IVAs

Vk , {vk,n : n ∈ [N]} (11)

into the output stream

uk = hk(vk,1, . . . , vk,N). (12)

Notice that such a decomposition always exists. For example, let the map functions be identity functions and the

reduce functions be the output functions, i.e., gk,n(wn) = wn, and hk = φk, ∀ n ∈ [N], k ∈ K.

The described structure of the output functions φ1, . . . , φK , allows the nodes to perform their computation in the

following three-phase procedure.

1) Map Phase: Each node k ∈ K chooses to store a subset of files Mk ⊆ W . For each file wn ∈ Mk, node k

computes a subset of IVAs

Ck,n = {vq,n : q ∈ Zk,n}, (13)

where Zk,n ⊆ K. Denote the set of IVAs computed at node k by Ck, i.e.,

Ck ,
⋃

n:wn∈Mk

Ck,n. (14)

2) Shuffle Phase: The K nodes exchange some of their computed IVAs. In particular, node k creates a signal

Xk = ϕk (Ck) (15)

of some length lk ∈ N, using a function

ϕk : F|Ck|V2 → Flk2 . (16)

It then multicasts this signal to all the other nodes, which receive it error-free.

6

3) Reduce Phase: Using the shuffled signals X1, . . . , XK and the IVAs Ck it computed locally in the map phase,

node k now computes the IVAs

(vk,1, . . . , vk,N) = ψk (X1, . . . , XK , Ck) , (17)

for some function

ψk : Fl12 × Fl22 × . . .F
lK
2 × F|Ck|V2 → FNV2 . (18)

Finally, it computes

uk = hk(vk,1, . . . , vk,N). (19)

To measure the storage, computation, and communication costs of the described procedure, we introduce the

following definitions.

Definition 1 (Storage load). Storage load r is defined as the total number of files stored across the K nodes

normalized by the total number of files N :

r ,

∑K
k=1 |Mk|
N

. (20)

Definition 2 (Computation load). Computation load c is defined as the total number of map functions computed

across the K nodes, normalized by the total number of map functions NK:

c ,

∑K
k=1 |Ck|
NK

. (21)

Definition 3 (Communication load). Communication load L is defined as the total number of the bits sent by the

K nodes during the shuffle phase normalized by the total length of all intermediate values NKV :

L =

∑K
k=1 lk
NKV

. (22)

Remark 1. These measures were first defined in [5], where the storage load was called “load redundancy”, and the

computation load therein was the total number of computed IVAs (not normalized by NK). We use the term “storage

load” because it actually captures the memory size constraint. We used the normalized version for computation

load to keep symmetric definitions with storage load and communication load.

Note that the nontrivial regime of the parameters is:

1 ≤ c ≤ r ≤ K, (23a)

0 ≤ L ≤ 1− r

K
. (23b)

Firstly, we argue that the regime of interest for L is [0, 1− r/K]. By definition, L ≥ 0. Moreover, each node k can

trivially compute |Mk| of its desired IVAs locally and thus only needs to receive N−|Mk| IVAs from other nodes.

7

Uncoded shuffling of these missing IVAs requires a communication load of L =
∑K

k=1(N−|Mk|)V
NKV = 1 − r

K . The

question of interest is whether a coded shuffling procedure allows to reduce this communication load. Secondly,

we argue that we can restrict attention to values of c and r satisfying (23a). Since each IVA needs to be computed

at least once somewhere, we have c ≥ 1. Moreover, the definition of Ck in (14) implies that |Ck| ≤ |Mk|K, and

thus by (20) and (21) that c ≤ r. Finally, the regime r > K is not interesting, because in this case each node stores

all the files, Mk = {1, . . . , N}, and can thus locally compute all the IVAs required to compute its output function.

In this case, c ≥ 1 and L ≥ 0 can be arbitrary.

Definition 4 (Fundamental SCC region). An SCC-triple (r, c, L) as in (23) is called feasible, if for any ε > 0

and sufficiently large N , there exist map, shuffle, and reduce procedures with storage load, computation load, and

communication load less than r+ε, c+ε, and L+ε. The set of all feasible SCC triples R is called the fundamental

SCC region:

R , {(r, c, L) : (r, c, L) is feasible} . (24)

Definition 5 (Optimal tradeoff surface). A SCC triple (r, c, L) is called pareto-optimal if it is feasible and if no

feasible SCC triple (r′, c′, L′) exists so that r′ ≤ r, c′ ≤ c and L′ ≤ L with one or more of the inequalities being

strict. Define the optimal tradeoff surface as

O , {(r, c, L) : (r, c, L) is pareto-optimal}. (25)

In order to achieve a certain SCC triple with a given scheme, it is implicitly assumed that the number of files is

larger than some value. We refer to this value as the file complexity.

Definition 6 (File complexity). The smallest number of files N required to implement a given scheme is called the

file complexity of this scheme.

Remark 2. All our conclusions in this paper remain valid in an extended setup with Q output functions as in [4],

where K|Q and each node is supposed to compute Q
K functions. In fact, in this setup, the K in definitions (21)

and (22) will be replaced by Q. Achievability proofs can be shown by executing Q
K times the coded computing

schemes as explained in Section V. The converse can be derived by adjusting the definitions in (88), (90), (208),

and following the same steps in Section VI-A and Appendix B.

III. PLACEMENT DELIVERY ARRAYS FOR DISTRIBUTED COMPUTING (COMP-PDA)

A. Definitions

In the following, we recall the definition of a PDA, define Comp-PDAs, and two subclasses thereof.

Definition 7 (PDA). For positive integers K,F, T and a nonnegative integer S, an F × K array A = [aj,k],

j ∈ [F], k ∈ [K], composed of T specific symbols “∗” and some ordinary symbols 1, . . . , S, each occurring at

8

least once, is called a (K,F, T, S) PDA, if, for any two distinct entries aj,k and aj′,k′ , we have aj,k = aj′,k′ = s,

for some ordinary symbol s only if

a) j 6= j′, k 6= k′, i.e., they lie in distinct rows and distinct columns; and

b) aj,k′ = aj′,k = ∗, i.e., the corresponding 2× 2 sub-array formed by rows j, j′ and columns k, k′ must be of

the following form s ∗

∗ s

 or

 ∗ s

s ∗

 . (26)

A PDA with all “ ∗ ” entries is called trivial. Notice that in this case S = 0 and KF = T .

The above PDA definition is more general than the original version in [32] in the sense that different columns

can have different numbers of “∗” symbols. In the original definition [32], each column had to contain the same

number of “∗” symbols and this number was one of the four parameters of the PDA. In this new definition, a PDA

is parametrized by T , the total number of “∗” symbols in all the columns. The motivation for this change is as

follows. PDAs were originally proposed for the shared-link coded computing scheme where all users have same

cache memory size. In such a setup, the number of “∗” symbols in a column was proportional to the cache memory

size at the corresponding user. By the equal memory-size assumption, each column thus had to contain the same

number of “∗” symbols. As we will see, for distributed computing, the number of “∗” symbols in a column is

proportional to the number of files stored at the corresponding node. Moreover, different nodes can have different

memory sizes and we are only interested in the total memory size across all users. As a consequence, different

columns of the PDA can have different numbers of “∗” symbols and the PDA is parametrized by the total number

of “∗” symbols across all columns. Another generalization in the PDA definition is that we allow for arrays with

only “∗” symbols but no ordinary symbols.

In this work, we are interested in PDAs with at least one “∗” symbol in each row.

Definition 8 (PDA for distributed computing (Comp-PDA)). A Comp-PDA is a PDA with at least one “∗” in each

row.

In particular a trivial PDA is a Comp-PDA. Two other Comp-PDAs are presented in the following example.

Example 1. The following A is a (5, 4, 10, 4) Comp-PDA and A′ is a (3, 3, 6, 1) Comp-PDA.

A =

∗ 2 ∗ 3 ∗

1 ∗ ∗ 4 2

∗ 4 1 ∗ 3

3 ∗ 2 ∗ ∗

 and A′ =

∗ 1 ∗

∗ ∗ 1

1 ∗ ∗

 . (27)

As we will see, the performance of our Comp-PDA based schemes does not depend on the number of ordinary

symbols S, but only on the relative frequencies with which they appear in the Comp-PDA.

9

Definition 9 (Symbol frequencies). For a given nontrivial (K,F, T, S) Comp-PDA, let St denote the number of

ordinary symbols that occur exactly t times, for t ∈ [K]. The symbol frequencies θ1, θ2, . . . , θK of the Comp-PDA

are then defined as

θt ,
Stt

KF − T
, t ∈ [K]. (28)

They indicate the fractions of ordinary entries of the Comp-PDA that occur exactly 1, 2, . . . ,K times, respectively.

For completeness, we also define θt , 0 for t > K.

The following two classes of Comp-PDAs will be of particular interest.

Definition 10 (Almost-regular Comp-PDAs & regular Comp-PDAs). For g ∈ [K], a (K,F, T, S) Comp-PDA is

called almost g-regular if each ordinary symbol appears either g or g + 1 times with θg+1 < 1. If each ordinary

symbol appears exactly g times, the Comp-PDA is called g-regular.

Therefore, a g-regular Comp-PDA is also an almost g-regular Comp-PDA. An almost K-regular Comp-PDA is

also a K-regular Comp-PDA. In particular, the Comp-PDAs A′ and A in (27) are 3-regular and almost 2-regular,

respectively.

