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Abstract 

The ortho-substituted (E)-1-((2-methoxyphenyl)diazenyl)naphthalen-2-ol and the meta-

substituted (E)-1-((3-methoxyphenyl)diazenyl)naphthalen-2-ol were respectively used in the 

synthesis of two new complexes, bis[1-(2-methoxyphenylazo)-2-naphthoxy]palladium(II) and 

bis[1-(3-methoxyphenylazo)-2-naphthoxy]palladium(II), noted (I) and (II) respectively. (I) 

and (II) were characterized by physico-chemical and spectroscopic methods and their 

molecular structures were determined by X-ray crystallography. Both complexes display a 

square-planar geometry, which is reproduced by full geometry optimizations at the 

DFT/B3LYP level. Calculations were also performed on the free ligands (in their precursor 

form), as well as their para-substituted isomer (E)-1-((4-methoxyphenyl)diazenyl)naphthalen-

2-ol and its hypothetical complex bis[1-(4-methoxyphenylazo)-2-naphthoxy]palladium(II) 

(compound (III). Calculations were also performed on the freep-phenylazo-2-naphthol ligand 

(p-MoxyPhNap), in order to understand their bonding and to analyse their electronic structure. 

TD-DFT calculations were also performed on the three complexes to simulate their absorption 

spectra from and compare to the experimental UV-vis data of (I) and (II). The main peaks in 

the spectrum of (I) are assigned to mixed LMCT/LLCT and -* (ILCT) transition, while the 

unique major peak afforded by 

 (II) is assigned to MLCT and LLCT transitions. 
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Introduction 

Transition metal complexes of azo compounds have received increasing interest in both basic 

and applied research, owing to their peculiar electronic and geometrical characteristics and 

their relationships with their use in different crucial fields [1–4], privileged by their low cost. 

The transition metal-azo dye complexes are related to the possibility to obtain new 

compounds with various biological activities [5,6]. This class of complexes is important in the 

progress of metal-based anticancer agents [7,8]. These different areas of interest fostered 

inorganic chemists to develop novel approaches to the preparation of non-covalently bound 

anticancer drugs [9,10]. 

There is a great coordination affinity of the metals towards chromophoric ligands, leading to 

the formation of transition metal complexes evidenced by an absorption displacement of their 

UV-Vis spectra and accompanied by an enhancement of the dye fastness [11-13]. Various 

properties such as structures, chelate formation constants, and stability have been reported 

[14]. Different classes of chromophoric ligands, particularly those characterized by the 

presence of the azo group (-NN-) have been applied as chelate indicators to identify metal 

ions, where the complex formation is related to a change of colour [15-18]. Due to their easy 

use, several areas of application have emerged into numerous high-technological frontier 

applications such as high-density memory storages (CD-R and DVD-R) [19-21], which is 

considered as an important and promising branch of chemistrywith significant physico-

chemical and material properties. 

Recently, Pd-arylazo complexes have found application in C-C coupling reactions [22,23] 

interacting strongly with CT DNA [24]and exhibiting  photochromic activity [25,26], where 

most of their electronic and photochromic efficiency have been explained by DFT 

calculations. 

We report two novel Pd(II) coordination complexes obtained using (E)-1-((2-

methoxyphenyl)diazenyl)naphthalen-2-ol [27] and (E)-1 

((3methoxyphenyl)diazenyl)naphthalen-2-ol [28] azo-ligands. These two bidentate ligand 

precursors are isomers differing from the ortho vs. meta  position of their methoxyphenyl 

group. In both Pd(II) complexes notes (I) and (II), respectively, the metal is coordinated to 

two N atoms and two O atoms. The experimental studies were performed on the meta ligand 

precursor in both ketonic and enolic forms under variable temperatures. To our knowledge, 

there are no other complexes with similar ligands bearing methoxy groups reported in the 
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literature. In all the investigated complexes, the metal coordination mode is almost perfectly 

square-planar. 

