
HAL Id: hal-02940396
https://hal.science/hal-02940396v1

Submitted on 16 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Fundamental Storage-Communication Tradeoff for
Distributed Computing with Straggling Nodes

Qifa Yan, Michèle Wigger, Sheng Yang, Xiaohu Tang

To cite this version:
Qifa Yan, Michèle Wigger, Sheng Yang, Xiaohu Tang. A Fundamental Storage-Communication Trade-
off for Distributed Computing with Straggling Nodes. IEEE Transactions on Communications, 2020,
�10.1109/TCOMM.2020.3020549�. �hal-02940396�

https://hal.science/hal-02940396v1
https://hal.archives-ouvertes.fr

1

A Fundamental Storage-Communication Tradeoff
for Distributed Computing with Straggling Nodes

Qifa Yan, Member, IEEE, Michèle Wigger, Senior Member, IEEE,
Sheng Yang, Member, IEEE, and Xiaohu Tang Senior Member, IEEE

Abstract—Placement delivery arrays for distributed comput-
ing (Comp-PDAs) have recently been proposed as a framework
to construct universal computing schemes for MapReduce-like
systems. In this work, we extend this concept to systems with
straggling nodes, i.e., to systems where a subset of the nodes
cannot accomplish the assigned map computations in due time.
Unlike most previous works that focused on computing linear
functions, our results are universal and apply for arbitrary map
and reduce functions. Our contributions are as follows. Firstly, we
show how to construct a universal coded computing scheme for
MapReduce-like systems with straggling nodes from any given
Comp-PDA. We also characterize the storage and communication
loads of the resulting scheme in terms of the Comp-PDA
parameters. Then, we prove an information-theoretic converse
bound on the storage-communication (SC) tradeoff achieved by
universal computing schemes with straggling nodes. We show
that the information-theoretic bound matches the performance
achieved by the coded computing schemes with straggling nodes
corresponding to the Maddah-Ali and Niesen (MAN) PDAs, i.e.,
to the Comp-PDAs describing Maddah-Ali and Niesen’s coded
caching scheme. Interestingly, the MAN-PDAs are optimal for
any number of straggling nodes. This implies that the map phase
of optimal coded computing schemes does not need to be adapted
to the number of stragglers in the system. We show that the
points that lie exactly on the fundamental SC tradeoff cannot be
achieved with Comp-PDAs that require smaller number of files
than the MAN-PDAs. This is however possible for some of the
points that lie close to the SC tradeoff. For these latter points,
the decrease in the requested number of files can be exponential
in the number of nodes of the system. We also model the total
execution time, and numerically show that the active set size
should be chosen to balance the duration of the map phase and
the durations of the shuffle and reduce phases.

Index Terms—Distributed computing, storage, communication,
straggler, MapReduce, placement delivery array.

I. INTRODUCTION

Distributed computing has emerged as one of the most
important paradigms to speed up large-scale data analysis
tasks. One of the most popular programming models is

Q. Yan and M. Wigger are with LTCI, Téĺecom Paris, IP Paris, 91120
Palaiseau, France. E-mails: qifay2014@163.com, michele.wigger@telecom-
paristech.fr.

S. Yang is with L2S, (UMR CNRS 8506), CentraleSupélec-
CNRS-Universit́e Paris-Sud, 91192 Gif-sur-Yvette, France. Email:
sheng.yang@centralesupelec.fr.

X. Tang is with the Information Security and National Computing Grid
Laboratory, Southwest Jiaotong University, 611756, Chengdu, Sichuan, China.
Email: xhutang@swjtu.edu.cn.

Part of this work has been presented in ISIT 2019 [1]. The work of Q.
Yan and M. Wigger has been supported by the ERC under grant agreement
715111. The work of X. Tang was supported in part by the National Natural
Science Foundation of China under Grant 61941106.

MapReduce [2] which has been used to parallelize compu-
tations across distributed computing nodes, e.g., for machine
learning tools [3], [4]. Consider the task of computing D
output functions from N files through K nodes in a MapReduce
system. Each output function φd, (1 ≤ d ≤ D), can be
decomposed into

• N map functions fd,1, . . . , fd,N, each depending on ex-
actly one different file; and

• a reduce function hd that combines the outputs of the N
map functions.

Each node k is responsible for computing a subset of D
K output

functions through three phases. In the first map phase, a central
server stores a subset of files Mk at node k, for each k ∈
[K]. Each node k then computes all the D intermediate values
(IVAs) f1,n(wn), . . . , fD,n(wn) from each of its stored files
wn ∈Mk. In the subsequent shuffle phase, it creates a signal
from its computed IVAs and sends the signal to all the other
nodes. Based on the received exchanged signals and the locally
computed IVAs, in the final reduce phase it reconstructs all
the IVAs pertaining to its own output functions and calculates
the desired outputs.

Recently, Li et al. proposed a scheme named coded dis-
tributed computing (CDC) to reduce the communication load
in the shuffling phase [5]. The idea is to create multicast
opportunities by duplicating the files and computing the
corresponding map functions at different nodes. It is shown
that the CDC scheme achieves the fundamental storage-
communication tradeoff, i.e., it has the lowest communication
load for a given storage constraint. This result has been
extended in various directions. For example, [6]–[8] account
also for the computation load during the map phase; [9]
studies the computation resource-allocation problem; [10]–
[13] consider wireless (noisy) networks between computation
nodes; [14] considers a model where during the shuffle phase
each node broadcasts only to a random subset of the nodes.

In this paper, we consider a setup where during the map
phase each node takes a random amount of time to compute
its desired map functions [15]. In this case, instead of waiting
for all the nodes to finish the assigned computations, which
can cause an intolerable delay, data shuffling starts as soon as
any set of Q nodes, Q ∈ [K], terminate their map procedures.
The set of Q nodes that first terminate the map procedure
are called active nodes, while the remaining K− Q nodes are
called straggling nodes or stragglers. The stragglers are not
identified prior to the beginning of the map phase and hence
the map phase has to be designed without such knowledge.

2

Distributed computing systems with straggling nodes have
mainly been studied in the context of a server-worker frame-
work. In this framework, a central server distributes the raw
data to the workers like in the above described map phase, but
following this map phase the workers directly communicate
their intermediate results to the server, which then produces
the final outputs. (Thus, under the server-worker framework,
all final outputs are calculated at the server and not at the
distributed computing nodes as is the case in MapReduce sys-
tems.) The described server-worker framework with stragglers
was treated, for example, in [15]–[25] with a focus on high-
dimensional matrix-by-matrix or matrix-by-vector multiplica-
tions and in [26]–[30] with a focus on gradient computing.

Fewer works studied MapReduce systems with straggling
nodes (hereafter referred to as straggling systems) which are
more relevant for the present article. Specifically, Li et al. [31]
proposed to incorporate MDS codes into the CDC scheme
to cope with straggler nodes. Their construction however
works only when the map functions accomplish matrix-by-
vector multiplications. Improved constructions were proposed
by Zhang et al. by choosing the parameters of MDS code
and CDC scheme separately in a more flexible way [32], but
also their techniques are applicable only for map functions
that are matrix-by-matrix multiplications. In many practical
applications such as computations in neural networks and
machine learning, the map functions are non-linear and can
be very complicated with little structure. This motivates us to
investigate the MapReduce framework with straggling nodes
for general map and reduce functions. In particular, we will
present universal coded computing schemes that can be applied
to arbitrary straggling systems, irrespective of the specific map
and reduce functions. Moreover, we will show the optimality
of our schemes among the class of universal schemes that do
not rely on special properties of the map and reduce functions.

More specifically, we first propose a systematic construction
of universal coded computing schemes for straggling systems
from any placement delivery array for distributed computing
(Comp-PDA) [8]. A placement delivery array (PDA) is an
array whose entries are either a special symbol “ ∗ ” or some
integer numbers called ordinary symbols. It was introduced
in [33] to represent both the placement and the delivery
of coded caching schemes with uncoded prefetching in a
single array. In particular, the coded caching schemes proposed
by Maddah-Ali and Niesen in [34] can be represented as
PDAs [33]. The corresponding PDAs will be referred to as
MAN-PDAs, and, as we will see, they play a fundamental
role also in coded computing with stragglers. PDAs have
further been generalized to other coded caching scenarios such
as device-to-device models [35], combination networks [36],
networks with private demands [37], and medical data sharing
problems [38]. Moreover, several different PDA constructions
have been proposed in [39]–[43]. In this paper our focus is on a
subclass of PDAs, called Comp-PDAs, which were introduced
in [8] to design coded computing schemes for MapReduce
systems without straggling nodes. In this paper, we show that
Comp-PDAs can also be used to construct coded computing
schemes for straggling systems, and we express the storage
and computation loads of the obtained schemes in terms of

the Comp-PDA parameters.
We then proceed to characterize the fundamental storage-

communication (SC) tradeoff for straggling systems by show-
ing that the SC tradeoff curve achieved by MAN-PDA based
schemes matches a new information-theoretic converse for
universal computing schemes with stragglers. That means,
our converse bounds the SC tradeoffs achieved by any coded
computing schemes that apply to arbitrary map and reduce
functions. For special map and reduce functions, e.g., linear
functions, it is possible to find tailored coded computing
schemes that achieve better SC tradeoffs, than the one implied
by our information-theoretic converse, see e.g., [32]. It is
worth pointing out that the MAN-PDA based coded computing
schemes adopt a fixed storage strategy irrespective of the active
set size Q. This implies that the fundamental SC-tradeoff curve
remains unchanged even if the active set size Q has not yet
been determined during the map phase. The proposed schemes
are thus also optimal in a scenario where the active set size
Q is unknown during the map phase.

Finally, we study the complexity of optimal (or near-
optimal) coded computing schemes. In fact, a major practical
limitation of the SC-optimal coded computing schemes based
on MAN-PDAs is that they can only be implemented if the
number of files N in the system grows exponentially with the
number of nodes K. However, as we show in this paper, in most
cases, MAN-PDAs achieve their corresponding fundamental
SC pairs with smallest possible number of files, i.e., with
smallest file complexity, among all Comp-PDA based coded
computing schemes. This practical limitation is thus not a
weakness of the MAN-PDAs, but seems inherent to PDA-
based coded computing schemes for stragglers. Interestingly,
the problem can be circumvented by slightly backing off from
the SC-optimal tradeoff curve. We show that the schemes
based on the Comp-PDAs in [33] achieve SC pairs close to the
fundamental SC tradeoff curve but with significantly smaller
number of files than the optimal MAN-PDAs. More precisely,
we fix an integer q, let the number of nodes K be a multiple
of q, and the storage load r be such that r

K ∈ {
1
q ,

q−1
q } holds.

We compare the Comp-PDA in [33] and the MAN-PDA for
such pairs (K, r) while we let both of them tend to infinity
proportionally. This comparison shows that the ratio of the
minimum required number of files of the Comp-PDA in [33]
and the MAN-PDA vanishes as O

(
eK(1− 1

q) ln q
q−1

)
, while the

ratio of their communication loads approaches 1.
At last we conduct numerical simulations to gain insights

on how to choose the active set size Q in a practical system.
In fact, choosing a large Q increases the duration of the map
phase because it takes longer until Q nodes have terminated
their computations. Increasing Q however also decreases the
durations of the shuffle and reduce phases, because they are
proportional to the communication load (which decreases with
Q) and to the number of output functions computed at each
node (which is inversely proportional to Q). In this paper
we present a model for the total execution time of a coded
computing scheme and numerically find the optimal choice of
the active set size Q for this model.

We summarize the contributions of this paper:

3

1) We establish a general framework for constructing uni-
versal coded computing schemes for straggling systems
from Comp-PDAs, and evaluate their SC pairs in terms
of the Comp-PDA parameters.

2) We derive the fundamental SC tradeoff for any universal
straggling system by means of an information theoretic
converse, which matches the SC pairs achieved by
schemes based on the MAN-PDAs.

3) We show that in most cases, points on the fundamental
SC tradeoff curve can be achieved only with the same
file complexity as MAN-PDA based schemes. Some
points close to the fundamental SC tradeoff curve can
however be achieved with significantly smaller file com-
plexities.

