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Virtual and arrow Temperley-Lieb algebras, Markov traces, and virtual
link invariants

Luts PARIS
Loic RABENDA

Abstract Let R = Z[A*!] be the algebra of Laurent polynomials in the variable A and let R* =
ZIA*!, 71,25, .. .] be the algebra of Laurent polynomials in the variable A and standard polynomials
in the variables z;,z,.... For n > 1 we denote by VB, the virtual braid group on n strands. We
define two towers of algebras {VTL,(R")}%°, and {ATL,(R%)}°%, in terms of diagrams. For each

n=1
n > 1 we determine presentations for both, VTL,(R) and ATL,(R%). We determine sequences
of homomorphisms {p), : R'[VB,] — VTL,(R)}2, and {p® : R‘[VB,] — ATL,(R)}>°,, we
determine Markov traces {7/ : VTL,(R") — R'}2° and {T'* : ATL,(R*) — R%}>°,, and we show
that the invariants for virtual links obtained from these Markov traces are the f-polynomial for the
first trace and the arrow polynomial for the second trace. We show that, for each n > 1, the standard
Temperley—Lieb algebra TL, embeds into both, VTL,(R) and ATL,(R%), and that the restrictions

to {TL,}>2, of the two Markov traces coincide.

AMS Subject Classification 57K12, 57K14, 20F36

1 Introduction

Let Si,...,S¢ be a collection of ¢ oriented circles smoothly immersed in the plane and having only
double crossings. We assign to each crossing a value “positive”, “negative”, or “virtual”, that we
indicate on the graphical representation of S;U- - - US, as in Figure 1.1. Such a figure is called a virtual
link diagram. We consider the equivalence relation on the set of virtual link diagrams generated by
isotopy and the so-called Reidemeister virtual moves, as described in Kauffman [6, 7]. An equivalence

class of virtual link diagrams is called a virtual link.

RN
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positive negative virtual

Figure 1.1: Crossings in a virtual link diagram

Let b = (by,...,b,) be a collection of n smooth paths in the plane R? satisfying the following
properties.

(a) b;(0) = (0,0 forall i € {1,...,n}, and there exists a permutation w € &,, such that b;(1) =
(1,w(i)) forall i € {1,...,n}.

(b) Letp;: R2? — R bethe projection on the first coordinate. Then p(b;(f)) = tforalli € {1,...,n}
and all r € [0, 1].
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(c) The union of the images of the b;’s has only normal double crossings.

LR I3

As with virtual link diagrams, we assign to each crossing a value “positive”, “negative”, or “virtual”,
that we indicate on the graphical representation as in Figure 1.1. Such a figure is called a virtual braid
diagram on n strands. We consider the equivalence relation on the set of virtual braid diagrams on n
strands generated by isotopy and some Reidemeister virtual moves, as described in Kauffman [6]. An
equivalence class of virtual braid diagrams on n strands is called a virtual braid on n strands. The
virtual braids on n strands form a group, denoted VB,,, called virtual braid group on n strands. The
group operation is induced by the concatenation.

We know from Kamada [4] and Vershinin [12] that VB, admits a presentation with generators
Oly---y0n—1,Tl,...,Tn—1 and relations

=1 forl<i<n-—1,

]
0i0j = 0jo;, TiTj = TjT;, Tio; = o;T; for|i —j| > 2,

0,0j0; = 0005, TiTjTi = T;T{Tj, TiTj0Oj = O;T;T;j for |i _.]| =1.

The generators o; and 7; are illustrated in Figure 1.2.

i+1 i+1
D G - O

o; T

Figure 1.2: Generators of VB,

Note that the subgroup of VB, generated by o,...,0,-1 is the braid group B, on n strands. On
the other hand, VB,, may be viewed as a subgroup of VB,,;| via the monomorphism VB, — VB,
which sends o; to 0; and 7; to 7; forall i € {1,...,n—1}.

Using the same procedure as for classic braids, we can close a virtual braid 8 and obtain a virtual link,
5, called the closure of 8. We know that each virtual link is the closure of a virtual braid, and we can
say when two closed virtual braids are equivalent in terms of virtual Markov moves, as follows.

We denote by VB = | |2, VB, the disjoint union of all virtual braid groups. Let £}, 5, € VB. We
say that 31 and (3, are connected by a virtual Markov move if we are in one of the following four cases.

(a) There exist n > 1 and o € VB,, such that 31, 3, € VB, and 5, = aia~'.

(b) There exist n > 1 and u € {0,,0, ', 7,} suchthat 8; € VB,, B2 € VB, 4| and $, = Bju, or
vice versa.

(c) There exists n > 2 such that 51 € VB,,, 5> € VB4, and 5> = S0, L 10y, Or vice versa.

(d) There exists n > 2 such that 8; € VB,,, 5> € VB,y1,and 3, = BlrnTn,mn,lTna;_llTn,lrn, or
vice versa.
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Theorem 1.1 (Kamada [4], Kauffman—Lambropoulou [9]) Let 31,5, € VB. Then 81 = Bg if and
only if 8 and (3, are connected by a finite sequence of virtual Markov moves.

Let R be aring. For n > 1 we denote by R[VB,,] the group R-algebra of VB,,. Notice that, since VB,
is a subgroup of VB,,;1, R[VB,] is a subalgebra of R[VB,,]. A sequence {7, : R[VB,] — R},‘f;l of
R-linear forms is called a Markov trace if it satisfies the following properties.

(@) T,(xy) =T,(yx) forall n > 1 and all x,y € R[VB,].

(b) T,(x) =T,y1(x0p,) = T,H_l(xan_l) = Ty41(x1,) forall » > 1 and all x € R[VB,].
(¢) Tu(x) = Tyy1(x0, '74_10,) forall n > 2 and all x € R[VB,,].

(d) Tw(x) = Ty 1 (T Ty— 1001700, ' Tu—17,) for all n > 2 and all x € R[VB,,].

Note that our definition of “Markov trace” is not the one that can be usually found in the literature (see
Kauffman—Lambropoulou [9], for example), but all known definitions, including this one, are equivalent
up to renormalization.

Let VL be the set of virtual links. Thanks to Theorem 1.1, from a Markov trace {7, : R[VB,] — R}°,
we can define an invariant / : V£ — R by setting I(B) = T,(B) forall n > 1 and all 8 € VB,,.
Conversely, from any invariant / : V£ — R, we can define a Markov trace {7, : R[VB,] — R}j’lil by
setting T,,(8) =1 (B) forall n > 1 and all 5 € VB,,, and then extending T, linearly to R[VB,].

A tower of algebras is a sequence {A,}>°, of algebras such that A, is a subalgebra of A, for all
n > 1. A sequence {p, : R[VB,] — A,};2, of homomorphisms is said to be compatible if the
restriction of p,y to R[VB,] is equal to p, for all n. Let {A,}>°, be a tower of algebras and let
{pn : RIVB,] — A,}32, be acompatible sequence of homomorphisms. Set S; = p,(0;) and v; = p,(7;)
forallie {lI,...,n—1}. Asequence {7} : A, — R}"°, of linear forms is a Markov trace if it satisfies
the following properties.

(@) T)(xy)=T)(yx) foralln > 1 andall x,y € A,.

(b) T,(x) =T, (xS, = T,’1+1(xSn_1) =T, (xv,) foralln > 1andall x € A,.
© Tyx) =T, (xS, 'va_1S,) forall n > 2 and all x € A,.

d) Ti(x)= T,’lH(xv,,vn_lSn_lvnS;jlvn_lvn) forall n > 2 and all x € A,,.

Clearly, in that case, the sequence {7, = T}, o p, : RIVB,] — R}j;il is a Markov trace, and therefore
it determines an invariant for virtual links.

A “natural” strategy to build Markov traces on {K[VB,]}7,, and therefore invariants for virtual links,
would be to transit through Markov traces on compatible towers of algebras, as defined above. This
strategy won its spurs in the classical theory of knots and links, in particular thanks to Jones’ definitions
of the Jones polynomial [2] and of the HOMFLY-PT polynomial [3]. As far as we know, this strategy is
poorly used in the theory of virtual knots and links. Actually, the only reference we found is Li—Lei-Li
[10], where the authors define a tower of algebras in terms of diagrams, claim (with no proof) that their
algebras are the same as the virtual Temperley—Lieb algebras of Zhang—Kauffman—Ge [13], and show
that the f-polynomial can be obtained from a Markov trace on this tower of algebras. They also gave
presentations for these algebras in terms of generators and relations, but we found that one of their
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relations should be substituted by another one to get a correct presentation (see Proposition 2.2 and
Proposition 2.7).

Our aim in the present paper is to describe two invariants for virtual links in terms of Markov traces:
the f-polynomial, also known as the Jones—Kauffman polynomial, and the arrow polynomial. The
f-polynomial is a version of the Jones polynomial for virtual links defined from the Kauffman bracket.
This was introduced by Kauffman [6] in his seminal paper on virtual knots and links, and its construction
closely follows Kauffman’s construction [5] of the Jones polynomial for classical links. The arrow
polynomial is a refinement of the f-polynomial. It coincides with the Jones polynomial on classical
links, but it is much more powerful for (non-classical) virtual links. In particular, it provides a lower
bound for the number of virtual crossings. It was constructed by Miyazawa [11] and Dye—Kauffman
[1] (see also Kauffman [8]).

Section 2 is dedicated to the construction of a Markov trace associated with the f-polynomial. Our
approach is close to that of Li—Lei—Li [10], but, on the one hand, our study of the f-polynomial is
needed in our study of the arrow polynomial, and, on the other hand, we complete the study of Li—
Lei—Li [10] with correct presentations for virtual Temperley—Lieb algebras and other results. For each
n > 1 we define an algebra VTL,(R) in terms of diagrams, so that the sequence {VTL,,(Rf )30, is
a tower of algebras. In Proposition 2.2 we determine a presentation for VTL,(R/) and in Proposition
2.7 we show that the presentation for VTL,(R") given in Li-Lei-Li [10] cannot be correct. Actually,
the relation E;E;E; = E; for |i — j| = 1, which is standard in Temperley—Lieb algebras, must be
replaced by a “virtual relation” of the form Ejv;E; = E;. Then we determine a compatible sequence
of homomorphisms { pﬁ : R'[VB,] — VTL,(R )}52, (Theorem 2.9), we determine a Markov trace on
the tower of algebras {VTL,,(Rf )12, (Theorem 2.10), and we show that this construction leads to the
f-polynomial (Theorem 2.12).

Section 3 is dedicated to the arrow polynomial. Our construction can be viewed as a labeled version
of the construction of Section 2. For each n > 1 we define an algebra ATL,(R“) in terms of labeled
diagrams, so that {ATL,(R“)}5°, is a tower of algebras. Intuitively speaking, a label represents the
number of cusps in Kauffman sense that can be found on an arc. In Proposition 3.2 we determine
a presentation for ATL,(R%). This is a sort of labeled version of the presentation for VTL,(R/)
given in Proposition 2.2. Then we proceed as in Section 2: we determine a compatible sequence of
homomorphisms {p¢ : R“[VB,] — ATL,(R*)}>°, (Theorem 3.10), we determine a Markov trace on
the tower of algebras {ATL,(R*)}>° | (Theorem 3.11), and we show that this construction leads to the
arrow polynomial (Theorem 3.15).