 

Experimental section 

Materials and methods: 

Elemental analyses (C, H, N) were performed on a Vario EL III elemental analyzer. UV 

spectra were recorded on an Agilent UV-VIS spectrophotometer 8453 (spectroscopy system) 

with G1120A multicell transport and a computer with ChemStation (G Visible Ultra Violet 

1120 A).Infrared spectra were recorded with a Fourier transform infrared spectrometer 

(ALPHA) FTIR from the brand BRUKER controlled by Opus 6.5 software and fitted with an 

Attenuated Total Reflectance (ATR) accessory in diamond crystal. The 
1
H NMR spectra were 

recorded in deuterated chloroform CDCl3 with infinite dilution at high fields on a Brücker 

Avence DPX type spectrophotometer, 400 MHz, TMS as internal reference, chemical shift in 

ppm. The diffraction data were collected on a Nonius Kappa CCD diffractometer using 

graphite monochromatized Mo-Kα radiation ( λ = 0.71073 Å). 

Preparation of complex (I)      

Complex (I) was prepared as described in Scheme 1. A mixture of Pd(AcO)2 (0.056 g, 0.25 

mmol) was dissolved in hot methanol (10 ml), added to the ligands (E)-1-((2-

methoxyphenyl)diazenyl)naphthalen-2-ol (0.33 g,0.5 mmol) and dissolved in hot methanol 

(25 ml). The color of the action solution changed to dark red after the addition. The reaction 

mixture was refluxed overnight (24 h) and then evaporated until 30% of the total volume of 

the reaction solution remained at the end of the reaction. The solvent was removed under 

vacuum and the residue was washed twice with hexane to give dark red solids (70%). The 

resulting solids were crystallized from CH2Cl2 to yield dark red prismatic-like crystals. 

Elemental analysis: N (7.76 %), C (62.03%), H (3.77%) and calculated N (8.48%), C 

(61.78%), H (3.96%).IR (cm
−1

):ʋ(N=N); 1372 cm
-1

, ʋ (C-N); 1146cm
-1

, ʋ (C-O); 1213 cm
-1

,ʋ 

(C=C) aromatic; 1470 cm
-1

,ʋ (C-H) aromatic; 2937 cm
-1

,ʋ (Pd-N); 464 cm
-1

,ʋ (Pd-N); 579 

cm
-1 

(Figure S1a).
 1

H NMR (CDCL3-d1, δ ppm): 3.70 (s, 6H, OCH3), 7.01-7.64 (m, 20H, Ph) 

(Figure S2a). 
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Preparation of complex (II) 

Complex (I) was prepared as described in Scheme 2. A mixture of Pd(AcO)2 (0.056 g, 0.25 

mmol) was dissolved in hot methanol (10 ml), added to the ligands (E)-1-((3-

methoxyphenyl)diazenyl)naphthalen-2-ol (0.33 g,0.5 mmol) and dissolved in hot methanol 

(25 ml). The color of the reaction solution changed to dark red after the addition. The reaction 

mixture was refluxed (24 h) overnight and then evaporated until 30% of the total volume of 

the reaction solution remained at the end of the reaction. The solvent was removed under 

vacuum and the residue was washed twice with hexane to give dark red solids (73%). The 

resulting solids were crystallized from CH2Cl2 to yield dark red Plate crystals. 

Experimental results: Found (%): N (8.45 %), C (62.08%), H (3.99%) and Calculated (%)N 

(8.48%), C (61.78%), H (3.96 %).  The IR spectrum of the complex (Figure S1b of the 

Supporting data) shows the vibration bands:ʋ(N=N); 1399 cm
-1

, ʋ (C-N); 1130cm
-1

, ʋ (C-O); 

1213 cm
-1

,ʋ (C=C) aromatic; 2937 cm
-1

,ʋ (C-H)aromatic;2963 cm
-1

,ʋ (Pd-N); 446cm
-1

,ʋ (Pd-

O); 582cm
-1

. 