The remainder of this paper is organized as follows. Section
II formally describes our model, and Section III reviews the
definitions of PDAs and Comp-PDAs; Section IV presents
the main results of this paper; Section V presents numerical
results; Sections VI to VIII present the major proofs of our
results; and Section IX concludes this paper.

Notations: For positive integers n, k such that n ≥ k,
we use the notations [n] , {1, 2, . . . , n}, and [k : n] ,
{k, k + 1, . . . , n}. The binomial coefficient is denoted by
Ckn ,

n!
k!(n−k)! for n ≥ k ≥ 0; we set Ckn = 0 when k < 0 or

k > n. For k ≤ n, we use Ωk
n to denote the collection of all

subsets of [n] of cardinality k, i.e., Ωk
n , {T ⊆ [n] : |T | = k}.

The binary field is denoted by F2 and the n dimensional vector
space over F2 is denoted by Fn2 . We use |A| to denote the
cardinality of the set A, while for a signal X , |X| is the
number of bits in X . The order of set operations is from left to
right. Finally, 1(·) denotes the indicator function that evaluates
to 1 if the statement in the parenthesis is true and it evaluates
to 0 otherwise.

II. SYSTEM MODEL

A (K,Q) straggling system is parameterized by the positive
integers

K,Q,N,D,U,V,W,

as described in the following. The system aims to compute D
output functions φ1, . . . , φD through K distributed computing
nodes from N files. Each output function φd : FNW

2 → FU
2

(d ∈ [D]) takes as inputs the length-W files in the library
W = {w1 . . . , wN}, and outputs a bit stream of length U, i.e.,

ud = φd(w1, . . . , wN) ∈ FU
2 .

Assume that the computation of the output functions φd can
be decomposed as:

φd(w1, . . . , wN) = hd(fd,1(w1), . . . , fd,N(wN)),

where

• the map function fd,n : FW
2 → FV

2 maps the file wn
into a binary stream of length V, called intermediate
value (IVA), i.e.,

vd,n , fd,n(wn) ∈ FV
2 , ∀ n ∈ [N];

• the reduce function hd : FNV
2 → FU

2 , maps the IVAs
{vd,n}Nn=1 into the output stream

ud = φd(w1, . . . , wN) = hd(vd,1, . . . , vd,N).

Notice that a decomposition into map and reduce functions
is always possible. In fact, trivially, one can set the map
and reduce functions to be the identity and output functions
respectively, i.e., fd,n(wn) = wn, and hd = φd, ∀ n ∈
[N], d ∈ [D], in which case V = W. However, to mitigate
the communication cost during the shuffle phase, one would
prefer a decomposition such that the length of the IVAs is as
small as possible while still allowing the nodes to compute
the final outputs. The computation is carried out through three
phases, namely, the map, shuffle, and reduce phases.

1) Map Phase: Each node k ∈ [K] stores a subset of files
Mk ⊆ W , and tries to compute all the IVAs from the
files in Mk, denoted by Ck:

Ck , {vd,n : d ∈ [D], wn ∈Mk}. (1)

Each node has a random amount of time to compute
its corresponding IVAs. To limit latency of the system,
the coded computing scheme proceeds with the shuffle
and reduce phases as soon as a fixed number of Q ∈
[K] nodes have terminated the map computations. These
nodes are called active nodes, and the set of all active
nodes is called active set, whereas the other K−Q nodes
are called straggling nodes. For simplicity, we consider
the symmetric case in which each subset Q ⊆ [K] of
size |Q| = Q is active with same probability. Let the
random variable Q denote the random active set. Then,

Pr {Q = Q} =
1

CQ
K

, ∀ Q ∈ ΩQ
K.

In our model, we also assume that the map phase
has been designed in a way that all the files can be
recovered1 from any active set of size Q. Hence, for
any file wn ∈ W , the number of nodes storing this file
tn must satisfy

tn ≥ K− Q + 1, ∀ n ∈ [N]. (2)

The output functions φ1, . . . , φD are then uniformly
assigned2 to the nodes in Q. Let DQ

k be the set of indices
of output functions assigned to a given node k ∈ Q.
Thus, ΓQ ,

{
DQ
k

}
k∈Q

forms a partition of [D], and
each set DQ

k is of cardinality D
Q . Denote the set of all

the partitions of [D] into Q equal-sized subsets by ∆.
2) Shuffle Phase: The nodes in Q proceed to exchange

their computed IVAs. Each node k ∈ Q multicasts a
signal

XQ
k = ϕQ

k

(
Ck,ΓQ

)
to all the other nodes in Q. For each k ∈ Q, here
ϕQ
k : F|Ck|V2 × ∆ → F|X

Q
k |

2 denotes the encoding

1In this paper, we thus exclude the “outage” event in which some active
sets cannot compute the given function due to missing files.

2Here we assume for simplicity that Q divides D. Note that otherwise we
can always add empty functions for the assumption to hold.

4

function of node k.
We assume a perfect multicast channel, i.e., each active
node k ∈ Q receives perfectly all the transmitted signals

XQ ,
{
XQ
k : k ∈ Q

}
.

3) Reduce Phase: Using the received signals XQ from the
shuffle phase and the local IVAs Ck computed in the map
phase, node k has to be able to compute all the IVAs

{(vd,1, . . . , vd,N)}d∈DQ
k

= ψQ
k

(
XQ, Ck,ΓQ

)
,

where ψQ
k : F

∑
k∈Q |X

Q
k |

2 ×F|Ck|V2 ×∆→ F
NDV
Q

2 . Finally,
with the restored IVAs, it computes each assigned func-
tion via the reduce function, namely,

ud = hd(vd,1, . . . , vd,N), ∀ d ∈ DQ
k .

To measure the storage and communication costs, we intro-
duce the following definitions.

Definition 1 (Storage Load). Storage load r is defined as the
total number of files stored across the K nodes normalized by
the total number of files N, i.e.,

r ,

∑K
k=1 |Mk|

N
.

Definition 2 (Communication Load). Communication load L
is defined as the average total number of bits sent in the
shuffle phase, normalized by the total number of bits of all
intermediate values, i.e.,

L = E

[∑
k∈Q |X

Q
k |

NDV

]
, (3)

where the expectation is taken over the random active set Q.

Definition 3 (Storage-Communication (SC) Tradeoff). A pair
of real numbers (r, L) is achievable if for any ε > 0, there exist
positive integers N,D,U,V,W, a storage design {Mk}Kk=1 of
storage load less than r + ε, a set of uniform assignments of
output functions

{
ΓQ
}
Q∈ΩQ

K

, and a collection of encoding

functions
{{
ϕQk
}
k∈Q

}
Q∈ΩQ

K

with communication load less
than L+ ε, such that all the output functions φ1, . . . , φD can
be computed successfully. For a fixed Q ∈ [K], we define the
fundamental storage-communication (SC) tradeoff as

L∗K,Q(r) , inf {L : (r, L) is achievable} .

Note that the non-trivial interval for the values of r is [K−
Q + 1,K]. Indeed, if r > K, then each node can store all
the files and compute any function locally. On the other hand,
from the assumption (2), we have for any feasible scheme

r =

∑K
k=1 |Mk|

N

=

∑N
n=1 tn
N

≥ K− Q + 1.

Therefore, throughout the paper, we only focus on the
interval r ∈ [K−Q+1,K] for any given Q ∈ [K]. Further, for a
given storage design {Mk}Kk=1, by the symmetry assumption

of the reduce functions and the fact that each node has
all the IVAs of all D output functions in the files it has
stored, the optimal communication load is independent of the
reduce function assignment. This is similar to the case without
straggling nodes (see [5, Remark 3]).

Definition 4 (File Complexity). The smallest number of files
N required to implement a given scheme is called the file
complexity of this scheme.

In above problem definition, the various nodes store entire
files during the map phase and during the shuffle phase they
reconstruct all the IVAs corresponding to their output func-
tions. This system definition does not allow to reduce storage
or communication loads by exploiting special structures of the
map or reduce functions as proposed for example in [31], [32].
As a consequence, all the coded computing schemes presented
in this paper universally apply to arbitrary map and reduce
functions and the SC tradeoff in Definition 3 applies only to
such universal schemes. In fact, as we will explain, for linear
reduce functions the SC tradeoff derived in [32] improves over
the one in Definition 3, since it was derived for a system where
nodes do not have to store individual files and reconstruct all
the required IVAs, but linear combinations thereof suffice.

III. PLACEMENT DELIVERY ARRAYS FOR STRAGGLING
SYSTEMS

A. Definitions

Placement delivery arrays (PDA) introduced in [33] are the
main tool of this paper. To adapt to our setup, we use the
following definitions.

Definition 5 (Placement Delivery Array (PDA)). For positive
integers K,F,T and a nonnegative integer S, an F× K array
A = [aj,k], j ∈ [F], k ∈ [K], composed of T special symbols
“ ∗ ” and some ordinary symbols 1, . . . ,S, each occurring at
least once, is called a (K,F,T,S) PDA, if for any two distinct
entries aj1,k1 and aj2,k2 , we have aj1,k1 = aj2,k2 = s with s
an ordinary symbol only if

a) j1 6= j2, k1 6= k2, i.e., they lie in distinct rows and
distinct columns; and

b) aj1,k2 = aj2,k1 = ∗,
i.e., the corresponding 2 × 2 subarray formed by rows j1, j2
and columns k1, k2 must be of the following form[

s ∗
∗ s

]
or
[
∗ s
s ∗

]
.

A PDA with all “ ∗ ” entries is called trivial. Notice that
in this case S = 0 and KF = T. A PDA is called a g-regular
PDA if each ordinary symbol occurs exactly g times.

Example 1. The following array is a 3-regular (4, 6, 12, 4)
PDA.

A =

∗ ∗ 1 2
∗ 1 ∗ 3
∗ 2 3 ∗
1 ∗ ∗ 4
2 ∗ 4 ∗
3 4 ∗ ∗

 .

5

For our purpose, we introduce the following definitions
similarly to the ones in [8].

Definition 6 (PDA for Distributed Computing (Comp-PDA)).
A Comp-PDA is a PDA with at least one “ ∗ ”-symbol in each
row.

Definition 7 (Minimum Storage Number). Given a Comp-
PDA A, its minimum storage number τ is defined as the
minimum number of “ ∗ ”-symbols in any of the rows of A.

Definition 8 (Symbol Frequencies). For a given nontrivial
(K,F,T,S) Comp-PDA, let St denote the number of ordinary
symbols that occur exactly t times, for t ∈ [K]. The symbol
frequencies θ1, θ2, . . . , θK of the Comp-PDA are then defined
as

θt ,
Stt

KF− T
, t ∈ [K].

They indicate the fractions of ordinary entries of the Comp-
PDA that occur exactly 1, 2, . . . ,K times, respectively. For
completeness, we also define θt , 0 for t > K.

B. Constructing a Coded Computing Scheme from a Comp-
PDA: A Toy Example

In this subsection we illustrate the connection between
Comp-PDAs and coded computing schemes with stragglers at
hand of a toy example. Section VI ahead describes a general
procedure to obtain a coded computing scheme with stragglers
from any Comp-PDA, and it presents a performance analysis
for the obtained scheme.

Consider the (4, 6, 12, 4) Comp-PDA A in Example 1, and
assume a (K,Q) = (4, 3) straggling system with N = 6 files
and D = 3 output functions. The scheme is illustrated in
Fig. 1 for the case that node 3 is straggling. In this Fig. 1,
the line “files” in each of the four boxes indicates the files
stored at the nodes. The remaining lines in the boxes illustrate
the computed IVAs, where red circles, green triangles, and
blue squares depict IVAs pertaining to output functions φ1,
φ2, and φ3, respectively. More specifically, a red circle with
the number i ∈ {1, 2, . . . , 6} in the middle stands for IVA v1,i,
and so on. The lines below the boxes of the active nodes 1, 2,
and 4 indicate the IVAs that the nodes have to learn to compute
their output functions. In this example it is assumed that node 1
computes φ1, node 2 computes φ2, and node 4 computes φ3.
The signals on the left/right side of the boxes indicate the
signals sent by the nodes. Here, splitting of IVAs indicates
that the IVA is decomposed into a substring consisting of the
first half of the bits and a substring consisting of the second
half of the bits, and the plus symbol stands for a bit-wise
XOR-operation on the substrings.

