
HAL Id: hal-02940236
https://hal.science/hal-02940236v1

Submitted on 16 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Integrating Writing Dynamics in CNN for Online
Children Handwriting Recognition

Simon Corbillé, Elisa Fromont, Eric Anquetil, Pauline Nerdeux

To cite this version:
Simon Corbillé, Elisa Fromont, Eric Anquetil, Pauline Nerdeux. Integrating Writing Dynamics in
CNN for Online Children Handwriting Recognition. 17th International Conference on Frontiers in
Handwriting Recognition (ICFHR), Sep 2020, Dortmund, Germany. �hal-02940236�

https://hal.science/hal-02940236v1
https://hal.archives-ouvertes.fr


Integrating Writing Dynamics in CNN for
Online Children Handwriting Recognition

Simon Corbillé
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Abstract—Online handwriting recognition is challenging but
an already well-studied topic. However, recent advances in the
development of convolutional neural networks (CNN) make us
believe that these networks could still improve the state of the
art especially in the much more challenging context of online
children handwritten letters recognition. This is because, children
handwriting is, at an early stage of learning, approximate and
includes deformed letters. To evaluate the potential of these
networks, we study the early and late fusions of different input
channels that can provide a CNN with information about the
handwriting dynamics in addition to the static image of the
characters. The experiments on a real children handwriting
dataset with 27 000 characters acquired in primary schools, show
that using multiple channels with CNN, improves the accuracy
performance of different CNN architectures and different fusion
settings for character recognition.

Index Terms—Online handwriting recognition, Convolutional
neural network, Digital learning

I. INTRODUCTION

Digital learning is about associating learning experiences
with numerical technology. It is especially popular in the
business world as well as in the educational environment.
With digital learning, one can benefit both from the traditional
active learning methods and from the digital tools which can
take various modalities. Our end goal is to recognize and
analyse online children’s handwriting and, in particular, the
letters they draw when starting to learn how to write, to be
able to help them in this crucial step of their development
where they have a very approximate graphomotor gesture. In
particular, we would like, ultimately, to improve an existing
software [1] that has already been deployed in primary schools
and allowed us to record a large (27 000 characters) number of
children handwriting sequences. This target software gives us a
number of constraints: our method should be usable on tablets,
work in real-time and be dedicated, for now, to the Latin
alphabet. Children handwriting differs from the traditional
(adult) handwriting analysis problem, since it is often difficult,
even for a human eye, to recognize the children letters as
depicted in Fig. 1.

A decade ago, Hidden Markov Model based on hand-crafted
features [2] were state-of-the-art methods to perform online
handwriting recognition. Nowadays, deep neural networks are
trained end-to-end and include feature extraction layers mainly
based on convolutions filters. The current state-of-art results

Fig. 1: Examples of deformed children handwritten letters. In
black, the drawing corresponding with the real orange letter

in online handwriting recognition are obtained by recurrent
neuronal networks [3] [4]. These networks often combine
many different sub parts which make them relatively big (in
space), slow (at inference time) and sometimes difficult to
train. We would like to study how, simpler convolutional
neural networks (CNN), already known to give excellent
results on image analysis, could be used in this context.

In this work, we study three well-known CNN architectures:
LeNet-5 [5] (the first well-known CNN, specialized for digit
recognition), ResNet-18 [6] and VGG-11 [7]. In particular, we
would like to evaluate if using different types of input channels
which provide information about the handwriting dynamics
like in [8], can improve the performance of the CNN compared
to a vanilla setting using only the image channels (3 channels
R/G/B). We evaluate an early and a late fusion. The early
fusion consists in combining different channels at the input of
a single network. The late one consists in using a combination
of neural network classifiers trained on the different channels
separately to improve the classification performance.