1
H NMR (CDCL3-d1, δ ppm): 3.84 (s, 6H, OCH3), 7.21-7.61 (m, 20H, Ph). (Figure S2b of the 

Supporting data). 
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X-ray crystallography 

Single crystal X-ray structural analysis: 

A single crystal was carefully selected under a polarizing microscope in order to perform its 

structural analysis by X-ray diffraction. The diffraction data were collected on a Nonius 

Kappa CCD diffractometer using graphite monochromatized Mo-Kα radiation (λ = 0.71073 

Å).The structures were solved by direct methods using SHELXS-2014 [29] and refined 

against F2 by full-matrix least-squares methods with anisotropic displacement parameters for 

all non-hydrogen atoms. All calculations were performed using SHELXS-2014 and 

SHELXL-2014, implemented in the WINGX system of programs [30].The drawings were 

performed using the Mercury program [31]. The refinement was done by full-matrix least 

squares methods (SHELXL-2014 program) and converged to an acceptable final agreement 

factor.The pertinent experimental details of the structure determination of the new compounds 

are gathered in Table 1. All hydrogen atoms were placed in idealized positions and 

constrained to ride on their parent atoms with C–H = 0.93 Å with Uiso (H) = 1.2 Ueq (C) for 

aromatic hydrogen; C–H = 0.96 Å with Uiso (H) = 1.5Ueq(C) for CH3-group.Crystal data and 

structure refinement parameters for complexes (I) and (II) are listed in Table 1. 
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Table 1.Crystallographic data and refinement parameters for complexes I and II. 

 

Compound (I) (II) 

Formula 

Formula weight (g mol
–1

) 

Temperature (K) 

Crystal habit, color 

Crystal system 

Space group 

a (   

b (Å) 

c (Å) 

α (°) 

ß (°) 

γ (°) 

Volume (Å
3
) 

Z 

Density (calculated, g cm
−3

) 

Absorption coefficient (mm
−1

) 

F(000) 

Crystal size (mm) 

θ range for data collection (◦) 

Reflections collected 

Independent reflections 

Reflections with I ≥ 2σ(I) 

Rint 

Number of parameters 

Goodness-of-fit on F
2
 

Final R indices [I ≥ 2σ(I)] 

R indices [all data] 

Δρ max, Δρmin (e Å
−3

) 

CCDC deposition no. 

C34H26N4O4Pd 

660.99 

173(2) 

Prism, red 

Monoclinic 

P 21/n 

10.6196(6) 

10.3855(7) 

12.8983(6) 

90 

90.947(3) 

90 

1422.36(14) 

2 

1.543 

0.7 

672 

0.05×0.20×0.32 

2.518– 27.470 

10643 

3252 

2167 

0.1044 

197 

1.009 

0.0476 

R1 =0.0860, wR2= 0.1098 

0.66, −1.64 

1921570 

C34H26N4O4Pd 

660.99 

173(2) 

Plate, red 

Monoclinic 

P21/c 

15.9063 (10) 

5.2680 (2) 

17.5646 (11) 

90 

114.683 (2) 

90 

1337.34 (13) 

2 

1.641 

0.744 

672 

0.05 ×0.14 ×0.50 

2.819–27.415 

5311 

3041 

1982 

0.0661 

196 

0.898 

0.0422 

R1=0.0853, wR2 = 0.0947 

0.621, −1.09  

1921571 

 

Computational methods 

 All geometry optimizations were performed using the 2016.01 version of the 

Amsterdam Density Functional (ADF) program [32] developed by Baerends and co-workers 

[33-37] by means of the hybrid-type B3LYP functional (Becke’s three parameter hybrid 

exchange functional [38] coupled with the Lee-Yang-Parr nonlocal correlation functional) 

[39].The atom electronic configurations were described by a triple-Slater-type orbital (STO) 

basis set for H 1s, C 2s and 2p, N 2s and 2p, O 2s and 2p augmented with a 3d single- 
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polarization for C, N and O atoms and with a 2p single-polarization for H atoms. A triple-

STO basis set was used for Pd 4d and 5s augmented with a single-5p polarization function 

for Pd. The scalar relativistic zero-order regular approximation (ZORA) was used (with the 

associated optimized valence basis set) for Pd [40-42]. Vibrational frequency calculations 

[43,44] were performed on all the optimized geometries to confirm that these structures are 

true minima on the potential energy surface. Singlet-triplet excitation energies and the 

transition dipole lengths were computed using TD-DFT as implemented in the Response [45] 

code in the ADF package. 

