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Abstract

The detrended fluctuation analysis (DFA) and its variants such as the detrended

moving average (DMA) are widely used to estimate the Hurst exponent. These

methods are very popular as they do not require advanced skills in the field of sig-

nal processing and statistics while providing accurate results. As a consequence,

a great deal of interest has been paid to compare them and to better understand

their behaviors from a mathematical point of view. In this paper, our contribu-

tion is threefold. Firstly, we propose another variant avoiding the discontinuities

between consecutive local trends of the DFA by a priori constraining them to

be continuous. Secondly, we show that, in all these approaches, the square of

the fluctuation function can be presented in a similar matrix form. When the

process is wide-sense stationary (w.s.s.), the latter can be seen as the power of

the output of a linear filtering whose frequency response depends on the given

method. In the general case, an interpretation of the square of the fluctuation

function is also given by expressing it as the convolution between the 2D-Fourier

transform of two matrices, one whose elements correspond to the instantaneous

correlation function of the signal and the other which depends on the detrending

method. To end up, an illustration is provided in the field of avionics for the

detection of the visual tunneling, a deleterious cognitive state.
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1. Introduction

One of the main goals of signal processing algorithms is the characterization

and classification of random processes, usually collected by using sensors. To

this end, it is common to estimate some features such as the signal power in

certain frequency bands, the zero-crossing rate, the entropy or the multiscale

entropy [1], or the parameters of an a priori model that fits the data. In the

latter case, an autoregressive moving average (ARMA) model can be consid-

ered to describe a process whose power spectral density exhibits both frequency

resonances and rejections. In addition, as the values of the normalized autoco-

variance function of this model tend to decay to zero exponentially when the lag

increases, this model is well-suited for short-memory data. Hence, this can be a

relevant model in speech processing for instance. However, in other cases such

as in the field of economics [2], the normalized autocovariance function decays

slower than exponentially so that the sum of its terms goes to infinity. This

corresponds to processes such as autoregressive fractionally integrated moving

average (ARFIMA) processes [3, 4], which have long-range dependance (LRD).

LRD is therefore another feature of interest when studying time series, and it

can be characterized in many ways. One of them consists in analyzing the prop-

erties of the autocorrelation function or of the power spectral density (PSD),

but it can also be done by estimating the Hurst exponent, denoted H [5]. Thus,

a process is said to have LRD if 0.5 < H < 1. When 0 < H < 0.5, the process is

short range dependant or anti-persistent. There are also some particular cases:

H is respectively equal to 0.5, 0 and −0.5 for a Brownian noise, a pink noise

and a white noise. The reader can refer to [6] for more information.

The different approaches that aim at estimating the Hurst coefficient can be

sorted in two main families: the time-domain estimators and the frequency-

domain estimators. Among the time-domain estimators, the rescaled range

(R/S) analysis [7] was first proposed by Hurst in 1951. Then, other methods,

such as the aggregated variance method, the absolute-value method and the

variance-of-residuals method were introduced. See [8] and [9] for more details.
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To estimate the Hurst exponent of a pure mono-fractal time series, the fluctua-

tion analysis (FA) [10] was proposed in the early 90’s as another time domain ap-

proach. After integrating the signal leading to the new sequence yint, the fluctu-

ation function, denoted as F000(N000) and equal to√
< (yint(i+N000) − yint(i))

2 >, where < . > denotes the temporal mean, is

computed for different values of the lag N000. As F000(N000) is proportional to NH+1
000

[10], log(F000(N000)) is represented as an affine function of log(N000) to estimate H

in the least-square (LS) sense1. Since the FA is sensitive to non-stationarities,

the detrended fluctuation analysis (DFA) [11] was developed. This method op-

erates with the following steps: after integration, the sequence yint is split into

small parts of size N111. Using a LS criterion, their trends are deduced. Most of

the time, block estimation schemes are considered, but on-line methods based

on Kalman filtering [12] could be used. The resulting piece-wise linear trend is

then subtracted to the whole integrated signal yint. The power of the subtrac-

tion residual, denoted as F 2
111 and corresponding to the square of the fluctuation

function, is computed for different values of N111. Due to the integration, the

regularity of the integrated signal is equal to H + 1. As F111 is proportional to

NH+1
111 , the log-log representation corresponds to a straight line with a slope

denoted as α = H + 1 and called the scaling exponent.

Several variants of the DFA now exist based on different ways to obtain the

global trend of the integrated process [13].