Notice that a (K,F, T, S) Comp-PDA can be almost g-regular only if

g =

⌊
KF − T

S

⌋
, (29)

and it can be g-regular only if

g =
KF − T

S
. (30)

B. Constructing a Coded Computing Scheme from a Comp-PDA: A Toy Example

To have an idea of how to use Comp-PDAs to construct coded computing schemes, let us consider the following

toy example with the above 3-regular (3, 3, 6, 1) Comp-PDA A′ in (27). We can derive a coded computing scheme

for the computation task in Fig. 1 with K = 3 nodes. The scheme is depicted in Fig. 2. The top-most line in

each of the three boxes indicates the files stored at the node. Below this line, is a rectangle indicating the map

functions. The computed IVAs are depicted below the rectangle, where red circles indicate IVAs {v1,1, . . . , v1,6},

green squares IVAs {v2,1, . . . , v2,6}, and blue triangles IVAs {v3,1, . . . , v3,6}. The dashed circles/squares/triangles

stand for the IVAs that are not computed from the stored files. The last line of each box indicates the IVAs that

the node needs to learn during the shuffle phase.

The N = 6 files are first partitioned into F = 3 batches

W1 = {w1, w2}, W2 = {w3, w4}, and W3 = {w5, w6}, (31)

which are associated to the rows 1, 2, and 3, respectively. The three nodes 1, 2, and 3 are associated with the

columns 1, 2, and 3, respectively. The “∗”-symbols in the Comp-PDA describe the storage operations. Each node

10

Fig. 2: An coded computing scheme from A in (27).

stores all the files of the batches that have a “∗”-symbol in the corresponding column. For example, node 1, which

is associated with the first column of the Comp-PDA, stores the files in batches W1 and W2, because they are

associated with the first two rows. Node 2, which is associated with the second column, stores the files in batches

W2 and W3; and node 3, which is associated with the third column, stores the files in batches W1 and W3.

The ordinary symbols in the Comp-PDA describe the shuffling operations. And indirectly also some of the

computations of IVAs during the map phase. Each ordinary symbol entry in the array denotes the IVAs computed

from the files in the batch corresponding to its row index for the output function computed by the node corresponding

to its column index. In fact, during the map phase, each node first computes all its desired IVAs which it can obtain

from its locally stored batches. Then, it computes all the IVAs indicated by the ordinary symbol entries except

for the ones in its own column. Specifically, node 1 first computes the circle IVAs of files 1, 2, 3, 4 pertaining to

batches W1 and W2; node 2 first computes the square IVAs of files 3, 4, 5, 6 pertaining to batches W2 and W3;

and node 3 first computes the triangle IVAs of files 1, 2, 5, 6 pertaining to batches W1 and W3. Then, they also

compute the IVAs needed to form the XOR messages exchanged in the shuffle phase.

These XOR messages are described by the ordinary symbol 1 in the Comp-PDA A. Each node considers the

subarray of A that is formed by the columns associated with the other two nodes, and sends the XOR packet that

the ordinary symbol 1 indicates for this subarray. For example, node 1 considers the subarray formed by the second

and third columns of A, where the ordinary symbol 1 appears in the first row of the second column and in the

second row of the third column. These positions indicate that node 1 should multicast the XOR of a square IVA

(i.e., an IVA for node 2) that can be computed from batch W1 and a triangle IVA (i.e., an IVA for node 3) that

can be computed from batch W2. Notice that node 1 has computed both of these IVAs by the above description.

We can verify that in Fig. 2, node 1 indeed sends the XOR between square IVA 1 and triangle IVA 3. From the

described XOR, node 2 can recover its desired square IVA, because it has computed the triangle IVA locally, and

node 3 can recover its desired triangle IVA, because it has computed the square IVA locally.

To create their own multicast messages for the shuffle phase, nodes 2 and 3 consider the subarrays of A formed

by the first and third columns, and by the first and second columns, respectively. The positions of the symbol 1

in these subarrays indicate that node 2 should multicast the XOR of a circle IVA (an IVA for node 1) that can

11

be computed from batch W3 and of a triangle IVA (an IVA for node 3) that can be computed from batch W2.

Similarly, node 3 should multicast the XOR of a circle IVA (an IVA for node 1) that can be computed from W3

and of a square IVA (an IVA for node 2) that can be computed from W1. We can verify again that in Fig. 2, node

2 and node 3 indeed multicast the described XOR messages. Moreover, given the signals they sent and the IVAs

they computed locally, node 1 can recover all the circle IVAs, node 2 can recover all square IVAs, and node 3 can

recover all triangle IVAs.

Each node k then terminates the reduce phase by applying the reduce function hk to all its recovered IVAs.

IV. MAIN RESULTS

A. Coded Computing Schemes from Comp-PDAs

At the end of the preceding section, we presented an example on how to obtain a Comp-PDA from a coded

computing scheme. In Section V, we describe this procedure in general. For brevity, we say that a Comp-PDA A

achieves an SCC triple (r, c, L) with file complexity γ if the coded computing scheme obtained by applying the

procedure in Section V to A has file complexity γ and achieves the SCC triple (r, c, L). For convenience, we define

{θ′t} as follows.

θ′t =

0, t = 1

θ1 + θ2, t = 2

θt, t > 2.

(32)

Theorem 1. A (K,F, T, S) Comp-PDA A with symbol frequencies {θt}Kt=1 achieves the SCC triple

(r, c, L) =

(
T

F
,

T

KF
+

(
1− T

KF

)
·
K∑
t=2

θ′t(t− 1),

(
1− T

KF

)
·
K∑
t=2

θ′t
t− 1

)
, (33)

with file complexity F .

We notice that the file complexity of a Comp-PDA is simply the number of rows F . We therefore will call this

parameter of a Comp-PDA its file complexity.

The theorem simplifies for almost-regular and regular Comp-PDAs.

Corollary 1. An almost g-regular (K,F, T, S) Comp-PDA achieves the SCC triple

(r, c, L) =

(
T

F
,

T

KF
+

(
1− T

KF

)
· (g − 1 + θ′g+1),

(
1− T

KF

)
·

(g − θ′g+1 − 1)+ + 1

g · ((g − 2)+ + 1)

)
. (34)

In particular, a g-regular (K,F, T, S) Comp-PDA achieves the SCC triple

(r, c, L) =

(
T

F
,

T

KF
+

(
1− T

KF

)
· ((g − 2)+ + 1),

1

(g − 2)+ + 1
·
(

1− T

KF

))
. (35)

Proof: Notice that for almost g-regular Comp-PDAs, θ′g = 0 and θ′g+1 = 1 when g = 1; θ′g = 1 and θ′g+1 = 0

when g = K; and θ′g + θ′g+1 = 1 when 1 < g < K. As such, the equality (34) follows from Theorem 1

12

straightforwardly. Further, for g-regular Comp-PDAs, we have θ′g+1 = 1 when g = 1; and θ′g+1 = 0 when g ≥ 2.

Equality (35) follows readily from (34).

Corollary 1 is of particular interest since there are several explicit regular PDA constructions for coded caching

in the literature [32]–[34]. See for example the Comp-PDA in the following Definition 11.

B. Achieving the Fundamental SCC Region

The following Comp-PDAs achieve points on the optimal tradeoff surface O. They are obtained from the coded

caching scheme proposed by Maddah-Ali and Niesen [31].

Definition 11 (Maddah-Ali Niesen PDA (MAN-PDA)). Fix any integer i ∈ [K], and let {Tj}
(K

i)
j=1 denote all subsets

of [K] of size i. Also, choose an arbitrary bijective function κ from the collection of all subsets of [K] with

cardinality i+ 1 to the set
[(

K
i+1

)]
. Then, define the PDA Pi = [pj,k] as

pj,k ,

 ∗, if k ∈ Tj
κ({k} ∪ Tj), if k /∈ Tj

. (36)

We observe that for any i ∈ [K − 1], the PDA Pi is an (i + 1)-regular
(
K,
(
K
i

)
,K
(
K−1
i−1
)
,
(
K
i+1

))
Comp-PDA.

For i = K, the PDA Pi consists only of “∗”-entries and is thus a trivial PDA.

We can evaluate Corollary 1 for the Comp-PDAs P1, . . . ,PK .

Corollary 2. For any i ∈ [K], the Comp-PDA Pi achieves the SCC triple

Pi , (rPi
, cPi

, LPi
) =

(
i, i

(
1− i− 1

K

)
,

1

i

(
1− i

K

))
. (37)

As the following Theorem 2 shows, the points {Pi} lie on the optimal tradeoff surface O. Let us also define the

projection of point Pi to the surface r = c in the SCC space as Qi:

Qi ,

(
i, i,

1

i

(
1− i

K

))
, i ∈ [K]. (38)

Theorem 2. Let F be the surface formed by the following triangles and trapezoids

F , {4P1P2Q2} ∪ {4Pi−1PiPK : i = 2, . . . ,K − 1} ∪ {�PiQiQi+1Pi+1 : i = 2, . . . ,K − 1}. (39)

where Pi and Qi are defined in (37) and (38), respectively. Then, the optimal tradeoff surface O and the fundamental

SCC region R are given by

O = {4Pi−1PiPK : i = 2, . . . ,K − 1} , (40)

R = { (r, c, L) : (r, c, L) is on or above the surface F and satisfies (23)} . (41)

Furthermore, a Comp-PDA achieves the optimal surface O if and only if it satisfies one of the following three

conditions: it is almost g-regular, for any g ∈ [K]; it is trivial (i.e., consists only of “∗” symbols); or each ordinary

13

symbol occurs at most three times.