It is known that the arrow polynomial coincides with the f-polynomial on classical links (see Miyazawa
[11] and Dye—Kauffman [1]). We show that this fact has an interpretation in terms of Markov traces
on Temperley—Lieb algebras. For n > 1 we denote by TL,, the n-th standard Temperley-Lieb algebra.
We show that TL,, embeds into both, VTL,,(R") (Proposition 2.8) and ATL,,(R%) (Proposition 3.9), and
that the restriction to {TL,}°%, of the Markov trace on {VTL,(R")}°2, coincides with the restriction
to {TL, }>°, of the Markov trace on {ATL,(R*)}>°, (Proposition 3.13).

Acknowledgments The first author is supported by the French project “AlMaRe” (ANR-19-CE40-
0001-01) of the ANR.



Virtual and arrow Temperley—Lieb algebras 5

2 Virtual Temperley-Lieb algebras and f-polynomial

Two rings are involved in this section. The first is the ring R‘g = Z[z] of polynomials in the variable
z with integer coefficients. The second is the ring R = Z[A™'] of Laurent polynomials in the
variable A with integer coefficients. We assume that R’; is embedded into R’ via the identification
z = —A? — A2, Notice that the superscript f over Ry and R in this notation is to underline the fact
that all the constructions in the present section concern the f-polynomial. In contrast, the rings in the
next section, which concerns the arrow polynomial, will be denoted R{j and R“.

We start recalling the definition of the f-polynomial, as it will help the reader to understand the
constructions and definitions that follow after.

Define the Kauffiman bracket (L) € R’ of a (non-oriented) virtual link diagram L as follows. If L
has only virtual crossings, then (L) = z* = (—A? — A=2)’, where / is the number of components of
L. Suppose that L has at least one non-virtual crossing p. Then (L) = A (L) + A~! (L,), where L,
and L, are identical to L except in a neighborhood of p where there are as shown in Figure 2.1. The
writhe of an (oriented) virtual link diagram L, denoted w(L), is the number of positive crossings minus
the number of negative crossings. Then the f-polynomial of an (oriented) virtual link diagram L is

L) =fL)A) = (—A3)D(L).

XX

Figure 2.1: Relation in the Kauffman bracket

Theorem 2.1 (Kauffman [6]) If two virtual link diagrams L and L' are equivalent, then f(L) = f(L').

The f-polynomial of a virtual link L, denoted f(L), is the f-polynomial of any of its diagrams. This is
a well-defined invariant thanks to Theorem 2.1.

Our goal now is to define a Markov trace whose associated invariant is the f-polynomial. We proceed as
indicated in the introduction: we pass through a tower of algebras, the tower of virtual Temperley—Lieb
algebras.

Let n > 1 be an integer. A flat virtual n-tangle is a collection of n disjoint pairs in {0, 1} x {1,...,n},
that is, a partition of {0, 1} x {1,...,n} into pairs. Let E = {a1,...,a,} be a flat virtual n-tangle.
Then we graphically represent E on the plane by connecting the two ends of each «a; with an arc.
For example, Figure 2.2 represents the flat virtual 3-tangle {1, an, a3}, where a; = {(0, 1), (0,2)},
a2 = {(0,3),(1,2)} and a3 = {(1,3),(1, D}

We denote by &, the set of flat virtual n-tangles, and by VTL, the free R(f)—module freely generated by
E,. We define a multiplication in VTL, as follows. Let E and E’ be two flat virtual n-tangles. By
concatenating the diagrams of E and E’ we get a family of closed curves and n arcs. These n arcs
determine a partition of {0, 1} x {1,...,n} into pairs, that is, a flat virtual n-tangle that we denote by
E * E'. Let m be the number of obtained closed curves. Then we set EE’ = 7" (E x E'). It is easily
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2 j 2
1 1
Figure 2.2: Flat virtual tangle

checked that VTL,, endowed with this multiplication is an (unitary and associative) algebra that we call
the n-th virtual Temperley—Lieb algebra.

Example On the left hand side of Figure 2.3 are illustrated the diagrams of two flat virtual 4-tangles,
E and E’, and on the right hand side a diagram of ExE’. In this example, by concatenating the diagrams
of E and E’ we get only one closed curve, hence m = 1 and EE’ = z(E x E).

[— P— O—

XU T L Il
_ L J L

E E’ ExE'

Figure 2.3: Multiplication in VTL,,

Remark It is easily seen that the embedding &, — &,+1 which sends each E € &, to EU {{(0,n +
1),(1,n 4+ 1)}} induces an injective homomorphism VTL, < VTL,, forall n > 1. So, we have a
tower of algebras {VTL,}>° .

Proposition 2.2 Letn > 2. Then VTL,, has a presentation with generators E, ..., E,_1,vi,..., V1
and relations

E?:ZE,',V%ZI,E,'VI‘:V[E[:E,', fOI‘lSiSI’l—l7
EiEj:EjE,‘, Vl'Vj:VjV,', ViEj:EjVi, fOI"l—]’ 22,

E,’VjE,' = Ei, Vivivi = VjVivj, V,'VjEi = Ejvivj, for ‘i —]| =1.

The generators E; and v; are illustrated in Figure 2.4.

The next four lemmas are preliminaries to the proof of Proposition 2.2. Let A, be the algebra over R{)
defined by the presentation with generators Xy, ..., X,_1,y1,...,Ys—1 and relations

X?=zX;, y'=1,Xyi=yX;=X;, forl<i<n—1,
XiXj = XiX;, yiyj = ypi» yiX; = Xpyi, for|i—j| > 2,
XiXi = Xis yiyiyi = yiyivj» yiviXe = Xpyiyj, for|i—jl=1.
It is easily checked using diagrammatic calculation that there is a homomorphism ¢ : A, — VTL,
which sends X; to E; and y; to v; forall i € {1,...,n— 1}.
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Figure 2.4: Generators of VTL,

Lemma 2.3 The following relations hold in A,, .
XinYiyj = X,' fOI‘|i —]‘ =1 y
Xl’)(in :Xi fOI‘|i —]‘ =1 s
XiXj = yjyiX; forl|i—jl=1,
Yit1Yir2YiVit1XiXiyo = XiXipo forl <i<n-—-3.

Proof Leti,je€ {l,...,n— 1} suchthat |i —j| = 1. Then
XiXjyiy; = XiyiyiXi = XiyiXi = Xi ,
XiXiXi = XiXjyiypypyiXi = XiyyiXi = XiyiXi = X ,
XiX; = yiyiyiyiXiX; = ypyiXjyiyiXy = ypyiXjyiXj = y;yiX; .
Leti e {l,...,n—3}. Then
Vit 1Yi+2Y Vit 1XiXiv2 = yir1Yit2Xit1XiXiv2 = Xip2Xi1 XiXip2 =
Xi2Xip1 Xip2Xi = Xi2Xi = XiXip2

O

We denote by U/(A,) the group of units of A, and by &, the n-th symmetric group. We have a
homomorphism ¢ : &, — U(A,) which sends s; to y; forall i € {1,...,n— 1}, where s5; = (i,i + 1).
Let ng be the integer part of 5. Let p € {0,1,...,n9}. Weset B, = X1 X3---Xp,_ if p # 0, and
B, = By = 1 if p = 0. We denote by U, the setof w € G, satisfying

wl) <w@B)<---<w@2p—1),

wR2i—1)<wRi) forl <i<p,

wp+1)<w2p+2)<--- <wn),

and we denote by U, , the set of w € &,, satisfying

wl) <w@B) <---<w@p—1),
wRi—1)<wRi) forl <i<p.

Then we set
B, = {«(w1) B, L(W;l) | wi € Uiy, wa € U},
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for 0 < p < ngp, and
ng
B=|JB,.
p=0

Let E € &,. We can write E in the form E = {ay,...,qp,},...,a,, 1, .., B4}, where

e each ¢ is of the form «; = {(0,4;),(0,b;)}, with 1 < a; <ap <--- < a, <n,and a; < b; for
allie {1,...,p};

e each o is of the form o} = {(1,a)),(1,b))}, with | < a} < ay <--- < a, <n,and a} < b} for
alli e {1,...,p};

e each [ is of the form 3; = {(0,¢)),(1,d)}, with1 <¢; < <--- <c¢y;<n,and 2p+g = n.

We define w; € &, by wi(2i — 1) = a; and wi(2i) = b; forall i € {1,...,p}, and wi(2p +)) = ¢;
for all j € {1,...,q}. Similarly, we define w, € &, by wa(2i — 1) = a and wy(2i) = b} for all
ie{l,...,p},and wa(2p +j) = d; forall j € {1,...,q}. We see that w; € Uy, wy € Uz, and
E = o(u(w1) B, t(wy ). Moreover, such a form is unique for each E € &,, and we have ¢o(Y) € &, for
all Y € B, hence ¢ restricts to a bijection from B to &,.

So, in order to prove Proposition 2.2, it suffices to show that B spans A,, as a R{)—module. We denote by
M the submonoid of A, generated by Xi,...,X,_1,y1,...,Vn—1, that is, the set of finite products of
elements in {X,...,X,—1,Y1,.-.,Yn—1}. By definition M spans A, as a R{) -module, hence we only
need to show that M is contained in the R{)—submodule SpanR,:)- (B) of A,, spanned by B.

Lemma24 Letw;,w, € &, andp € {0,1,...,n9}. Then «(wy)B, L(W;l) € B.