1. Instead of using a linear trend for each segment, polynomials with a degree

larger than 1 can be considered. This leads to the quadratic DFA and the

cubic DFA. These methods are called higher-order DFA.

2. When dealing with a signal whose regularity evolves over time, the scaling

exponent can be estimated on a sliding window. For each windowed signal,

either the standard DFA described above is used or the square of the

fluctuation function is computed and α is updated by using a Kalman

1In this paper, log denotes the logarithm to the base 10.
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filter. See [14].

3. As discontinuities between local trends can be debatable, various authors

aimed at addressing this issue. Thus, the authors in [15] suggest searching

the global trends of the integrated signal and of its shifted version. Then,

both are combined to obtain a continuous global trend. This method is

called AFA for adaptive fractal analysis.

4. The detrended moving average (DMA) is based on a low-pass filtering of

the whole integrated signal in order to obtain the trend. In its standard

version, the filter has a finite impulse response (FIR) of length N222 [16].

In economics, this way to deduce the trend is known as ”moving average

filtering” [17]. Using either a finite-impulse-response filter or an infinite-

impulse-response filter leads to variants known as the simple moving aver-

age, including the backward moving average and the centered moving aver-

age (CDMA), the weighted moving average of order l, labeled as WDMA-l

and the weighted centered detrended moving average (WCDMA) [18].

The reader can refer to [19] or [20] for a comparison between some of these

approaches.

In addition to these time-domain estimators, many of the more recent methods

aiming at estimating the Hurst exponent are based on the frequency analy-

sis. They consist in studying the power spectral density (PSD) of the time se-

ries [21] and include the local Whittle method, the periodogram-based method,

the empirical-mode-decomposition-based approach [22], the fractional Fourier

transform [21], the wavelet-based method [23] and the semi-parametric method

[24, 25]. Different comparative studies have also been led [26]. These methods

have been compared with the DFA in specific usecases, both on monofractal

and multifractal processes [27–30]. Even though they can outperform the DFA

on a given synthetic data-set, the latter and its variants have been proven to

be among the best estimators. Indeed, in [8], the authors compared most of

the above-mentioned estimators, except the one based on wavelets, on different

types of signals. The DFA appeared to be the most robust non-parametric es-
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timator as it provided the smallest mean squared error in the estimation of H.

Moreover, the DFA and its variants do not a priori require advanced skills in

statistical signal processing as they are based on regressions and linear filter-

ing. This is one of the main reasons of their popularity. Their applications to

real processes have been extensively studied especially in the field of biomedical

[31–38], econometrics [39, 40], meteorology [41, 42], or geophysics [43]. They

can be considered as a trade-off between performance, computational cost and

simplicity of implementation and use.

During the last years, the main contributions dealing with these approaches

have been done on four aspects: providing extensions or generalizations of the

algorithms [44], addressing the cases of multifractal time series [45], develop-

ing fast versions [46, 47], proposing mathematical analysis to better understand

their behaviors [20, 48–51]. In [52], a relation between the fluctuation function

and an estimation of the normalized autocorrelation function of the signal was

given, by assuming that the process was wide sense stationary (w.s.s.) and

ergodic and by making some approximations. The single-frequency responses

of the DFA and the higher-order DFA [48] as well as the centered DMA [51]

were analyzed. The authors concluded that for stochastic processes whose PSD

is a function of the frequency of the form f−β , using the higher-order DFA is

convenient to estimate α as long as α = β+1
2 . It should be noted that the link

between FFA(NFA) and the normalized covariance function was studied in [53].

In this paper, the contribution is threefold:

Firstly, we suggest studying another variant of the DFA. More particularly, we

propose to model the global trend of the integrated signal by assuming that the

consecutive local trends are continuous. The estimations of the parameters of

the local trends are based on a constrained LS criterion. This method is called

CDFA in the remainder of this paper.

Secondly, a theoretical comparison between the ways to deduce the square of

the fluctuation function with the DFA and its variants is proposed. Two cases

are addressed:

For one thing, the process is assumed to be w.s.s. In this case, the statistical
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mean of the square of the fluctuation function is expressed from the autocorre-

lation function of the process and consequently from the PSD. Therefore, the

matrix formulation we propose makes it possible to understand how the fluc-

tuation function is modified when using one of the variants of the DFA. The

differences between the various methods are hence highlighted. Although N111

corresponds to the local-trend length for the DFA and the CDFA and N222 corre-

sponds to the filter order for the DMA, our purpose is to study the influence of

these parameters. In the following, N111 = N222 = N . In addition, we compare our

work with the approaches proposed by [48] and [52], in which approximations

were done to express the fluctuation function.