Remark 3. A close inspection of the proof of Theorem 2 reveals that for i ∈ {3, . . . ,K − 1}, a Comp-PDA

achieves a point on the triangle 4Pi−1PiPK if and only if it is almost i-regular. It achieves a point on the triangle

4P1P2PK if and only if it all the ordinary symbols occur either 1, 2, or 3 times. This implies in particular that for

any i ∈ {2, . . . ,K−2} a Comp-PDA achieves a point on the line segment PiPK if and only if it is (i+ 1)-regular.

Fig. 3: The fundamental SCC region R for a system with K = 10 nodes. The figure illustrates the delimiting surface F formed by the triangles
4P1P2Q2 and {4Pi−1PiPK} and the trapezoids {�PiQiQi+1Pi+1}. The three points D2, D3, D4 can be achieved by the new PDA
design.

Note that setting r = c, we recover exactly the case investigated in [4] where the fundamental storage-communication

tradeoff is characterized by

L∗(r) ,
1

r

(
1− r

K

)
, (42)

for integer r, and for general r in the interval [1,K]

L∗(r) , max
i∈[K−1]

{
− 1

i(i+ 1)
r +

1

i
+

1

i+ 1
− 1

K

}
. (43)

An example of the fundamental SCC region for K = 10 is given in Fig. 3, where we can identify the surface F

that is formed by the triangles 4P1P2Q2 and {4Pi−1PiPK} and the trapezoids {�PiQiQi+1Pi+1}. In particular,

the boundary of the optimal tradeoff surface O is formed by the line segment P1PK and the sequence of line

segments P1P2, P2P3, . . . , PK−1PK :

1) The computation load on the line segment P1PK is c = 1 for any given storage load r, which by (23) is

14

minimal and thus is referred to as the optimal computation curve (OCP). It implies that during the map phase

each IVA is calculated at a single node.

2) The points on the line segments P1P2, P2P3, . . . , PK−1PK have minimum communication load L for any

given storage load r among all pareto-optimal points, thus we refer to it as the optimal communication

curve (OCM).

Note that the projections of OCP and OCM curves on the surface r = c correspond to the curves of the uncoded

scheme and the CDC scheme in [4]. In this sense, our optimal tradeoff surface O is a natural extension of the

tradeoff established in [4] with the additional dimension given by the computation load. From the SCC region,

we can obtain straightforwardly the optimal tradeoff between computation and storage for a given communication

load (Fig. 4(a)), as well as the tradeoff between computation and communication for a given storage load (Fig. 4(b)).

It is worth mentioning that our computation load that counts the exact number of IVAs that are necessary for

the reduce phase may not reflect the actual computation load in practical systems. In some practical systems, the

actual computation time might not decrease even with a reduced number of IVAs. Nevertheless, such a measure

provides an performance indication that can be very different from the storage load. Specifically, we can observe

that at high storage load, the computation load can be actually close to the lower bound 1, i.e., almost no extra

computation is needed.

(a)

(b)

Fig. 4: Two-dimensional tradeoff curves for K = 10: (a) Computation-storage tradeoff with fixed communication load L = 0.12; (b)
Computation-communication tradeoff with fixed storage load r = 4.5.

15

Remark 4. The idea of measuring the effectively computed IVAs is from [5]. In that paper, the authors also show

the achievability of the corner points P1, P2, . . . , PK . The distributed computing scheme proposed in [4] coincides

with the schemes obtained for Comp-PDAs P1,P2, . . .PK . Our new contributions are an information-theoretic

converse that allows to characterize the entire fundamental SCC region and necessary and sufficient conditions for

any Comp-PDA to achieve the optimal surface of the fundamental SCC region.

C. Reducing the File Complexity to Attain the Optimal Tradeoff Surface

Recall that for any i ∈ [K], the Comp-PDA Pi in Definition 11 achieves point Pi on the optimal tradeoff surface

O. The Comp-PDA Pi is of file complexity

FPi
,

(
K

i

)
, (44)

and the following theorem indicates that this is the minimum file complexity that can achieve Pi when i ≥ 2.

Theorem 3. Any Comp-PDA that achieves the corner point Pi, for i ∈ [2 : K], is of file complexity at least
(
K
i

)
.

A required file size of
(
K
i

)
can be prohibitively large and may prevent practical implementation of the Comp-PDA

based schemes achieving the corner point Pi. However, as the following theorem shows, one can achieve points on

the triangle ∆Pi−1PiPK close to the corner point Pi with significantly fewer files. (Notice that the simple approach

of time- and memory- sharing the schemes achieving the points Pi−1, Pi, and PK would require even more files.)

Theorem 4. For any positive integers K and q such that q < K
2 , and m , dKq e−1, there exists a

(
K, qm,Kqm−1, (q − 1)qm

)
Comp-PDA achieving the triple

Dq =
(
rDq , cDq , LDq

)
(45)

,

(
K

q
,

1

q
+m

(
1− 1

q

)(
2− (m+ 1)q

K

)
,

(
1

m
+

(m+ 1)q −K
K(m− 1)

)
·
(

1− 1

q

))
, (46)

with file complexity

FDq , q
m. (47)

Moreover, the SCC triple Dq lies on the optimal tradeoff triangle4Pm−1PmPK , and is close to Pm in the following

sense:

−1 ≤ rPm
− rDq

≤ 0, (48a)

1

q
− 2

K
≤ cPm

− cDq
≤ 1− 1

q
, (48b)

− q(q − 1)

K(K − q)
≤LPm

− LDq
≤ q

K(K − q)
. (48c)

16

Furthermore, its file complexity satisfies

FPm

FDq

≥
√

2π

e2

√
q

m(q − 1)

(
q

q − 1

)m(q−1)

. (49)

For example, for K = 50 and q = 9, we have m = 5. According to the above theorem, D9 is close to P5 but

with file complexity FDq = qm ≈ 6 × 104 instead of FPm =
(
K
m

)
≈ 1010. In Fig. 3, we depict the new points

D2, D3, D4 for K = 10 nodes.

V. CODED COMPUTING SCHEMES FROM COMP-PDAS (PROOF OF THEOREM 1)

The proof of Theorem 1 has three parts.

A. Obtaining a Coded Computing Scheme from a Comp-PDA

In this section, we explain how to obtain a coded computing scheme from any (K,F, T, S) Comp-PDA.

Fix a (K,F, T, S) Comp-PDA A = [ai,j]. Partition the N files into F batches W1, . . . ,WF , each containing

η ,
N

F
(50)

files and so that W1, . . . ,WF form a partition for W . It is implicitly assumed here that η is an integer number.

Let I be the set of ordinary symbols that occur only once. Then the symbols in I can be partitioned into K

subsets I1, I2, . . . , IK as follows. For each s ∈ I, let (i, j) be the unique tuple in [F] × [K] such that ai,j = s.

By Definition 8, there exists at least one k ∈ [K]\{j} such that ai,k = ∗. Arbitrarily choose such a k and assign s

into Ik.

Let Ui,j denote the set of IVAs for the output function φj that can be computed from the files in Wi, i.e.,

Ui,j , {vj,n : wn ∈ Wi}, (51)

and let Ak denote the set of ordinary symbols in column k having occurrence at least two:

Ak , {s ∈ [S] : ai,k = s for some i ∈ [F]}\I, k ∈ [K]. (52)

1) Map Phase: Each node k stores

Mk =
⋃

i∈[F] :

ai,k=∗

Wi, (53)

and computes the IVAs

Ck = C(1)k ∪ C
(2)
k , (54)

17

where

C(1)k =
⋃

i∈[F] :

ai,k=∗

Ui,k, (55)

C(2)k =
⋃

s∈Ik∪Ak

⋃
(l,d)∈[F]×([K]\{k}) :

al,d=s

Ul,d, (56)

Notice that node k can compute the IVAs in C(1)k from the files in Mk, because of (51), (53), and (55). To

show that it can also compute the IVAs in C(2)k from Mk, we show that if for some s ∈ Ik ∪Ak there exist

(l, d) ∈ [F]× ([K]\{k}) so that al,d = s, then

al,k = ∗. (57)

From this follows that Wl ⊆Mk. To prove (57), we distinguish the cases s ∈ Ik and s ∈ Ak. In the former

case, the proof follows simply by the construction of the set Ik, which implies that if al,d = s and s ∈ Ik,

then al,k = ∗. In the latter case, the proof holds because by the definition of the set Ak, if al,d = s and

s ∈ Ak, then there exists an index i ∈ [F] so that ai,k = s. But by the PDA property C3, al,d = ai,k = s

and d 6= k imply that l 6= i and al,k = ai,d = ∗.