Solvent effects were considered by using the Conductor-like Screening Model for realistic 

solvent (COSMO-RS) model developed by Klamt and coworkers [46]. Natural populations 

(NAO) are obtained by NBO calculations [47,48]. Representations of the molecular structures 

and molecular orbitals were done using the ADF-GUI software [32]. 

 

Crystal structure of complexes (I) and (II). 

Compound (I) crystallizes in the monoclinic crystal system (space group P21/n). It is a tetra-

coordinated metal complex (Figure 1). The Pd(II) center is surrounded by two N two O atoms 

which are coplanar. The metal environment exhibits a quasi-regular tetragonal coordination 

mode. The asymmetric unit contains one half molecule, with the Pd atom occupying the 

inversion center. The two N atoms and two O atoms are coplanar and trans to each other with 

an O1—Pd—N2 bond angle of 89.69(14)° and O1—Pd—N2
i 
angle of 90.31(14)°; symmetry 

code: (i) −x+2, −y, −z+1. The Pd—O1 and Pd—N2 bond distances are 1.976(3) Å and 

1.976(3) Å, respectively (Table 2). 

In the crystal, the molecules are forming chains along [100] as shown in Figure 5. The chains 

are linked by C–H···π interactions, where C(17)–H(17C)…Cg1 corresponds to a distance of 

2.720 Å (Table 3) giving rise to slabs lying parallel to (011). The network is characterized by 

the presence of weak C7–H7···N1 hydrogen bonds with relatively  long H7···N1 distance 

of2.450 Å,  long donor-acceptor C7–N1 distance of 2.770 Å and an angle C–H–N of 100° 

which strongly deviates from the linearity in accordance with weak interactions. 

Compound (II) crystallizes in the monoclinic crystal system (space group P21/c). As for 

compound (I), it is coordinated in a N, O-bidentate manner (Figure 2). The metal atom istetra-

coordinated to two oxygen atoms in a trans position of the C–O function and two nitrogen 

atoms in a trans position to the N=N function. The geometry around the metal is almost 

perfectly square-planar with distances between atom Pd(II) and atoms O1, N1 of 2.000(2) and 
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2.031(3) Å, respectively, and an O1—Pd—N2 bond angle of 86.41(12)° and O1—Pd—N2
i 

angle of 93.59(12)°; symmetry code: (i) −x+2, −y, −z+2. 

In the crystal, the molecules are linked via C–H···N and C–H···O intermolecular interactions, 

forming a layer parallel to (101) (Figure 4).Indeed, C–H···O hydrogen bonds engaging the 

hydrogen and oxygen atoms of the methoxy groups are characterized by long H···O and C–O 

distances of 2.540 and 3.374 Å and a bending C–H–O angle of 145°, giving rise to weak 

interactions. Details of these interactions are given in Table 3. 

 

Table 2 

Selected geometric parameters (Å, °) for complexes (I) and (II). 

 

 Bond distances (Å)           Bond angles (°) 

Complex (I)  

Pd—O1 

Pd—N2 

Pd—O1
i
 

Pd—N2
i
 

 

1.976 (3) 

2.004 (4) 

1.976 (3) 

2.004 (4) 

 

O1—Pd—N2 

O1—Pd—O1
i
 

O1—Pd—N2
i
 

O1
i
—Pd—N2 

N2—Pd—N2
i
 

O1
i
—Pd—N2

i
 

 

89.69 (14) 

  180.00 

90.31 (14) 

90.31 (14) 

180.00 

89.69 (14) 

Symmetry codes: (i)  −x+2, −y, −z+1  

 

 

Complex (II)  

Pd—O1 

Pd—N2 

Pd—O1
i
 

Pd—N2
i
 

 

2.000 (2) 

2.031 (3) 

2.000 (2) 

2.031 (3) 

 

O1—Pd—N2 

O1—Pd—O1
i
 

O1—Pd—N2
i
 

O1
i
—Pd—N2 

N2—Pd—N2
i
 

O1i—Pd—N2
i
 

 

86.41 (12) 

180.00 

93.59 (12) 

93.59 (12) 

180.00 

86.41 (12) 

Symmetry codes: (i) −x+2, −y, −z+2   
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Figure 1.The molecular structure of compound (I), with atom labelling and 50%probability 

displacement ellipsoids. The unlabelled atoms are related tothe labelled atoms by the 

symmetry operation (−x+2, −y, −z+1). 

