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Abstract: Micro-Expression (ME) recognition is a hot topic in computer vision as it presents a1

gateway to capture and understand human’s daily emotions. It is nonetheless a challenging problem2

due to the fact ME typically being transient (lasting less than 200 ms) and subtle. Recent advances3

in machine learning enable new and effective methods to be adopted for solving diverse computer4

vision tasks. In particular, the use of deep learning techniques on large datasets outperforms classical5

approaches based on classical machine learning which rely on hand-crafted features. Even though6

available datasets for spontaneous ME are scarce and much smaller, using off-the-shelf Convolutional7

Neural Networks (CNNs) still demonstrates satisfactory classification results. However, these8

networks are heavy in terms of memory consumption and computational resources. This poses great9

challenges when deploying CNN-based solutions in many applications such as driver’s monitoring10

or comprehension recognition in virtual classrooms, which demand fast and accurate recognition. As11

these networks are initially designed for tasks of different domains, they are over-parameterized and12

need to be optimized for ME recognition.13

In this paper, we propose a new network based on the well-known ResNet18 which we optimize14

for ME classification in two ways. Firstly, we reduce the depth of the network by removing residual15

layers. Secondly, we introduce a more compact representation of optical flow used as input to the16

network. We present extensive experiments and demonstrate that the proposed network obtains17

accuracies comparable to the state-of-the-art methods while significantly reducing the necessary18

memory space. Our best classification accuracy reaches 60.17% on the challenging composite dataset19

containing 5 objectives classes. Our method takes only 24.6 ms for classifying a ME video clip (less20

than the occurrence time of the shortest ME which lasts 40 ms). Our CNN design is suitable for21

real-time embedded applications with limited memory and computing resources.22

Keywords: computer vision, deep learning, optical flow, micro facial expressions, real-time23

processing.24

1. Introduction25

Emotion recognition has received much attention in the research community in recent years.26

Among the several sub-fields of emotion analysis, studies of facial expression recognition are27

particularly active [1–3]. In contrast to the traditional macro-expression, people are less familiar28

with micro facial expressions [4,5], and even fewer know how to capture and recognize them.29

Micro-Expression (ME) is a rapid and involuntary facial expression that exposes a person’s true30

emotion [6]. These subtle expressions usually take place when a person conceals his or her emotions in31

one of the two scenarios: conscious suppression or unconscious repression. Conscious suppression32

happens when an individual deliberately prevents oneself from expressing genuine emotions. In33

contrary, unconscious repression occurs when the subject is not aware of his or her true emotions. In34

both cases, MEs reveal the subject’s true emotions regardless of the subject’s awareness. Intuitively,35
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ME recognition has a vast number of potential applications across different sectors, such as security36

field, neuromarketing [7], automobile drivers’ monitoring [8] and lies and deceit detection [5].37

Psychological research shows that facial MEs generally are transient (e.g., remaining less than 20038

ms) and very subtle [9]. The short duration and subtlety incur great challenges for human to perceive39

and recognize them. To enable better ME recognition by human, Ekman and his team developed the40

ME training tool (METT). Even with the help of this training tool, human can barely achieve around41

40% accuracy [10]. Moreover, human’s decisions are prone to be influenced by individual’s perception42

varied along different subjects and time, resulting in less objective results. Therefore, a bias-free and43

high-quality automatic system for facial ME recognition is highly sought after.44

A number of earlier solutions to automate facial ME recognition has been based on geometry or45

appearance feature extraction methods. Specifically, geometric-based features encode geometric46

information of the face, such as shapes and locations of facial landmarks. On the other hand,47

appearance-based features describe the skin texture of faces. Most existing methods [11,12] attempt to48

extract low-level features such as the widely used Local Binary Pattern from Three Orthogonal Planes49

(LBP-TOP) [13–15] from different facial regions, and simply concatenate them for ME recognition.50

Nevertheless, transient and subtle ME inherently makes it challenging for low level-features to51

effectively capture essential movements in ME. At the same time, these features can also be affected by52

irrelevant information or noise in video clips, which further weakens their discrimination capabilities53

especially on inactive facial regions with less dynamics [16].54

Recently, more approaches based on mid-level and high-level features have been proposed.55