We now explain the distributed coding scheme associated
with the PDA A. We start by associating column k of A
with node k and row j of A with file wj in the system,
(k ∈ [4], j ∈ [6]). In the map phase, node k stores file
wj if the (j, k)-th entry of A is a “ ∗ ”-symbol. For ex-
ample, the first column of A indicates that, node 1, stores
files w1, w2 and w3. Each node then computes all the IVAs
corresponding to the files it has stored. So node 1 computes
v1,1, v1,2, v1,3, v2,1, v2,2, v2,3, v3,1, v3,2, v3,3.

Fig. 1: An example of the CCS scheme for a system with K = 4, N = 6 and
Q = 3, where the third node is a straggling node.

Assume that node 3 is the only straggler. Nodes 1, 2, and
4 thus form the active set and continue with the shuffle and
reduce procedures. Accordingly, we extract from the PDA A
the subarray A{1,2,4} consisting of columns 1, 2 and 4 (the
columns corresponding to the active set):

A{1,2,4} =

∗ ∗ 2
∗ 1 3
∗ 2 ∗
1 ∗ 4
2 ∗ ∗
3 4 ∗

 .

Notice that A{1,2,4} is also a Comp-PDA (in particular
it has at least one “∗” symbol in each row) and the node
corresponding to a given column has stored all the files
indicated by the “ ∗ ”-symbols in this column. After the
shuffling phase, we are thus in the same situation as described
in [8], [44] when a coded computing scheme without stragglers
is to be constructed from a Comp-PDA, and as a consequence,
the same shuffle and reduce procedures can be applied. We
described these procedures here in detail for completeness.

The shuffle phase is as follows. The output functions
φ1, φ2, φ3 are allocated to nodes 1, 2, 4 respectively. For each
s ∈ {1, 2, 3, 4} occuring g times (g = 2 or 3), pick out the g×g
array containing s. For example, symbol s = 2 is associated
with the following 3-by-3 subarray:

1 2 4
w1 ∗ ∗ 2
w3 ∗ 2 ∗
w5 2 ∗ ∗

Each occurence of the symbol “2” in this subarray stands for
an IVA desired by the node in the corresponding column and
computed at the other nodes in this subarray. The row of the
symbol indicates the file this IVA pertains to. The “∗” symbols
in this row indicate that the IVA can indeed be computed by
all nodes in this subarray except for the one associated to the
column of the “2” symbol. In the above example, the three “2”
symbols from top to down represent the IVAs v3,1, v2,3, and
v1,5, respectively. These IVAs are shuffled in a coded manner.
To this end, they are first split into g − 1 = 2 equally-large

6

sub-IVAs, and each of these sub-IVAs is labeled by one of the
nodes where the IVA has been computed (i.e., by the columns
with “ ∗ ” symbols). The signal sent by a given node i is then
simply the componentwise XOR of the sub-IVAs with label i.
In our example, we split v3,1 = (v1

3,1, v
2
3,1), v2,3 = (v1

2,3, v
4
2,3)

and v1,5 = (v2
1,5, v

4
1,5). So, nodes 1, 2, 4 send v1

2,3 ⊕ v1
3,1,

v2
3,1 ⊕ v2

1,5 and v4
1,5 ⊕ v4

2,3, respectively. The same procedure
is applied for all other ordinary symbols 1, 3, and 4 in subarray
A{1,2,4}. The following table lists all the signals sent at the
4 nodes, where the first line lists their associated ordinary
symbols:

Symbol 1 2 3 4
Node 1 v2,2 v1

2,3 ⊕ v1
3,1 v3,2

Node 2 v1,4 v2
3,1 ⊕ v2

1,5 v3,4

Node 3 (straggling)
Node 4 v4

1,5 ⊕ v4
2,3 v1,6 v2,6

(4)

In the reduce phase, the nodes extract their missing IVAs as
follows. Since node 1 has computed v1,1, v1,2 and v1,3 in the
map phase, it still needs to decode v1,4, v1,5, v1,6. It directly
obtains the IVAs v1,4 and v1,6 from the uncoded signals sent by
nodes 2 and 4 respectively. Moreover, it reconstructs the two
sub-IVAs v2

1,5 and v4
1,5, by XORing the signals v2

3,1⊕v2
1,5 and

v4
1,5⊕v4

2,3 shuffled by nodes 2 and 4 with its locally stored sub-
IVAs v2

3,1 and v4
2,3. Nodes 2 and 4 reconstruct their missing

IVAs in a similar way.
A similar procedure is also applied for any other possible

realization of the active set Q of size Q = 3.
In the above scheme, the total number of IVAs computed

at all nodes is 3 × 4 = 12, and the storage load is thus r =
12
N = 2. The total length of the transmitted signals is 7.5V, and
remains unchanged, irrespective of the realization of the active
set Q (as long as it is of size Q = 3). The communication
load of the system is thus L = 7.5V

6×3×V = 5
12 .

IV. MAIN RESULTS

In this section, we present our main results. Details and
proofs are deferred to Sections VI–VIII.

A. Coded Computing Schemes for Straggling Systems from
Comp-PDAs

In Section VI, we propose a coded computing scheme for
a (K,Q) straggling system based on any Comp-PDA with
K columns and minimum storage number τ ≥ K − Q + 1.
Theorem 1 is proved by analyzing the coded computing
scheme, which is deferred to Section VI-B.

Theorem 1. From any given (K,F,T,S) Comp-PDA A with
symbol frequencies {θt}Kt=1 and minimum storage number τ ∈
[K− Q + 1 : K], one can construct a coded computing scheme
for a (K,Q) straggling system achieving the SC pair

rA =
T

F
,

LA =

(
1− T

FK

)
· 1

CQ−1
K−1

·
K∑
t=1

θt

CQ−1
K−t +

min{t,Q}−1∑
l=max{1,t−K+Q−1}

1

l
Clt−1C

Q−l−1
K−t

 , (5)

with file complexity F.

Theorem 1 characterizes the performance of the coded
computing scheme obtained from a Comp-PDA as described
in Section VI in terms of the Comp-PDA parameters. In the
following, we will simply say that a Comp-PDA achieves this
performance.

Notice that the file complexity of any Comp-PDA based
scheme coincides with the number of rows F of the Comp-
PDA. We shall therefore call the parameter F of a Comp-PDA
its file complexity.

As we show in the following, Theorem 1 can be simplified
for regular Comp-PDAs.

Corollary 1. From any given g-regular (K,F,T,S) Comp-
PDA A, with g ∈ [K] and minimum storage number τ ∈
[K− Q + 1 : K], one can construct a coded computing scheme
for a (K,Q) straggling system achieving the SC pair

rA =
T

F
,

LA =

(
1− T

KF

)

·

CQ−1
K−g

CQ−1
K−1

+

min{g,Q}−1∑
l=max{1,g−K+Q−1}

1

l
·
Clg−1 · CQ−l−1

K−g

CQ−1
K−1

 ,

with file complexity F.

Proof: From Theorem 1, we only need to evaluate LA

when A is a g-(K,F,T,S) Comp-PDA. In this case, all the S
symbols occur g times, i.e.,

θg = 1, and θt = 0, ∀ t ∈ [K]\{g}.

Then the conclusion directly follows from Theorem 1.
Corollary 1 is of particular interest since there are several

explicit regular PDA constructions for coded caching in the
literature, such as [33], [42], [43], which are also Comp-PDAs.
In particular, the following PDAs obtained from the coded
caching scheme proposed by Maddah-Ali and Niesen [34] are
important.

Definition 9 (Maddah-Ali Niesen PDA (MAN-PDA)). Fix any
integer i ∈ [K], and let {Tj}

Ci
K

j=1 denote all subsets of [K] of
size i. Also, choose an arbitrary bijective function κ from the
collection of all subsets of [K] with cardinality i+ 1 to the set[
Ci+1

K

]
. Then, define the array Pi = [pj,k] as

pj,k ,

{
∗, if k ∈ Tj
κ({k} ∪ Tj), if k /∈ Tj

.

We observe that for any i ∈ [K − 1], the array Pi is an
(i + 1)-regular

(
K, CiK,KC

i−1
K−1, C

i+1
K

)
Comp-PDA (see [33]

for details). For i = K, the Comp-PDA Pi consists only of
“ ∗ ”-entries and is thus a trivial PDA. By Corollary 1, we
directly obtain the following result.

Corollary 2. Consider a (K,Q) straggling system and a
positive integer r ∈ [K − Q + 1 : K]. On such a straggling

7

system, the MAN-PDA Pr achieves the storage load r and
communication load

LPr ,
(

1− r

K

)
·

min{r,Q−1}∑
l=r+Q−K

1

l
·
Clr · CQ−l−1

K−r−1

CQ−1
K−1

.

The coded computing scheme associated to Pr is equivalent
to our proposed coded computing for straggling systems (CCS)
in [1]. Here, we present it as a special case of the more
general Comp-PDA framework. As we shall see, the Comp-
PDA framework allows us to design new coded computing
schemes with smaller file complexities.

B. The Fundamental Storage-Communication Tradeoff

We are ready to present our result on the fundamental SC
tradeoff, which is proved in Section VII.

Theorem 2. For a (K,Q) straggling system, with a given
integer storage load r in the discrete set [K − Q + 1 : K],
the fundamental SC tradeoff is

L∗K,Q(r) =
(

1− r

K

)
·

min{r,Q−1}∑
l=r+Q−K

1

l
·
Clr · CQ−l−1

K−r−1

CQ−1
K−1

, (6)

which is achievable with a scheme of file complexity CrK. For
a general r in the interval [K−Q+1,K], the fundamental SC
tradeoff L∗K,Q(r) is given by the lower convex envelope formed
by the above points in (6).

Fig. 2 shows the fundamental SC tradeoff curves for K = 10
and different values of Q. When Q = 1, the curve reduces to a
single point (K, 0), while when Q = K, the curve corresponds
to the fundamental tradeoff without straggling nodes (cf. [5,
Fig. 1]). In this latter case without stragglers, the fundamental
SC tradeoff curve is achieved by the CDC scheme in [5]. For
a general value of Q and integer storage r ∈ [K−Q + 1 : K],
the fundamental SC tradeoff pair (r, L∗K,Q(r)) is achieved
by the MAN-PDA Pr, see Corollary 2. This implies that
for a fixed integer storage load r ∈ [1 : K], the SC pairs
{(r, L∗K,Q(r))}KQ=K−r+1 are all achieved by the same PDA
Pr, irrespective of the size of the active set Q. As we show
in Section VI-A, the map procedures of the coded computing
scheme corresponding to a given Comp-PDA at a given node
k only depends on the “∗”-symbols in the k-th column of the
PDA. Therefore, all the points on the fundamental SC tradeoff
curve with same integer storage load r can be attained with
the same map procedures described by the MAN-PDA Pr.
(See also Remark 3 in Section VI-A.)

As a consequence, the fundamental SC-tradeoff points that
have integer storage load r ∈ [1,K] remain achievable (and
optimal) also in a related setup where the size of the active
set Q is unknown during the map procedure. By simple time
and memory-sharing arguments, this conclusion extends to all
points on the fundamental SC tradeoff curve with arbitrary
real-valued storage loads r ∈ [1,K]. This also relates to the
scenario where the system imposes a hard time-limit for the
map phase and proceeds to the shuffle and reduce phases with
the (random) number of nodes that have terminated within due

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Storage Load r

C
om

m
u
n
ic
at
io
n
L
oa
d
L

Q= 10

Q= 9

Q= 8

Q= 7
Q= 6

Q= 5
Q= 4

Q= 3
Q= 2

Q= 1

L∗

K ,Q
(r), Q = 1, 2, . . . , 10

Fig. 2: Storage-communication tradeoff L∗
K,Q(r) for Q ∈ [K] when K = 10.

time. For given storage load r, the MAN-PDA based coded
computing scheme promises that when Q ≥ dK + 1 − re
nodes have terminated during the map phase, all IVAs are
computed at least once and thus the system can proceed to data
shuffling, and achieves the minimum required communication
load L∗K,Q(r). When only Q < dK + 1 − re nodes have
terminated, some IVAs are not computed, and hence the
system cannot proceed.