2) Shuffle Phase: For each pair (i, k) ∈ [F] × [K] such that ai,k 6= ∗ do the following. Set s = ai,k, and let

gs denote the occurrence of the ordinary symbol s in A. If gs ≥ 2, or equivalently, s ∈ [S]\I, partition the

IVAs in Ui,k into gs − 1 smaller blocks of equal size. Let (l1, j1), (l2, j2), . . . , (lgs−1, jgs−1) indicate all the

other gs − 1 occurrences of the ordinary symbol s other than (i, k):

al1,j1 = al2,j2 = . . . = algs−1,jgs−1 = s. (58)

We denote the gs − 1 subblocks of Ui,k by U j1i,k, . . . , U
jgs−1

i,k :

Ui,k =
{
U j1i,k, . . . , U

jgs−1

i,k

}
. (59)

Node k ∈ K then computes Xk
s from Ck for each s ∈ Ik ∪Ak as defined in the following. For s ∈ Ik, then

there exists unique (i, j) ∈ [F]× [K]\{k} such that ai,j = s, then

Xk
s , Ui,j . (60)

For s ∈ Ak, then

Xk
s ,

⊕
(i,j)∈[F]×([K]\{k}) :

ai,j=s

Uki,j . (61)

18

Then node k multicasts the signal

Xk =
{
Xk
s : s ∈ Ik ∪ Ak

}
. (62)

3) Reduce Phase: Node k has to compute all IVAs in⋃
i∈[F]

Ui,k. (63)

In the map phase, node k has already computed all IVAs in C(1)k . It thus remains to compute all IVAs in⋃
i∈[F] :

ai,k 6=∗

Ui,k. (64)

Fix an arbitrary i ∈ [F] such that ai,k 6= ∗. Set s = ai,k. If s ∈ Ak, each subset U ji,k in (59) can be restored

by node k from the signal Xj
s sent by node j (see (61)):

Xj
s =

⊕
(l,d)∈[F]×([K]\{j}) :

al,d=s

U jl,d. (65)

In fact, for each U jl,d in (65), if d = k, then al,d = ai,k = s implies l = i by the PDA property a); if d 6= k,

then al,d = ai,k = s ∈ Ak. This indicates that, the IVAs in U jl,d have been computed by node k according to

(56) and (59). Therefore, U ji,k can be decoded from (65). If s /∈ Ak, then s ∈ I by (52). There exists thus an

index j ∈ [K]\{k} such that s ∈ Ij and therefore, by (60), the subset Ui,k can be recovered from the signal

Xj
s sent by node j.

B. Performance Analysis

We analyze the performance of the scheme proposed in the preceding subsection.

1) Storage Load: Since the Comp-PDA A has T entries that are “∗” symbols and each “∗” symbol indicates

that a batch of η = N
F files is stored at a given node, see (53), the storage load of the proposed scheme is:

r =

∑K
k=1 |Mk|
N

=
T · η
N

=
T

F
. (66)

2) Computation Load: Since C(1)k ∩ C
(2)
k = ∅, we have |Ck| = |C(1)k |+ |C

(2)
k |. By (55) and (56),

K∑
k=1

|C(1)k | = T · η, (67)

K∑
k=1

|C(2)k | =
K∑
k=1

[
|Ik| · η +

∑
s∈Ak

(gs − 1) · η

]
(68)

= |I| · η +
∑

s∈[S]\I

gs(gs − 1)η, (69)

19

where recall that gs stands for the number s symbols in A. The computation load of the proposed scheme is

then

c =

∑K
k=1 |Ck|
NK

(70)

=
T · η + |I| · η +

∑
s∈[S]\I gs(gs − 1) · η
NK

(71)

=
T

KF
+
|I|
KF

+
∑

s∈[S]\I

gs(gs − 1)

KF
. (72)

Recall also that St, t ∈ [K], stands for the number of ordinary symbols that occur t times in A and that θt

stands for the fraction of ordinary symbols that occur t times, i.e.,

θt =
Stt

KF − T
, ∀ t ∈ [K]. (73)

Then by (72), the computation load of the proposed scheme is

c =
T

KF
+

S1

KF
+

K∑
t=2

Stt(t− 1)

KF

=
T

KF
+

S1

KF − T
· KF − T

KF
+

K∑
t=2

Stt

KF − T
· KF − T

KF
· (t− 1) (74)

=
T

KF
+

(
1− T

KF

)
·

(
θ1 +

K∑
t=2

θt(t− 1)

)
(75)

=
T

KF
+

(
1− T

KF

)
·
K∑
t=2

θ′t(t− 1), (76)

where θ′t was defined in (32).

3) Communication Load: Each set of IVAs Ui,j consists of N
F V = ηV bits. For each k ∈ [K], node k sends a

signal Xk
s for each s ∈ Ik∪Ak. For each s ∈ Ik, by (60), Xk

s consists of ηV bits. For each s ∈ Ak, consider

now a pair (i, j) where the entry ai,j is an ordinary symbol and occurs gs times in the Comp-PDA A, where

gs ≥ 2 by definition of Ak. Then, each subblock Uki,j consists of ηV
gs−1 bits, and by (61) the signal Xk

s also

consists of ηV
gs−1 bits. The total length of the signal Xk is thus lk = |Ik| · η · V +

∑
s∈Ak

η·V
gs−1 , and the

communication load of the proposed scheme:

LA =

∑K
k=1 lk
NKV

(77)

=
1

NKV
·
K∑
k=1

[
|Ik| · η · V +

∑
k∈Ak

η · V
gs − 1

]
(78)

=
1

KF
·

|I|+ ∑
s∈[S]\I

gs
gs − 1

 (79)

=
1

KF
·

(
S1 +

K∑
t=2

Stt

t− 1

)
(80)

20

=
KF − T
KF

·

(
S1

KF − T
+

K∑
t=2

Stt

KF − T
· 1

t− 1

)
(81)

=

(
1− T

KF

)
·

(
θ1 +

K∑
t=2

θt
t− 1

)
(82)

=

(
1− T

KF

)
·
K∑
t=2

θ′t
t− 1

. (83)

C. File Complexity of the Proposed Schemes

To implement the scheme in Subsection V-A, the files are partitioned into F batches so that each batch contains

η = N
F > 0 files. It is assumed that η is a positive integer. The smallest number of files N where this assumption

can be met is F . Therefore, the file complexity of the scheme is F .

VI. ACHIEVING THE FUNDAMENTAL SCC REGION (PROOF OF THEOREM 2)

In Corollary 2, we have shown that the SCC triple Pi (i ∈ [K]) is achievable. Therefore, any point on the triangle

4Pi−1PiPK (i ∈ [2 : K − 1]) can be also be achieved by memory- and time- sharing between the points Pi−1, Pi

and PK . This proves the achievability of the surface O. In the following, we only need to prove the converse and

identify the Comp-PDAs that achieve the optimal tradeoff surface.

A. Converse

Fix a map-shuffle-reduce procedure, and let M = {Mk}Kk=1, C = {Ck}Kk=1 be their file and IVA allocation. Let

further (r, c, L) denote the corresponding storage load, computation load, and communication load, then

r =

∑K
k=1 |Mk|
N

, (84)

c =

∑K
k=1 |Ck|
NK

, (85)

L ≥
∑K
k=1H(Xk)

NKV
. (86)

For any nonempty set S ⊆ K, denote

XS ,
⋃
k∈S

{Xk}, (87)

VS ,
⋃
k∈S

Vk, (88)

CS ,
⋃
k∈S

Ck. (89)

For any k ∈ S, j ∈ [|S| − 1], define

BkS,j , {vk,n : vk,n is exclusively computed by j nodes in S\{k}}. (90)

21

Let bkS,j be the cardinality of BkS,j . Then it follows that the cardinality of

BS,j ,
⋃
k∈S

BkS,j (91)

is

bS,j , |BS,j | =
∑
k∈S

bkS,j . (92)

To prove the converse, we need the following two lemmas, the proofs of which are deferred to Appendix B.

Lemma 1. For any nonempty set S ⊆ K and Sc , K\S ,

H(XS |VSc , CSc) ≥ V
|S|−1∑
j=1

bS,j ·
1

j
. (93)

Lemma 1 includes [4, Claim 1] and [17, Lemma 1] as special cases when one imposes that each node computes

all IVAs pertaining its stored files. The proof of Lemma 1 follows the same steps as the proof of [4, Claim 1]

except that in places the set of IVAs that can be computed at a given node k has to be replaced by the set of IVAs

that are effectively computed at this node. Remarkably the proof steps remain valid, and the so obtained converse

is also tight in our more general setup.

Lemma 2. In (91) and (92), let bj , bK,j be the cardinality of the set in (91) when S = K. Then

K−1∑
j=1

bj ≥ N(K − r), (94)

K−1∑
j=1

(j − 1)bj ≤ (c− 1)NK. (95)

Now, let us define, for each i ∈ [K],

ci ,
r

K
+
(

1− r

K

)
i, (96)

and let for a fixed i ∈ {2, . . . ,K − 1}, the parameters λi, µi ∈ R+ be such that

λix+ µi|x=ci−1
=

1

ci−1 − r/K

(
1− r

K

)2
(97)

=
1

i− 1

(
1− r

K

)
, (98)

λix+ µi|x=ci =
1

ci − r/K

(
1− r

K

)2
(99)

=
1

i

(
1− r

K

)
. (100)

22

Notice that by (96), (98), and (100), the following three relationships hold:

λi = − 1

i(i− 1)
< 0, (101)

µi =
2

i

(
1− r

K

)
+

1

i(i− 1)
> 0, (102)

λi + µi =
2

i

(
1− r

K

)
> 0. (103)

Moreover, by its convexity over x ∈ [1,+∞), the function 1
x−r/K

(
1− r

K

)2 − (λix + µi) must be nonnegative

outside of the interval formed by the two zeros, i.e.,

1

x− r/K

(
1− r

K

)2
≥ λix+ µi, ∀x ∈ [1, ci−1] ∪ [ci,∞). (104)

Therefore,

1

cj − r/K

(
1− r

K

)2
≥ λicj + µi, ∀j ∈ [K − 1]. (105)

Back to the converse, from (86), the communication load L is lower bounded as

L ≥ H(XK)