Among these methods, the pipeline composed of optical flow and deep learning has demonstrated its56

high effectiveness for MEs recognition in comparison with traditional ones. The studies applying deep57

learning to tackle the ME classification problem usually considered well-known Convolutional Neural58

Networks (CNNs) such as ResNet [17] and VGG [18]. These studies re-purpose the use of off-the-shelf59

CNNs by giving them input data token from the optical flow extracted from the MEs. While achieving60

good performance, these neural networks are quite heavy in terms of memory usage and computation.61

In specific applications, for example during automobile drivers’ monitoring or students’62

comprehension recognition in virtual education systems, fast and effective processing methods are63

necessary to capture emotional responses as quickly as possible. Meanwhile, thanks to great progresses64

in parallel computing, parallelized image processing devices such as embedded systems are easily65

accessible and affordable. Already well-adopted in diverse domains, these devices possess multiple66

strengths in terms of speed, embeddability, power consumption and flexibility. These advantages67

however are often at the cost of limited memory and computing power.68

The objective of this work is to design an efficient and accurate ME recognition pipeline for69

embedded vision purpose. First of all, our design takes into account thorough investigations on70

different CNN architectures. Next, different optical flow representations for CNN inputs have71

been studied. Finally, our proposed pipeline achieves competitive accuracy for ME recognition72

as state-of-the-art approaches while being real-time capable and using less memory. The paper is73

organized as follows. In Section 2, several recent related work are reviewed. Section 3 explains the74

proposed methodology in order to establish cost-effective CNNs for fast ME recognition. Section 475

provides experimental results and performance evaluations. Lastly, Section 5 concludes the paper.76

2. Related works77

MEs begin at the onset (first frame where the muscles of the facial expressions start to contract),78

finish at the offset (last frame, where the face returns to its neutral state), and reach their pinnacle at79

the apex frames (see Figure 1). Because of their very short duration and low intensity, ME recognition80

and analysis are considered as difficult tasks. Earlier studies proposed using low-level features such81

as LBP-TOP to address these problems. LBP-TOP is a 3D descriptor extended from the traditional82

2D LBP. It encodes the binary patters between image pixels, and the temporal relationship between83

pixels and their neighboring frames. The resulting histograms are then concatenated to represent the84
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temporal changes over entire videos. LBP-TOP has been widely adopted in several studies. Pfister et85

al. [13] applied LBP-TOP for spontaneous ME recognition. Yan et al. [14] achieved 63% ME recognition86

accuracy on their CASME II database using LBP-TOP. In addition, LBP-TOP has also been used to87

investigate differences between micro-facial movement sequences and neutral face sequences.88

Figure 1. Example of a ME: the maximum movement intensity occurs at the apex frame.

Several studies aimed to extend low-level features extracted by LBP-TOP as they still could not89

reach satisfactory accuracy. For example, Liong et al. [19] proposed to assign different weights to90

local features, putting more attention on active facial regions. Wang et al. [11] studied the correlation91

between color and emotions by extracting LBP-TOP from the tensor independent color space (TICS).92

Ruiz-Hernandez and Pietikäinen [20] used the re-parameterization of second order Gaussian jet on93

the LBP-TOP, achieving promising ME recognition result on the SMIC database [21]. Considering94

that LBP-TOP consists of redundant information, Wang et al. [22] proposed the LBP-Six Intersection95

Points (LBP-SIP) method which is computationally more efficient and achieves higher accuracy on the96

CASEME II database. We also note that the STCLQP (SpatioTemporal Completed Local Quantization97

Patterns) proposed by Huang et al. [23] achieved a substantial improvement for analyzing facial MEs.98

Over the years as research shows that it is non-trivial for low-level features to effectively capture99

and encode ME’s subtle dynamic patterns (especially from inactivate regions), other methods shift to100

exploit mid- or high-level features. He et al. [16] developed a novel multi-task mid-level feature101

learning method to enhance the discrimination ability of the extracted low-level features. The102

mid-level feature representation is generated by learning a set of class-specific feature mappings.103