The main contributions of this article are:
• Conversion of online data to image with dynamics infor-

mation;
• Comparison of three famous CNN architectures and two

usual types of fusion.
The paper is organized as follows. The related work is pre-

sented in section II. Then, we describe in details in section III
our strategy to encode the dynamics of a handwriting sequence



Fig. 2: Transformation of online handwritten characters to static and dynamic channels to product an image. When there is no
pencil line, the corresponding value in the matrix is zero.

into a single image. Section IV details the two proposed fusion
methods to take into account these complementary inputs. Sec-
tion V presents the results and show how the use of multiple
channels can indeed improve children handwriting recognition.
Conclusion and perspectives are given in section VI.

II. RELATED WORK

Many recent work ( [9], [10], [11], [12], [13] and [14]) use
deep learning to automatically recognize offline handwritten
texts in, respectively, Amharic, Mongolian, Latin, Bengla
and Chinese languages. They mainly use convolutional and
recurrent networks or a combination of both to perform the
recognition task. The usual performance metrics when dealing
with character or word recognition are the CER (Character
Error Rate) and the WER (Word Error Rate) which give
respectively the percentage of errors in classification (at the
level of the character or at the word level) on a given test set.

CNN are preferred to perform offline handwriting recog-
nition. They can be coupled with a text model to increase the
performance such as in [15] where a CNN is coupled to a N-
gram model. They achieved 3.44% CER and 6.45% WER on
the well-known IAM dataset [16] and 1.90% CER and 3.90%
WER on RIMES dataset [17].

The current best results in online handwriting recognition
are obtained with recurrent neural network (see e.g. [3] and
its extension [4]). The networks presented in [3] and [4] give,
respectively 4.3% CER and 10.4% WER and 2.5% CER and
6.5% WER on IAM-OnDB [18], the online version of the IAM
database.

The use of CNN for online signal recognition had been
studied for the task of action recognition in [19] and [20]. In
[19], the authors use three types of inputs relative to gesture as
input to a CNN. Each input is treated separately (in a branch)
of the network and the features extracted are concatenated
before being given as input to a last CNN which performs the
classification. They used three different channels to represent
dynamic information contained in the online signal as input
for the CNN. The idea is to used this approach for mixing
dynamic information with static ones, which represent the
online handwriting, as input for CNN.

Our end goal is to help children learn how to write at
school. To fulfill this goal, real-time and modularity are strong
requirements for any part of an analysis pipeline. This is the
reason why, in this paper, we focus on CNN which are deemed
more efficient than recurrent neural network at inference
time and easier to integrate in a complex pipeline. Besides,
we would like to evaluate how the dynamical information
provided by the online recording of the handwriting can be
successfully taken into account in such CNN. We thus explore
two fusion schemes: an early and a late one that are developed
in the following.

III. ONLINE HANDWRITING ENCODING INTO CHANNELS

Online handwriting can be modelled with a time series
where each point is represented by a 4D vectors which encodes
the 2D coordinates of the point (x, y), a pressure value and
a timestamp. We do not use pressure data in our study. Our
goal is to convert the online signal (i.e. the time series) into
a set of multichannel images where each channel represents
either static or dynamical information about the original signal.
Images are mostly represented in black and white, grey-scale
or color (R/G/B). In character or word recognition, the color
information is not particularly relevant to the recognition pro-
cess compared to the shape so, the letters are usually encoded
into a grey-scale image matrix in a single input channel. In this
paper, we explore what additional information that characterize
the dynamics of the online signal could bring to the recognition
performance of a network. This section describes how each
type of information is extracted and encoded in the different
channels.

A. Shape information encoding

A few pre-processing steps are necessary to convert an
online signal represented by a times series into an image
represented by a matrix of values. The whole pipeline of
conversion is illustrate in Fig. 3.

First, a linear normalisation step sets the coordinates
values between a min and max value which represent the
bounds of a 32 × 32 image. Then, a spatial sampling step
allows to fill in a gap between two points to link them. We



Fig. 3: Data pre-processing of online time series to obtain
static images.

center the points to avoid a top right alignment then convert
these points to a black and white image. The white value
corresponds to a point of handwriting, and the black value
corresponds to the background (i. e. one when there is a
handwriting, zero if there is not). Thereby, we have converted
the list of points to a one channel image.