 

Figure 2. The molecular structure of compound (II), with atom labelling and 50% probability 

displacement ellipsoids. The unlabelled atoms are related to the labeled atoms by the 

symmetry operation (−x+2, −y, −z+2). 

 
 

Figure 3. A partial view along the b axis of the crystal packing of the title complex (I), 

displaying the C—H
…….

N and C—H
…….

π interactions as dashed lines (see Table 3). 
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Table 3 

Interatomic distances (Å) and angles (°) for complexes (I) and (II): Cg1 is the centroid of the 

C5–C10 ring.  

D–H…A d(D–H) d(H···A) d(D–A) D–H–A 

Complex (I)  

C7—H7···N1 

C17—H17C…Cg1
i
 

 

0.9300 

0.9600 

 

2.4500 

2.720 

 

2.770 (6) 

3.524 (5)   

 

100.00 

141.00 

Symmetry codes: (i) 3/2-x,1/2+y,1/2-z  

 

   

Complex (II) 

C7—H7···N1 0.9300 2.4800 2.789 (5) 100.00 

C15—H15···O1
ii
 0.9300 2.5500 3.364 (5) 146.00 

C16—H16···O1
i
 0.9300 2.5000 2.885 (4) 105.00 

C17—H17A···O2
iii

 0.9600 2.5400 3.374 (6) 145.00 

Symmetry codes: (i) −x+2, −y, −z+2; (ii) −x+2, −y+1, −z+2; (iii) −x+1, −y+1, −z+2. 
 

 
 

Figure 4. A partial view along the b axis of the crystal packing of the title complex (II), 

showing the C-H···N and C-H···O interactions which are displayed as dashed lines (see Table 

3). 
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Theoretical investigation 

Geometry optimizations 

The full geometry optimization of the meta and para isomers of the free ligand precursor (E)-

1-((p-methoxyphenyl)diazenyl)naphthalen-2-ol (p = 3, 4, respectively) gave rise to almost 

isoenergetic structures, while the ortho isomer (p = 2) is higher in energy by 9.1 kcal/mol. 

The three structures are planar with comparable geometrical parameters (Figure 5), but 

showing a destabilizing interaction between the oxygen atom of the methoxy group and the 

nitrogen atoms of the azo group that is larger in the ortho case, in line with its Pauli repulsion 

energy of 448 kcal/mol, compared to those of the meta and the ortho isomers of 418 and 422 

kcal/mol, respectively. 

 

Figure 5. Optimized structures obtained for the free ligand precursor isomers. Relative 

energies E are given in kcal/mol. 

 

In order to provide further understanding of the molecular structures, electronic structure and 

bonding, full geometry optimizations have been carried out on the Pd complexes (I), (II) and 

(III), deriving from the three ortho, meta and para precursor isomers (E)-1-((p-

methoxyphenyl)diazenyl)naphthalen-2-ol (p = 2, 3, 4), respectively. Whereas (I) and (II) have 

been characterized (see above), (III) is unknown so far. The three complexes are of Ci 

symmetry and exhibit a square-planar geometry around the metal center (Figure 6). The two 

substituted azo ligands are related through the inversion center at the Pd(II) center, which 

bonded to two N and two O atoms, in a manner similar to related experimentally 

characterized complexes [49,50]. In particular, there is a good agreement between the 

optimized and experimental (see above) structures of  (I) and (II). Whereas (II) and (III) are 

close in energy, (I) is less stable. This instability is related to that of the free ligand and also to 

O••••O repulsions that occur between the oxygen atom of each methoxy group (NAO charge = 

-0.50) and the oxygen atom directly bound to the Pd center (NAO charge = -0.65) [47,48]. In 

(I), the oxygen atoms displaying negative charges are face-to-face; hence leading to 

electrostatic repulsions. Due to the described repulsions, (I) is destabilized by 12.0 and 11.5 

kcal/mol with respect to (II) and (III), respectively. Indeed in these two isomers, the methoxy 

and the azo groups are in remote positions to each other decreasing the repulsion interactions. 