Then, the case of non-stationary processes is addressed. We will see that our

analysis generalizes the interpretation we provide for w.s.s. processes. More

particularly, we show that the square of the fluctuation function can be de-

duced by expressing it as the convolution between the 2D-Fourier transform of

two matrices : one whose elements corresponds to the instantaneous correlation

function of the signal and another called weighting matrix, which depends on

the detrending method. Comparing the methods amounts to comparing the

2D-Fourier transform of the weighting matrices.

To end up, examples are given to illustrate our analysis. These deal with oc-

ular processes obtained on subjects under the state of visual tunneling. The

Hurst exponent of the gaze position, estimated with both the DFA and CDFA,

is shown to be a promising marker of this deleterious cognitive state.

The remainder of the paper is organized as follows: In section 2, the main steps

of the approaches are recalled before expressing the square of the fluctuation

function in a uniform matrix way. Section 3 provides a comparative analysis

both in the stationnary and non-stationnary case. In section 4, simulations are

presented.
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2. Presentation and comparison of methods based on trend extraction

After giving the general steps of the DFA and its variants and providing some

notations, this section deals with a uniform way to express the trend vector with

the different variants of the DFA.

2.1. General steps of these approaches

Let us consider M consecutive samples {y(m)}m=1,...,M of the signal. The DFA

and its variants are defined by the following four steps [11, 16, 18]:

• Step 1. The so-called profile

yint(m) =

m∑
i=1

(y(i)− µy)

is first computed, where µy = 1
M

∑M
m=1 y(m) is the mean of y.

• Step 2. The trend of the profile is estimated. This step will be detailed

for each method in the next subsections below.

• Step 3. The resulting trend is subtracted to the profile. This leads to a

residual. Then the square root of the residual power, Fiii(N), is computed,

where the subscript iii refers to the method that is used i.e. DFA (iii = 111),

DMA (iii = 222) or CDFA (iii = 333).

• Step 4. Steps 2 and 3 are repeated for different values of N . At this

stage, as Fiii(N) ∝ Nα [10], log(Fiii(N)) is plotted as a linear function of

log(N).

• Step 5. The final step is to search a straight line fitting the log-log

representation. Its slope, denoted as α, is estimated in the LS sense.

The approaches differ in the way of deducing the trend, i.e. in step 2. In the

following, let us present each of them and express the trend vector in a matrix

form.
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2.2. Notations

Some notations that will be used in the rest of the document are listed below:

• A(i : j, k : l) is the part of the matrix A corresponding to the elements

belonging to the rows i to j and to the columns k to l.

• 1j×k and 0j×k are matrices of size j× k filled with 1s and 0s respectively.

• diag([.], l) is a matrix whose lth diagonal is equal to [.].

Thus, Ij = diag(11×j , 0) is the identity matrix of size j. diag(11×N−1, 1)

is the square matrix of size N whose 1st sub-diagonal above the main one

has its elements equal to 1.

• Jj = Ij − 1
j1j×j .

• Tl is a N × 1 vector storing the values of the lth local trend tl(n).

• Y and Yint are two column vectors storing respectively the samples

{y(n)}n=1,...,M and {yint(n)}n=1,...,M . This leads to :

Yint = [yint(1), yint(2), ..., yint(M)]T = HMJMY (1)

with HM =
∑M−1
r=0 diag(11×M−r,−r) a lower triangular matrix filled with

1s.

• Depending on the approach used to estimate the trend of the profile, all

the samples of the profile are not necessarily considered. In addition, some

other transformations will be required to get the matrix form of the trend.