Proof Let i € {1,...,p} such that wi(2i — 1) = b; > w;(2i) = a;. By applying the relation
yi—1X2i—1 = Xpj—1 we can replace w; with wysy;_1, and then w;(2i — 1) = a; < w1(2i) = b;. So,
we can assume that wi(2i — 1) < wy(2i) forall i € {1,...,p}. Leti € {1,...,p — 1} such that
wi(2i—1) = ai41 > wi(2i+1) = a;. By applying the relation yz;y2i—1y2i+1Y2iX2i—1X2i+1 = Xoi—1X2i+1
we can replace wy with wys2;$2i—152i4152i, and then we have w1(2i — 1) = a; < w1 (2i + 1) = a1
while keeping the inequalities w1(2i — 1) < w(2i) and w;(2i + 1) < w1(2i + 2). So, we can also
assume that wi(1) < wi(3) < --- <wi(2p—1). Set g =n—2p. Letj € {1,...,q — 1} such that
wi(2p +j) = ¢ji1 > wi(2p +j + 1) = ¢;j. By applying the relations ys,1;X2i—1 = Xo;_1y2p4, for
i € {1,...,p} we can replace w; with wyso,+; and wy with waso,;, and then wi(2p + j) = ¢; <
wi(2p +j+ 1) = ¢j41. So, we can also assume that wi(2p + 1) < wi(2p +2) < --- < wi(n), that
is, wi € U;p,. We use the same argument to show that wy can be replaced with some w) € U . So,
Ww1) B, uwy 1) € B. O

Lemma 2.5 Leta,b € {l,....,.n—1}, a < b, and p € {0,1,...,n9}. Then X,yat1---YpBy €
Span,y (B).
0
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Proof Suppose a > 2p + 1 (which is always true if p = 0). Then
XaYay1 - yoBp = XaBpyat1 -+ yp =
Xa(Va—1Ya)Ya—2Ya—1) -+ - OV2p+1Y2p+2)V2p+2Y2p+1)  * * Va—1Ya—2)VaYa—1)BpYa+1 -+ yb =
Va—1Ya)Va—2Ya—1) * * - V2p+1Y2p+2)Xop+1Bp(Vop+2Y2p+1) * - * Va—1Ya—2)VaYa—1)Ya+1 " Vb =
Va—1Ya)YVa—2Ya—1) - = - O2p+1Y2p+2)Bp+1V2p+2Y2p+1) -+ Va—1Ya—2)VaYa—1)Va+1 "+ Yb =
Lw1) Bp1e(wy 1) € B,
where wi = (sa—15a) -+ - (S2p+152p+2) and wa = $p -+ + - Sa41(Sa—154) - * * (S2p+152p+2). Suppose a < 2p,
aisodd,and a =b. Let ¢ € {1,...,p} such that a = 2¢ — 1. Then
XoYat1 - Y6Bp = X5e_1 X1 -+ Xoc—3Xaey1 - Xopo1 =
2Xoe—1X1 - Xoe—3Xoey1 - Xop—1 = 2B € SpanRg(B).
Suppose a < 2p, a isodd, and a < b. Let ¢ € {1,...,p} such that a = 2¢ — 1. Then
XaYa+1 - YoBp = Xoc—1y2¢ -+ - ypXoc—1X1 -+ - Xoe—3Xoe41 -+ - Xop—1 =
Xoc—1Y2eX2e—1Y2¢+1 " Yo X1+ - Xoe—3Xoe41 - Xop—1 =
Xoc—1y2e41 - Yo X1+ Xoe3Xoeq1 - Xop—1 =
V2et1 - YX1 - Xoe3Xoe1 Xy 1 - Xop—1 = (2041 5p) By, € B.
Suppose a < 2p and a is even. Let ¢ € {1,...,p} such that a = 2¢. Then
XaYa+1 - YbBp = Xocyae+1 -+ - YpXoc—1X1 -+ - Xoe—3Xoe41 -+ - Xop—1 =
XocXoc—1Y2e+1 - VX1 Xoe—3Xoep1 - Xop—1 =
V2e—1Y2eX20—1Y2¢+1 - Y X1+ - Xoe—3Xoe41 - Xop—1 =

V2e—1Y2eY2e41 Yo X1 - Xoe3Xoe 1 Xpeq1 - - Xop—1 = US2c—152¢82¢41 -+ - Sp) Bp € B.

Lemma 2.6 Letp € {0,1,...,n0} and w € &,. Then X, u(w) B, € Span,s(B).
0

Proof There exist a € {1,...,n— 1}, b € {0,1,...,n — 1} and w; € (s3,...,5,—1) such that
W= W18283 8545152 - - Sp. Suppose a < b. Then
Xiuw)Bp = tw) Xiy2 -+ - Ya¥1 * * * Ya—1YaYat1 - YoBp =
WD) Xi(2yD(3y2) - - - VaYa—1)YaYa+1 - - YpBp =
vwi) 2yD)¥3y2) - - - OaYa—1)XaYaYa+1 - - YoBp =
t(wi(s251)(5352) -+ (SaSa—1)) XaYa+1 "+ YbBp -

We know by Lemma 2.5 that Xy, 1---ysB, € SpanRS(B), hence, by Lemma 2.4, X; «(w)B, €
SpanR{)(B). Suppose a > b. Then

Xy tw) By = tw1) X1y2 -+ YpYb+1 "+ Yay1 * - YoBp =
tw1) X1 2y 1)(v3y2) - - Vb+1Y6)Yb+2 * - - YaBp =
vw1) 2y D(3y2) - - Ob+1Y0)Xp+1Yb42 + - - YaBp =
t(w1(s251)(s352) -+ - (Sp+-156)) Xp+1Yp+2 -+ YaByp -
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We know by Lemma 2.5 that Xj11yp12---yaBp € Spaan(B), hence, by Lemma 2.4, X; u(w)B,, €
0
Span,y (B). O
0

Proof of Proposition 2.2 As pointed out above, it suffices to show that the monoid M is contained in
SpanR{)(B). Let Y € M. By using the relations y;y;X; = Xjy;y; for |i —j| = 1, we see that ¥ can be
written in the form ¥ = «(wg) X1 t(w1) X1 - - - X1 t(wy) where k > 0 and wo, wy, ..., wx € &,,. Weprove
that Y € SpanR{) (B) by induction on k. The case k = 0 is trivial and the case k = 1 follows from Lemma
2.4. So, we can assume that k > 2 and that the inductive hypothesis holds. By the inductive hypothesis
tw) Xy -+ X1 e(wy) € SpanRg(B), thus we just need to prove that ¢(wo)X; (W) )Bpa(w'z_l) S SpanR;(;(B)
forall p € {0,1,...,n0} and all w},w}, € &,,. We know by Lemma 2.6 that X;¢(w})B), € SpanRg(B),

hence, by Lemma 2.4, 1(wo)X; (W} )pr(w/[l) € Spang (B). This concludes the proof of Proposition
0
2.2. |

We have seen that the relation E;E;E; = E; holds for li—j] = 1in VTL, (see Lemma 2.3). However,
we cannot replace the relation E;v;E; = E; with the relation E;E;E; = E; in the presentation of VTL,,.
Indeed:

Proposition 2.7 Let n > 3 and let VTL!, be the algebra over R’;) defined by the presentation with

generators E, ... E,_,V{,...,V,_, and relations

E? =zE VP =1, EV.=VEl=E/, forl<i<n-—1,
E(E; = EJE;, viv; = viv;, ViE; = Ejv;, for|i—j| >2,
/
l

jYio
B o/l w/ A / /. ! /i
El»EjEl- =FE;, ViVjvi

_ A L
= viv;, Wik = Ejvpi,  forli—jl=1.

Let ¢ : VTL], — VTL,, be the homomorphism that sends E! to E; and v, to v; foralli € {1,... ,n—1}.
Then ¢ is surjective but not injective.

Proof By definition Ey,...,E,_1,vi,...,v,—1 belong to the image of ¢. Since these elements
generate VTL,,, the homomorphism ¢ is surjective. Let C; = {£1} be the cyclic group of order 2 and
let Z[C>] be the group algebra of C,. It is easily checked with the presentation of VTL], that there is a
ring homomorphism 60 : VTL], — Z[C;] satisfying O(E}) = —1 forall i € {1,...,n— 1}, 6(0/)) =1
forall i € {I,...,n— 1}, and 6(z) = —1. Let i,j € {1,...,n— 1} such that |i —j| = 1. Then
O(EVE]) = 1 and O(E}) = —1, hence the relation E[V}E; = E does not hold in VTL;,. So, ¢ is not
injective. d

Let n > 1. Recall that V,, = {0,1} x {I,...,n} is ordered by (0,1) < (0,2) < --- < (0,n) <
(I,n) < --- < (1,2) < (1,1). Let E be a flat virtual n-tangle. Let v; = {x;,y1},72 = {x2,m} € E
such that x; < y1, x» < ¥, and x; < xp. We say that vy, crosses v if x; < x2 < y; < y». We
say that E is non-crossing if there are no two elements in E that cross. Equivalently, a flat n-tangle is
non-crossing if and only if it has a graphical representation with  disjoint arcs. We denote by £V the
set of non-crossing flat virtual n-tangles.
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Let n > 2. Recall that the Temperley—Lieb algebra TL, is the algebra over R](; defined by the
presentation with generators Ey, ..., E,_| and relations
E? =zE;for1 <i<n—1, EE; = EjEfor|i —j| >2,
EiEjE,' = Ei for |l —]‘ =1.

The following is proved in Kauffman [5].

Proposition 2.8 (Kauffman [5]) Let n > 2. The homomorphism TL, — VTL, which sends E; to
E; foralli € {1,...,n— 1} is injective and its image is the R{) -submodule of VTL,, freely generated
by &Y.

Recall that R = Z[AT!] denotes the algebra of Laurent polynomials in the variable A, and that
R’:) = Z[z] is a subalgebra of R via the identification z = —A> — A=2. For each n > 1 we set
VTL,(R) = R @ VTL,,. Thisisa R -algebra and it is a free R -module freely generated by &, .

Theorem 2.9 Let n > 1. There exists a homomorphism p’,(l : R'[VB,] — VTL,(R") which sends o;
to—A"21—A*E;and 7; tov; forallic {1,....,n—1}.

Proof Weset S; = —A~21 — A—*E;. We have
(—A 21 —ATEN—A21 —AE) =14+ A2+ A DE + E} =
1+ A2+ ADE + (A2 —AE = 1.

So, S; is invertible and its inverse is —A? 1 — A*E;. The element v; is also invertible since viz =1.It
remains to verify that the following relations hold.

vV=1, forl<i<n-—1,

SiSj = SJ'S,', VivVj = VjVi, viSj = Sjvi, for |l —j’ > 2,

S,‘SjSi = SjS,'Sj, Vivivi = VjVivj, V,‘VjS,‘ = Sjvivj, for ‘l' —]’ =1.

—

The only of these relations which is not trivial is S;S;S; = S;;S; for |i — j| = 1. Suppose |i — j| =
Then
SiSiSi = (—A21 —AT*EN-AT? 1 — AT E)(-AT 1 - AT'E) =
~A 1 —AE —AE —ATEE —AE; - ATE} —ATVEE, - ATPEEE, =
~AT%1 —2478E, — A8E; — ATEE;, — AT0(-A? —ATE, — ATEE; — ATVE; =
~AT%1 —AE, — ATSE; — ATEE;, - ATEE; .

By symmetry we also have §;S;S; = —A %1 —-ABE; —A*8Ej —AilOE,-Ej —A*mEjE,-, hence S;S;S; =
SjS,’Sj. O

Remark (1) Let B, be the braid group on n strands and let TL, be the n-th Temperley—Lieb

algebra. Then p';l(ﬁ) € TL,(R/) for all B € B,, where TL,(R') = R ® TL, C VTL,(R).

(2) The sequence of homomorphisms {p’,(, : R'[VB,] — VTL, (R )}o° | is compatible with the tower
of algebras {VTL,(R)},.



12 L Paris and L Rabenda

(3) Setting p’,i(a,-) = —A"21 — A*E; instead of p’,;(o,-) = Al + A 'E;, as an informed reader
may expect, allows to include in p’; the corrective with the writhe and to define directly the
f-polynomial without passing through the Kauffman bracket.