 

 E = 9.1 
E = 0.0 

E = 0.5 

Ortho                                  Meta                                              Para 
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Nevertheless, in the three complexes the metal adopts a nearly square-planar conformation 

(Figure 8 and Table 4), with an ONON dihedral angles of 0, 0 and 2° for (I), (II) and (III), 

respectively. The square-planar environment of the d
8
 Pd(II) center in the three complexes 

(Figure 8) was expected, owing its 16-MVE (metal valence electrons) configuration. 

 

Figure 6. Optimized structures obtained for complexes (I), (II) and (III) in their singlet 

ground state. Relative energies between isomers E are given in kcal/mol. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Steric effects can be evidenced by the orientation between thephenyl and naphthyl rings 

around the azo group. The largest distortion is observed for (I), due to repulsions between the 

azo groups of both ligands. This distortion decreases for (II) and (III), whose relative stability 

is depending on the position of the methoxy group. The optimized Pd-N and Pd-O bond 

 

 

E = 12.0 

E = 0.0 

E = 0.0 

Ortho                                  Meta                                              Para 

Table 4. Selected geometrical and energetic parameters obtained for (I), (II) and (III). Experimental 

values are given in parentheses. Bond distances are given in Å. 

 

 Free Ligand  Complex  

Isomer Ortho Meta Para (I) (II) (III) 

ΔE (kcal/mol) 9.1 0.0 0.5 12.0 0.0 0.0 

HOMO-LUMO gap (eV) 1.89 1.85               1.86 1.72 1.57 1.51 

N1-N2 1.292 1.292 1.291 1.277 (1.282) 1.270 (1.274) 1.278 

Average C-C (Phenyl)    1.391 (1.389) 139.0 (1.387) 1.391 (1.385) 

Average C-C (Naphtyl)    1.400 (1.396) 141.2 (1.403) 140.3 (1.400) 

C-O (methoxy)    1.367 (1.367) 1.374 (1.372) 1.373 

Pd-N(Å) - - - 2.082 (1.976) 2.106 (2.031) 2.114 

Pd-O (Å) - - - 2.071 (2.004)    2.069 (2.000) 2.069 

N2-Pd-N2
i
 (°) - - - 180.0 (180.0) 180.0 (180.0) 178.0 

O1-Pd-O1
i
 (°) - - - 180.0 (180.0)         180.0 (180.0) 179.0 

O1-Pd-N2    (89.69) 87.3 (86.41)  

O1-Pd-N2
i
    (91.31) 92.7 (93.56)  

N2-O1-N2
i
-O1

i
 (°)    0 (0) 0 (0) 2 

Natural Pd population 

(NBO) 
- -             - +0.80 +0.79 +0.76 
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distances for (I) and (II) are comparable to those observed experimentally, where the 

differences do not exceed 0.07 Å (Table 4). They are also comparable to those reported in the 

literature of related complexes [49,50]. The C-C bond distances ranging from 1.38 to 1.42 Å 

suggest delocalization within the phenyl and naphtyl. They are comparable to those found in 

previous works [51-57]. 