B. Orientation information encoding

The letter represented by an online signal can be split
into ascending and descending lines as shown in Fig. 4. An
ascending line represents a handwritten line which has been
created bottom up. As soon as the pencil or stylus move
downwards, it becomes a descending line. This decomposition
provides information about the ductus of the handwritten
character. In the following, we only use the information about
the descending strokes because this characteristic is more
discriminating than the other one [21]. The value is one if
the descending stroke passes by this point; else it is set to
zero.

Fig. 4: Decomposition of ascending and descending lines.

C. Direction information encoding

To add some information about the direction of the signal,
we use the angle between one point and the next point in

the time series. To model the angle, we both use its cosine
and sinus. The image is representing by a matrix of pixels.
Therefore, the next point can be in one of the 8 boxes next to
the point which gives us 8 possible angle values as is illustrated
in Fig. 5. The cosine and the sinus have values between -1
and 1. Since we already assigned the zero value to indicate
the absence of a stroke, we re-normalized the cosine and sinus
between 0.2 and 1 to avoid any confusion and multiplied this
value by 255 to have values in the color domain. We use the
following formula to normalise the value x to xn :

x ∈ [a, b] and xn ∈ [c, d]
xn = d−c

b−a ∗ (x− a) + c

With a = -1, b = 1, c = 0.2, d = 1

Fig. 5: Example of angle α representation between points in
the series.

The cosine and sinus are treated independently in different
channels. The different combinations of inputs that we tested
are presented in Section V. To summarize, the four types of
channel which represent static and dynamical information we
use are:

• type 1 : shape of the letter (static information)
• type 2 : orientation represented by descending stroke

(dynamical information)
• type 3 : direction represented by cosine value of the angle

with the next point (dynamical information)
• type 4 : direction represented by sinus value of the angle

with the next point (dynamical information)

IV. MULTICHANNEL FUSION IN CONVOLUTIONAL NEURAL
NETWORKS

We study two different fusion schemes to take into account
the online information provided in the channels described in
section III: an early fusion where the channels are given as
input to a single CNN and a late fusion where each channel is
provided separately to different networks and the predictions
are combined a posteriori.

A. Early fusion in different CNN architectures

We compare the impact of using different channels on the
handwritten character classification performance of three clas-
sical CNN architectures: LeNet-5 [5], VGG with 11 layers [7]
and ResNet with 18 layers [6]. LeNet-5 is one of the first well-
known convolutional neural networks which brought good
performance on digit recognition. LeNet-5 is compact (around
60000 parameters) compared to more recent architectures
but it is not sufficiently deep to tackle very complex tasks



in computer vision. VGG and ResNet are more recent and
deeper networks that have achieved very good performance in
the very challenging ImageNet classification challenge [22].
ResNet introduced the residual connections that proved to be
key to successfully train very deep networks. We choose a
shallow version of both VGG (11 layers for about 28 millions
parameters) and ResNet (18 layers for about 11 millions
parameters) because we believe that larger ones would be more
prone to over-fitting on our, comparatively to ImageNet, rather
a small dataset.

B. Late fusion with ensembles

We compare our early fusion approach with a late fusion one
where each channel is provided to a different instance of the
same architecture (either LeNet, VGG or ResNet). We then
build three different ensembles of neural network classifiers
which architecture is presented in Fig. 6 and compare their
classification and time performance. Each ensemble consists in
a set of four networks, one for each type of channel presented
before. The predictions of these networks are merged to obtain
a global prediction. We tested a naive approach where an equal
weight is given to each individual classifier in the ensemble.

Fig. 6: Ensemble architecture: there is one network per input
channel.