Let E be a flat virtual n-tangle. By connecting with an arc the point (0,7) with the point (1,7) for
all i € {1,...,n} in a diagram of E we obtain a family of closed curves that we call the closure
of the diagram of E. We denote by 1,(E) the number of closed curves in this family, and we set
TV (E) = 2B = (—A2 — A=2)"®) | Then we define T/ : VIL,(R') — R’ by extending linearly the
map T,’{I o

Example In Figure 2.5 is illustrated the closure of the flat virtual tangle E of Figure 2.2. In this case
we have 1,(E) = 1, and therefore T (E) = 7 = —A% — A2,

Figure 2.5: Closure of a flat virtual tangle

Theorem 2.10 The sequence {T,’f . VTL,(R)) — R }Zil is a Markov trace.

Proof Foreachn >2andeachi e {l,...,n— 1} weset S; = —A~21 — A—*E;. We have to show
that the following equalities hold.

(1) TY(Gy) = TY (yx) forall n > 1 and all x,y € VTL,(R).

@) T/ =1/ ,xS8) =T/ (S, =T/, (xv,) forall n > 1 and all x € VTL,(R).

3) T/ ) =T/ (xS, v,_1S,) forall n > 2 and all x € VTL,(R).

@) T @) =T7 ,(vuVu1Su—1VaS, ! va1vy) for all n > 2 and all x € VIL,(R).

Proof of (I). We can assume that x = E and y = E’ are flat virtual n-tangles. We fix graphical
representations of E and E’. By concatenating the graphical representation of E on the left with that
of E’ on the right and then connecting with an arc the point (0, ) of E to the point (1,i) of E’ for all
i € {l,...,n} we get a family of closed curves immersed in the plane, denoted EUE'. If m is the
number of closed curves in this family, then T,'f (EE") = 7". We can choose the n arcs connecting the
points (0, i) of E to the point (1,i) of E’ pairwise disjoint and disjoint from the concatenation of E and
E'. In that case, E/I_I\E’ is isotopic to m , hence m has the same number of closed curves as
E U E', and therefore T/ (E'E) = 7" = T/ (EE").

Proof of (2). We can assume that x = F is a flat virtual n-tangle. We see in Figure 2.6 that the following
equalities hold

T/ (E) = 2T/ (E), T/, \(EE,) = TV(E), T/, ,(Ev,) = T/ (E).
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Recall that S, = _A21—-A%E, (seethe proof of Theorem 2.9). We saw in Figure 2.6 that T,/{Jr ((Evy) =
T,’f (E). On the other hand,

T/ (ES)) = —A2T! (E) — A™*T! |(EE,) = (A% — A™HT/(E) = TV (E),

T/ (ES, ") = —A’TY (E) — A*TY |(EE,) = (-A%z — AYTI(E) = T/(E).

) (

)
) D Gl

. . [_ ‘Z . [_ ‘Z .

Figure 2.6: n + 1-closures of E, EE, and Ev,

Proof of (3). We can again assume that x = E is a flat virtual n-tangle. We have

ES; ', 1S, = E(—A%1 — A*E,)v,_1(-A™21 —AT*E,) =
Evp_1 + A’EE,v,_\ + A"2Ev,_\E, + EEyv,_1E, =
Ev,_y + A’EE,v,_ + A"2Ev,_\E, + EE,, .

Hence, by the above

,H_l(ES Vn—18n) =
T/ \(Evy_y) + AT (Eva1Ey) + ATV (EE,va—y) + T/, | (EE,) =

2T (Evpy) + A2 TS (Evyy) + AT (1 EE,) + TY(E) =
(A% — A DTV (Evy1) + ATV (Evy—1) + AT vy E) + T(E) =
(—A2 — AT (Ev,_1) + A72TY (Ev,_1) + A2 TV (Ev,_) + TV (E) = TV (E) .

Proof of (4). Again, we can assume that x = FE is a flat virtual n-tangle. We have

Evavn1Sn-1VaSy Va1V = Evpva 1 (A2 1 = A7 Ey 1)vp(—A% 1 — A*Ey 1)V v =
(EVaVa_1VaVn—1Vn) + A2 (EVpVu_1VaEn—1Va_1Va)+
A2 (EvyVu—1Ep—1VnVn—1Vn) + (EVpVy—1 En1VuEp—1Vn—1vn) =
(EVn—1VnVn—1Vn—1Vn) + A*(EVgVp_1VpEn—1va)+
A" (EvpEp—1VnVn—1n) + (EvaEp 1vaEn_1va) =
(Evn—1) + A (EvaVu_1Vu—1Egvn—1) + A2 (Evy1 EgVp—1Vp—1Vp) + (EvyEn—1vy) =
(Eva—1) + AX(EE,vp_1) + A2 (Evy—1Ey) + (Evy 1 Eqvy 1) .
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Hence, by the above
T,/1f+1(EvnvnflsnflvnS;,l1anlvn) =

T/ ((Eva_1) + AT (EEvu1) + AT (Eva 1 Ey) + TV (Bvy 1 Eyvyy) =

2T (Evy—1) + AT (01 EEy) + AT (Evyy) + TV (vt Evy 1 Ey) =
(—A? — AT Evy1) + ATV vy E) + A2 T (Evy— 1) + T vy 1 Evy—1) =
(—A? — A OTHEvy—1) + ATV (Evy—1) + ATV (Evy—y) + TV (Evy—1va—) = THE). O

Corollary 2.11 Foreachn > 1 weset T}, = T o p}, : R'[VB,] — R'. Then {T} : R'[VB,] — R'}>°,
is a Markov trace.

Recall that VL denotes the set of virtual links. To complete the study of this section it remains to prove
the following.

Theorem 2.12 Let I’ : VL — R be the invariant defined from the Markov trace of Corollary 2.11.
Then I' coincides with the f -polynomial.

Proof Let 3 be a virtual braid on n strands and let 3 be its closure. Observe that the relation
(L) = A(L)) + A= (L,) in the definition of the Kauffman bracket corresponds in terms of closed
virtual braids to replacing each o; with A1 + A~'E; and each o; I with A='1 + AE;. Once we have
replaced each o; with A1 + A~'E; and each o; U'with A='1 + AE;, we get a linear combination
Zle a;E?V, where EV € &, and a; € R'. For each i € {1,...,¢} we denote by m; = t,(E?”) the
number of closed curves in the closure of E®. We see that

Recall that w : VL — Z denotes the writhe. Let w : VB, — Z be the homomorphism which sends o;
to 1 and 7;to O forall i € {I,...,n— 1}. Then w(B) = w(B) and therefore f(3) = (—A3)*°’(5)<B).
So, in the above procedure, if we replace each o; with (—A%)"1(A14+A"'E)) = —A=21 — A~*E; and
each 07! with (—A%) A~ 1 + AE;) = —A21 — A*E;, then we get directly f((). It is clear that this
procedure also leads to T{; (B). O

3 Arrow Temperley-Lieb algebras and arrow polynomial

Throughout the section we consider the infinite families of variables Z = {z;}72, and Z* = {%}2, =
Z\ {z0}, and we consider the algebra R} = Z[ Z] of polynomials in the variables in Z, and the algebra
R* = Z[A*!, Z*] of Laurent polynomials in the variable A and standard polynomials in the variables
in Z*. We also assume that the algebra R{j is embedded into R“ via the identification zg = —A%? A2,
Following the same strategy as in Section 2, we start by recalling the definition of the arrow polynomial,
so that the reader will understand easier the constructions that will follow after.

Let Sy,...,S¢ be a collection of ¢ circles smoothly immersed in the plane and having only a finite
number of double crossings. We assume that each circle S; has an even number m; of marked points
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outside the crossings that we call cusps. We assume also that each segment between two successive
cusps is oriented so that the orientations of the two segments adjacent to a given cusp are opposite. So,
each cusp is either a sink or a source, according to the orientations of the segments adjacent to it (see
Figure 3.1). If m; = 0, then S; is assumed to have a (unique) orientation. In addition, each cusp has a
privileged side that we indicate with a small segment like in Figure 3.1. Finally, as for the virtual link
diagrams, we assign a value “positive”, “negative”, or “virtual” to each crossing, that we indicate in its
graphical representation as in Figure 3.2. Such a figure is called an arrow virtual link diagram with ¢

components. Note that the virtual link diagrams are the arrow virtual link diagrams with no cusps.

—_—le—  —el—

sink source

Figure 3.1: Sink and source in an arrow virtual link diagram

RN
/ N\

positive negative virtual

Figure 3.2: Crossings in a virtual link diagram

Example Figure 3.3 shows an arrow virtual link diagram with two components. One component has
two cusps and the other has no cusp.

R

Figure 3.3: Arrow virtual link diagram

Let L be an arrow virtual link diagram with only virtual crossings. Let S be a component of L. If S
has two consecutive cusps p and ¢ having the same privileged side, then we remove the two cusps and
orient the new arc with the same orientation as that of the arc adjacent to p different from [p, g]. In the
particular case where p and g are the only cusps of S, then we can choose any of the orientations of S.
This operation is called a reduction of S and is illustrated in Figure 3.4. We apply such a reduction as
many times as needed to get an irreducible component, S'. If 2¢ is the number of cusp of ', then c is
called the number of zigzags of S and is denoted by ((S) = c. If Sy, ..., Sy are the components of L,
then we set

l
(L) =T zce -
i=1

This is a monomial of Rj.
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—_—l el =

Y

Figure 3.4: Reduction

We define the arrow Kauffiman bracket (L)) € R* of any arrow virtual link diagram L as follows. If L has
only virtual crossings, then (L)) is the monomial Hf: | 2¢(s;) defined above. Suppose that L has at least
one non-virtual crossing at a point p. If the crossing is positive, then we set (L)) = A{(L;) + A~ (L)),
and, if the crossing is negative, then we set (L)) = A~'(L,)) + A((L»)), where L; and L, are identical
to L except in a small neighborhood of p where there are as shown in Figure 3.5. As for the virtual
link diagrams, the writhe of an arrow virtual link diagram L, denoted w(L), is the number of positive
crossings menus the number of negative crossings. Then the arrow polynomial of an arrow virtual link

diagram L is defined by 7(L) = (—A>)VDO(LY.
N\
L, L,

/X‘ A’
Figure 3.5: Relation in the arrow Kauffman bracket

L
(positive) (negative)

Theorem 3.1 (Miyaza\_v>a [11], Dye-Kauffman [1]) (1) If two virtual link diagrams L and L' are
equivalent, then f (L) = f (L).

(2) If L is a diagram of a classical link, then 7(L) =f() € R =7Z[A*].

Remark There is a notion of “equivalence” between arrow virtual link diagrams and Theorem 3.1
holds in this framework (see Miyazawa [11]), but the topic of the present paper are the virtual links,
hence we state the theorem only for virtual link diagrams.

—
The arrow polynomial of a virtual link L, denoted f (L), is defined to be the arrow polynomial of any
of its diagrams. This is a well-defined invariant thanks to Theorem 3.1.