NKT
(106)

(a)

≥
K−1∑
j=1

bj
NK

· 1

j
(107)

(b)
=

1

N(K − r)
·
K−1∑
j=1

bj ·
1

cj − r/K

(
1− r

K

)2
(108)

(c)

≥ 1

N(K − r)

K−1∑
j=1

bj (λicj + µi) (109)

=
1

N(K − r)

K−1∑
j=1

bj

(
λi

((
1− r

K

)
j +

r

K

)
+ µi

)
(110)

=
1

N(K − r)
·

λi (1− r

K

)
·
K−1∑
j=1

jbj +
(
λi
r

K
+ µi

)
·
K−1∑
j=1

bj

 (111)

=
λi
NK

·
K−1∑
j=1

(j − 1)bj +
λi + µi
N(K − r)

·
K−1∑
j=1

bj (112)

(d)

≥ λi
NK

· (c− 1)NK +
λi + µi
N(K − r)

·N(K − r) (113)

= λic+ µi (114)

(e)
= − 1

i(i− 1)
c− 2

Ki
r +

2i− 1

i(i− 1)
, (115)

where (a) follows from Lemma 1 by setting S = K; (b) follows from (96); (c) follows from (105); (d) follows

from (94), (95) and (101), (103); and (e) follows from (101), (102). Since the SCC triples Pi−1, Pi, and PK defined

in (37) satisfy inequality (115) with equality, the above inequalities indicate that all feasible triples (r, c, L) must

23

lie above the plane containing 4Pi−1PiPK . Furthermore, the converse in [4] (cf. (43)) implies that, for any c, we

have

L ≥ − 1

i(i+ 1)
r +

1

i
+

1

i+ 1
− 1

K
, i ∈ [K − 1]. (116)

Therefore, all feasible triples (r, c, L) must lie above the plane containing P1, P2, Q2 and the planes containing

Pi, Pi+1, Qi+1, Qi, for i = 2, . . . ,K − 1, respectively. In conclusion, all feasible (r, c, L) must lie above the

surface F .

B. Comp-PDAs Achieving the Optimal SCC Tradeoff Surface

Fix a Comp-PDA A, and let rA, cA, LA denote respectively the storage, computation, and communication loads

of the associated coded computing scheme. Obviously, A achieves the point PK if, and only if, it is trivial. In the

following, we assume that A is a non-trivial Comp-PDA, in which case rA < K.

As before, let θt denote the fraction of ordinary symbols that occur exactly t times, for each t ∈ [K] and define

θ′t as in (32). Then for each t ∈ [2 : K], define

c
(t)
A ,

T

KF
+

(
1− T

KF

)
(t− 1) (117a)

L
(t)
A ,

1

t− 1

(
1− T

KF

)
(117b)

and notice that by Theorem 1:

rA =
T

F
(118a)

cA =

K∑
t=2

θ′tc
(t)
A (118b)

LA =

K∑
t=2

θ′tL
(t)
A . (118c)

Fix i ∈ [2 : K − 1] and define

βi , −
1

i(i− 1)
, (119a)

γi ,
2

i

(
1− T

KF

)
+

1

i(i− 1)
. (119b)

Now, recall that (rA, cA, LA) lies on the triangle 4Pi−1PiPK if, and only if,

LA = − 1

i(i− 1)
cA −

2

Ki
rA +

2i− 1

i(i− 1)
. (120)

In the following, we show that (120) holds if, and only if,

θ′t = 0, ∀ t ∈ [2 : K]\{i, i+ 1}. (121)

24

With the definition of θ′t in (32), this proves that a Comp-PDA achieves a point on the triangle 4Pi−1PiPK if,

and only if, the following condition holds:

• if i = 2, then each ordinary symbol of the Comp-PDA occurs at most 3 times;

• if i ∈ [3 : K − 1], then the Comp-PDA is almost i-regular.

This concludes the proof of Theorem 2 and also proves Remark 3.

Next, we write

LA =

K∑
t=2

θ′tL
(t)
A (122)

(a)
=

K∑
t=2

θ′t ·
1

c
(t)
A − T/(KF)

(
1− T

KF

)2

(123)

(b)

≥
K∑
t=2

θ′t ·
(
βic

(t)
A + γi

)
(124)

(c)
= βicA + γi (125)

(d)
= − 1

i(i− 1)
cA +

2

i

(
1− T

KF

)
+

1

i(i− 1)
(126)

(e)
= − 1

i(i− 1)
cA −

2

Ki
rA +

2i− 1

i(i− 1)
, (127)

where (a) holds by simple algebraic manipulations on (117); (b) is proved below; (c) holds by (118) and because∑K
t=2 θ

′
t =

∑K
t=1 θt = 1; (d) holds by (119); and (e) holds by (118a).

To see why step (b) holds, define the two functions over the interval
(
T
KF ,+∞

)
,

f1 : c 7→ βic+ γi, (128)

f2 : c 7→ 1

c− T/(KF)

(
1− T

KF

)2

. (129)

Notice that f2 is strictly convex and it intersects f1 at the points
(
c
(i)
A , L

(i)
A

)
and

(
c
(i+1)
A , L

(i+1)
A

)
. Therefore,

1

c− T/(KF)

(
1− T

KF

)2

≥ βic+ γi, ∀ c ∈
[
1, c

(i)
A

]
∪
[
c
(i+1)
A ,∞

)
, (130)

with equality if and only if c ∈
{
c
(i)
A , c

(i+1)
A

}
. In particular,

1

c
(t)
A − T/(KF)

(
1− T

KF

)2

≥ βic(t)A + γi, ∀ t ∈ [2 : K], (131)

with equality if and only if t ∈ {i, i+ 1}.

Combining this with (127), we conclude that (120) holds if and only if θ′t = 0 for all t ∈ [2 : K]\{i, i+ 1}, i.e.,

(121) holds.

25

VII. REDUCING THE FILE COMPLEXITY (PROOF OF THEOREMS 3 AND 4)

A. Lowest File Complexity of Pi (Proof of Theorem 3)

For i = K, the conclusion F ≥
(
K
K

)
= 1 is trivial.

We thus assume in the following that i ∈ [2 : K − 1]. Fix such an i and choose a (K,F, T, S) Comp-PDA A

that achieves the point Pi. Notice that by Remark 3, A needs to be (i+ 1)-regular. In the following, we show that

it A needs to have exactly i “∗” symbols in each row. By Lemma 3 at the end of this subsection, this will conclude

the proof.

Notice first that if an ordinary symbol occurs i+ 1 times, then each row where it occurs must contain at least i

“∗” entries. (Namely in the columns where this symbol occurs in the other rows.) Thus, if tj denotes the number

of “∗” entries in the j-th row of A, then

tj ≥ i, ∀ j ∈ [F], (132)

and by summing over j ∈ [F]:

F∑
j=1

tj ≥ iF. (133)

However, since by Theorem 1 and Corollary 2 for the point Pi the storage load is rPi
= T

F = i :

F∑
j=1

tj = T = iF, (134)

and thus both the inequalities (132) and (133) must hold with equality. Therefore, each row of A has exactly i “∗”

entries and the following lemma (which rephrases [32, Lemma 2]) concludes the proof.

Lemma 3 (From [32]). Consider a g-regular (K,F, T, S) Comp-PDA with exactly g − 1 “∗” entries in each row

where g ≥ 2. Then F ≥
(
K
g−1
)
.

B. New Comp-PDAs with Reduced File Complexity (Proof of Theorem 4)

First, the case for q = 1 is trivial, since Dq = PK = (K, 1, 0). In this case, the Comp-PDA is the trivial

(K, 1,K, 0) PDA with only “∗” entries.

In the following, we consider an arbitrary integer q such that

1 ≤ q < K

2
(135a)

and set

m ,

⌈
K

q

⌉
− 1. (135b)

26

We construct an almost
⌊
K
q

⌋
-regular (K,F, T, S) Comp-PDA with

F = qm (135c)

that achieves a point on the triangle 4Pm−1PmPK .

To present the new construction, we first introduce some notations. For a given j ∈ [qm], let (jm−1, jm−2, . . . , j0) ∈

Zmq be the unique tuple that satisfies:

j − 1 = jm−1q
m−1 + jm−2q

m−2 + . . .+ j0. (136)

For convenience, we will write

j = (jm−1, jm−2, . . . , j0)q. (137)

Similarly, for a given s ∈ [(q − 1)qm], let (sm, sm−1, sm−2, . . . , s0) ∈ Zq−1 × Zmq be the unique tuple that

satisfies:

s− 1 = smq
m + sm−1q

m−1 + sm−2q
m−2 + . . .+ s0, (138)

For convenience of notation, we will write

s = (sm, sm−1, . . . , s0)q−1q . (139)

For a given k ∈ [K], let (k1, k0) be the unique pair that satisfies

k − 1 = k1q + k0 (140)

for some k1 ∈ [0 : m] and k0 ∈ [0 : q − 1]. We will write

k = (k1, k0)m+1
q . (141)

Construction 1. Consider a fixed positive integers K and let q,m, F be given as in (135). Construct the array

AK
q = [aj,k] as follows

• If k ≤ qm:

aj,k =

 ∗, if jk1 = k0(
jk1 	q k0 	q 1, jm−1, jm−2, . . . , jk1+1, k0, jk1−1, . . . , j0

)q−1
q

, if jk1 6= k0
, (142)

• and if k > qm:

aj,k =

 ∗, if
∑m−1
l=0 jl = k0(

k0 	q
∑m−1
l=0 jl 	q 1, jm−1, jm−2, . . . , j0

)m+1

q
, if

∑m−1
l=0 jl 6= k0

, (143)

where “	q ” denotes minus modulo q, and the sum operation “
∑

” is in modulo q.