It is further worth pointing out that all our PDA based
coded computing schemes are universal and achieve the same
performance for any choice of map and reduce functions.
No structure is assumed on these functions. Similarly, our
information-theoretic converse applies only to such universal
coded computing schemes. If the map or reduce functions
have certain properties, for example, linearity, it is possible to
achieve better SC tradeoffs by storing combinations of files
instead of each file separately [31], [32]. Fig. 3 compares
Theorem 2 to the results in [31], [32]. It can be observed
that the MAN-PDA based scheme outperforms the scheme in
[31] but is inferior to the improved version in [32]. As already
mentioned, the scheme in [32] however works only for linear
map functions, and not for arbitrary functions as our schemes.
Another advantage of our schemes is that they work over the
binary field, and are thus easier to implement than the MDS-
based schemes in [31], [32]. which require a large enough field
size.

3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

Storage Load r

C
o
m
m
u
n
ic
at
io
n
L
o
ad

L

Zhang et al [32]
Theorem 2
Li et al [31]

Fig. 3: Comparison with known results when applied to linear map functions,
K = 10,Q = 8.

C. Optimality and Reduction of File Complexity

From Theorem 1 and Corollary 2, the coded computing
scheme based on the MAN-PDA Pr, for r ∈ [K− Q + 1 : K],
has file complexity F = CrK and achieves the fundamental
SC tradeoff. The following theorem indicates that, this is the

8

smallest file complexity to achieve the same tradeoff point in
most cases. The proof is deferred to Section VIII.

Theorem 3. Consider a (K,Q) straggling system and a Comp-
PDA based scheme achieving the fundamental SC tradeoff(
r, L∗K,Q(r)

)
for some r ∈ [K− Q + 1 : K]. If Q /∈ {2,K}

or r 6= K−Q + 1, the file complexity of the scheme F ≥ CrK.

Remark 1. It is easy to verify that, in the case Q ∈ {2,K}
and r = K − Q + 1, the fundamental SC tradeoff can be
achieved with F = 1 with the Comp-PDAs [∗, ∗, . . . , ∗, 1] and
[∗, 1, 2, . . . ,K− 1], respectively.

We next present Comp-PDAs with smaller file complexities
F and achieving SC tradeoffs close to the optimal ones. We
consider two existing PDA constructions originally proposed
for coded caching in [33, Theorems 4 and 5]. Let q ∈ [2 :
K− 1] be such that q |K, and m = K

q . There exists

P1) an m-regular
(
mq, qm−1,mqm−1, (q−1)qm−1

)
Comp-

PDA with minimum storage number m;
P2) an m(q − 1)-regular

(
mq, (q − 1)qm−1,m(q −

1)2qm−1, qm−1
)

Comp-PDA with minimum storage
number m(q − 1).

Corollary 3. For any integer r ∈ [K− Q + 1 : K − 1], such
that either r |K or (K− r) |K, the communication load

LK,Q(r) =
(

1− r

K

)
·

CQ−1
K−r

CQ−1
K−1

+

min{r,Q}−1∑
l=max{1,r+Q−K−1}

1

l
·
Clr−1C

Q−l−1
K−r

CQ−1
K−1

 , (7)

can be achieved with file complexity F = r
K ·(

K
min{r,K−r}

)min{r,K−r}
.

Proof: If r |K, then specialize the Comp-PDA in
P1) to parameter q = K

r . This results in a r-regular(
K, qr−1,Kqr−2, (q − 1)qr−1

)
Comp-PDA with minimum

storage number r, and the proof is then immediate from
Corollary 1. If K − r|K, then specialize the Comp-PDA
in P2) to parameter q = K

K−r . This results in a r-regular(
K, (q − 1)qK−r−1, K(q − 1)2qK−r−2, qK−r−1

)
Comp-PDA,

and the proof again follows from Corollary 1.
In the following proposition, we quantify how close the

above SC tradeoff point is to the optimal, and by how much
we can reduce the file complexity.

Proposition 1. Consider a (K,Q) straggling system and an
integer r ∈ [K − Q + 1 : K] such that r

K = c ∈
{

1
q ,

q−1
q

}
for some integer q ∈ [2 : K − 1]. There exist α ∈ [0, 2] and
β ∈ [0,

√
2πe

1
6], such that the SC tradeoff LK,Q(r) and the

file complexity F achieved by constructions P1) or P2) above
satisfy

LK,Q(r)

L∗K,Q(r)
= 1 +

α

r
,

and
F

F∗
= βAqK

1
2B−Kq ,

where Aq ,
√
q−1
cq and Bq ,

(
q
q−1

) q−1
q

.

The proof is given in Appendix B. From the above propo-
sition, for a fixed integer q, whenever r

K ∈ {
1
q ,

q−1
q } and

K, r scale proportionally to infinity, the communication load
is close to optimal, while the file complexity can be reduced
by a factor that increases exponentially in K.

Remark 2. In this work, we only consider two particular PDAs.
There has been extensive research in coded caching schemes
with low subpacketization level using various approaches.
Most of them have an equivalent PDA representation. For
example, PDAs can be constructed from hyper-graphs [42], bi-
partite graphs [43], linear block codes [45], Ruzsa-Szemerédi
graphs [46]. The result in Theorem 1 makes it possible to
apply all these results straightforwardly to straggling systems.

V. NUMERICAL RESULTS

The goal of this section is to provide insights on how to
choose the active set size Q in a practical system that employs
either the (SC-tradeoff optimal) MAN-PDA based schemes
or the low-complexity Comp-PDA based schemes of Section
IV-C.

In our system, the map-phase computation times at the
various nodes are random and independent of each other. The
map-phase computation time of node k ∈ [K] is denoted Tk
and follows a shifted exponential distribution [15]:

Pr{Tk ≤ t} = 1− e−µ(t−t0), ∀ t ≥ t0, k ∈ [K],

where t0 is the minimum time for node k to accomplish its
computation, and µ > 0 is a given delay parameter. The map
phase is terminated as soon as a given number Q of nodes
have terminated their computations. Thus, the duration of the
map phase is given by the Q-th order statistics T(Q) of the
tuple T1, . . . , TK. By a standard result of order statistics of
exponential distributions [47, pp. 18], T(Q) follows the same
distribution as the weighted sum 1

µ

(∑Q
i=1

Yi

K−i+1

)
+ t0 when

Y1, . . . , YQ are i.i.d. standard exponentially distributed random
variables. Consequently:

E[T(Q)] =
1

µ

(Q∑
i=1

1

K− i+ 1

)
+ t0.

The total execution time of the distributed computing
scheme is given by the sum of the durations of the map,
shuffle, and reduce phases. We assume that
(i) the duration of the map phase is T(Q);

(ii) the duration of the shuffle phase is proportional to the
communication load, so αL(Q)(r), for some factor α > 0
and given storage load r;

(iii) the duration of the reduce phase is proportional to the
inverse of Q, so β

Q , for some factor β > 0. This is
motivated by the fact that the number of reduce functions
that each node has to compute is D

Q .
For a fixed active set size Q and given r, the random total
execution time of the distributed computing scheme is thus:

TD = T(Q) + α · L(Q)(r) + β · 1

Q
, (8)

9

and the expected running time is:

E[TD] = E[T(Q)] + α ·E[L(Q)(r)] + β · 1

Q
.

11 12 13 14 15 16 17 18 19 20
0

2

4

6

8

10

12

14

Size of Active Set Q

S
ep
a
ra
te
d
E
x
ec
u
ti
o
n
T
im

e

MAN-PDA, Map, β = 10 or 1

MAN-PDA, Shuffle, β = 10 or 1

MAN-PDA, Reduce, β = 10

MAN-PDA, Reduce, β = 1

Low Complexity Comp-PDA, Map, β = 10 or 1

Low Complexity Comp-PDA, Shuffle, β = 10 or 1

Low Complexity Comp-PDA, Reduce, β = 10

Low Complexity Comp-PDA, Reduce, β = 1

Fig. 4: Expected execution time of the various phases of distributed computing
schemes as a function of Q, when K = 20, r = 10, t0 = 1, µ = 0.5, α =
100, and β = 10 or β = 1.

11 12 13 14 15 16 17 18 19 20
10.5

11

11.5

12

12.5

13

13.5

14

14.5

15

Size of Active Set Q

E
x
ec
u
ti
on

T
im

e
E
[T

D
]

MAN-PDA, β = 10
Low Complexity Comp-PDA, β = 10
MAN-PDA, β = 1
Low Complexity Comp-PDA, β = 1

Fig. 5: Expected execution time E[TD] as a function of Q, when K = 20, r =
10, µ = 0.5, α = 100, and β = 10 or β = 1.

Notice that since T1, . . . , TK are i.i.d. random variables,
each subset of [K] of size Q is equally likely to be the active
set. For a coded computing scheme based on a PDA A, the
expected communication load E[L(Q)(r)] is thus given by
(5). More specifically, for the MAN-PDA based schemes the
communication load is characterised in (6) and for the low-
complexity Comp-PDA based scheme in (7). Notice further
that for given factors µ, α, β > 0 and parameters r,K,N,D, t0,
the expected duration of the map phase, E[T(Q)], is increasing
in Q, whereas the durations of the shuffle and reduce phases,
α · L(Q)(r) and β · 1

Q , are both decreasing in Q. This can
also be verified at hand of Fig. 4 which shows the durations
of the map, shuffle, and reduce phases of the MAN-PDA
based schemes and the low-complexity Comp-PDA schemes
for parameters K = 20, r = 10, t0 = 1, µ = 0.5, α = 100
and β = 10 or β = 1, and for different values of the active
set size Q. (The parameters have been chosen so that the
shuffle phase dominates the other phases. This behaviour has
been observed in [5] in their experiments on Amazon EC2
clusters.) The choice of the active set size Q that minimizes
the total execution time thus depends on the weights µ, α, β.
For example, for parameters K = 20, r = 10, t0 = 1, µ = 0.5,
α = 100 and β = 1, both for the MAN-PDA schemes and for
the low-complexity Comp-PDA scheme, the total execution
time is minimized for active set size Q = 16, see Fig. 5.

0 0.5 1 1.5 2 2.5 3 3.5 4
11

12

13

14

15

16

17

18

19

20

Delay Parameter µ

O
p
ti
m
a
l
C
h
o
ic
e
o
f
Q

MAN-PDA, β = 10

Low Complexity Comp-PDA, β = 10

MAN-PDA, β = 1

Low Complexity Comp-PDA, β = 1

Fig. 6: Optimal choice of Q as a function of the delay parameter µ when
K = 20, r = 10, α = 100, and β = 10 or β = 1.

0 0.5 1 1.5 2 2.5 3 3.5 4
5

10

15

20

25

30

Delay Parameter µ

E
x
ec
u
ti
on

T
im

e
E
[T

D
]

MAN-PDA, β = 10
Low Complexity Comp-PDA, β = 10
MAN-PDA, β = 1
Low Complexity Comp-PDA, β = 1

Fig. 7: Expected execution time E[TD] as a function of the delay parameter
µ under the optimal choice of Q when K = 20, r = 10, α = 1, β = 10 or 1.

Fig. 6 shows the optimal choice of Q as a function of
the delay parameter µ, where the other parameters are set as
described above. We observe that this optimal choice of Q
is increasing in µ. The reason is that increasing values of µ
imply shorter map-phase computation times at the nodes. In
this case it is advantageous to choose the active sets Q large,
because it will cause only a small increase in the map-phase
but a substantial decrease in the durations of the shuffle and
reduce phases.