Our aim now is to construct a Markov trace whose associated invariant is the arrow polynomial. We
proceed with the same strategy as in Section 2 for the f-polynomial: we pass through a tower of
algebras, {ATL,}°,, that we will call arrow Temperley—Lieb algebras. We will also give a new
proof/interpretation of Theorem 3.1 (2) in terms of Markov traces.

For the remainder of the section we need a more combinatorial definition of the multiplication in VTL,,.
Recall that V,, = {0,1} x {1,...,n} is ordered by (0,1) < (0,2) < --- < (0,n) < (1,n) < --- <
(1,2) < (1,1). Let E,E' € &,. An arc of length £ in E LU E' is a {-tuple & = (o, ...,ay) in ELUE',
where o; = {(a;,bi—1),(c;i,by)} with a;,¢; € {0,1} and b; € {1,...,n}, satisfying the following
properties.

(@) foyje Eandi < ¥, thenc; =1, ;11 € E' and a;11 = 0.
(b) Ifa; € E' andi < {,then ¢; =0, ;11 € E and a; 11 = 1.
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) ao=0if oy € E, a0 =1ifay €E,c, =0if oy €E, ¢cp =1if ap € E', and
(a1, bo) < (ce, by).

The boundary of & is 0& = {(ay,bo), (ce,by)}. There are n arcs in E L E' and their boundaries form
a flat virtual n-tangle, denoted E x E’.

Let E,E € &,. A cycle of length 2p > 2 in EU E' is a 2p-tuple 4 = (v1,...,72p) in EUE’, where
vi = {(ai, bi_1), (ci, b))} with a;,c; € {0,1} and b; € {1,...,n}, satisfying the following properties.
(@) v €Eanda =c¢; =1,if iisodd.
(b) ~v; € E and a; = ¢; = 0, if i is even.
() bo=bhy <b;forallic{l,....2p—1}.
Let m be the number of cycles in E LI E’. Then EE' = 7"(E x E').

We can now define our algebra ATL,. Let n > 1. An arrow flat n-tangle is a flat virtual n-tangle E
endowed with a labeling f : E — Z such that, for & = {(a, b), (c,d)} € E, f(«) is odd if a = ¢, and
f(a) isevenif a # c. Recall that Z = {z}°, and R§ = Z[Z]. We denote by F, the set of arrow flat
n-tangles and by ATL,, the free Rj-module freely generated by F,.

Interpretation Instead of labeling the arcs we could endow each arc with marked points (cusps) and
each cusp with a privileged side that we indicate with a small segment, like for arrow virtual link
diagrams, so that two consecutive cusps have different privileged sides. The number of cusps on an arc
a would be equal to |[f(«)|. Consider the order of V,, defined above. If we travel on the arc from its
smallest extremity to its largest one, we set f(«) > 0 if the privileged side of the first encountered cusp
is on the left hand side, and we set f(a)) < O otherwise. An arrow flat tangle and its version with cusps

are illustrated in Figure 3.6.
-6 -
1 —_—
3

Figure 3.6: Arrow flat tangle

We now define the multiplication in ATL,,. Let F = (E,f) and F' = (E’, f’) be two arrow flat n-tangles.
To simplify our notation we set f*(a) = f(a) if a € E and f*(a) = f/(a) if a € E'. The parity
of an element o = {(a,b),(c,d)} € EUE"is w(a) = —1 if a = ¢, and w(a) = 1 if a # ¢. Let
& = (ajy,...,ap) beanarc of ELUE'. Leti € {1,...,¢}. As in the above definition of arc, we set
a; = {(aj, bi-1),(ci, b))} for all i, where a;,¢; € {0,1} and b; € {1,...,n}. We define the cumulated
parity of o relative to & by @ (ay) = [[IZ} @w(ey) if (i, bi—1) < (ci,by), and w(a) =[]} w(ey)
if (¢;, b;) < (ai, b;_1). Then we set

¢
2(08) = g(@) =Y @ (@) f ().

i=1
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At this stage we have an arrow flat n-tangle FxF' = (ExE’, g). Let 4 = (71, ...,7¢) beacycle of ELIE'.
Again, we write v; = {(a;, bi—1), (¢;, b;)} for all i, where a;,¢; € {0,1} and b; € {1,...,n}. Asforan
arc, we define the cumulated parity of ~y; relative to 4 by @w(v;) = H’;} w() if (a;, bi—1) < (ci, b)),

j
and by @’(v;) = [[_; w(y)) if (ci, bi) < (@i, bi—1). We set

¢
h&) = f ) -

i=1

Observe that A(%) is an even number. The number of zigzags of 4 is defined by ((%) = @ Let
A1y -+ -y Am be the cycles of E L E'. Then the product of F and F’ is

FF =204 2cmF + F) .
It is easily checked that ATL, endowed with this multiplication is an (associative and unitary) algebra.

We call it the n-th arrow Temperley—Lieb algebra.

Example On the left hand side of Figure 3.7 are illustrated two arrow flat tangles F and F’, and F * F’
is illustrated on the right hand side. Here we have a unique cycle in E L E’, 41, and h(%,) = 4, hence
(1) =2and FF = zp(F x F').

2 1 2

OF q 3 ] 3
_{iu C I

L

4
F' F*F'

Figure 3.7: Multiplication in ATL,

Remark Let n > 1. For F = (E,f) € F, we define Ff = (E*,f%) € F,4 by setting Ef =
EU{{(0,n+ 1),(1,n+ D}}, fia) = f(a) for all « € E, and f4{(0,n + 1),(1,n + 1}) = 0.
Then the map F,, — Fn1, F — F*, is an embedding which induces an injective homomorphism
ATL, — ATL, ;. So, we have a tower of algebras {ATL, }>,.

Proposition 3.2 Let n > 2. Then ATL,, has a presentation with generators

—1 -1
Fla--'7Fn717W1>"'7wn717t1a"'atmtl IRRREY S
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and relations

' =ty =1for1 <i<n, ttj=tt;forl <i<j<n,
W?:Iforlgign—l, wiwj = wjw; for |i — j| > 2,
wiwjw; = wyww; for|i —jl =1, witi =tigwiforl <i<n-—1,
witip1r = tiwi for1 <i<n—1, witj=tw;forj#ii+1,
Fit]'Fi = gy Fiforl <i<n—1landmeZ, F,-wi:F,-t,-:F,-t;rllforl§i§n—1,
wiFi =17 'Fi =t \Fiforl <i<n—1, FiF;=FF;forli—j >?2,
Fiw; = wjF;for|i—j| > 2, Fitj=tF;forj#ii+1,
FwiF;=F;forli—jl=1, wwF;i=Fww;for|i—jl=1.

The generators F;, w; and ¢; are illustrated in Figure 3.8.

—20, —20,
: : 0
1 1 . 0 0
it1 i+1 —
13 C i:><z J.;.
- 0 — 0, — 0,
Fi W; t

Figure 3.8: Generators of ATL,,

The next six lemmas are preliminaries to the proof of Proposition 3.2. Let A, be the R{j-algebra defined
by a presentation with generators

—1 —1
X17"‘7Xl’l—17y17”'7yl’l—17u17"‘7ul’l7u1 yeres U y
and relations

uiui_l :ui_lui: Iforl <i<n, wu =uuforl <i<j<n,
yi=1for1<i<n-—1, yiyj = ypyifor [i —j| > 2,
yiypyi = yiyiyjfor i —jl =1, yu; =ujpyiforl <i<n-—1,
yiiv1 = wyifor 1 <i<n—1, yuj=uwy;forj#ii+1,
Xa'X; = g Xifor 1 <i<n—landm€Z, Xy;=Xu;=Xug forl<i<n-—1,
yiXi = u; 'X; = X;for 1 <i<n—1, XX;=XX,forl|i—j|>2,
)(,'yj:ijl‘fOI'|l'—j‘227 X,-uj:u,-Xiforj;éi,i—kl,
XiyiXi = X; for [i —j| =1, yiyX; = Xjyiy; for i —j| = 1.
It is easily checked using diagrammatic calculation that there is a homomorphism ¢ : A, — ATL,
which sends X; to F; for i € {1,...,n— 1}, y; tow; fori € {1,...,n — 1}, and u! to ! for
ief{l,...,n}.
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Lemma 3.3 The following equalities hold in A,, .
XiXi—i-lyiyi—i-l = Xl-ul.;lz = I/tl-_+12X,' for1 <i<n-— 2,
Vit 1YViXit1Xi = uip2X; = Xjujp for1 <i<n -2,
XiXi1yiyio1 = Xui 1y = ui 1 X;for2 <i<n-—1,
yiflinifIXi = u;lle- = X,'I/tl:ll for?2 <i<n-— 1.

Proof We prove the first equality. The other three can be proved in the same way. Let i € {1,...

2}. Then
XiXir it = Xy Xi = Xz i1 Xi = Xy, hXi = Xy Xy =

-1 _ 1y
Xitt; 1 = u X .

Lemma 3.4 Leti,je€ {1,...,n— 1} suchthat |i — j| = 1. Then X;X;X; = X;.

Proof We suppose that j =i+ 1. The case j = i — 1 can be proved in the same way.

XiXit1Xi = XiXiv1yiyit1Vir1yiXi = XiM;LIZ)’iHMiHXi = Xibt;rlzui+2yz'+1xi =
Xiyit1Xi = X; .

Lemma 3.5 Letic {1, coo,n— 3}. Then yit+1Yit2YiVit1XiXit2 = XiXiyo.

Proof
~1
Vit 1Yit2YiVir1XiXivs = Yit1Yi2YiVit1Xithiyouy 5 Xiys =
~1 ~1
Vit 1Yit2YiVit 1Yi+1ViXit1 Xitt; 5 Xit2 = Yip1VitoXit1Xitt; 5 Xip2 =
1
Vit tYiroXip1uip3u; 3 Xittip3Xivo = YigryiyoYitoYir1 Xip2Xip1 XiXivo =
XioXip1Xip2Xi = Xi2Xi = XiXipo

O

Consider the action of the symmetric group &, on Z" by permutations of the coordinates, and set
G =6, xZ". Let {ej,...,e,} be the standard basis of Z" and let {sy,...,s,—1} be the standard
set of generators of G,. Recall that s; is the transposition (i,i + 1) for i € {1,...,n — 1}. We use
multiplicative notation for the operation in Z" and we denote by 17 its neutral element. Let U/(A,)
be the group of units of A,. We have a homomorphism ¢ : G — U(A,) which sends s; to y; for all

ie{l,...,n—1} and ¢; to u; forall j € {1,...,n}.

Let ng be the integer part of 5. For p € {1,...,n0} we set B, = X1X3--- X, 1, and for p = 0 we set
B, = By = 1. We denote by U, the subset of G formed by the elements of the form g = wh where

w € G, satisfies
wl) <w@B)<---<w?2p—-1), wRi—1)<wiforl <i<p,
w2p+ 1) <w@p+2)<--- <wn,
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and h = e]'ey? - - el € 7" satisfies

vi=0forie{2,4,....,2p,2p+ 1,2p+2,...,n}.