Better recognition performance has been obtained with more available information, features with104

better discrimination and generalization abilities. A simple and efficient method known as Main105

Directional Mean Optical-flow (MDMO) was employed by Liu et al. [24]. They used optical flow to106

measure the subtle movement of facial regions of interest (ROIs) that were spotted based on the Facial107

Action Coding System (FACS). Oh et al. [25] also applied the monogenic Riesz wavelet representation108

in order to amplify subtle movements of MEs.109

The aforementioned methods indicate that the majority of existing approaches heavily rely on110

hand-crafted features. Inherently, they are not easily transferable as the process of feature crafting and111

selection depend heavily on domain knowledge and researchers’ experience. In addition, methods112

based on hand-crafted features are not accurate enough to be applied in practice. Therefore, high-level113

feature descriptors which better describe different MEs and can be automatically learned are desired.114

Recently, more and more vision-based tasks have shifted to deep CNN-based solutions due to their115

superior performance. Recent developments in ME recognition are also inspired by these advancements116

by incorporating CNN models within the ME recognition framework.117
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Peng et al. [26] proposed a two-stream convolutional network DTSCNN (Dual Temporal Scale118

Convolutional Neural Network) to address two aspects: overfitting problem caused by small sizes of119

existing ME databases and use of high-level features. We can observe four characteristics of DTSCNN:120

(i) separate features were first extracted from ME clips from two shallow networks and then fused;121

(ii) data augmentation and higher drop-out ratio were applied in each network; (iii) two databases122

(CASME I and CASME II) were combined to train the network; (iv) the data fed to the networks were123

optical-flow images instead of raw RGB frames.124

Khor et al. [27] studied two variants of an Enriched LRCN (Long-term Recurrent Convolutional125

Network) model for ME recognition. Spatial enrichment (SE) refers to channel-wise stacking of126

gray-scale and optical flow images as new input to CNN. On the other hand, temporal enrichment127

(TE) stacks obtained features. Their TE model achieves better accuracy on a single database, while the128

SE model is more robust against the cross-domain protocol involving more databases.129

Liong et al. [28] designed a Shallow Triple Stream Three-dimentional CNN (STSTNet). The130

model takes input stacked optical flow images computed between the onset and apex frames (optical131

strain, horizontal and vertical flow fields), followed by three shallow convolution layers in parallel132

and a fusion layer. The proposed method is able to extract rich features from MEs while being133

computationally light, as the fused features are compact yet discriminative.134

Our objective is to realize a fast and high-performance ME recognition pipeline for embedded135

vision applications under several constraints, such as embeddability, limited memory and restricted136

computing resources. Inspired by existing works [26,28], we explore different CNN architectures and137

several optical flow representations for CNN inputs to find cost-effective neural network architectures138

that are capable of recognizing MEs in real-time.139

3. Methodology140

The studies applying deep learning to tackle the ME classification problem [29–32] usually used141

pretrained CNNs such as ResNet [17] and VGG [18] and applied transfer learning to obtain ME142

features. In our work, we first select off-the-shelf ResNet18 because it provides the best trade-off143

between accuracy and speed on the challenging ImageNet classification and is recognized for these144

performances in transfer learning. ResNet [17] explicitly lets the stacked layers fit a residual mapping.145

Namely, the stacked non-linear layers are let to fit another mapping of F(x) := H(x)− x where H(x)146

is the desired underlying mapping and x the initial activations. The original mapping is recast into147

F(x) + x by feedforward neural networks with shortcut connections. ResNet18 has 20 convolutional148

layers (CL) (17 successive CL and 3 branching ones). Residual links after each pair of successive149

convolutional units are used and the kernel size after each residual link is doubled. As ResNet18 is150

designed to extract features from RGB color images, it requires inputs to have 3 channels.151

In order to accelerate processing speed in the deep learning domain, the main current trend in152

decreasing complexity of CNN is to reduce the number of parameters. For example, Hui et al. [33]153

proposed a very compact LiteFlowNet which is 30 times smaller in the model size and 1.36 times faster154

in the running speed in comparison with the state-of-the-art CNNs for optical flow estimation. In155