Fig. 7 depicts the expected execution time under the optimal
choice of Q for both the MAN-PDA based scheme and the
low-complexity Comp-PDA based scheme as a function of µ,
for two values of β. It is observed that the expected execution
time of the low-complexity Comp-PDA based schemes of
Section IV-C is very close to the expected execution time of
the MAN-PDA based schemes. The reason is that the choice
of the PDA structure only affects the average communication
load E[L(Q)] and thus only the duration of the shuffle phase,
but not the duration of the map and reduce phases. Since the
MAN-PDA based schemes and the low-complexity schemes
have comparable communication loads, see Proposition 1,
according to (8) the two schemes must also have comparable
total execution times.

VI. CODED COMPUTING SCHEMES FOR STRAGGLING
SYSTEMS FROM COMP-PDAS (PROOF OF THEOREM 1)

In this section, we prove Theorem 1 by describing how to
construct a coded computing scheme from a given Comp-PDA
and analyzing its performance.

10

A. Constructing a Coded Computing Scheme for a Straggling
System from a Comp-PDA

In [8], we described how to obtain a coded computing
scheme without stragglers from any given Comp-PDA. A
similar procedure is possible in the presence of stragglers if
the minimum storage number τ ≥ K−Q+ 1. In fact, assume
a given Comp-PDA A. The storage design in the map phase
corresponding to A is the same as without straggling nodes.
As part of the map phase, each node computes all the IVAs
that it can compute from its stored files. For the reduce phase
of the straggling system, we restrict to the subarray AQ of A
formed by the columns of A with indices in the active set Q.
Notice that AQ is again a Comp-PDA, because the minimum
storage number of A is at least K−Q+1 and after eliminating
K − Q columns from A each row still contains at least one
“ ∗ ” symbol. Shuffle and reduce phases are performed as in a
non-straggling setup, see [8], but where the Comp-PDA A is
replaced by the new Comp-PDA AQ. For completeness, we
explain the map, shuffle, and reduce phases in detail.

Fix a (K,F,T,S) Comp-PDA A = [ai,j] with minimum
storage number τ ≥ K− Q + 1. Partition the N files into F
batches W1,W2, . . . ,WF, each containing

η ,
N

F

files and so that W1,W2, . . . ,WF form a partition for W . It
is implicitly assumed here that η is an integer number.

1) Map Phase: Each node k stores the files in

Mk =
⋃

i∈[F] : ai,k=∗

Wi, (9)

and computes the IVAs in (1). The map phase termi-
nates whenever any Q nodes accomplish their computations.
Throughout this section, let Q = Q be the realization of the
active set. Then, AQ denotes the subarray of A composed
of the columns in Q. Also, let gQs denote the number of
occurrences of the symbol s in AQ, i.e.,

gQs = |{(i, k) : ai,k = s, k ∈ Q}|,

and IQ be the set of symbols occuring only once in AQ:

IQ , {s ∈ [S] : gQs = 1}.

The symbols in IQ are partitioned into Q subsets {IQk : k ∈
Q} as follows. For each s ∈ IQ, let (i, j) be the unique pair in
[F]×Q such that ai,j = s. Since the number of “ ∗ ” symbols
in the i-th row of A is equal or larger than K−Q+ 1 by the
assumption τ ≥ K − Q + 1, there exists at least one k ∈ Q
such that ai,k = ∗. Arbitrarily choose such a k and assign s
into IQk .

Let AQk denote the set of ordinary symbols in column k
occurring at least twice:

AQk , {s ∈ [S] : ai,k = s for some i ∈ [F]}\IQ, k ∈ Q. (10)

Pick any uniform assignment of reduce functions DQ =
{DQk }k∈Q. Let UQi,j denote the set of IVAs for node j
computed from the files in Wi, i.e.,

UQi,j ,
{
vd,n : d ∈ DQj , wn ∈ Wi

}
, (i, j) ∈ [F]×Q.

2) Shuffle Phase: Node k multicasts the signal

XQk =
{
XQk,s : s ∈ IQk ∪ A

Q
k

}
,

where the signals XQk,s are created as described in the follow-
ing, depending on whether s ∈ Ik or s ∈ AQk . For all s ∈ Ik,
set

XQk,s , U
Q
i,j , s ∈ Ik, (11)

where (i, j) is the unique index in [F]×Q such that ai,j = s.
To describe the signal XQk,s for s ∈ AQk , we first describe

a partition of the IVA UQi,j for each pair (i, j) ∈ [F] × Q
such that ai,j ∈ AQj . Let s′ = ai,j , then gQs′ ≥ 2. Let
(l1, j1), (l2, j2), . . . , (lgQs −1, jgQs −1) ∈ [F]×Q indicate all the
other gQs′ − 1 occurrences of the ordinary symbol s′ in AQ,
i.e.,

al1,j1 = al2,j2 = . . . = al
gQs −1

,j
gQs −1

= s′.

Partition the set of IVAs UQi,j into gQs′ −1 subsets of equal size

and denote these subsets by UQ,j1i,j ,UQ,j2i,j , . . . ,U
Q,j

gQs −1

i,j :

UQi,j =

{
UQ,j1i,j ,UQ,j2i,j , . . . ,U

Q,j
gQs −1

i,j

}
. (12)

For all s ∈ AQk , set

XQk,s ,
⊕

(i,j)∈[F]×(Q\{k}) :

ai,j=s

UQ,ki,j , s ∈ AQk . (13)

3) Reduce Phase: Node k computes all IVAs in⋃
i∈[F]

UQi,k.

In the map phase, node k has already computed all IVAs in{
UQi,k : ai,k = ∗

}
. It thus remains to compute all IVAs in⋃

i∈[F] : ai,k 6=∗

UQi,k.

Fix an arbitrary i ∈ [F] such that ai,k 6= ∗, and set s = ai,k.
If s ∈ AQk , each subblock UQ,ji,k in (12) can be restored by
node k from the signal XQj,s sent by node j (see (13)):

UQ,ji,k = UQ,jl1,j1
⊕ . . . ⊕ UQ,jl

gQs −2
,j

gQs −2
⊕XQj,s, (14)

where (lt, jt) (t ∈ [gQs − 2]) indicate the other gQs − 2
occurrences of the symbol s in AQ, i.e., alt,jt = s. Notice
that the sub-IVAs on the right-hand side of (14) have been
computed by node k during the map phase, because by the
PDA properties, alt,jt = ai,k = s and jt 6= k imply that
lt 6= i and alt,k = ∗. Therefore, UQ,ji,k can be decoded from
(14).

If s /∈ AQk , then s ∈ IQ by (10). There exists thus an index
j ∈ Q\{k} such that s ∈ Ij and therefore, by (11), the subset
UQi,k can be recovered from the signal XQj,s sent by node j.

Remark 3. It is worth pointing out that the storage design
{Mk}Kk=1 only depends on the positions of the “ ∗ ” symbols
in A, but not on the parameter Q (See (9)). This indicates

11

that, in practice the map phase can be carried out even without
knowing how many nodes will be participating in the shuffle
and reduce phases.

B. Performance Analysis

We have analyzed the performances of storage and com-
munication loads in the no-stragglers setup in [8]. For the
scheme in the preceding subsection, the analysis of storage
load follows the same lines as in [8]. When computing the
communication load defined in (3), we have to average over
all realizations of the active set Q.

1) Storage Load: Since the Comp-PDA A contains T “∗”
symbols, and each “∗” symbol indicates that a batch of η = N

F
files is stored at a given node, see (9), the storage load of the
proposed scheme is:

r̄ =

∑K
k=1 |Mk|

N
=

T · η
N

=
T

F
.

2) Communication Load: We first analyze the length of the
signals sent for a given realization of the active set Q = Q.
For any s ∈ [S], let gs be the occurrence of s in A, and gQs
be the occurrence of s in the columns in Q. By (11) and (13),
the length of the signals associated to symbol s is

lQs =

0, if gQs = 0
VND
FQ , if gQs = 1
gQs
gQs −1

· VNDFQ , if gQs ≥ 2

, (15)

when Q is the active set. The total length of all the signals is
thus ∑

k∈Q

|XQk | =
∑
k∈Q

∑
s∈[S]:gQs >0

|XQk,s|

=
∑

s∈[S]:gQs >0

∑
k∈Q

|XQk,s|

=
∑
s∈[S]

lQs . (16)

We now compute the communication load as defined in (3)
where we have to average over all realizations of the active
set Q:

LA

= E

[∑
k∈Q |X

Q
k |

NDV

]
=

1

NDV
· 1

|ΩQ
K|
·
∑
Q∈ΩQ

K

∑
k∈Q

|XQk |

(a)
=

1

NDV
· 1

CQ
K

·
∑
Q∈ΩQ

K

∑
s∈[S]

lQs

(b)
=

1

NDV
· 1

CQ
K

·
∑
s∈[S]

∑
Q∈ΩQ

K

lQs ·

(
Q∑
l=0

1(gQs = l)

)
·

(
K∑
g=1

1(gs = g)

)

=
1

NDV
· 1

CQ
K

·
K∑
g=1

∑
s∈[S]

Q∑
l=0

∑
Q∈ΩQ

K

lQs · 1(gQs = l) · 1(gs = g)

(c)
=

1

NDV
· 1

CQ
K

·
K∑
g=1

∑
s∈[S]

(∑
Q∈ΩQ

K

NDV

FQ
· 1(gQs = 1)

+

Q∑
l=2

∑
Q∈ΩQ

K

lNDV

(l − 1)FQ
· 1(gQs = l)

)
· 1(gs = g)

=
1

FQ
· 1

CQ
K

·
K∑
g=1

∑
s∈[S]

[∑
Q∈ΩQ

K

1(gQs = 1)

+

Q∑
l=2

l

l − 1
·

(∑
Q∈ΩQ

K

1(gQs = l)

)]
· 1(gs = g)

(d)
=

1

FK
· 1

CQ−1
K−1

·
K∑
g=1

∑
s∈[S]

(
C1
gC

Q−1
K−g +

Q∑
l=2

l

l − 1
ClgC

Q−l
K−g

)
1(gs = g)

=
1

FK
· 1

CQ−1
K−1

·
K∑
g=1

(
C1
gC

Q−1
K−g +

Q∑
l=2

l

l − 1
ClgC

Q−l
K−g

) ∑
s∈[S]

1(gs = g)

(e)
=

1

FK
· 1

CQ−1
K−1

·
K∑
g=1

Sg

(
C1
gC

Q−1
K−g +

Q∑
l=2

l

l − 1
· ClgCQ−l

K−g

)
(f)
=

1

FK
· 1

CQ−1
K−1

·
K∑
g=1

Sg

(
g · CQ−1

K−g +

Q∑
l=2

g

l − 1
· Cl−1

g−1C
Q−l
K−g

)
(g)
=

1

FK
· 1

CQ−1
K−1

·
K∑
g=1

Sgg

(
CQ−1

K−g +

Q−1∑
l=1

1

l
· Clg−1C

Q−l−1
K−g

)
(h)
=

1

FK
· 1

CQ−1
K−1

·
K∑
g=1

Sgg

(
CQ−1

K−g +

min{g,Q}−1∑
l=max{1,g−K+Q−1}

1

l
· Clg−1C

Q−l−1
K−g

)

=
FK− T

FK
· 1

CQ−1
K−1

·
K∑
g=1

Sgg

FK− T

·

(
CQ−1

K−g +

min{g,Q}−1∑
l=max{1,g−K+Q−1}

1

l
· Clg−1C

Q−l−1
K−g

)
(i)
=

(
1− T

FK

)
· 1

CQ−1
K−1

·
K∑
g=1

θg

(
CQ−1

K−g +

min{g,Q}−1∑
l=max{1,g−K+Q−1}

1

l
· Clg−1C

Q−l−1
K−g

)
,

where (a) holds by (16); (b) holds since for each s ∈ [S],∑Q
l=0 1(gQs = l) = 1 and

∑K
g=1 1(gs = g) = 1; (c) follows

from (15); and (d) holds because if a symbol s occurrs exactly
g times in a PDA A, then there are Clg ·CQ−l

K−g different F ×Q

submatrices AQ of A in which s occurrs exactly l times;

12

in (e), we defined Sg to be the number of ordinary symbols
occurring g times for each g ∈ [K]; in (f), we used the equality
Clg = g

l ·C
l−1
g−1; in (h), we eliminated the indices of zero terms

in the summation of (g); and (i) follows from the definition
of symbol frequencies.