On the other hand, we denote by U, the subset of G formed by the elements of the form g = wh
where w € G,, satisfies

wl) <w@B)<---<w?2p—-1), wRi—1)<wiforl <i<p,
and h = e]'ey? - - el € 7" satisfies
vi=0forie {2,4,...,2p}.
Then we set
By ={ug)Byu(s;) | 81 € Urp. g2 € U},

for 0 < p < ng, and

no

B=JB,.

p=0

Let F = (E,f) € F,. We can write E in the form E = {041,...,ap,a’l,...,al’,,ﬁl,...,ﬂq},where

e each ¢; is of the form o; = {(0,4,),(0,b)}, with a; < a» < --- < ap, and a; < b; for all

i {l,....p):
e each o is of the form o = {(1,a),(1,b)}, with @] < aj < --- < a,, and a; < bj for all
ie{l,...,p}
e each f; is of the form 3; = {(0,¢)), (1,d))}, with c; < ¢ <--- < ¢4, and 2p + g = n.
We define
o wi €6, by wi(2i — 1) =ag; and wi(2i) = b; forall i € {1,...,p}, and wi(2p +)) = ¢; for all
el ah;
o wy € S, by wp(2i — 1) = a; and wy(2i) = b forall i € {1,...,p}, and w2(2p + j) = d; for all
jed{l,....q};

Vl,n

o I = eMey e € 70 by vigig = 1071 and vy = 0 for i € {1,...,p}, and
I/l,ngrj:OfOI‘jE {1,...,q};

o hy = e'fz"egz’z--~ezz’" € Z" by vy = fi(a’{z)_l and 159 = 0 for i € {1,...,p}, and
V2 2p+j = —f(T'B/) for j € {1,. . .,q};

o g1 = W1h1 and 82 = thz.

Then g1 € Uy p, g2 € Uz, and F = ©(u(g1) By L(gz_l)) . Moreover, such an expression is unique, and
p(Y) e F, forall Y € B. So, ¢ restricts to a bijection from B to F,.

So, in order to prove Proposition 3.2, it suffices to show that B spans A, as a Rjj-module. Let M be
the submonoid of A, generated by Xi,...,Xu—1,¥1,- .- ,yn,l,ulﬂ, ..., ur", that is, the set of finite
products of elements in {X1,...,Xy—1,Y1,--,Yn—1, u;—Ll, ...,u'}. By definition M spans A, as a
R§-module, hence we only need to show that M is contained in the R{j-submodule SpanRg(B) of A,

spanned by B.
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Lemma 3.6 Letgi,g € Gandp € {0,1,...,n0}. Then u(g1)B, L(gz_l) € B.

Proof We write g = wihy and g» = wohy with wi,wy € &, and hy,hy, € Z". Leti € {1,...,p}
such that wi(2i — 1) = b; > w(2i) = a;. By using the relation y;X; = u,-‘lX[, we can replace
wy with wis; and hy with s;(hie))s; € Z", and then wi(2i — 1) = a; < wi(2i) = b;. So, we
can assume that wi(2i — 1) < wy(2i) for all i € {1,...,p}. Leti € {1,...,p — 1} such that
wi(2i — 1) = ajy+1 > wi(2i + 1) = a;. By Lemma 3.5 we can replace w; with wys;52;_152i4152; and
hy with (52i52i4152i—1520)h1(52i82i—152i+152i) € Z". Then we have wi(2i — 1) = a; < wi(2i + 1) =
a;+1 while keeping the inequalities wi(2i — 1) < wy(2i) and wi(2i + 1) < w1(2i + 2). Thus,

we can also assume that wi(1) < wi(3) < -+ < wi(2p — 1). Letj € {1,...,q — 1} such that
wi(2p +J) = c¢jy1 > wi(2p +j+ 1) = ¢;. By applying the relations yy,;Xoi—1 = Xoi_1y2,; for
i€ {l,...,p}, we can replace w; with wiso,4j, b1 With sopyjhy 2,1 € Z", and g» with g252,4;,

and then wi(2p +j) = ¢; < wi(2p +j+ 1) = cjy1. So, we can also assume that w1(2p + 1) <

Vln

wip+2) < - < wi(n). Weset hy = ellll’l coeep " and hy = elf’l ey Letic {l,...,p}. By
applying the relation u;iilei,l = upiX»i—1, we canreplace v 5; with 0 and vy p;—1 with vy 5,1 —v1 ;.
So, we can also assume that 19 = 0 forall i € {1,...,p}. Letj € {1,...,q}. By applying the
relations u,1jXsi—1 = Xoi—1uopj for i € {1,...,p}, we can replace v 2,1; with 0 and 1 2,; with
V22p+j — V12p+j- Thus, we can also assume that v 5,4, = 0 forall j € {1,...,g}. In conclusion, we
can assume that g; € Uy .

We can use the same argument to show that g» can be replaced with some g’2 € Uxp. So,

ug1) B, L(g;l) € B. O

Lemma 3.7 Letp € {0,1,...,n0}, a,b € {1,...,n — 1} and m € Z, such that a < b. Then
XattgYa+1 -+~ ypBp € Spang.(B).

Proof Suppose a > 2p + 1. Then
XattgYat1 -+ YpBp = XaBplty Yay1 -+ yp =
XaWa—1Ya)YVa—2Ya—1) - - O2p+1Y2p+2)V2p+2Y2p+1) - Wa—1Ya—2)VaYa—1)BpUy Yat1 -+ Yo =
Oa—1Ya)Ya—2Ya—1) - - V2p+1Y2p+2)X2p+1Bp(V2p+2Y2p+1) - - - Oa—1Ya—2)VaYa—1)tlg Yat1 - - Vb =
Va=1Ya)Va—2Ya—1) = - O2p+1Y20+2)Bpt1V2p+2Y2p+1) - * Wa—1Ya—2)YaYa—1)Ug Yat1 -+ Vb =
UgD) Bp+1ulg; ) € B,
where
81 = (Sa—15a)(Sa—25a—1) - (S2p+152p+2) ,
82 = SpSar1ey " (Sa—154)(Sa—25a—1) -+ - (S2p+152p42) -
Suppose a < 2p and a is even. Let ¢ such that a = 2¢. Then
XattgYa+1 -+ ypBp = Xacuy [y 1y2c+1 Yo Xoe—1X1 -+ Xoe—3Xoeq1 -+ - Xop—1 =
XoeXoc—1ty (Yot o X1 Xoe—3Xoeq1 -+ Xop1 =
Y2e—-1Y2eY2e2e—1 X0 X2e—1Uo 4 1 Voe+1 - VX1 - Xoe—3Xoer1 - Xop—1 =
V2e—1Y2eU2c+1X2e—1Us  Vact1 - YoX1 -+ Xoe—3Xoeq1 - Xop—1 =

1—m
US2c—152¢€5., 1S2¢+1 "~ Sp)Bp € B.
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Suppose a < 2p, a is odd, and a = b. Let ¢ such that a = 2¢ — 1. Then
Xy Yay1 - -ypBp = Xoc 11z 1 Xoe1X1 -+ Xoe 3Xoeq1 - Xop—1 =
Y| X2e—1X1 - - Xoe3Xoeq1 -+ - Xop—1 = Zu By € Spanga(B).
Suppose a < 2p, a is odd, and a < b. Let ¢ such that a = 2c — 1. Then

Xatg Yat1 - YoBp = Xoe11ye_1y2ey2e41 - YpXoe—1X1 -+ - Xoe 3Xoey1 -+ Xop—1 =
Xoe—1uy."V2eXoe—1Y2e41 Yo X1 -+ - Xoe—3Xoeq1 - Xop1 =
Xoc—1y2cUnly 1 Xoe—1Y2e+1 - Yo X1 -+ Xoe—3Xoeq1 -+ Xop—1 =
Xoc—1Y2eXoe—1Us  Vact1 - YoX1 -+ Xoe—3Xoey1 - Xop—1 =

Xoc—1uy  Vaey1 - YuX1 -+ Xoe—3Xoet1 -+ Xop—1 = uey ) (S2e41 - 5p)By € B.

Lemma38 Letgc Gandpc {0,1,...,n0}. Then X,u(g)B, € SpanRS(B).

Proof We write g in the form g = hw with h = ¢]' - --e}» € Z" and w € &,,. We have
X1ugQ)By = Xqu{'us® - - uy"u(w)Bp, = u(e3® - - - e X (e} *w)B, .
Thus, by Lemma 3.6, we can assume that & = ¢|' with m € Z. There exist w; € (8350 oy Sn—1),
ac{l,....,n—1},and b € {0,1,...,n— 1} such that w = wysps3 - - - 545152 - - - 5. We have
X1U(g)By = Xqui'vw1)yz - - - Yay1 - - YpBp = tw)X1ui'y2 - - - yay1 - - - ypBp -

Thus, by Lemma 3.6, we can assume that w = s - - - 5451 - - - Sp. Suppose a < b. Then

X1u(g)By = Xui'y2 - -+ yay1 -+ ypBp =
Xiul' 2y (13y2) - - - OVaYa—1)YaYat1 - YoBp =
O2yD)O3Y2) - - OaYa—DXally YaYat1 - - YpBp =
2yD)3Y2) -+ - YaYa—1)XaYalliyy 1Yat1 - - - YbBp =
(2y1)(ay2) - - (yaya—l)XaMZ:llyaJrl e ypB, =
U(5251)(5382) -+~ (SaSa—1))Xatty Va1 -~ - YoBp € Spange(B).

The last inclusion follows from Lemma 3.6 and Lemma 3.7. Suppose a > b. Then

X11(8)B, = Xqui'ys -+ yay1 -+ ypBp =
Xiul' 2y )3y2) - b4 1Y6)Yb12 -+ YaBp =
U(5251)(5352) - - (Sp4156)) X1’y 1Yb42 - - YaBp € Spanga(B).

Again, the last inclusion follows from Lemma 3.6 and Lemma 3.7. |

Proof of Proposition 3.2 As pointed out before, it suffices to prove that M is contained in Span Rg(B)~
Let Y € M. By using the relations y;y;X; = Xjy;y; for |i — j| = 1, we see that ¥ can be written in the
form Y = u(g0)X1¢(g1)X1 - - - X1¢(gk), where kK > 0 and go, g1, - - -, 8 € G. We argue by induction on
k. The cases k = 0 and k = 1 follow directly from Lemma 3.6. So, we can assume that k > 2 and that
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the inductive hypothesis holds. By the inductive hypothesis, ¢(g1)X| - - - X1¢(gr) € SpanRS(B). Thus, we
just have to show that ¢(g0)X; (g} )pr(g’[l) € Spang(B) forall p € {0,1,...,n0} and all g}, ¢} € G.
By Lemma 3.8 we have X u(g})B, € SpanRg(B), hence, by Lemma 3.6, L(go)XlL(g’l)BpL(g’{l) €
SpanRg(B). |

Recall that the Temperley—Lieb algebra TL,, is the algebra over R{) = Z[z] defined by the presentation
with generators Ey, ..., E,_; and relations

EiZZZE,‘fOI‘lSigl’l—l,El'Ej:EjEifOI’ﬁ—j‘Zz,El‘EjE,‘:E,'fOI"i—j’:1.