[34], Rieger et al. explored parameter-reduced residual networks on in-the-wild datasets, targeting156

real-time head pose estimation. They experimented various ResNet architectures with a varying157

number of layers to handle different image sizes (including low-resolution images). The optimized158

ResNet achieved state-of-the-art accuracy with real-time speed.159

Well known CNN is created for specific problems and therefore over calibrated when they are160

used in other contexts. ResNet18 was made for end-to-end object recognition: the dataset used for161

training had hundreds of thousands of images for each class and more than a thousand classes in total.162

Based on the fact that: (i) ME recognition study considers in maximum 5 classes and the datasets of163

spontaneous MEs are scarce and contain much fewer samples, and (ii) optical flows are high-level164

features contrary to low-level color features and so require shallower network, we have reduced the165

architecture of ResNet18 by iteratively removing residual layers. This allows us to assess the influence166
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of the depth of the network on its classification capacities in our context and therefore to estimate the167

relevant calibration of the network.168

Figure 2 illustrates the reduction protocol: at each step the last residual layer with two CL is169

removed and the previous one is connected to the fully connected layer. Only networks with an odd170

number of CL are therefore proposed. As highlighted in Table 1 the decrease in the number of CL171

poses a significant impact on the number of learnable parameters of the network, which directly affects172

the forward propagation time.173

Figure 2. Depth reduction of a deep neural network: in the initial network, each residual layer contains
two CL (left); the last residual layer is removed (middle) to obtain a shallower network (right).

Table 1. Number of CL and number of learnable parameters in the proposed architectures.

CL 17 15 13 11 9 7 5 3 1

Nb. of param. 10,670,932 5,400,725 2,790,149 1,608,965 694,277 398,597 178,309 104,197 91,525

Once the network depth has been correctly estimated, the dimension of the input has to be174

optimized. In our case, CNNs take optical flows extracted between the onset and apex frames of175

ME video clips. It is between these two moments that the motion is most likely to be the strongest.176

The dimensionality of inputs determines the complexity of the network that uses them since the177

reduction in input channels dictates the number of filters to be used throughout all following layers of178

the CNN. The optical flow between the onset (Figure 3-a) and the apex (Figure 3-b) typically has a179

3-channel representation to be used in a pretrained architecture designed for 3-channel color images.180

This representation however may not be optimal for ME recognition.181
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Optical flow can be described as the change of structured patterns of light between successive182

frames to measure movement of a pixel over a period of time. Optical flow estimation techniques are183

based on the assumption of brightness invariance:184

I(x, y, t) = I(x + δx, y + δy, t + δt) (1)

where I(x, y, t) is the intensity of pixel in position (x, y) at time t.185

The optical flow is represented as a vector (Figure 3-c) indicating the direction and intensity of the186

motion. The projection of the vector on the horizontal axis corresponds to the Vx field (Figure 3-d)187

while its projection on the vertical axis is the Vy field (Figure 3-e). The magnitude M is the norm of the188

vector (Figure 3-f). Figure 4 illustrates this representation of one optical flow vector. The horizontal and189

vertical components Vx and Vy of the optical flow correspond to the spatial variation (δx, δy) obtained190

by minimizing the difference between the left and right term of Equation 1.191

In this paper, the optical flow is estimated by the Horn-Schunck method [35]. This method192

assumes that the optical flow is smooth over the entire image. Hence minimizing the following193

equation estimates the velocity field:194

E =
∫∫

(
∂I
∂x

Vx +
∂I
∂y

Vy +
∂I
∂t
)2dxdy + α

∫∫
‖∇Vx‖2 + ‖∇Vy‖2dxdy (2)

α is a regularization parameter that controls the degree of smoothness and is usually selected195

heuristically. This energy is iteratively minimized until convergence from the following equations :196

Vk+1
x = Vk

x −
∂I
∂x (

∂I
∂x Vk

x +
∂I
∂y Vk

y +
∂I
∂t )

α2 + ∂I
∂x

2
+ ∂I

∂y
2 (3)