27

Table I depicts A5
2. It coincides with the Comp-PDA A in (27), but uses a different notation for the ordinary

symbols.

TABLE I: The construction of array A5
2.

(j1, j0)2\(k1, k0)32 (0, 0)32 (0, 1)32 (1, 0)32 (1, 1)32 (2, 0)32
(0, 0)2 ∗ (0, 0, 1)12 ∗ (0, 1, 0)12 ∗
(0, 1)2 (0, 0, 0)12 ∗ ∗ (0, 1, 1)12 (0, 0, 1)12
(1, 0)2 ∗ (0, 1, 1)12 (0, 0, 0)12 ∗ (0, 1, 0)12
(1, 1)2 (0, 1, 0)12 ∗ (0, 0, 1)12 ∗ ∗

In the following Lemma, we prove that all arrays from Construction 1 are indeed PDA.

Lemma 4. For any given positive integers K and q such that 2 ≤ q < K
2 , the array AK

q is an almost g-regular(
K, qm,Kqm−1, (q − 1)qm

)
Comp-PDA for g ,

⌊
K
q

⌋
and m , dKq e − 1.

Proof: See Appendix C.

For q|K the Comp-PDA AK
q specializes to the PDA proposed in [32, Theorem 4].

We now prove that the proposed Comp-PDA AK
q satisfies the properties claimed in the theorem. Lemma 4 and

Theorem 1 readily yield (46). Next, we prove (48), i.e., that Dq is close to the SCC triple

Pm =

(
m,m

(
1− m− 1

K

)
,

1

m

(
1− m

K

))
. (144)

Combining this with (46), yields

rPm
− rDq

= m− K

q
, (145)

cPm
− cDq

= m

(
1− m− 1

K

)
− 1

q
−m

(
1− 1

q

)(
2− (m+ 1)q

K

)
(146)

= − 1

K
m2 +

(
1 +

1

K

)
m− 1

q
+
q − 1

K
m2 − (2K − q)(q − 1)

Kq
m (147)

=
q − 2

K
m2 +

q2 −Kq + 2K

Kq
m− 1

q
, (148)

LPm − LDq =
1

m

(
1− m

K

)
−
(

1

m
+

(m+ 1)q −K
K(m− 1)

)
·
(

1− 1

q

)
(149)

=
1

m
− 1

K
− 1

m

(
1− 1

q

)
− (m+ 1)q −K

K(m− 1)

(
1− 1

q

)
(150)

=
1

mq
− 1

K
− (m− 1)q + 2q −K

K(m− 1)
· q − 1

q
(151)

=
1

mq
+

(K − 2q)(q − 1)

K(m− 1)q
− q

K
. (152)

Therefore, from K
q − 1 ≤ m ≤ K

q and the above evaluations,

1) (48a) follows immediately from (145);

2) (148) is quadratic in m and increases with m over the interval
[
K
q − 1, Kq

]
;

28

3) since LPm
− LDq

, given by (152), decreases with m, we obtain (48c).

Finally, we compare the file complexities of Dq and Pm:

FPm =

(
K

m

)
(a)

≥
(
mq

m

)
(153)

=
(mq)!

m! (m(q − 1))!
(154)

(b)

≥
√

2π

e2
(mq)mq

√
mq

(m)m
√
m(m(q − 1))m(q−1)

√
m(q − 1)

(155)

=

√
2π

e2

√
q

m(q − 1)
·
(

qq

(q − 1)q−1

)m
(156)

=

√
2π

e2

√
q

m(q − 1)

(
q

q − 1

)m(q−1)

FDq
, (157)

where (a) follows since K ≥ mq, (b) by applying Stirling’s approximation
√

2π nn+
1
2 e−n ≤ n! ≤ e nn+ 1

2 e−n to

both the numerator and the denominator.

VIII. CONCLUSION

We presented a framework for designing schemes from Comp-PDAs (placement delivery arrays for coded com-

puting) for map-reduce like distributed computing systems, and expressed the storage, computation, communication

(SCC) loads of the schemes in terms of the Comp-PDA parameters. The pareto optimal SCC tradeoff surface and

the set of Comp-PDAs achieving these surface points were completely characterized. Moreover, we showed that

while the corner points of the pareto optimal SCC surface can only be achieved with a large number of files, other

points on this surface, which lie close to the corner points, can be achieved with a significantly smaller number of

files.

ACKNOWLEDGEMENT

The work of Q. Yan and M. Wigger has been supported by the ERC under grant agreement 715111.

APPENDIX A

THE PROPERTIES OF THE SURFACES F AND O

A. Proof of Properties of Surface F

That F is connected and continuous, follows simply because it can be obtained by successively pasting a triangle

or a trapezoid to the boundary of the previously obtained region.

We turn to prove that for each pair (r, c) satisfying (23a), there exists exactly one point (r, c, L) ∈ F . That there

exists at leaset one such point follows by the continuity of F and because the triangle obtained by projecting the

line segments P1Q2, Q2Q3, Q3Q4, Q4Q5, . . . , QK−1QK , QKPK , PKP1 onto the (r, c)-plane, contains all extreme

points (r, c) that satisfy (23a). On the other hand, for each (r, c) there is not more than one point (r, c, L) ∈ F ,

because none of the triangles and trapezoids that build F is vertical and the projections of any two facets in F

onto the (r, c)-plane have nonoverlapping interiors.

29

B. Proof of Optimal Tradeoff Surface in Theorem 2

We now prove that O is the optimal tradeoff surface of the region R. Obviously, all pareto-optimal points must

lie on the surface F . Since the triangle 4P1P2Q2 and the trapezoids �PiQiQi+1Pi+1 (i ∈ [2 : K−1]) are parallel

to −→e2, all points in the interior of these facets cannot be pareto-optimal. In the following, we prove that, all the

points on the triangles 4Pi−1PiPK (i ∈ [2 : K − 1]) must be pareto-optimal.

For any (r, c) satisfying (23a), let L∗(r, c) be the function such that (r, c, L∗(r, c)) ∈ F . Then by (115), it has

strictly positive directional derivative in any direction (r ≤ 0, c ≤ 0) in the interior of the projection of 4Pi−1PiPK
on the (r, c) plane.

Fix now a triple (r, c, L∗(r, c)) ∈ O. We show that it is pareto-optimal. To this end, consider any other triple

(r′, c′, L′) ∈ R that satisfies

r′ ≤ r, c′ ≤ c, L′ ≤ L∗(r, c). (158)

We show by contradiction that all three inequalities must hold with equality. We distinguish between triples

(r′, c′, L′) for which

(r′, c′, L∗(r′, c′)) ∈ O, (159)

and triples where this is not the case.

1) Assume that (159) holds. If r′ = r and c′ = c, then obviously, L′ ≥ L∗(r, c), thus all equalities in (158)

hold. If r′ < r or c′ < c, then

L∗(r′, c′) > L∗(r, c), (160)

simply because the directional derivative along (r′−r, c′−c) is strictly positive by (115). Since (r′, c′, L′) ∈ R,

we have L′ ≥ L∗(r′, c′) and thus by (160), L′ > L∗(r, c), which contradicts (158).

2) Assume now that (159) is violated. Then, (r′, c′, L∗(r′, c′)) must lie on at least one of the K − 1 facets

4P1P2Q2 or � PiQiQi+1Pi+1, i = 2, . . . ,K − 1. (161)

As they are all parallel to −→e2, there exists c′′ < c′ ≤ c such that, (r′, c′′, L∗(r′, c′′)) ∈ O and L∗(r′, c′′) =

L∗(r′, c′). Therefore,

L′ ≥ L∗(r′, c′) = L∗(r′, c′′)
(a)
> L∗(r, c), (162)

where (a) follows by proof step 1). But (162) contradicts with (158).

From the above analysis, we conclude that, any point on O is pareto-optimal.

30

APPENDIX B

PROOF OF LEMMAS 1 AND 2

A. Proof of Lemma 1

For notational brevity, we denote the tuple (VS , CS) by YS for any S ⊆ K. We prove Lemma 1 by mathematical

induction on the size of S:

When |S| = 1, W.L.O.G, assume S = {k}, then (93) becomes

H
(
Xk|VK\{k}, CK\{k}

)
≥ 0, (163)

which is trivial.

Suppose that, the statement is true for all subsets of K with size s, 1 ≤ s < K. Consider a set S ⊆ K such that

|S| = s+ 1, then

H(XS |YSc) (164)

=
1

|S|
∑
k∈S

H(XS , Xk|YSc) (165)

=
1

|S|
∑
k∈S

(H(Xk|YSc) +H(XS |Xk, YSc)) (166)

=
1

|S|
∑
k∈S

H(Xk|YSc) +
1

|S|
∑
k∈S

H(XS |Xk, YSc) (167)

≥ 1

|S|
H(XS |YSc) +

1

|S|
∑
k∈S

H(XS |Xk, YSc). (168)

Then from (168), we have

H(XS |YSc) (169)

=
1

|S| − 1

∑
k∈S

H(XS |Xk, YSc) (170)

≥ 1

s

∑
k∈S

H(XS |Xk, Ck, YSc) (171)

(a)
=

1

s

∑
k∈S

H(XS |Ck, YSc) (172)

(b)
=

1

s

∑
k∈S

(H(XS |Ck, YSc) +H(Vk|XS , Ck, YSc)) (173)

(c)
=

1

s

∑
k∈S

H(XS ,Vk|Ck, YSc) (174)

(d)
=

1

s

∑
k∈S

(H(Vk|Ck, YSc) +H(XS |Vk, Ck, YSc)) , (175)

where (a) follows from the fact that Xk is a function of Ck; (b) holds because

H(Vk|XS , Ck, YSc) = 0, (176)

31

since Vk can be decoded by Ck, XS and XSc , which is a function of YSc ; and (c), (d) follows from chain rule.