Therefore, let us introduce the following matrix of size (j,M):

Cj,k = [0j×k Ij 0j×(M−(j+k))] (2)

In this case, one can express the first LN elements of the vector Yint as

follows:

Yint(1 : LN) = [yint(1), yint(2), ..., yint(LN)]T = CLN,0Yint =
(1)
CLN,0HMJMY

(3)

• Finally, for the sake of simplicity, let us define N ′ = N−1
2 .
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2.3. Extraction of the trend vector

2.3.1. Matrix form of the trend vector with the DFA

When dealing with the DFA, the profile is split into L non-overlapping seg-

ments of length N , denoted as {yint,l(n)}l=1,...,L with n ∈ [[1;N ]]. As M is not

necessarily a multiple of N , the last M − LN samples of the profile are not

used. In this case, the lth local trend, corresponding to the trend tl(n) of the

lth segment yint,l(n), is modeled by a straight line ∀l ∈ [[1;L]] and ∀n ∈ [[1;N ]]:

tl(n) = al,1[(l − 1)N + n] + al,0 (4)

Then, ∀l ∈ [[1;L]], the parameter vector θl =
[
al,0 al,1

]T
is estimated in the

LS sense from {yint,l(n)}n=1,...,N . The global trend T111 is then deduced by

aggregating the local trends {Tl}l=1,...,L. Using a vector form of (4), one has:

Tl = Alθl ∀l ∈ [[1;L]] (5)

where Al is a N ×2 matrix whose first column corresponds to a vector of 1s and

whose second column is defined by the set of values {(l − 1)N + n}n=1,...,N .

By introducing the parameter vector Θ111 =
[
θ1 . . . θL

]T
of size 2L × 1, and the

(LN × 2L) matrix A111 which is block diagonal defined from the set of matrices

{Al}l=1,...,L, the parameters of the local trends satisfy:

arg min
Θ111

∣∣∣∣∣∣CLN,0Yint −A111Θ111

∣∣∣∣∣∣2 (6)

This leads to:

Θ̂111 = (AT111 A111)−1AT111 CLN,0Yint (7)

Then, the trend vector T111 can be deduced as follows:

T111 = A111Θ̂111 =
(7)
A111(AT111 A111)−1AT111 CLN,0Yint (8)

=
(1)
A111(AT111 A111)−1AT111 CLN,0HMJMY

The trend vector corresponds to the orthogonal projection of CLN,0HMJMY

onto the space spanned by the columns of A111.
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2.3.2. Matrix form of the trend vector with DMA

When dealing with the DMA, known as ”simple moving average” [18], the

profile is low-pass filtered. Indeed, the impulse response of the filter is given by:

h(n) =
1

N
for n = 0, ..., N − 1. (9)

Due to its symmetry, it leads to a linear-phase filter with a constant group

delay equal to N−1
2

1
fs

, where fs denotes the sampling frequency. As the trend

has to be subtracted to the integrated signal, N is chosen odd in the following.

Moreover, the frequency response satisfies:

H(f) =


1
N

sin(πNffs )

sin(πffs )
e−j

π(N−1)f
fs if f 6= 0

1 otherwise

Note that |H(f)| = 0 when πNf
fs

= kπ, or equivalently when f = kfs
N for

k = 1, ..., N − 1. This amounts to saying that the FIR filter is defined by zeros

of the transfer function which are equal to ej
2πk
N with k = 1, ..., N − 1. When

N increases, the width 2fs
N of the main lobe decreases. This corresponds to a

low-pass filtering more and more selective when N increases.

The M samples of the profile are filtered. Instead of using a convolution at each

time step, let us express the vector storing the filter output samples. This can

be done by premultiplying Yint by a filtering matrix Mfilt defined as:

Mfilt =
1

N

N−1∑
r=0

diag(11×M−r,−r) (10)

In addition, the group delay corresponding to N ′ samples and induced by the

filter has to be compensated. This can be done by introducing another pre-

multiplication by the following M ×M matrix:

Mcomp = diag
(
11×(M−N ′), N

′
)

(11)

The resulting trend vector is equal to McompMfiltYint.

However, the last N ′ elements of this vector are equal to 0. In addition, due

to the transient behavior of the filtering which corresponds to the first N − 1
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samples and the delay compensation introduced above, the first N ′ elements

of the current trend vector should not be taken into account. For the above

reasons, only a vector of size M − N + 1 should be considered. This amounts

to adding another pre-multiplication by the matrix CM−N+1,N ′ .

Therefore, the trend vector satisfies:

T222 = CM−N+1,N ′McompMfiltYint =
(1)
CM−N+1,N ′McompMfiltHMJMY (12)

2.3.3. Matrix form of the trend vector with the CDFA

Instead of a posteriori correcting the discontinuities in the global trend of

the data by using combinations of the consecutive local trends as this is done in

the AFA [15], we propose to model the global trend of the profile by assuming

that the consecutive local trends are continuous (see Fig. 1). The estimations

of the trend parameters are then based on a constrained LS criterion. In the

following, let us detail the proposed variant.