Vk+1
y = Vk

y −
∂I
∂y (

∂I
∂x Vk

x +
∂I
∂y Vk

y +
∂I
∂t )

α2 + ∂I
∂x

2
+ ∂I

∂y
2 (4)

where V is the weighted average of V in a neighbourhood.197

onset

(a)

apex

(b)

Vx,Vy

(c)

Vx

(d)

Vy

(e)

Magnitude

(f)

Figure 3. Optical flow is computed between the onset (a) and the apex (b): vectors obtained for a
random sample of pixels (c), Vx field (d), Vy field (e) and magnitude field (f).



Version June 5, 2020 submitted to Appl. Sci. 7 of 15

Figure 4. Visualisation of M, Vx and Vy for one optical flow vector.

Figure 5. Proposed networks composed of one to four (from left to right) CL for various representations
of the optical flow as input.

When classifying ME, the resulting matrices Vx , Vy and M are traditionally given as input198

to the CNN. Nonetheless, the third channel is inherently redundant since M is computed from Vx199

and Vy. Optical flow composed of the 2-channel Vx and Vy field could already provide all relevant200

information. Furthermore, we hypothesize that even a single channel motion field itself could be201

descriptive enough. Hence we have created and evaluated networks taken as input the optical flow202

in a two-channel representation (Vx-Vy) and in an one-channel representation (M, Vx or Vy). For203

this purpose, the proposed networks begin by a number of CL related to the depth optimization204

followed by a batch normalization and ReLU. Then the networks end by a maxpooling layer and a205

fully connected layer. The Figure 5 presents the architectures used with one to four CL according to206

the results of the experiments in Section 4. As illustrated in Table 2, a low dimensional input leads to207

a significant reduction in the number of learnable parameters and therefore in the complexity of the208

system.209

Table 2. Number of learnable parameters according to the dimensionality of the input of the network.

Input 1 CL 2 CL 3 CL 4 CL

Single channel 82,373 168,997 333,121 712,933
Double channel 165,541 348,005 709,477 1,620,197
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4. Experiments210

4.1. Dataset and validation protocol presentation211

Two ME databases are used in our experiments. CASME II (Chinese Academy of Sciences212

Micro-Expression) [14] is a comprehensive spontaneous ME database containing 247 video samples,213

collected from 26 Asian participants with an average age of 22.03 years old. Compared to the first214

database, the Spontaneous Actions and Micro-Movements (SAMM) [36] is a more recent one consisting215

of 159 micro-movements (one video for each). These videos are collected spontaneously from a216

demographically diverse group of 32 participants with a mean age of 33.24 years old and a balanced217

gender split. Originally intended for investigating micro-facial movements, SAMM initially collected218

the 7 basic emotions.219

Both the CASME II and SAMM databases are recorded at a high-speed frame rate of 200 fps. They220

also both contain "objective classes", as provided in [37]. For this reason, Facial MEs Grand Challenge221

2018 [38] proposed to combine all samples from both databases into a single composite dataset of 253222

videos with five emotion classes. It should be noted that the repartition is not very well balanced.223

Namely, this composite database is composed of 19.92% "happiness", 11.62% "surprise", 47.30% "anger",224

11.20% "disgust" and 9.96% "sadness".225

Similar to [38], we applied the Leave One Subject Out (LOSO) cross-validation protocol for ME226

classification, where one subject’s data is used as a test set in each fold of the cross-validation. This227

is done to better reproduce realistic scenarios where the encountered subjects are not present during228

training of the model. In all experiments, recognition performance is measured by accuracy, which is229

the percentage of correctly classified video samples out of the total number of samples in the database.230

The Horn–Schunck method [35] was selected to compute optical flow. This algorithm is widely231

used for optical flow estimation in many recent studies in virtue of its robustness and efficiency.232

Throughout all experiments, we train the CNN models with a mini-batch size of 64 for 150 epochs233

using the RMSprop optimization. Feature extraction and classification are both handled by the CNN.234

Simple data augmentation is applied to double the training size. Specifically, for each ME video clip235

used for training, in addition to the optical flow between the onset and apex frame, we also include a236

second flow computed between the onset and apex+1 frame.237

4.2. ResNet depth study238

In order to find the ResNet depth which permits an optimal compromise between the ME239

recognition performance and the number of learnable parameters, we tested different CNN depths240

using the method described in Section 3. The obtained accuracies are given in Table 3:241

Table 3. Accuracies varied by the number of convolution layers (CL) and associated number of
learnable parameters.