C. File Complexity of the Proposed Schemes

The analysis of file complexity is similar to the no-straggler
setup in [8]. The files are partitioned into F batches so that
each batch contains η = N

F > 0 files. It is assumed that η is
a positive integer. The smallest number of files N where this
assumption can be met is F. Therefore, the file complexity of
the scheme is F.

VII. THE FUNDAMENTAL STORAGE-COMMUNICATION
TRADEOFF (PROOF OF THEOREM 2)

By Corollary 2, the SC pair
(
r, L∗K,Q(r)

)
, r ∈ [K−Q+1 : K]

can be achieved by the MAN-PDA Pr. For a general non-
integer r ∈ [K − Q + 1,K], the lower convex envelope of
these points can be achieved by memory- and time-sharing. It
remains to prove the converse in Theorem 2.

Let ZQ
K (x) be a piecewise linear function connecting the

points
(
u, ZQ

K (u)
)

sequentially over the interval [K−Q+1,K]
with

ZQ
K (u) ,

min{u,Q}∑
l=u+Q−K

Q− l
Ql

CluC
Q−l
K−u, u ∈ [K− Q + 1 : K]. (17)

We shall need the following lemma, proved in Appendix A.

Lemma 1. The sequence ZQ
K (u) is strictly convex and de-

creasing for u ∈ [K− Q + 1 : K]. And the function ZQ
K (x) is

convex and decreasing over [K− Q + 1,K].

LetM , {Mk}Kk=1 be a storage design and (r, L) be a SC
pair achieved based on {Mk}Kk=1. For each u ∈ [K− Q+ 1 :
K], define

aM,u ,
∑

I⊆K:|I|=u

∣∣∣∣(∩k∈IMk

)∖(
∪

k̄∈K\I
Mk̄

)∣∣∣∣ , (18)

i.e., aM,u is the number of files stored u times across all the
nodes. Then by definition, aM,u satisfies

aM,u ≥ 0,
K∑

u=K−Q+1

aM,u = N,

K∑
u=K−Q+1

uaM,u = rN. (19)

For any Q ∈ ΩQ
K and any l ∈ [Q], define

bQM,l ,
∑

I⊆Q:|I|=l

∣∣∣∣(∩k∈IMk

)∖(
∪

k̄∈Q\I
Mk̄

)∣∣∣∣ ,
i.e., bQM,l is the number of files stored exactly l times in the
nodes of set Q. Since any file that is stored u times across all

the nodes has l occurrences in exactly Clu · CQ−l
K−u subsets Q

of size Q, i.e.,∑
Q∈ΩQ

K

1(wn is stored at exactly l nodes of Q)

=

K−Q+l∑
u=max{l,K−Q+1}

1(wn is stored at exactly u nodes of K)

·Clu · CQ−l
K−u, ∀n ∈ [N].

Summing over n ∈ [N], we obtain∑
Q∈ΩQ

K

bQM,l =

K−Q+l∑
u=max{l,K−Q+1}

aM,u · Clu · CQ−l
K−u. (20)

Now we use the result in [5, Lemma 1] to lower bound
the communication load for any realization of the active set
Q = Q: ∑

k∈Q |X
Q
k |

NDV
≥

Q∑
l=1

bQM,l

N

Q− l
Ql

.

The average communication load over the random realiza-
tion of the active set Q is then obtained as:

L = EQ

[∑
k∈Q |X

Q
k |

NDV

]

=
∑
Q∈ΩQ

K

∑
k∈Q |X

Q
k |

NDV
· Pr{Q = Q}

≥ 1

CQ
K

∑
Q∈ΩQ

K

Q∑
l=1

bQM,l

N

Q− l
Ql

=
1

CQ
K

Q∑
l=1

 ∑
Q∈ΩQ

K

bQM,l

N

 Q− l
Ql

(a)
=

1

CQ
K

Q∑
l=1

 K−Q+l∑
u=max{l,K−Q+1}

aM,u

N
CluC

Q−l
K−u

 Q− l
Ql

(b)
=

1

CQ
K

K∑
u=K−Q+1

aM,u

N

min{u,Q}∑
l=u+Q−K

CluC
Q−l
K−u

Q− l
Ql

(c)
=

1

CQ
K

K∑
u=K−Q+1

aM,u

N
· ZQ

K (u)

(d)

≥ 1

CQ
K

· ZQ
K

(
K∑

u=K−Q+1

uaM,u

N

)
(21)

(e)
=

ZQ
K (r)

CQ
K

(f)

≥
ZQ
K (r + ε)

CQ
K

,

where (a) follows from (20); (b) holds because the inner sum-
mation in (a) only includes summation indices u ∈ [K−Q : K]
and it includes the summation index u ∈ {K−Q + 1, . . . ,K}
if, and only if, the outer summation index l satisfies l ≤ u

13

and l ≥ u + Q − K; (c) follows from (17); (d) follows from
Lemma 1; (e) follows from (19); and (f) follows from the
fact r ≤ r + ε. Since ε can be arbitrarily close to zero, we
conclude

L ≥
ZQ
K (r)

CQ
K

.

In particular, when r ∈ [K− Q + 1 : K], by (17),

L ≥
min{r,Q}∑
l=r+Q−K

Q− l
Ql

ClrC
Q−l
K−r

CQ
K

(a)
=

min{r,Q−1}∑
l=r+Q−K

Q− l
Ql

ClrC
Q−l
K−r

CQ
K

=

min{r,Q−1}∑
l=r+Q−K

Q− l
Ql

·
Q!

l!(Q−l)! ·
(K−Q)!

(r−l)!(K−Q−r+l)!
K!

r!(K−r)!

=
(

1− r

K

)
·

min{r,Q−1}∑
l=r+Q−K

1

l
·

r!
l!(r−l)! ·

(K−r−1)!
(Q−l−1)!(K−r−Q+l)!

(K−1)!
(Q−1)!(K−Q)!

(b)
=
(

1− r

K

)min{r,Q−1}∑
l=r+Q−K

1

l

ClrC
Q−l−1
K−r−1

CQ−1
K−1

,

where (a) holds since for l = Q, the term in the summation
is zero. This establishes the desired converse proof.

VIII. OPTIMALITY OF FILE COMPLEXITY (PROOF OF
THEOREM 3)

In order to prove Theorem 3, we need to first derive several
lemmas.

A. Preliminaries

Lemma 2. If a coded computing scheme achieves the fun-
damental SC tradeoff pair

(
r, L∗K,Q(r)

)
for any integer r ∈

[K−Q+ 1 : K], then each file is stored exactly r times across
the nodes.

Proof: According to Lemma 1, the sequence{
ZQ
K (u)

}K
u=K−Q+1

is strictly convex. Thus for the integer
r =

∑K
u=K−Q+1

uaM,u

N , the equality in (21) holds if, and
only if,

aM,r

N
= 1,

aM,u

N
= 0, u ∈ [K− Q + 1 : K]\{r}.

Therefore, by definition of aM,u in (18), this indicates that
each file is stored exactly r times across the system.

Lemma 3. Consider a g-regular (K,F,T,S) PDA where K ≥
g ≥ 2. If there are exactly g − 1 “ ∗ ”s in each row, then
F ≥ Cg−1

K .

Proof. With Definition 5 (the definition of PDAs), the conclu-
sion follows directly from [33, Lemma 2]. �

For each u ∈ [K], define

UQ
K (u) , CQ−1

K−u +

min{u,Q}−1∑
l=max{1,u−K+Q−1}

Clu−1 · CQ−l−1
K−u

l
. (22)

Lemma 4. When Q ≥ 3, the subsequence {UQ
K (u)}Ku=2

strictly decreases with u ∈ [2 : K].

Proof: For each u ∈ [2 : K− 1], by (22),

UQ
K (u+ 1)− UQ

K (u)

= −CQ−2
K−u−1 +

min{u,Q−1}∑
l=max{1,u−K+Q}

Clu · CQ−l−1
K−u−1

l

−
min{u,Q}−1∑

l=max{1,u−K+Q−1}

Clu−1 · CQ−l−1
K−u

l

(a)
= −CQ−2

K−u−1 +

min{u,Q−1}∑
l=max{1,u−K+Q}

(Clu−1 + Cl−1
u−1) · CQ−l−1

K−u−1

l

−
min{u,Q}−1∑

l=max{1,u−K+Q−1}

Clu−1 · (CQ−l−1
K−u−1 + CQ−l−2

K−u−1)

l

(b)
= −CQ−2

K−u−1 +

min{u,Q}−1∑
l=max{1,u−K+Q}

Clu−1 · CQ−l−1
K−u−1

l

+

min{u,Q−1}∑
l=max{1,u−K+Q}

Cl−1
u−1 · C

Q−l−1
K−u−1

l

−
min{u,Q}−1∑

l=max{1,u−K+Q}

Clu−1 · CQ−l−1
K−u−1

l

−
min{u−1,Q−2}∑

l=max{1,u−K+Q−1}

Clu−1 · CQ−l−2
K−u−1

l

= −CQ−2
K−u−1 +

min{u,Q−1}∑
l=max{1,u−K+Q}

Cl−1
u−1 · C

Q−l−1
K−u−1

l

−
min{u−1,Q−2}∑

l=max{1,u−K+Q−1}

Clu−1 · CQ−l−2
K−u−1

l

(c)
= −CQ−2

K−u−1 +

min{u,Q−1}∑
l=max{1,u−K+Q}

Cl−1
u−1 · C

Q−l−1
K−u−1

l

−
min{u,Q−1}∑

l=max{2,u−K+Q}

Cl−1
u−1 · C

Q−l−1
K−u−1

l − 1

= −
min{u,Q−1}∑

l=max{2,u−K+Q}

Cl−1
u−1 · C

Q−l−1
K−u−1

l(l − 1)
(23)

≤ 0,

where in (a), we used (29); in (b), we separated the two
summations in (a) and eliminated the indices of zero terms
in the separated summations; and in (c), we used the variable
change l′ = l + 1. Moreover, if u ≥ 2 and Q ≥ 3, from

(23), UQ
K (u + 1) − UQ

K (u) ≤ −C
l
u−1C

Q−2
K−u−1

2 < 0, i.e., UQ
K (u)

14

is strictly decreasing when u ≥ 2.

B. Proof of Theorem 3

Define the set

E , {(Q, r) : Q ∈ [K], r ∈ [K− Q + 1 : K]},

and partition it into three subsets

E1 , {(Q, r) : Q ∈ [K], r = K},
E2 , {(Q, r) : Q ∈ {2,K}, r = K− Q + 1},
E3 , {(Q, r) : Q ∈ [3 : K], r ∈ [max{K− Q + 1, 2} : K− 1]}.

Notice that, if (Q, r) ∈ E1, the bound F ≥ CK
K = 1 is

trivial. The case (Q, r) ∈ E2 is excluded. Therefore, in the
rest of the proof, we assume (Q, r) ∈ E3, i.e., Q ∈ [3 : K] and
r ∈ [max{K− Q + 1, 2} : K− 1].

Let A be a (K,F,T,S) Comp-PDA that achieves the optimal
tradeoff point (r, L∗K,Q(r)). Recall that each row in a Comp-
PDA is associated to a file batch, and a “ ∗ ” symbol in that
row and column k indicates that the file batch is stored at node
k. According to Lemma 2, each file is stored exactly r times
across the nodes, i.e., there are exactly r “∗” symbols in each
row of A.