We see in the presentation given in Proposition 3.2 that the relations Fl2 =zoF;,for1 <i<mn-—1,and
FiFj = F;F;, for |i—j| > 2,hold in ATL,. We also know that the relations F;F;jF; = F;, for [i—j| =1,
hold (see Lemma 3.4). So, we have a ring homomorphism ¢ : TL, — ATL, which sends z to zg, and
E;ito F; forallie {l,...,n—1}.

Proposition 3.9 Let n > 2. Then the above defined homomorphism ¢ : TL, — ATL, is injective.

Proof We see from the presentations of VTL, and ATL, that there is a ring homomorphism ¢ :
ATL, — VTL, which sends z, to z forall m € N, F; to E; forall i € {1,...,n— 1}, w; to v;
forall i € {1,...,n— 1}, and tjjEl to 1 forall j € {1,...,n}. By Proposition 2.8 the composition
po:TL, — VTL, is injective, hence ¢ : TL,, — ATL, is also injective. m]

Recall that Z* = {z}2,, R* = Z[A™! , Z2*], and that R§ is embedded into R“ via the identification
70 = —A% — A7%. For each n > 1 we set ATL,(R%) = R* ® ATL,,. This is a R*-algebra and a free
R%-module freely generated by F,,.

Theorem 3.10 Let n > 1. There exists a homomorphism p% : R°[VB,] — ATL,(R*) which sends o;
to—A"21—A*F;and 7; tow; foralli € {1,...,n—1}.

Proof The proof is almost identical to that of Theorem 2.9. We set §; = —A721 —AT4F;. Ttis
easily checked as in the proof of Theorem 2.9 that (—A=21 — A™*F;)(—A%2 1 — A*F;) = 1, hence S;
is invertible and S;! = —A%21 — A*F;. Fori € {l,...,n — 1} we have w? = 1, hence w; is also

invertible. It remains to see that the following relations hold.

wi=1, forl<i<n-—1,
S,‘Sj = SjSi, Wiw;j = Wjw;, WiSj = SjW,‘, for ‘l —]| > 2,
Sl’SjSi = SjSiSj, WinW,' = WjWin, WinSi = SjWin, for ’i —J‘ =1.
The only relation which does not follow directly from the presentation of ATL,(R?) is S;S;S; = S;S;S;,
for |i — j| = 1. But the latter can be proved in the same way as in the proof of Theorem 2.9. O

Remark (1) The sequence {p} : R‘[VB,] — ATL,(R*)}:°, is compatible with the tower of
algebras {ATL,(R*)}5°,.
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(2) As in the case of virtual Temperley—Lieb algebras (see Section 2), setting pi(o;) = —A72] —
A~*F; instead of puo)) =A1 +A~'F; allows to include in P& the corrective with the writhe and
to define directly the arrow polynomial without passing through the arrow Kauffman bracket.

(3) Foreachn > 1 and 8 € B, we have pl(3) = p{l(ﬁ) € TL(R).

Recall that V,, = {0, 1} x {1,...,n} is ordered by (0,1) < (0,2) < --- < (0,n) < (1,n) < --- <
(1,2) < (1,1). Let E be a flat virtual tangle. A cycle of length ¢ in the closure E of E is a ¢-tuple
’3/ = (’yl,...,’yg) in E, where Yi = {(a,',b,‘_l),(c‘,‘,bi)} with a;, c; € {0,1} and b; € {1,...,1’1},
satisfying the following properties.

(@ aiy1=1if¢;=0,and a;41 =0if¢;=1,foralli e {1,...,£—1}.

(b) bo=by<b;foralliec{l,....,.0 —1},a; =0,and ¢y = 1.

Let F = (E,f) be an arrow flat n-tangle. We define the parity of an element o = {(a,b), (c,d)} € E
by w(a) = —1ifa = ¢, and w(a) = 1 if a # c. Let 4 = (y1,...,7¢) be a cycle in E. We
write 7; = {(a;, bi—1),(ci,b;)} for all i, and we define the cumulated parity of ~; relative to 4 by
w (i) = H};} w(y) if (@i, bi-1) < (i), and @w () = [[}; w(y) if (ci, b)) < (ai,bi—1). Then
we set
J4
h&) = @ (W f ().

i=1
Let nz, be the number of indices i € {1, ..., ¢} suchthat a; = ¢; = 0 and let ng be the number of indices
i € {l,...,0} such that a; = ¢; = 1. We observe that n;, = ng and h(§) = n; + ng (mod2), hence
h(®) = 0 (mod 2), that is, h(9) is even. Now, the number of zigzags of # is defined by ((¥) = M
Let 41, ...,4n be the cycles of E. Then we set

T (F) = 2een) % - i) -
We define 7,° : ATL,(R*) — R“ by extending linearly the map 7,° : F, — R°.

Example The closure of the arrow flat tangle of Figure 3.6 is illustrated in Figure 3.9. Here E has a
unique cycle 4 and (%) = 1 — (—6) — 3 = 4, hence T)(F) = z5.

-6

Figure 3.9: Closure of an arrow flat tangle

Theorem 3.11 The sequence {T," : ATL,(R*) — R*}?°, is a Markov trace.

Proof Foreachn >2 andeachi€ {1,...,n— 1} weset S; = —A~21 — A~*F;. We need to prove
that the following equalities hold.
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(1) T)%(xy) =T (yx) forall n > 1 and all x,y € ATL,(R%);

(2) T,%(x) =T | (xS,) = Tﬁl(xS,jl) =T)% (xw,) forall n > 1 and all x € ATL,(R);
(3) T/ x) = T;lil(xS,jlwn_lSn) for all » > 2 and all x € ATL,,(R%);

4) T/ (x) = Tr’l‘fH(anwn_1Sn_lwnS__llwn_lwn) forall n > 2 and all x € ATL,,(R%).

n

Proof of (1). We can assume that x = F = (E,f) and y = F' = (E',f’) are arrow flat n-tangles.
As in the definition of the multiplication in ATL,, for o« € E U E’, we set f*(a) = f(«) if a € E
and f*(a) = f'(o) if o € E'. A long cycle of length 2p in E LI E' is a 2p-tuple 4 = (71,...,72p)
in EUE', where v; = {(a;,bi—1),(ci, b))} with a;,¢; € {0,1} and b; € {1,...,n}, satisfying the
following properties.
(a) v, €Eifiisodd, v, € E' ifiiseven, ai 1 = 1if ¢; =0, a;r; = 0 if ¢; = 1 (The indices are
takenin {1,...,2p} modulo 2p. In particular, by, = by).
(b) (ai,bg) < (a;,b;_1) foralli € {3, 5,... ,Zp—l} and (ay, bg) < (c;, b;) forall i € {1, 3,...,2p—
1}.
Now, we define the number of zigzags for a long cycle exactly in the same way as we did for
cycles. The _cumulated parity of ~; relative to 4 is w(y;) = HJ’;} w(v;) if (a;, bi—1) < (ci,b;) and
@“(vi) = [[j=y @) if (@i, bi—1) > (ci, by). We set

2p
h&) = ) f ) -

i=1

We see that h(9) is an even number. Then we define the number of zigzags of 4 by ((§) = ‘h(—;’)' Let
A1, ..., 9m be the long cycles of E LI E'. Then

T (FF') = 2¢4)2¢0) " * 26 -

Let 4 = (71,...,72p) be along cycle of E LI E'. There exists a unique long cycle 4’ of E’ U E of one
the following forms

Vis Vi Ls -+ 5 V2ps Y1y V25 -+ 5 Vi 1) OF (Viy Vi Ly« + 5 Y1y V2ps Vap—1s - -+ 5 Vit1) 5

with i € {2,4,...,2p}. In addition, each long cycle of E’ LI E is of this form, and h(%") = +h(¥),
hence ¢(9") = ((¥). We conclude that T)*(FF') = T)*(F'F).

Proof of (2). From now on the proof of Theorem 3.11 is almost identical to that of Theorem 2.10. We
can assume that x = F = (E,f) is an arrow flat n-tangle. We see in Figure 3.10 that the following
equalities hold.

T (F) = 20 T,(F), T)M ((FFy) = T,'(F), T,% (Fw,) = T,(F).
Recall that S, = _A21 — A*F, (see the proof of Theorem 3.10). It follows that

T \(FSy) = —AT2T(F) — AT/ ((FF,) = (—A 20 — A~ YT (F) = T)(F),
T (FS, ") = —AT) (F) — AT} (FF,) = (=A%z0 — AYT)A(F) = T)(F).
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C o ) ( 0_1]1] C )
o stOs sF;O;
—" —— —

Figure 3.10: n + 1-closure of F', FF,, and Fw,

Proof of (3). We can again assume that x = F = (E, f) is a flat n-tangle. We have

FS7'w,_ 18, = F(—A% 1 — A*F)w,_1(~A721 —A™*F,) =
Fwy_1 + A’FF,wp_1 + A" 2Fwy_1Fy + FFywy_1F, =
Fwy_1 + A*FF,wy—1 + A 2Fw,_F, + FF,.

By the above, it follows that

T (FS,'Wy_1S,) =
T (Fwy—1) + A2 T8 (Fwye 1 Fp) + AT (FFwy1) + T (FF,) =
20T (Fwy—1) + A2 T (Fw,—1) + AT/ (w1 FF,) + T(F) =

(=A% — AT Fwy_1) + A2 T (Fw_y) + A>T/ (w1 F) + T(F) =
(=A% — AT Fw,_1) + AT (Fw,_ 1) + A>T/ (Fw,_1) + T/(F) = T/(F).

Proof of (4). We can again assume that x = F = (E, f) is an arrow flat n-tangle. Then

FwuWn—1Su—1waS, Wy 1wy =
Fwawu_1(—A72 1 — A4 F_Dwn(—=A% 1 — A*Fo_ Dwpwy, =
(FWnWy— 1 WaWa—1Wy) + A (FWgWy Wi F i Wa— 1 wy)+
AT FwaWn 1 Fam i WaWn1w) + (FWuWne1 Fye 1wy Fo i W 1wy) =
(FWn— 1 WaWn— 1 Wn— 1) ~+ A2 (FWy Fy Wi 1 W Wy W)+
AT (FEW Wy 1 W Wy 1 Fawn) + (FWuWy— 1 Fye i wy—1wy) =
(FWn—1) + A2 (FWy FyWn—1 Wn— 1 WnWn—1)+
A2 (FWy \WaWy 1 W 1 Fawy) + (Fwat, ! Fus ity 1wy) =
(Fwn—1) + A2 (FwaFywawn 1) + A2 (Fwy 1w Fawy) + (Fi L waFy iwty 1) =
(Fwn—1) + AX(Ft, Futywn 1) + A7 (Fwn_ 15, Futy) + (Ft, L ywy  Fawn_1ty—1) .
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By the above, it follows that

T (FWaWn_1Sn— lwnS,,l]Wn W) =
T | (Fwao1) + AT (Fty  Futyw— )+
AT (Fwa_ity, "Fouty) + T8 (FE Wi anWn 1) =
20T (Fwy—1) + AT/ (tywp— 1 F1,! n)+
AT (G F w18, " F) + T o1ty 1 FE, w1 Fy) =
(—A? — AT (Fwa_1) + A* T} (tywn—1 Fty, )+
AT W F w1ty D) + T W ta 1 FE o wyy) =
(A% — AT (Fwy—1) + AT (Ft, w1+
AT (Fwity, ' 1) + Tt W Wy 1ty—1) =
(—A? = ATOT A (Fwy_y) + AT (Fwao) + A2 T (Fwy—y) + TA(F) = TA(F). O

Corollary 3.12 For each n > 1 we set T® = T)* o p% : R[VB,] — R*. Then the sequence
{T% : R[VB,] — R*}3°, is a Markov trace.