V. EXPERIMENTS

We use accuracy (1-CER) as our performance metric in this
section. We also provide inference time (in ms) measures for
each configuration (fusion type and architecture). All experi-
ments were made on a computing grid composed of several
GPU nodes except the inference time measures that were
measured on a CPU. We fixed the batch size hyper-parameter
to 128, choose ADAM optimizer and set the learning rate
to 10−4 for all training procedures. The networks were all
implemented in Python using Keras1. For each configuration
of input, we tune the early stopping hyper-parameter of each
network.

1https://keras.io

We tested the four following combinations of channels:
• Config A (baseline) : this configuration uses a single

channel which encodes the static pencil line i.e. the shape
of the letter (type 1).

• Config B : we add two channels to the previous baseline
(A) which encode the dynamic information about the
direction of the signal in the form of cosine and sinus
values (type 1 + type 3 + type 4).

• Config C : we add one channel to the baseline (A) which
encodes the orientation of the signal (type 1 + type 2).

• Config D : we use all four available channels (type 1 +
type 2 + type 3 + type 4).

Note that the last configuration (D) is the one that contains
the most information about the dynamics of handwriting.
Configurations B and C subsume the configuration A but
are not comparable since one (C) is using the orientation
information but not the direction whereas the other (B) only
uses the direction without orientation information.

A. Dataset acquisition

As explained in the previous section, there are some
known benchmark datasets for online handwriting recogni-
tion [16], [23], but they all provide examples of adult hand-
writing. Because our work is part of a much bigger project
which aims at providing feedback to children learning to
write, we designed a new dataset with examples of children
handwriting. To do so, we have used an existing platform [1],
which is already deployed in some primary schools and has
allowed us to collect diverse handwriting sequences made by
children writing with a pen on digital tablets2. This dataset
is private since children handwriting are considered protected
personal data. Each handwritten letter (and the entire word if
applicable) is recorded as a multivariate time series. This new
dataset contains letters naturally distorted on several aspects
which may fool a classifier trained on adult handwriting.
However, since neural networks are data greedy, we use data
augmentation techniques to increase the size of our children
handwriting training dataset. Our data augmentation strategy
consists in deforming the original letters to create more
examples of plausible children handwriting sequences. First,
we apply some usual operations such as stretching, inclination
and rotation. Then, we use two techniques which are described
in [24] which modify the curvature of the stroke and the
speed with which the stroke was drawn. We also used other
techniques such as stretching and translation at the stroke level.
Fig. 7 illustrates some of these techniques.

To create our training dataset, we started from a base of the
initial examples from the first version of IntuiScript [1] dataset
which contains about 27 000 handwritten characters written by
147 children. Then, we augmented it in order to obtain 5 000
examples per class (10 000 for the ”e” and ”x” letters because
we considered two ways to draw them). Since we focus on the
Latin alphabet, our training dataset contains 140 000 elements.

2See https://www-intuidoc.irisa.fr/children-handwritings-database/ for more
information about the dataset.



Fig. 7: Example of image and online deformations.

In our test dataset, we do not use augmentation set aside
9 686 letters with no class balancing. We extracted from it 100
examples per class to build a validation set. Our test dataset
is composed of 7 096 samples and our validation dataset of
2 600 samples.

B. Early fusion

The results obtained using the different input configurations
(A, B, C, D) for the three network architectures (LeNet, VGG
and ResNet) are given in Table I. Each experiment is run twice
and both results are averaged in the table and presented with
their variance.