Let θg′ be the fraction of ordinary entries occurring g′ times
in the Comp-PDA A, for all g′ ∈ [K]. Since there are r “ ∗ ”
symbols in each row, from the PDA properties a) and b) in
Definition 5, any ordinary symbol cannot appear more than
r + 1 times, i.e.,

θg′ = 0, ∀ g′ ∈ [r + 2 : K]. (24)

Therefore,
r+1∑
g′=1

θg′ = 1. (25)

From (5), (22), and (24), the communication load of A has
the form

LA =
(

1− r

K

)
· 1

CQ−1
K−1

·
r+1∑
g′=1

θg′ · UQ
K (g′)

(a)

≥
(

1− r

K

)
· 1

CQ−1
K−1

·

 r+1∑
g′=1

θg′

 · UQ
K (r + 1) (26)

(b)
=
(

1− r

K

)
· 1

CQ−1
K−1

· UQ
K (r + 1)

(c)
= L∗K,Q(r),

where (a) follows since by Lemma 4 the sequence
{UQ

K (u)}Ku=2 is decreasing and because UQ
K (1) = UQ

K (2) =
CQ−1

K−1 ; (b) follows from (25); and (c) follows from Theorem
2 and (22). By our assumption LA = L∗K,Q(r), the equality in
(26) must hold. Since r+1 ≥ 3 and the sequence {UQ

K (u)}Ku=2

strictly decreases, equality in (26) implies that

θg′ = 0, ∀ g′ ∈ [r]. (27)

Combining (24) and (27), we conclude that A is a (r +
1)-regular PDA, and each row has exactly r “ ∗ ” symbols.

Applying Lemma 3, we complete the proof.

IX. CONCLUSION

In this work, we have explained how to convert any Comp-
PDA with at least K− Q + 1 “ ∗ ” symbols in each row into
a coded computing scheme for a MapReduce system with Q
non-straggling nodes. We have further characterized the opti-
mal storage-communication (SC) tradeoff for this system. The
Comp-PDA framework allows us to design universal coded
computing schemes with small file complexities compared
to the ones (the MAN-PDAs) achieving the fundamental SC
tradeoff. We further model the total execution time of coded
computing systems and numerically find the choice of the
active set size Q that reduces the total execution time in this
model. It is obtained by balancing the duration of the map
phase with the durations of the shuffle and reduce phases.

In our setup, for a given integer storage load r, the size
of active set Q has to be no less than K − r + 1, since we
exclude outage events (See Footnote 1). With a given Comp-
PDA, the key to obtaining a coded computing scheme for a
given active set is that the subarray formed by the columns
corresponding to the active set is still a Comp-PDA. In fact,
for the constructions in P1) and P2), it allows to construct
coded computing schemes for some (but not all) active sets if
the active set size Q satisfies dKr e ≤ Q ≤ K− r.

APPENDIX A
PROOF OF LEMMA 1

We shall prove the first statement of the lemma that the
sequence

{
ZQ
K (u)

}K
u=K−Q+1

is strictly convex and decreasing,
i.e.,

ZQ
K (u+ 1)− ZQ

K (u) < 0, ∀ u ∈ [K− Q + 1 : K− 1],

ZQ
K (u+ 1)− ZQ

K (u) > ZQ
K (u)− ZQ

K (u− 1),

∀ u ∈ [K− Q + 2 : K− 1].

The second statement of the lemma on the piecewise linear
function is an immediate consequence of the first one.

By (17),

ZQ
K (u) =

min{u,Q}∑
l=u+Q−K

Q− l
Ql

· Clu · CQ−l
K−u

=

min{u,Q}∑
l=u+Q−K

Clu · CQ−l
K−u

l
−

min{u,Q}∑
l=u+Q−K

Clu · CQ−l
K−u

Q

(a)
=

min{u,Q}∑
l=u+Q−K

Clu · CQ−l
K−u

l
−
CQ

K

Q
,

where in (a), we used the identity
∑min{u,Q}
l=s+Q−K C

l
u · CQ−l

K−u =

CQ
K . Then,

ZQ
K (u+ 1)− ZQ

K (u)

=

min{u+1,Q}∑
l=u+1+Q−K

Clu+1C
Q−l
K−u−1

l
−

min{u,Q}∑
l=u+Q−K

CluC
Q−l
K−u
l

(a)
=

min{u+1,Q}∑
l=u+1+Q−K

(
Clu + Cl−1

u

)
· CQ−l

K−u−1

l

15

−
min{u,Q}∑
l=u+Q−K

Clu ·
(
CQ−l

K−u−1 + CQ−l−1
K−u−1

)
l

(b)
=

min{u,Q}∑
l=Q+u+1−K

CluC
Q−l
K−u−1

l
+

min{u+1,Q}∑
l=Q+u+1−K

Cl−1
u CQ−l

K−u−1

l

−
min{u,Q}∑

l=Q+u+1−K

CluC
Q−l
K−u−1

l
−

min{u,Q−1}∑
l=Q+u−K

CluC
Q−l−1
K−u−1

r

=

min{u+1,Q}∑
l=u+1+Q−K

Cl−1
u CQ−l

K−u−1

l
−

min{u,Q−1}∑
l=u+Q−K

CluC
Q−l−1
K−u−1

l

(c)
=

min{u,Q−1}∑
l=u+Q−K

CluC
Q−l−1
K−u−1

l + 1
−

min{u,Q−1}∑
l=u+Q−K

CluC
Q−l−1
K−u−1

l

= −
min{u,Q−1}∑
l=u+Q−K

CluC
Q−l−1
K−u−1

l(l + 1)
(28)

< 0,

where in (a), we applied the identity

Cm+1
n+1 = Cm+1

n + Cmn ; (29)

in (b), we separated the two summations of (a) into four
summations and eliminated indices of zero terms in the
separated summations; and in (c), we used the change of
variable l′ = l − 1 in the first summation. Finally, from (28),
for u ∈ [K− Q + 2 : K− 1], we have(
ZQ
K (u+ 1)− ZQ

K (u)
)
−
(
ZQ
K (u)− ZQ

K (u− 1)
)

=

min{u,Q}−1∑
l=Q+u−1−K

Clu−1C
Q−l−1
K−u

l(l + 1)
−

min{u,Q−1}∑
l=Q+u−K

CluC
Q−l−1
K−u−1

l(l + 1)

(a)
=

min{u,Q}−1∑
l=Q+u−1−K

Clu−1 ·
(
CQ−l−1

K−u−1 + CQ−l−2
K−u−1

)
l(l + 1)

−
min{u,Q−1}∑
l=Q+u−K

(
Clu−1 + Cl−1

u−1

)
· CQ−l−1

K−u−1

l(l + 1)

(b)
=

min{u,Q}−1∑
l=Q+u−K

Clu−1C
Q−l−1
K−u−1

l(l + 1)
+

min{u−1,Q−2}∑
l=Q+u−1−K

Clu−1C
Q−l−2
K−u−1

l(l + 1)

−
min{u,Q}−1∑
l=Q+u−K

Clu−1C
Q−l−1
K−u−1

l(l + 1)
−

min{u,Q−1}∑
l=Q+u−K

Cl−1
u−1C

Q−l−1
K−u−1

l(l + 1)

=

min{u−1,Q−2}∑
l=Q+u−1−K

Clu−1C
Q−l−2
K−u−1

l(l + 1)
−

min{u,Q−1}∑
l=Q+u−K

Cl−1
u−1C

Q−l−1
K−u−1

l(l + 1)

(c)
=

min{u,Q−1}∑
l=Q+u−K

Cl−1
u−1C

Q−l−1
K−u−1

(l − 1)l
−

min{u,Q−1}∑
l=Q+u−K

Cl−1
u−1C

Q−l−1
K−u−1

l(l + 1)

=

min{u,Q−1}∑
l=u+Q−K

2Cl−1
u−1C

Q−l−1
K−u−1

(l − 1)l(l + 1)

> 0,

where in (a) we applied the identity (29); in (b), we separated
the two summations in (a) and eliminated the indices of zero

terms in the separated summations; and in (c), we used the
change of variable l′ = l + 1.

APPENDIX B
PROOF OF PROPOSITION 1

By (6), (7) and (22), we have

LK,Q(r) =
(

1− r

K

)
· 1

CQ−1
K−1

· UQ
K (r),

L∗K,Q(r) =
(

1− r

K

)
· 1

CQ−1
K−1

· UQ
K (r + 1).

Combining these equalities with (23), we obtain

LK,Q(r)− L∗K,Q(r)

= −
(

1− r

K

)
· 1

CQ−1
K−1

·
(
UQ
K (r + 1)− UQ

K (r)
)

=
(

1− r

K

)
· 1

CQ−1
K−1

·
min{r,Q−1}∑

l=max {2,r+Q−K}

Cl−1
r−1C

Q−l−1
K−r−1

l(l − 1)

(a)
=
(

1− r

K

)
· 1

CQ−1
K−1

· 1

r
·

min{r,Q−1}∑
l=max {2,r+Q−K}

ClrC
Q−l−1
K−r−1

l − 1
, (30)

where in (a), we used the identity Cl−1
r−1 = l

r ·C
l
r. Therefore,

with (6) and (30),

LK,Q(r)− L∗K,Q(r)

L∗K,Q(r)

=
1

r
·
∑min{r,Q−1}
l=max {2,r+Q−K}

1
l−1 · C

l
r · CQ−l−1

K−r−1∑min{r,Q−1}
l=r+Q−K

1
l · Clr · C

Q−l−1
K−r−1

≤ 1

r
·
∑min{r,Q−1}
l=max {2,r+Q−K}

1
l−1 · C

l
r · CQ−l−1

K−r−1∑min{r,Q−1}
l=max {2,r+Q−K}

1
l · Clr · C

Q−l−1
K−r−1

=
1

r
·
∑min{r,Q−1}
l=max {2,r+Q−K}

l
l−1 ·

1
l · C

l
r · CQ−l−1

K−r−1∑min{r,Q−1}
l=max {2,r+Q−K}

1
l · Clr · C

Q−l−1
K−r−1

(a)

≤ 2

r
,

where in (a), we used the fact l
l−1 ≤ 2 for any l ≥ 2.

To prove the second part, we first note that, by Corollary 3,
the number of batches required by constructions P1) and P2)
is

F =
1

c
· q

K
q . (31)

On the other hand, to achieve the fundamental SC tradeoff,
the number of required batches is

F∗ = CrK

=
K!

r!(K− r)!
(a)

≥
√

2πKK+ 1
2 e−K

e
1
12

√
2πrr+

1
2 e−r · e 1

12

√
2π(K− r)K−r+ 1

2 e−(K−r)

=
1

e
1
6

·

√
K

2πr(K− r)
·
(
K

r

)r (
K

K− r

)K−r

16

=
1

e
1
6

· q√
2π(q − 1)K

· q
K
q ·
(

q

q − 1

)K(1− 1
q)

, (32)

where (a) follows by applying Stirling’s approximation√
2πnn+ 1

2 e−n ≤ n! ≤ e
1
12

√
2πnn+ 1

2 e−n to both the numer-
ator and the denominator. Taking the ratio F

F∗ using (31) and
(32), we complete the proof of the second part.

REFERENCES

[1] Q. Yan, M. Wigger, S. Yang, and X. Tang, “A fundamental storage-
communication tradeoff in distributed computing with straggling nodes,”
in Proc. IEEE Int. Symp. Inf. Theory, Paris, France, pp. 2803–2807, Jul.
2019.

[2] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” Sixth USENIX OSDI, Dec. 2004.

[3] Y. Liu, J. Yang, Y. Huang, L. Xu, S. Li, and M. Qi, “MapReduce
based parallel neural networks in enabling large scale machine learning,”
Comput. Intell. Neurosci., 2015.

[4] C. T. Chu, S. K. Kim, Y. A. Lin, Y. Y. Yu, G. Bradski, A. Y. Ng, and K.
Olukotun,“Map-reduce for machine learning on multicore.” In Proc. 20th
Ann. Conf. Neural Information Processing Systems (NIPS), Vancouver,
British Columbia, Canada, pp. 281–288, Dec. 2006.

[5] S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A fundamental
tradeoff between computation and communication in distributed comput-
ing,” IEEE Trans. Inf. Theory, vol. 64, no. 1, pp. 109–128, Jan. 2018.

[6] Y. H. Ezzeldin, M. Karmoose, and C. Fragouli, “Communication vs
distributed computation: An alternative trade-off curve,” in Proc. IEEE
Inf. Theory Workshop (ITW), Kaohsiung, Taiwan, Nov. 2017.