The large HOMO-LUMO gaps of 1.72, 1.57 and 1.51 eV of (I), (II) and (III), respectively, are 

consistent with a good kinetic stability. Kohn-Sham MO plots of the three complexes are 

displayed in Figure 7. They show substantial resemblance. Their HOMOs are localized on the 

Pd center, with antibonding ligand admixture. Their LUMOs are ligand based, with 

antibonding N–N and O–O characters. 
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Figure 7. MO plots of the crucial orbitals for (I) (top) and (II) (bottom) isomers. For both 

complexes (I) and (II), the HOMO and LUMO correspond to 86ag and 83au MOs, respectively. 
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UV-Vis electronic spectra 

TD-DFT calculations [45] were carried out on (I) and (II), taking into account solvent 

(CH2CL2) effects (see computational details). Their simulated electronic spectra (Figure 8a) 

show some differences which are somewhat influenced by the methoxy position. They also 

were found to be extremely sensitive to their environment, such as the solvent polarity, as 

known for many dye molecules [57-59]. They are in a satisfying agreement with their 

experimental counterparts (Figure 8b). Because of the different conjugative effects in their 

respective ligands, different electronic transitions are expected to occur in I and II. They were 

assigned from our TD-DFT results and the orbitals characteristics shown in Figure 7. 

 

 

 

The main calculated absorption bands of 0.52 a.u is centered at 348 nm, corresponding 

to the experimental one at 381nm. It is an intense HOMO-3(84ag)  LUMO+2(84ag) 

transition of (d(M) + (L))*(L) nature. Thus, The main band is the result of a strong intra-

ligand charge transfer (ILCT) associated with ligand to metal charge transfer (LMCT). The 

second main band of 0.65 a.u can be identified as a HOMO(86ag)LUMO(83au) transition of 

MLCT character. The band found at relatively low energy and centered at 534 nm 

(experimental at 515 nm) is mainly a HOMO(86ag)LUMO (83au) transition corresponding 

to a metal to ligand charge transfer (MLCT). 

The simulated electronic spectrum of (II) shows only one major broad peak centered at 

400 nm, which is less intense than those obtained for (I). This peak is composed of two 

transitions: one appears at 394 nm and the other one at 408 nm, comparable to the 

experimental one which is found at 382 nm. The first peak corresponds to a mixture of 
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Figure 8. TD-DFT simulated (a) and experimental (b) UV-Vis spectra for complexes (I) and 

(II) in CH2Cl2. 
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HOMO-4(84ag)LUMO(83au) (65%) and HOMO-5(83ag)LUMO(83au) (36%) transitions. 

They are of intra-ligand (ILCT) and ligand to metal (LMCT) charge transfer character. The 

second peak corresponds to HOMO-1(82au)LUMO+2(88ag) (40%), HOMO-

3(81au)LUMO+1(87ag) (30%) and HOMO-4(85ag)LUMO(83au) (20%) transitions giving 

rise to ligand to metal charge transfer (LMCT). Finally, both band appearing at 558 nm 

(experimentally centered at 510 nm) are of weak intensities and are of LMCT character. 

 

Conclusion   

This paper reports the preparation, the spectroscopic analyses, X-ray characterization and 

theoretical calculations of two palladium complexes (I) and (II) containing azo dyes ligands. 

Both complexes (I) and (II) exhibit a square planar geometry around the metal and the solid-

state supramolecular structures are maintained by -stacking interactions. The weak 

intermolecular interactions observed in the solid state do not distort the molecular structures 

significantly. The DFT-optimized structures of (I) and (II) reproduce well that of their X-ray 

counterparts. Complexes (I), (II) and (III) display large HOMO-LUMO gaps, in line with the 

strong metal-ligand interactions. Complex (I) is computed less stable by 12.0 and 11.5 

kcal/mol than its (II) and (III) isomers, respectively, showing the impact of the methoxy 

position on the molecular structures, which are planar in (II) and (III), but distorted in (I). The 

simulated UV-Vis spectra obtained by TD-DFT are comparable to the experimental ones 

putting emphasis on the ILCT and MLCT electronic transitions involving several molecular 

orbitals in the HOMO neighboring. 

 

 

Supporting data 

IR and NMR spectra for complexes (I) and (II) (Figure S1 and S2, respectively). 

Crystallographic data for the structural analysis have been deposited at the Cambridge 

Crystallographic Data Centre, CCDC N° 1921570 for compound (I) and CCDC N° 1921571 

for compound (II). Copies of this information may be obtained free of charge from The 

Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: þ44-1223-336033; e-mail. 

deposit@ccdc.cam.uk or http:// www.ccdc.cam.ac.uk). 
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