Static Static + Dynamic
Input Config A B C D

LeNet-5
Accuracy 90.62 91.35 91.93 92.66
Variance 0.0240 0.1599 0.0121 0.0049

ResNet-18
Accuracy 94.05 94.06 94.33 94.64
Variance 0.0100 0.1764 0.0030 0.0030

VGG-11
Accuracy 94.54 94.64 94.84 95.00
Variance 0.0066 0.0580 0.0323 0.0042

TABLE I: Classification results (accuracy) for each architec-
ture and input configuration

These results show first that the best test accuracy (95%)
can be obtained with the VGG-11 network which is the
one with the highest number of parameters. This accuracy
is suitable and very promising for a real-time deployment in
an existing platform. Whatever the architecture, when adding
some information about the dynamics of the drawing in the
network (B,C,D), the results are better than with only the static
information (A). With the highest amount of information (D),
the results are the best and even more stable (low variance).
This shows that it is important to finely encode the dynamical
information to improve the performance of a CNN.

C. Late fusion

We use in these experiments the same early-stopping criteria
and values as for the early fusion experiments. For each type

of architecture, we trained one neural network for each of
the 4 channels (type 1 to 4) and merge their probabilities
predictions with the mean function with an equal weight
to each network an select the prediction with the higher
probability. The results are given in Table II.

Trace Dynamic
Input Config Type 1 Type 2 Type 3 Type 4 Ensemble

LeNet-5
Accuracy 91.10 77.49 90.78 88.15 93.35

ResNet-18
Accuracy 93.35 74.44 93.60 93.19 94.87

VGG-11
Accuracy 94.24 75.30 94.24 93.77 94.76

TABLE II: Classification results (accuracy) for each architec-
ture and input configuration

As also noticed for the early fusion, using a late fusion
of multiple channels gives better results than all the channels
taken separately. Interestingly, we can see that using only the
descendant stroke information in a network (type 2) gives very
bad performance for all architectures so this feature is not
sufficient in itself for classification. The ensemble accuracy
results are similar to the ones obtained with an early fusion
approach which shows that the fusion scheme is less important
than the expert dynamical information that can be encoded in
each channel. We can however note that with ensembles of
LeNet and ResNet classifiers, we obtain slightly better results
than with the early fusion which is not the case for the VGG
ensemble even it is again the architecture with the best overall
results.

Note that we also tried to learn a weight associated to each
classifier in the ensemble but the results were not better than
the ones presented in Table II and are thus not shown here.

D. Inference time

We computed the inference time on the test dataset (7086
samples) for the configurations introduced before. The mea-
surements were done without GPU and a Intel i7-7600U,
2.80GHz CPU. We used a batch size of 1 and report in
Table III the average processing time for the entire test set.

Architecture
Input A B C D Ensemble

LeNet 0.68 0.71 0.77 0.76 2.80
ResNet 13.33 13.96 14.35 15.33 59.39
VGG 18.89 18.51 18.94 19.46 76.43

TABLE III: Inference time (in ms) for each architecture
each input configuration (A,B,C,D) and for the late fusion
(Ensemble).

This table shows that the inference time is low and meets
the real-time requirement of our target software for all early
fusion configurations. Unsurprisingly, the inference time for
LeNet is much lower than for the two other architectures.
The late fusion approach takes much more time than the early
fusion one and might not meet the real-time requirement in
a more complex pipeline. Adding channels that encode the



dynamics in the early fusion scheme does not significantly
increase the inference time. There is a clear trade-off between
the complexity of the deep learning model and the inference
time. We believe that the ResNet architecture, which is a little
bit less accurate than the VGG one, might still be preferred
for its better inference time.

VI. CONCLUSION AND PERSPECTIVES

We studied the early and late fusions of multiple channels
with different convolutional neural networks for online chil-
dren handwriting recognition. We showed that we can improve
the performance of CNN in terms of accuracy by adding
dynamic information in the input channels of the networks
for both the early and late fusion approaches. We achieved
95.00% of accuracy and nearly 20ms of inference time when
predicting one letter with the VGG architecture and an early
fusion scheme. This is very promising to integrate such a
network in a complete analysis pipeline.

Converting the online signal into multiple image channels
was one way of using the dynamical information to improve
the performance of a CNN. We would like to explore the use
of CNN directly on the time series signal as done for example
in [25].
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