(a) (b)

Figure 1: Global trends with DFA (a) and CDFA (b)

Minimization approach defining the CDFA. For the L segments under study, our

purpose is to ensure continuity between the consecutive local trends

∀l ∈ [1;L − 1]. Therefore, there are two possibilities that can be considered;
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either, one has:

xl+1(1) = xl(N + 1) (13)

or

xl+1(0) = xl(N) (14)

Given (4), defining the constraints (13) or (14) amounts to having ∀l ∈ [1;L−1]:

al+1,0 = β(l)(al,1 − al+1,1) + al,0 (15)

with β(l) = lN + 1 (resp. lN) if the first constraint (13) (resp. the sec-

ond constraint (14)) is taken into account. Note that for both constraints,

β(l) − β(l − 1) = N . This remark will be useful for the parameter estimation

step. Instead of using (15), one can consider ∀l ∈ [1;L− 1]:

al+1,0 = a1,0 +

l∑
j=1

β(j)(aj,1 − aj+1,1) (16)

The joint estimations of the 2L parameters {al,1}l=1,...,L and {al,0}l=1,...,L con-

sists in minimizing the following criterion:

J(a1,1, .., aL,1, a1,0, .., aL,0) =
1

LN

LN∑
m=1

(yint(m) − t(m))2

=
1

LN

L∑
l=1

N∑
n=1

(yint((l − 1)N + n) − tl(n))2

under L− 1 constraints defined by (16). This amounts to minimizing this new

criterion:

J(a1,1, .., aL,1, a1,0) =

N∑
n=1

(yint(n) − a1,1n− a1,0)2 (17)

+

L∑
l=2

N∑
n=1

[yint((l − 1)N + n) − al,1[(l − 1)N + n] − a1,0 −
l−1∑
j=1

β(j)(aj,1 − aj+1,1)]2

Matrix form of the CDFA approach. Let us introduce the (L + 1) × 1 column

parameter vector Θ333 = [a1,1, .., aL,1, a1,0]T and the LN × (L + 1) matrix A333
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defined as follows:

A333(1 : N, 1 : L+ 1) =



1 0 . . . 0 1

2
...

... 1

...
...

...
...

N 0 . . . 0 1


(18)

and ∀l ∈ [2;L]:

A333((l − 1)×N + 1 : lN, 1 : L+ 1) = (19)

β(1) N · · · N (l − 1)N + 1− β(l − 1) 0 · · · 0 1

β(1) N · · · N (l − 1)N + 2− β(l − 1)
...

...

...
...

...
...

...

β(1) N · · · N︸ ︷︷ ︸
l−2

lN − β(l − 1) 0 · · · 0︸ ︷︷ ︸
L−l

1


The criterion introduced in (17) can be defined as follows:

J(a1,1, .., aL,1, a1,0) =
∣∣∣∣∣∣CLN,0Yint −A333Θ333

∣∣∣∣∣∣2 (20)

= [CLN,0Yint −A333Θ333]T [CLN,0Yint −A333Θ333]

Therefore, the estimate Θ̂333 satisfies:

Θ̂333 = [AT
333 A333]−1AT

333 CLN,0Yint (21)

The trend vector T333 = A333Θ̂333 can be expressed this way:

T333 =
(21)

A333[AT333 A333]−1AT333 CLN,0Yint (22)

=
(1)
A333[AT333 A333]−1AT333 CLN,0HMJMY

The trend vector can be seen as the orthogonal projection of CLN,0HMJMY

onto the space spanned by the columns of A333.

Remark. We have done similar developments for the AFA approach [15] as

well, but they are not given in this paper for the sake of space.
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3. Comparative analysis

This section is the core of this paper. Indeed, given the matrix form of the

trend vector for the DFA, the DMA and the CDFA, we first propose to express

the square of the fluctuation function. When the signal is w.s.s. it corresponds

to the power of the signal which has been filtered. The frequency response of

the filter depends on the approach. In addition, we give an interpretation of the

fluctuation function by using the frequency domain when the signal is no longer

w.s.s..