Nb. of CL 17 15 13 11 9 7 5 3 1

Nb. of param. 10,670,932 5,400,725 2,790,149 1,608,965 694,277 398,597 178,309 104,197 91,525
Accuracy 57.26% 57.26% 60.58% 59.34% 60.17% 61.00% 58.51% 60.17% 58.92%

We observe that the best score is achieved by ResNet8 which has seven CL. However, the scores242

achieved by different numbers of CL do not vary much. Furthermore, beyond seven CL, adding more243

CL doesn’t improve the accuracy of the model. The fact that accuracy doesn’t increase along with244

depth confirms that multiple successive CL are not necessary to achieve a respectable accuracy. The245

most interesting observation is that with a single CL, we achieve a score that is not very far from the246

optimal score while the size of the model is much more concise. This suggests that instead of deep247
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learning, a more "classical" approach exploiting shallow neural networks presents an interesting field248

to explore when considering portability and computation efficiency for embedded systems. That is the249

principal reason we will restrict our study to shallow CNNs.250

4.3. CNN input study251

In this subsection, we study impacts of optical flow representations on ME recognition252

performance. Two types of CNN have been investigated, one with 1-channel input (Vx, Vy, or253

M) and the other one using the 2-channel Vx-Vy pair. Due to the fact that off-the-shelf CNNs typically254

take 3-channel inputs and are pre-trained accordingly, applying transfer learning to adapt to our255

models is a nontrivial task. Instead, we created custom CNNs and trained them from scratch. Table 4256

shows recognition accuracies of different configurations using a small number of CNN layers.257

We can observe that the Vx-Vy pair and Vy alone give the best results, both representations258

achieving 60.17% accuracy. On the other hand, using magnitude alone leads to similar accuracy as259

those of Vy and Vx-Vy pair with a score of 59.34%. Vx gets the worst results overall, with a maximum260

score of 54.34%. This observation indicates that the most prominent features for ME classification261

might indeed be more dominant in vertical movement rather than the horizontal one. This assumption262

is logical when thinking about the muscle movements happening in each known facial expression.263

Table 4. Accuracies under various CNN architectures and optical flow representations.

1 CL 2 CL 3 CL 4 CL

Vx 52.24% 54.34% 53.92% 53.50%
Vy 58.09% 59.34% 60.17% 60.17%

Vx-Vy 58.51% 59.75% 60.17% 58.09%
M 58.09% 58.92% 59.34% 59.34%

To better visualize the difference in the high-level features present in Vx, Vy and the Magnitude,264

we did an averaging on all the different samples according to their classes. The result can be seen in265

Figure 6. We observe that Vx exhibits a non-negligible quantity of noise. Magnitude and Vy on the266

other hand have clear regions of activity for each class. The regions of activity are aligned with the267

muscles responsible of each facial expression.268

Figure 6. Average optical flow obtained in the dataset per ME class. Studied classes are in order from
left to right: happiness, surprise, anger, disgust and sadness.
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4.4. Classification analysis269

In order to understand obtained results, we measured cosine similarity of features extracted by270

three CNNs: ResNet8 (Section 4.2), Vx-Vy-3 CL and Vy-3 CL (Section 4.3). Usually, the convolutional271

layers of CNNs are considered as different feature extractors; only the last fully connected layer directly272

performs the classification task. The features just before classification can be represented in vector273

format. Cosine similarity measures the similarity between two vectors a and b using Equation 5:274

cosine(a, b) =
aTb
‖a‖ ‖b‖ (5)

Cosine similarity values fall within the range of [-1, 1]; values closer to 1 indicate higher similarity275

between two vectors. Tables 5, 6 and 7 display the cosine similarity values: with 2 samples ×5276