[7] Q. Yan, S. Yang, and M. Wigger, “A storage-computation-communication
tradeoff for distributed computing,” in Proc. IEEE Int. Symp. Wire.
Commun. System (ISWCS), Lisbon, Portugal, Aug. 2018.

[8] Q. Yan, S. Yang, and M. Wigger, “Storage-computation-communication
tradeoff in distributed computing: Fundamental tradeoff and complexity,”
arXiv:1806.07565.

[9] Q. Yu, S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “How to optimally
allocate resources for coded distributed computing,” in Proc. IEEE Int.
Conf. Commun. (ICC), 2017, Paris, France, 21–25, May. 2017.

[10] S. Li, Q. Yu, M. A. Maddah-Ali, A. S. Avestimehr,“A scalable frame-
work for wireless distributed computing,” IEEE/ACM Trans. Netw.,vol.
25, no. 5, pp. 2643–2653, Oct. 2017.

[11] S. Li, Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Edge-facilitated
wireless distributed computing,” in Proc. IEEE Glob. Commun. Conf.
(Globlcom), Washington, DC, USA, Dec. 2016.

[12] F. Li, J. Chen, and Z. Wang, “Wireless MapReduce distributed comput-
ing,” in Proc. IEEE Int. Symp. Inf. Theory, Vail, CO, USA, pp. 1286–1290,
Jun. 2018.

[13] E. Parrinello, E. Lampiris, and P. Elia, “Coded distributed computing
with node cooperation substantially increases speedup factors,” in Proc.
IEEE Int. Symp. Inf. Theory, Vail, CO, USA, pp. 1291–1295, Jun. 2018.

[14] S. R. Srinivasavaradhan, L. Song, and C. Fragouli, “Distributed comput-
ing trade-offs with random connectivity,” in Proc. IEEE Int. Symp. Inf.
Theory, Vail, CO, USA, pp. 1281–1285, Jun. 2018.

[15] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans. Inf.
Theory. vol. 64, no. 3, pp. 1514–1529, Mar. 2018.

[16] Q. Yu, M. Maddah-Ali, and S. Avestimehr, “Polynomial codes: an
optimal design for high-dimensional coded matrix multiplication,” in
Proc. The 31st Annual Conf. Neural Inf. Processing System (NIPS), Long
Beach, CA, USA, May 2017.

[17] Q. Yu, M. Maddah-Ali, and S. Avestimehr, “Straggler mitigation in dis-
tributed matrix multiplication: Fundamental limits and optimal coding,”
in Proc. IEEE Int. Symp. Inf. Theory, Vail, CO, USA, pp. 2022–2026,
Jun. 2018.

[18] K. Lee, C. Suh, and K. Ramchandran, “High-dimensional coded matrix
multiplication,” in Proc. IEEE Int. Symp. Inf. Theory, Aachen, Germany,
pp. 2418–2422, Jun. 2017.

[19] H. Park, K. Lee, J. Sohn, C. Suh, and J. Moon, “Hierarchical coding for
distributed computing,” in Proc. IEEE Int. Symp. Inf. Theory, Vail, CO,
USA, pp. 1630–1634, Jun. 2018.

[20] F. Haddadpour, and V. R. Cadambe, “Codes for distributed finite
alphabet matrix-vector multiplication,” in Proc. IEEE Int. Symp. Inf.
Theory, Vail, CO, USA, pp. 1625–1629, Jun. 2018.

[21] S. Kiani, N. Ferdinand and S. C. Draper, “Exploitation of stragglers
in coded computation,” in Proc. IEEE Int. Symp. Inf. Theory, Vail, CO,
USA, pp. 1988–1992, Jun. 2018.

[22] T. Baharav, K. Lee, O. Ocal, and K. Ramchandran, “Straggler-proofing
massive-scale distributed matrix multiplication with d-dimensional prod-
uct codes,” in Proc. IEEE Int. Symp. Inf. Theory, Vail, CO, USA, pp.
1993–1997, Jun. 2018.

[23] N. Ferdinand and S. C. Draper, “Hierachical coded computation,” in
Proc. IEEE Int. Symp. Inf. Theory, Vail, CO, USA, pp. 1620–1624, Jun.
2018.

[24] A. Reisizadeh, S. Prakash, R. Pedarsani, and S. Avestimehr, “Coded
computation over heterogeneous clusters,” in Proc. IEEE Int. Symp. Inf.
Theory, Aachen, Germany, pp. 2408–2412, Jun. 2017.

[25] R. Bitar, P. Parag, and S. E. Rouayheb, “Minimizing latency for secure
coded computing using secret sharing via staircase codes”, IEEE Trans.
Commun., early access, 2020.

[26] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient
coding: avoiding stragglers in synchronous gradient desent,” in Proc. 34th
Int. Conf. Machine Learning (ICML), Sydney, Australia, Aug. 2017.

[27] N. Raviv, I. Tamo, R. Tandon, and A. G. Dimakis, “Gradient coding
from cyclic MDS codes and expander graphs,” in Proc. 35th Int. Conf.
Machine Learning, (ICML), Stockholm, Sweden, Jul. 2018.

[28] Z. Charles, and D. Papailiopoulos,“Gradient coding using the stochastic
block model,” in Proc. IEEE Int. Symp. Inf. Theory, Vail, CO, USA, pp.
1998–2002, Jun. 2018.

[29] W. Halbawi, N. Azizan, F. Salehi, and B. Hassibi, “Improving distributed
gradient descent using Reed-Solomon codes,” in Proc. IEEE Int. Symp.
Inf. Theory, Vail, CO, USA, pp. 2027–2031, Jun. 2018.

[30] E. Ozfatura, D. Gündüz and S. Ulukus, “Speeding up distributed gradient
descent by utilizing non-persistent stragglers,” in Proc. IEEE Int. Symp.
Inf. Theory, Paris, France, pp. 2729–2733, Jul. 2019.

[31] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “A unified coding
framework for distributed computing with straggling servers,” in Proc.
IEEE Globecom Workshop, Washington, DC, USA, pp. 1–6, 2016.

[32] J. Zhang and O. Simeone, “Improved latency-communication trade-off
for map-shuffle-reduce systems with stragglers,” in Proc. IEEE Int. Conf.
Acoust., Speech & Signal Processing (ICASSP), Brighton, UK, May,
2019.

[33] Q. Yan, M. Cheng, X. Tang, and Q. Chen, “On the placement delivery
array design for centralized coded caching scheme,” IEEE Trans. Inf.
Theory, vol. 63, no. 9, pp. 5821–5833, Sep. 2017.

[34] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”
IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 2856–2867, May 2014.

[35] J. Wang, M. Cheng, Q. Yan, and X. Tang, “Placement delivery array
design for coded caching scheme in D2D networks,” IEEE Trans.
Commun, vol. 67, no. 5, May 2019.

[36] Q. Yan, M. Wigger, and S. Yang, “Placement delivery array design for
combination networks with edge caching,” in Proc. IEEE Int. Symp. Inf.
Theory, Vail, CO, USA, pp. 1555–1559, Jun. 2018.

[37] V. R. Aravind, P. Sarvepalli, and A. Thangaraj, “Subpacketization in
coded caching with demand privacy,” in Proc. 26th National Conf.
Commun. (NNC),Kharagpur, India, Feb. 2020.

[38] R. Sun, H. Zheng, J. Liu, X. Du, and M. Guizani, “Placement delivery
array design for the coded caching scheme in medical data sharing,”
Neural Comput. & Applic. 32, pp. 867–878, 2020.

[39] M Cheng, J Jiang, Q Yan, X Tang, “Constructions of coded caching
schemes with flexible memory sizes,” IEEE Trans. Commun., vol. 67,
no. 6, Jun. 2019.

[40] M. Cheng, J. Jiang, X. Tang, and Q. Yan, “Some variant of known
coded caching schemes with good performance,” IEEE Trans. Commun.,
vol. 68, no. 3, pp. 1370–1377, Mar. 2020.

[41] M. Cheng, J. Jiang, Q. Wang, and Y. Yao, “A generalized grouping
scheme in coded caching.” IEEE Trans. Commun. vol. 67, no. 5, pp.
3422–3430, May. 2019.

[42] C. Shangguan, Y. Zhang, and G. Ge, “Centralized coded caching
schemes: A hypergraph theoretical approach,” IEEE Trans. Inf. Theory,
vol. 64, no. 8, pp. 5755–5766, Aug. 2018.

[43] Q. Yan, X. Tang, Q. Chen, and M. Cheng, “Placement delivery array
design through strong edge coloring of bipartite graphs,” IEEE Commun.
Lett., vol. 22, no. 2, pp. 236–239, Feb. 2018.

[44] Q. Yan, X. H. Tang, and Q. Chen, “Placement delivery array and its
appllications,” in Proc. IEEE Inf. Theory Workshop (ITW), Guangzhou,
China, Nov. 2018.

[45] L. Tang and A. Ramamoorthy, “Coded caching schemes with reduced
subpacketization from linear block codes,” IEEE Trans. Inf. Theory, vol.
64, no. 4, pp. 3099–3120, Apr. 2018.

17

[46] K. Shanmugam, A. G. Dimakis, J. Llorca and A. M. Tulino, “A unified
Ruzsa-Szemerédi framework for finite-length coded caching,” In proc.
51st Asilomar Conference on Signals, Systems, and Computers, Pacific
Grove, CA, USA, Oct. 2017.

[47] H. A. David and H. N. Nagaraja, “Order Statistics,” John Wiley & Sons,
Inc, 2003.

Qifa Yan received the B.S. degree in mathematics
and applied mathematics from Shanxi University,
Taiyuan, China, in 2010, and the Ph.D. degree in
communication and information system from the
School of Information Science and Technology,
Southwest Jiaotong University, Chengdu, China, in
2017.

From 2017 to 2019, he was a joint post-doctoral
researcher at Téĺecom Paris, Institut Politechnique
de Paris, and CentraleSupélec, Paris-Saclay Univer-
sity in France. He is currently a postdoctoral research

fellow at the Department of Electrical and Computer Engineering of the
University of Illinois at Chicago in U.S.. His research interests include caching
networks, distributed computing, and other fields related to wireless networks,
information theory, and coding theory.

Michèle Wigger (S’05–M’09–SM’14) received the
M.Sc. degree in electrical engineering, with distinc-
tion, and the Ph.D. degree in electrical engineering
both from ETH Zurich in 2003 and 2008, respec-
tively. In 2009, she was first a post-doctoral fellow
at the University of California, San Diego, USA,
and then joined Telecom Paris, France, where she
is currently a full professor. Dr. Wigger has held
visiting professor appointments at the Technion–
Israel Institute of Technology and ETH Zurich. Dr.
Wigger has previously served as an Associate Editor

of the IEEE Communication Letters and as an Associate Editor for Shannon
Theory for the IEEE Transactions on Information Theory. During 2016–2019
she also served on the Board of Governors of the IEEE Information Theory
Society. Dr. Wigger’s research interests are in multi-terminal information
theory.

PLACE
PHOTO
HERE

Sheng Yang

Xiaohu Tang (M’04-SM’18) received the B.S. de-
gree in applied mathematics from the Northwest
Polytechnic University, Xi’an, China, the M.S. de-
gree in applied mathematics from the Sichuan Uni-
versity, Chengdu, China, and the Ph.D. degree in
electronic engineering from the Southwest Jiaotong
University, Chengdu, China, in 1992, 1995, and 2001
respectively.

From 2003 to 2004, he was a research associate
in the Department of Electrical and Electronic En-
gineering, Hong Kong University of Science and

Technology. From 2007 to 2008, he was a visiting professor at University
of Ulm, Germany. Since 2001, he has been in the School of Information
Science and Technology, Southwest Jiaotong University, where he is currently
a professor. His research interests include coding theory, network security,
distributed storage and information processing for big data.

Dr. Tang was the recipient of the National excellent Doctoral Dissertation
award in 2003 (China), the Humboldt Research Fellowship in 2007 (Ger-
many), and the Outstanding Young Scientist Award by NSFC in 2013 (China).
He served as Associate Editors for several journals including IEEE Transac-
tions on Information Theory and IEICE Transactions on Fundamentals, and
served on a number of technical program committees of conferences.