Recall that R = Z[AT!] is a subring of R* = Z[AT!, Z*] and that, for n > 1, we have an embedding
tn @ TL,(R') — ATL,(R%) which sends E; to F; forall i € {1,...,n — 1} (see Proposition 3.9). The
next proposition is a version of Theorem 3.1 (2) in terms of Temperley—Lieb algebras.

Proposition 3.13 Let n > 1. Then T/%(1,(x)) = T/ (x) € R’ for all x € TL,(R).

We denote by £ the set of flat virtual n-tangles E € &, suchthat, foreach o = {(a, b),(c,d)} € E,d—b
isoddif a = ¢,and d—b isevenif a # ¢. We denote by VTL! the R‘g-submodule of VTL,, spanned by
&Y. Foreach E € £/ we define //(E) = (E,f) € F, as follows. Let a« = {(a,b),(c,d)} € E. Ifa = c,
we set f(a) = ,andif a = 0 and ¢ = 1, we set f(a) = d — b. We define ¢, : VTL! — ATL,
by identifying z with zy and extending linearly the map ¢} : £/ — F,,. The key point in the proof of
Proposition 3.13 is the following.

Lemma 3.14 Letn > 1.

(1) VTL} is a subalgebra of VTL, and ¢} : VTL; — ATL, is a ring homomorphism.

(2) Let VTLY(R') = RF@VTLY, andlet 1% : VTLY(R') — ATL,(R%) be the homomorphism induced
by i : VTLY — ATL,,. Then T/*(:%(x)) = T}/ (x) € R for all x € VTLY(R).

Proof Let E,E' € /. Set J/(E) = (E,f), ((E') = (E',f"), and (;(E) * 1/ (E") = (E x E', g). We first
show that E x E' € £ and that (E * E', g) = (“(E * E'). Let & be an arc in E LJ E’ of length £, and let
oa = {x',y'}, with X' = (a,b) <y = (c,d).

Suppose a = ¢ =0 and ¢ = 1. Then 0& = o; = {(0,b),(0,d)}, d — b is odd, and g(0&) =d — b =
|d —b|.

Suppose a = ¢ = 0 and ¢ > 1. Then ¢ is odd, say £ = 2p + 1. There exists a sequence
ap,ai, . ..,ap41 in {1,...,n} such that & is of the form & = (o, B1,72,- -, V2p—2; Bop—1, 2p),
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where g = {(0,a0),(1,a1)} € E, B = {(0,a)),(0,a,+1)} € E' forall i € {1,3,...,2p — 1},
v = {(1,a),(1,ai41)} € Eforall i € {2,4,...,2p — 2}, and oy = {(1,a2p),(0,a2p+1)} € E. We
also have x' = (0, ap), ¥y = (0,a2p+1), and ap = b < a1 = d. The numbers a; —ag and az, 1 — az,
are even, and the number a; | —a; is odd forevery i € {1,...,2p—1}, hence axp+1—ag = d—>bisodd.
We have w®(a) = 1, hence w(ap) f*(ap) = a; —ap. Leti € {1,3,...,2p—1}. Wehave w’(5;) = 1
if a; < a;y; and w(B;) = —1 if a; > a;11. In both cases we have @w(5;)f*(B;) = ai+1 — a;. Let
i€{2,4,...,2p—2}. Wehave w(y;) = 1 if ¢; < a;4+1 and w*(y;) = —1 if a; > a;4;1. In both cases
we have @w(7,) f* (Vi) = aiy1 — a;. We have @w(ay,) = —1, hence @w(any) f*(azp) = a1 — azp.
So, g(&) = g(0&) = aspy1 —ap =d — b = |d — b|.

Suppose a = ¢ =1 and ¢ = 1. Then 0& = a1 = {(1,b),(1,d)}, b — d is odd, and g(0&) = b —d =

|b —d|. Suppose a = ¢ =1 and ¢ > 1. Then we show in the same way as for the case a = ¢ = 0 and
¢>1that b —d is odd and g(&) = g(0&) =b—d = |b —d|.

Suppose a = 0 and ¢ = 1. Then ¢ > 2 and / is even, say £ = 2p + 2. There exists a sequence
ap,d, - - ., ap42 in {1, ce ,n} such that & is of the form & = (ao, 51,72, - - - ,/82;7—17’72177 52p+1),
where g = {(0,a9),(1,a;)} € E, B; = {(0,a;),(0,a;,+1)} € E' for all i € {1,3,...,2p — 1},
Y = {(1,61,'),(1,61,‘4.1)} € Eforalli € {2,4, - ,Zp}, and (SQP_H = {(0,a2p+1),(1,a2p+2)} € E'. We
also have x' = (0,b) = (0,a9) and y = (1,d) = (1, a2p+2). The numbers a; — ap and azp12 — azp+1

are even and a;1 — a; is odd for each i € {1,...,2p}, hence d — b = ayp2 — ap is even. We have
w () = 1, hence w () f*(cw) = a1 —ap. Leti € {1,3,...,2p — 1}. We have w’(3;) = 1 if
a; < aj+1 and w(B;)) = —1 if a; > a;+1. In both cases we have @w(5;)f*(6;)) = ai+1 — a;. Let

i€{2,4,...,2p}. We have w(vy;) = 1 if a; < a;+1 and w(y;) = —1 if a; > a;41. In both cases we
have @“(7) f*(7i) = aiy1 — a;. We have w(dzp+1) = 1, hence w(02p+1)f*(02p+1) = aopt2 — ap+1-
So, g(&) = g(0&) = azpy2 —agp =d — b.

The above shows that E x E' € £/ and 1/ (E x E') = (/(E) = 1, (E").

Let 4 be a cycle in E U E' of length £. Then ¢ > 2 and ¢ is even, say ¢ = 2p. There exists a
sequence do, dar, . . .,as in {1,...,n} such that 4 is of the form 4 = (v, fa, . .., a2p—1, f2p), Where
a; = {(1,a;-1),(1,a)} € E forall i € {1,3,...,2p — 1} and 3; = {(0,a;-1),(0,a;)} € E' for all
i€{2,4,...,2p}. We also have ay, = ap. Let i € {1,3,...,2p — 1}. We have @w(a;) = 1 if
ai—1 > a; and w(a;) = —1 if a;_; < a;. In both cases we have @w(a;)f*(c) = aj—1 — a;. Let
i€{2,4,...,2p}. Wehave @w’(3;)) = 1 if a;—1 > a; and @w(5;) = —1 if a;—1 < a;. In both cases we
have @‘(8;)f*(B;) = ai—1 —a;. Thus, h(¥) = ap — azp, = 0, hence ((%) = 0. So, if m is the number of
cyclesin ELIE’, then t}/(E) t;(E") = 2§ (L[ (E) * t;(E")), hence ¢}, (E) v;(E') = t;(EE"). This concludes
the proof of the first part of the lemma.

Let E € £ and let (E,f) = ¢/ (E). In order to prove the second part of the lemma, it suffices to show
that, if 4 is a cycle of £, then ((%) = 0, that is, #(5) = 0. Let 4 be a cycle of £. Then # is of the form

Y =an s @y BV - Vg O1s e 5 QL ey Qs Bry Vet -5 Vrge
Ors Qg 115+ -5 Qe pyy ) 5
where
aij = {0,a;-1), 1, ai)}, Bi = {(0,bi0), (0,b;1)}, vij = {1, cij-1), 0, ¢i)},

0 = {1, dio),(1,di,)}, aip, = bio, bit = cio, Cig =dio, diy = aAix1,0, Are1p,,, =a1,0-
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We have @w‘(a;j) = 1, hence w(a;j)f(cij) = aij — a;j—1. We have w(5;) = —1 if bjg > b;
and @w(f;) = 1 if b;y < b; ;1. In both cases we have @w‘(3;)f(3;) = b;1 — b;p. We have @w‘(v;;) =
—1, hence wc('yiJ)f('yiJ) = Cij — Cij—1- We have YDC((SI‘) = —1if di,O > dl'71 and wc(é,-) =1 if
dip < d;i1. In both cases we have @w‘(d;)f(6;) = d;1 — d;p. Combining these equalities we get
h(%) = ary1p,,, — a0 = 0, hence ((9) = 0. O

Proof of Proposition 3.13 We have E; € VTLY(R/) forall i € {1,...,n — 1}, TL,(R) is generated
by Ei,...,E,_1,and VTLY(R') is a subalgebra of VTL,(R'), hence TL,(R) C VTLL(R). Moreover,
since 1,(E;) = (Y(E;) forall i € {I,...,n— 1}, we have 1,(x) = (/(x) for all x € TL,(R). We
conclude from Lemma 3.14 that 7/(1,(x)) = T (x) € R for all x € TL,(R). O

Now, it remains to prove the following.

Theorem 3.15 Let I¢ : VL — R* be the invariant defined from the Markov trace of Corollary 3.12.
Then I coincides with the arrow polynomial.

Proof The proof is similar to that of Theorem 2.12. Let 3 be a virtual braid on n strands and let B be its
closure. It is easily seen that the relations (L)) = A{(L;)) + A~'{L,)) and (L)) = A='(L,)) + A{(L,))
in the definition of the arrow Kauffman bracket corresponds in terms of closed virtual braids to
replacing each o; with A 14+ A~!F; and each o;"! with A~=! I + A F;. Once we have replaced each o;
with A1+ A~'F; and each o;"' with A~' 1 + A F;, we get a linear combination 3", a;F®, where
FO = (ED Oy ¢ F, and a; € R* forall i. Fori € {1,...,¢} let i1y - -+, Yi,m be the cycles of ED.
Then
‘
(B) =D aizes e Em -
i=1
Recall that w : VL — Z denotes the writhe. Let w : VB,, — Z be the homomorphism which sends o;
to 1 and 7; to O forall i € {1,...,n—1}. Then w(53) = w(B), and therefore 7(8) = (—A3) B (BY).
So, in the above procedure, if we replace each o; with (—A 'A14+A47'F)=—-A"21—-A*F; and
each ;! with (—A®)(A~'1 +AF;) = —A% 1 — A*F;, then we get directly ?(B). It is clear that this
procedure also leads to 77(53). O
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