We proceed to derive a lower bound for each term in (175). Firstly,

H(Vk|Ck, YSc) = H(Vk|Ck,VSc , CSc) (177)

(a)
= H(Vk|Ck, CSc) (178)

= H(Vk|C(S\{k})c) (179)

(b)
= V ·

|S|−1∑
j=1

bkS,j (180)

= V ·
s∑
j=1

bkS,j , (181)

where (a) follows from the independence between Vk and VSc ; and (b) holds because

BkS,1, . . . ,BkS,|S|−1 (182)

form a partition of those IVAs of Vk that are not computed by any node in (S\{k})c. Secondly,

H(XS |Vk, Ck, YSc) (183)

= H(XS\{k}, Xk|Vk, Ck, YSc) (184)

(a)
= H(XS\{k}|Vk, Ck, YSc) (185)

= H(XS\{k}|Y(S\{k})c) (186)

(b)

≥ V ·
s−1∑
j=1

bS\{k},j ·
1

j
, (187)

where (a) follows from the fact that Xk is a function of Ck; and (b) follows from the induction assumption.

Finally, combining (175), (181) and (187), we have

H(XS |YSc) (188)

≥ 1

s

∑
k∈S

H(Vk|Ck, YSc) +
1

s

∑
k∈S

H(XS |Vk, Ck, YSc) (189)

≥ V

s

∑
k∈S

s∑
j=1

bkS,j +
V

s

∑
k∈S

s−1∑
j=1

bS\{k},j ·
1

j
(190)

=
V

s

s∑
j=1

∑
k∈S

bkS,j +
V

s

s−1∑
j=1

∑
k∈S

bS\{k},j ·
1

j
(191)

(a)
=

V

s

s∑
j=1

bS,j +
V

s

s−1∑
j=1

∑
k∈S

bS\{k},j ·
1

j
, (192)

where (a) follows from (92).

32

Let I(A) be the indicator function of an event A, i.e.,

I(A) =

 1, if A is true

0, if A is false
. (193)

Then,∑
k∈S

bS\{k},j (194)

(a)
=
∑
k∈S

∑
l∈S\{k}

blS\{k},j (195)

=
∑
l∈S

∑
k∈S\{l}

blS\{k},j (196)

(b)
=
∑
l∈S

∑
k∈S\{l}

N∑
n=1

I(vl,n is only computed by j nodes in S\{k, l}) (197)

=
∑
l∈S

∑
k∈S\{l}

N∑
n=1

I(vl,n is only computed by j nodes in S\{l}) · I(vl,n is not computed by node k) (198)

=
∑
l∈S

N∑
n=1

I(vl,n is only computed by j nodes in S\{l}) ·
∑

k∈S\{l}

I(vl,n is not computed by node k) (199)

=
∑
l∈S

N∑
n=1

I(vl,n is only computed by j nodes in S\{l}) · (s− j) (200)

(c)
=
∑
l∈S

blS,j(s− j) (201)

(d)
= bS,j(s− j), (202)

where (a), (d) follows from (92), and (b), (c) follows from the definition of blS\{k},j and blS,j respectively.

Therefore, from (192) and (202),

H(XS |YSc) ≥ V

s
·
s∑
j=1

bS,j +
V

s
·
s−1∑
j=1

∑
k∈S

bS\{k},j ·
1

j
(203)

=
V

s
·
s∑
j=1

bS,j +
V

s
·
s−1∑
j=1

bS,j ·
s− j
j

(204)

=
V

s
·
s∑
j=1

bS,j + V ·
s−1∑
j=1

bS,j
j
− V

s
·
s−1∑
j=1

bS,j (205)

= V · bS,s
s

+ V ·
s−1∑
j=1

bS,j
j

(206)

= V ·
|S|−1∑
j=1

bS,j
j
. (207)

Notice that, we have proved that (93) holds for all S ⊆ K with |S| = s + 1. By the principle of mathematical

33

induction, we conclude that (93) holds for all nonempty subsets S ⊆ K.

B. Proof of Lemma 2

For any k ∈ K, define

B̃k , {vk,n : vk,n is computed by node k} , (208)

i.e., B̃k is the set of IVAs for the output function φk that are computed by node k. Denote the cardinality of B̃k
by b̃k. Notice that the sets

B̃k,BkK,1,BkK,2, . . . ,BkK,K−1 (209)

form a partition of the set of IVAs Vk. Thus,

b̃k +

K−1∑
j=1

bkK,j = |Vk| = N. (210)

Therefore, summing over k ∈ K in (210), together with (92),

K∑
k=1

b̃k +

K−1∑
j=1

bj = NK. (211)

Moreover, since each node k must store file wn when vk,n ∈ B̃k, we have b̃k ≤ |Mk|, and by (84),

K∑
k=1

b̃k ≤
K∑
k=1

|Mk| = rN. (212)

Also, for k ∈ K and j ∈ [K − 1], IVAs B̃k must be computed at node k, and IVAs BkK,j must be computed at j

nodes. Thus by (85),

K∑
k=1

b̃k +

K−1∑
j=1

jbj ≤
K∑
k=1

|Ck| = cNK. (213)

Combining (211) with (212) and (213) respectively, yield (94) and (95).

APPENDIX C

PROOF OF LEMMA 4

It is easy to verify that AK
q is a qm×K array for any allowed choice of K and q. Each column contains exactly

qm−1 “∗” symbols and each ordinary symbol takes value in [(q − 1)qm]. Thus,

FAK
q

= qm (214)

TAK
q

= qm−1K (215)

SAK
q

= (q − 1)qm. (216)

34

We now prove that AK
q is indeed a PDA, i.e., we show that properties a) and b) in Definition 7 hold. By (142)

and (143), the entry of AK
q in row j = (jm−1, jm−2, . . . , j0)q ∈ [qm] and column k = (k1, k0)m+1

q ∈ [K] equals

s = (sm, sm−1, . . . , s0)q−1q ∈ [(q − 1)qm] if, and only if, the following two conditions hold:

1) when 0 ≤ k1 < m,

j = (sm−1, . . . , sk1+1, sk1 ⊕q sm ⊕q 1, sk1−1, . . . , s0)q, (217)

k = (k1, sk1)m+1
q . (218)

2) when k1 = m,

j = (sm−1, sm−2, . . . , s0)q, (219)

k =
(
k1,

m∑
l=0

sl ⊕q 1
)m+1

q
, (220)

where in this section “⊕q” denotes addition modulo q.

Assume now two pairs (j, k), (j′, k′) ∈ [F]× [K] so that the corresponding entries of AK
q are both equal to the

same ordinary symbol s:

aj,k = aj′,k′ = s. (221)

Let k = (k1, k0) and k′ = (k′1, k
′
0). Notice now that by (217)–(220), if k1 = k′1 then also k0 = k′0, k = k′, and

j = j′.

We therefore restrict to the case k1 6= k′1. Assume without loss of generality that 0 ≤ k1 < k′1 ≤ m. In this case

it can be shown that j1 and j′1 differ in their k′1 -th components, thus establishing that j 6= j′. Distinguish the cases

k′1 < m or k′1 = m (equivalently, k′ ≤ qm or k′ > qm).

1) Consider the case k′1 < m, and notice that 0 ≤ sm ≤ q − 2 and sm ⊕q 1 ∈ {1, 2, . . . , q − 1}. Therefore, by

(217):

jk′1 = sk′1 6= sk′1 ⊕q sm ⊕q 1 = j′k′1 , (222)

and hence j′ 6= j. Notice also that (218) implies sk′1 = k′0. Since jk′1 = sk′1 by (222), we conclude jk′1 = k′0,

and thus the entry aj,k′ = ∗ by (142). Similar arguments where we replace (j, k) with (j′, k′) yields that also

aj′,k = ∗.

2) Consider now the case k′1 = m. By (217)–(220) and since sm ⊕q 1 6= 0:

j′k1 = sk1 6= sk1 ⊕q sm ⊕q 1 = jk1 , (223)

and thus j 6= j′. We now argue that aj,k′ = ∗. To this end, notice that since k′1 = m, (220) implies k′0 =∑m
l=0 sl⊕q 1; since k1 < m, (217) implies

∑m−1
l=0 jl =

∑m
l=0 sl⊕q 1. Therefore, we conclude

∑m−1
l=0 jl = k′0

and thus aj,k′ = ∗ by (143). The proof that also entry aj′,k = ∗, is similar to the case when k′1 < m and

omitted.

35

The above analysis indicates that the properties a) and b) in Definition 7 hold in all cases and AK
q must be a PDA.

Moreover, by (142)–(142), it is obvious that AK
q is a Comp-PDA.