ME classes, we calculated intra-similarity and average inter-similarity of each class using the same277

configuration for three CNNs.278

happiness surprise anger disgust sadness

happiness 0.6007 0.1320 0.0574 0.0146 0.1154
surprise 0.1320 0.5572 0.0485 0.0667 0.1415

anger 0.0574 0.0485 0.5260 0.0318 0.0698
disgust 0.0146 0.0667 0.0318 0.5663 0.0159
sadness 0.1154 0.1415 0.0698 0.0159 0.5099

Table 5. Cosine similarity for the 3 CL CNN with single-channel input Vy

happiness surprise anger disgust sadness

happiness 0.5615 0.1700 0.1171 0.1155 0.1195
surprise 0.1700 0.5831 0.1432 0.1502 0.1618

anger 0.1171 0.1432 0.5672 0.1176 0.1503
disgust 0.1155 0.1502 0.1176 0.5447 0.1225
sadness 0.1195 0.1618 0.1503 0.1225 0.5443

Table 6. Cosine similarity for the 3 CL CNN with double-channel inputs (Vx-Vy)

happiness surprise anger disgust sadness

happiness 0.8464 0.3966 0.3860 0.3126 0.2960
surprise 0.3966 0.8159 0.4040 0.3362 0.3324

anger 0.3860 0.4040 0.8344 0.3654 0.3307
disgust 0.3126 0.3362 0.3654 0.8598 0.2363
sadness 0.2960 0.3324 0.3307 0.2363 0.9343

Table 7. Cosine similarity for ResNet8

Firstly, we observe that diagonal values (intra-class) across all three CNNs are significantly higher279

in comparison with other values (inter-class). This illustrates that all three CNNs are capable to separate280

different ME classes. Secondly, the intra-class cosine similarity of ResNet is closer to 1, suggesting281

that ResNet features are more discriminative. We hypothesize that our simplified CNNs with reduced282

layers extract less refined features, resulting in the minor decrease in performance (61.00% vs. 60.17%).283

4.5. Performance evaluations284

In this subsection, we measure our proposed method on three aspects: recognition accuracy,285

needed memory space and processing speed. Since we obtain optimal results by using the Vy field and286

3-layer CNN, further evaluations will concentrate on this particular configuration.287
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Evaluation on recognition accuracy: we performed an accuracy comparison of 5 objective ME288

class recognition (see Table 8). Our best CNN reaches similar performance as those of other studies289

using the same protocol of validation. It is worth mentioning that Peng et al. [39] employed290

a macro-to-micro transferred ResNet10 model and obtained a better result. Their work used 4291

macro-expressions datasets (> 10K images) and some preprocessing such as colour shift, rotation292

and smoothing. These additional operations make their proposed method difficult for deployment on293

embedded systems. Seeing the confusion matrix of our model (Figure 7), we can also notice that the294

distribution of correct assessments for Vy is more balanced than the ones gotten from [27] (Figure 8).295

The DTSCNN proposed by Peng et al. in [26] opted for two optical flows computed differently296

from a ME sample, which make the whole network robust to different frame rate of ME videos. In297

detail, the first optical flow is calculated using 64 frames around the apex to adapt to the frame rate of298

CASME I. Similarly, the second optical flow is given by the 128 frames around the apex adapted to299

the frame rate of CASME II. In case the number of frames composing the ME is not sufficient, a linear300

interpolation method is used to normalize the video clips. Their study uses two CNNs in parallel to301

extract two separate features before concatenating them. The resulted feature vector is then fed as input302

to an SVM to be classified. The DTSCNN was tested on four classes (positive, negative, surprise, and303

other) from a composite dataset consisting of the CASME I and CASME II databases, and it achieves304

an average recognition rate of 66.67%. The STSTNet proposed by Liong et al. in [28] makes use of305

three dimensional CNNs which carry out three dimensional convolutions instead of two-dimensional306

ones (such as ResNet, VGG, the networks presented in [26], [27], [39] and our study). It was tested on307

three classes: positive, negative, and surprise from a composite database consisting of samples from308

the SMIC, CASME II and SAMM databases. It achieved an unweighted average recall rate of 76.05%309

and an unweighted F1-score of 73.53%. Both of these two frameworks are not very suitable for real310

time embedded applications constrained by limited memory and computing resources.311

Figure 7. Confusion matrix corresponding to our network with 3 CL and Vy as input.

Table 8. Comparison between our method and those of other top-performers from literature.

Method Accuracy

LBP_TOP [27] 42.29%
Khor et al [27] 57.00%
Peng et al [39] 74.70%

Proposed method 60.17%
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Figure 8. Confusion matrix obtained by the work of [27].

Evaluation on memory space: Table 9 summarizes the number of learnable parameters and used312

filters according to the dimensionality of the network inputs. The minimum required memory space313

corresponds to 333,121 parameter storage, which is less than 3.12% of that of off-the-shelf ResNet18.314

Table 9. Number of learnable parameters and filters (in brackets) of various network architectures
under different input dimensions.

Input 1 CL 2 CL 3 CL 4 CL

Single channel 82,373 168,997 333,121 712,933
(16) (48) (112) (240)

Double channel 165,541 348,005 709,477 1,620,197
(32) (96) (224) (480)

Evaluation on processing speed: we used a mid-range computer with an Intel Xeon processor315

and an Nvidia GTX 1060 graphic card to carry out all the experiments. The complete pipeline is316

implemented in MatLAB 2018a with its deep learning toolbox. Our model which achieves the best317

score is the CNN with a single-channel input and three successive CL. It needs 12.8 ms to classify the318

vertical component Vy. The optical flow between two frames requires 11.8 ms to compute using our319

computer, leading to a total runtime to classify an ME video clip of 24.6 ms. In our knowledge, the320

proposed method outperforms most ME recognition systems in terms of processing speed.321

5. Conclusion and future works322

In this paper, we propose cost-efficient CNN architectures to recognize spontaneous MEs. We323

first investigated the depth of the well-known ResNet18 network to demonstrate that using only a324

small number of layers is sufficient in our task. Based on this observation, we have experienced several325

representations at network’s input.326

Following several previous studies, we fed CNNs with optical flow estimated from the onset and327

apex of MEs. Different flow representations (horizontal Vx, vertical Vy, Magnitude M and Vx-Vy pair)328

have been tested and evaluated on a composite dataset (CASME II and SAMM) for recognition of five329

objective classes. The results obtained on the Vy input alone are more convincing. It is likely due to the330

fact that such an orientation is more suitable describing ME’s motion and its variations between the331

different expression classes. Experimental results demonstrated that the proposed method can achieve332

similar recognition rate when compared with state-of-the-art approaches.333
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Finally, we obtained an accuracy of 60.17% with a light CNN design consisting of 3 CL with334

single-channel inputs Vy. This configuration enables the number of learnable parameters to be reduced335

by a factor of 32 in comparison with the ResNet18. Moreover, we achieved a processing time of 24.6 ms336

which is shorter than MEs (40 ms). Our study opens an interesting way to find the trade-off between337

speed and accuracy in ME recognition. While the results are encouraging, it should be noted that our338

method does not give a better accuracy than the ones described in the literature. Instead, a compromise339

has to be made between accuracy and processing time. By minimizing the computation, our proposed340

method manages to obtain accuracy comparable to the state-of-the-art systems while being compatible341

with the real-time constraint of embedded vision.342

Several future works could further enhance both the speed and accuracy of our proposed343

ME recognition pipeline. These include more advanced data augmentation techniques to improve344

recognition performance. Moreover, new ways to automatically optimize the structure of a network345

to make it lighter have been presented recently. Other networks optimized for efficiency will also be346

explored. For example, MobileNet [40] uses depth-wise separable convolutions to build light weight347

CNN. ShuffleNet [41] uses pointwise group convolution to reduce computation complexity of 1x1348

convolutions and channel shuffle to help the information flowing across feature channels. Our next349

step of exploration aims to analyze and integrate these new methodologies in our framework.350
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