It remains to prove that AK
q is g-regular for g =

⌊
K
q

⌋
. In fact, for a given s = (sm, sm−1, . . . , s0)q−1q ∈

[(q − 1)qm], if it occurs in the row j = (jm−1, . . . , j0)q ∈ [qm] and column k = (k1, k0)m+1
q ∈ [K], then

1) If k1 ∈ {0, 1, . . . ,m−1}, (j, k) can be uniquely determined by (217) and (218). Therefore, each s ∈ [(q−1)qm]

occurs exactly m times in the first qm columns of AK
q ;

2) If k1 = m, by (219) and (220), and the fact 0 ≤ k0 < K − qm, (j, k) can be uniquely determined if, and

only if,

0 ≤
m∑
l=0

sl ⊕q 1 < K − qm. (224)

It is easy to enumerate that the number of (sm, sm−1, . . . , s0) ∈ Zq−1×Zmq satisfying (224) is (K−qm)(q−

1)qm−1.

From the above analysis, we conclude that, there are (K − qm)(q− 1)qm−1 of the (q− 1)qm ordinary symbols

having occurrence m+ 1. There are Kqm−Kqm−1 ordinary entries, thus the fraction of entries having occurrence

m+ 1 is

θm+1 =
(K − qm)(q − 1)qm−1

Kqm −Kqm−1
(225)

= 1− m((m+ 1)q −K)

K
(226)

≤ 1. (227)

If q does not divide K then θm+1 < 1 and AK
q is an almost-regular Comp-PDA with g = m = dKq e − 1 = bKq c;

if q divides K, θm+1 = 1, then all ordinary symbols have occurrence m + 1, thus, AK
q is a regular Comp-PDA

with g = m+ 1 = dKq e = bKq c. Therefore, AK
q is an almost-regular Comp-PDA with g = bKq c.

REFERENCES

[1] Q. Yan, S. Yang, and M. Wigger, “Storage, computation and communication: A fundamental tradeoff in distributed computing,” in Proc.

IEEE Inf. Thoery Workshop (ITW), Guangzhou, China, Nov. 2018.

[2] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on large clusters,” Sixth USENIX OSDI, Dec. 2004.

[3] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: distributed data-parallel programs from sequential building blocks,” in Proc.

the 2nd ACM SIGOPS/EuroSys’07, Mar. 2007.

[4] S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A fundamental tradeoff between computation and communication in distributed

computing,” IEEE Trans. Inf. Theory, vol. 64, no. 1, pp. 109–128, Jan. 2018.

[5] Y. H. Ezzeldin, M. Karmoose, and C. Fragouli, “Communication vs distributed computation: An alternative trade-off curve,” in Proc. IEEE

Inf. Theory Workshop (ITW), Kaohsiung, Taiwan, pp. 279–283, Nov. 2017.

[6] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran, “Speeding up distributed machine learning using codes,” IEEE

Trans. Inf. Theory, vol. 64, no. 3, pp. 1514–1529, Mar. 2018.

[7] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “A unified coding framework for distributed computing with straggling servers,” in Proc.

IEEE Globecom Works (GC Wkshps), Washington, DC, USA, Dec. 2016.

36

[8] A. Reisizadeh, S. Prakash, R. Pedarsani, and S. Avestimehr, “Coded computation over heterogeneous clusters,” in Proc. IEEE Int. Symp.

Inf. Theory, Aachen, Germany, pp. 2408–2412, Jun. 2017.

[9] Q. Yu, M. Maddah-Ali, and S. Avestimehr, “Polynomial codes: An optimal design for high-dimensional coded matrix multiplication,” in

Proc. The 31st Annual Conf. Neural Inf. Processing System (NIPS), Long Beach, CA, USA, May 2017.

[10] Q. Yu, M. Maddah-Ali, and S. Avestimehr, “Straggler mitigation in distributed matrix multiplication: Fundamental limits and optimal

coding,” in Proc. IEEE Int. Symp. Inf. Theory, Vail, CO, USA, pp. 2022–2026, Jun. 2018.

[11] K. Lee, C. Suh, and K. Ramchandran, “High-dimensional coded matrix multiplication,” in Proc. IEEE Int. Symp. Inf. Theory, Aachen,

Germany, pp. 2418–2422, Jun. 2017.

[12] H. Park, K. Lee, J. Sohn, C. Suh, and J. Moon, “Hierarchical coding for distributed computing,” arXiv:1801.04686.

[13] F. Haddadpour and V. R. Cadambe, “Codes for distributed finite alphabet matrix-vector multiplication,” in Proc. IEEE Int. Symp. Inf.

Theory, Vail, CO, USA, pp. 1625–1629, Jun. 2018.

[14] S. Kiani, N. Ferdinand and S. C. Draper, “Exploitation of stragglers in coded computation,” in Proc. IEEE Int. Symp. Inf. Theory, Vail,

CO, USA, pp. 1988–1992, Jun. 2018.

[15] T. Baharav, K. Lee, O. Ocal, and K. Ramchandran, “Straggler-proofing massive-scale distributed matrix multiplication with d-dimensional

product codes,” in Proc. IEEE Int. Symp. Inf. Theory, Vail, CO, USA, pp. 1993–1997, Jun. 2018.

[16] N. Ferdinand and S. C. Draper, “Hierarchical coded computation,” in Proc. IEEE Int. Symp. Inf. Theory, Vail, CO, USA, pp. 1620–1624,

Jun. 2018.

[17] Q. Yu, S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “How to optimally allocate resources for coded distributed computing,” in Proc.

IEEE Int. Conf. Commun. (ICC), 2017, Paris, France, 21–25, May 2017.

[18] S. Li, Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “A scalable framework for wireless distributed computing,” IEEE/ACM Trans.

Netw., vol. 25, no. 5, pp. 2643–2653, Oct. 2017.

[19] S. Li, Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Edge-facilitated wireless distributed computing,” in Proc. IEEE Glob. Commun.

Conf. (Globlcom), Washington, DC, USA, Dec. 2016.

[20] F. Li, J. Chen, and Z. Wang, “Wireless Map-Reduce distributed computing,” in Proc. IEEE Int. Symp. Inf. Theory, Vail, CO, USA, pp.

1286–1290, Jun. 2018.

[21] E. Parrinello, E. Lampiris, and P. Elia, “Coded distributed computing with node cooperation substantially increases speedup factors,” in

Proc. IEEE Int. Symp. Inf. Theory, Vail, CO, USA, pp. 1291–1295, Jun. 2018.

[22] M. A. Attia and R. Tandon, “On the worst-case communication overhead for distributed data shuffling,” in Proc. 54th Allerton Conf.

Commun., Control, Comput., Monticello, IL, USA, pp. 961–968, Sep. 2016.

[23] M. A. Attia and R. Tandon, “Information theoretic limits of data shuffling for distributed learning,” in Proc. IEEE Glob. Commun. Conf.

(Globlcom), Washington, DC, USA, Dec. 2016.

[24] A. Elmahdy and S. Mohajer, “On the fundamental limits of coded data shuffling,” in Proc. IEEE Int. Symp. Inf. Theory, Vail, CO, USA,

pp. 716–720, Jun. 2018.

[25] L. Song, S. R. Srinivasavaradhan, and C. Fragouli, “The benefit of being flexible in distributed computation,” in Proc. IEEE Inf. Theory

Workshop (ITW), Kaohsiung, Taiwan, pp. 289–293, Nov. 2017.

[26] S. R. Srinivasavaradhan, L. Song, and C. Fragouli, “Distributed computing trade-offs with random connectivity,” in Proc. IEEE Int. Symp.

Inf. Theory, Vail, CO, USA, pp. 1281–1285, Jun. 2018.

[27] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient coding: Avoiding stragglers in synchronous gradient descent,” arXiv:

1612.03301.

[28] N. Raviv, I. Tamo, R. Tandon, and A. G. Dimakis, “Gradient coding from cyclic MDS codes and expander graphs,” arXiv: 1707.03858.

[29] Z. Charles and D. Papailiopoulos, “Gradient coding using the stochastic block model,” in Proc. IEEE Int. Symp. Inf. Theory, Vail, CO,

USA, pp. 1998–2002, Jun. 2018.

[30] W. Halbawi, N. Azizan, F. Salehi, and B. Hassil, “Improving distributed gradient descent using Reed-Solomon codes,” in Proc. IEEE Int.

Symp. Inf. Theory, Vail, CO, USA, pp. 2027–2031, Jun. 2018.

[31] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 2856–2867, May 2014.

[32] Q. Yan, M. Cheng, X. Tang, and Q. Chen, “On the placement delivery array design for centralized coded caching scheme,” IEEE Trans.

Inf. Theory, vol. 63, no. 9, pp. 5821–5833, Sep. 2017.

37

[33] C. Shangguan, Y. Zhang, and G. Ge, “Centralized coded caching schemes: A hypergraph theoretical approach.” IEEE Trans. Inf. Theory,

vol. 64, no. 8, pp. 5755-5766, Aug. 2018.

[34] Q. Yan, X. Tang, Q. Chen, and M. Cheng, “Placement delivery array design through strong edge coloring of bipartite graphs,” IEEE

Commun. Lett., vol. 22, no. 2, pp. 236–239, Feb. 2018.

[35] K. Konstantinidis and A. Ramamoorthy, “Leveraging coding techniques for speeding up distributed computing,” arXiv:1802.03049

[36] N. Woolsey, R. R. Chen, and M. Ji,“A new combinatorial design of coded distributed computing,” in Proc. IEEE Int. Symp. Inf. Theory,

Vail, CO, USA, pp. 726–730, Jun. 2018.