3.1. Towards a uniform expression of the residual power

Given (8), (12) and (22) in the above section, the trend vector Tiii, with iii =

111, . . . ,333, has been expressed as a function of the signal vector Y . The next step

is to deduce the expression of the residual vector Riii, i.e. the expression of the

difference between the integrated signal and the trend vector of the integrated

signal. To take into account the fact that the trend vector is not necessarily

of the same size, the matrix Ciii is introduced. Thus, one has for the subscript

iii = 1, ..., 3:

Riii = CiiiY− Tiii = BiiiY (23)

where C111 = C333 = CLN,0HMJM for the DFA and the CDFA and

C222 = CM−N+1,N ′HMJM .

In table 1, the expressions of the matrices Biii are summarized.

Table 1: Summary of the expressions and sizes of the matrix Biii

Methods Definition of the matrix Biii Size Siii of the trend vector

DFA
(
ILN −A111(AT111 A111)−1AT111

)
CLN,0HMJM LN

DMA CM−N+1,N ′ (IM −McompMfilt) HMJM M −N + 1

CDFA
(
ILN −A333(AT333 A333)−1AT333

)
CLN,0HMJM LN

Then, given Siii the size of the trend vector and introducing Γiii = 1
Siii
BTiii Biii, the

power of the residual F 2
iii (N), also called the square of the fluctuation function,
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can be deduced as follows:

F 2
iii (N) = Tr

(
ΓiiiY Y

T
)

(24)

By taking advantage of the symmetry of Γiii, (24) becomes:

F 2
iii (N) =

Siii∑
k=1

Γiii(k, k)y2(k) +

Siii−1∑
r=1

Siii−r∑
k=1

[Γiii(k, k + r) + Γiii(k + r, k)]y(k)y(k + r) (25)

In section 3.2, this formalism will be useful to express the power of the

residual from the autocorrelation function of a process assumed to be w.s.s., and

consequently from its power spectral density. Nevertheless, before addressing

this issue, let us express the slope α to provide all the steps of the DFA and its

variants in a matrix form.

3.2. Link between the power of the residual and the PSD of a w.s.s. process

By assuming that y is w.s.s. and taking the statistical mean of (25), one has:

E[F 2
iii (N)] =

Siii−1∑
r=−Siii+1

Tr(Γiii, r)Ry,y(r) (26)

where Ry,y(r) is the autocorrelation function of the process y and Tr(Γiii, r)

denotes the rth diagonal of the matrix Γiii.

As the autocorrelation function for real signals is symmetric and by denoting

gΓiii(r) = Tr(Γiii, r), the above equation can be expressed as the result of a

convolution:

E[F 2
iii (N)] = gΓiii ∗Ry,y(τ)|τ=0 (27)

Given the Wiener-Khintchine theorem and using the inverse Fourier transform

(TF−1), E[F 2
iii (N)] can be expressed from the PSD of y, denoted as Syy(f):

E[F 2
iii (N)] = TF−1

(( Siii−1∑
r=−Siii+1

Tr(Γiii, r)e
−j2πfnr

)
Syy(f)

)∣∣
τ=0

= TF−1
(

Ψiii(f)Syy(f)
)∣∣
τ=0

(28)

In (28), Ψiii(f) =
∑Siii−1
r=−Siii+1 Tr(Γiii, r)e

−j2πfnr corresponds to the Fourier trans-

form of the sequence {Tr(Γiii, r)}r=−Siii+1,...,Siii−1. Let us look at the properties

15



of the latter: first of all, as it is real and even, Ψiii(f) is necessarily real and even.

Moreover, as Γiii is a Gramian matrix since it is the product between 1√
Siii
Biii and

its transpose, the element Γiii(i, j) located at the ith row and the jth column of

Γiii corresponds to the scalar product between the ith and the jth rows of 1√
Siii
Biii.

Therefore, taking advantage of the properties of the scalar product, one has:

|Γiii(i, j)| ≤ |Γiii(i, i)| (29)

As a corollary, using the inequality (29), one has:

|Tr(Γiii, r)| ≤
Siii−r∑
k=1

|Γiii(k, k + r)| ≤
Siii−r∑
k=1

Γiii(k, k)

≤
Siii−1∑
k=1

Γiii(k, k) = Tr(Γiii, 0) = Tr(Γiii)

In the above, note that Tr(Γiii) corresponds to the square of the Froebenius

norm of the matrix Γiii. It is necessarily positive and the maximum value of

the sequence of the traces. As a consequence, the sequence can be seen as the

convolution of a vector with its flipped version and its Fourier transform Ψiii(f)

is necessarily positive.

Therefore Ψiii(f)Syy(f) can be seen as the PSD of the signal y filtered by a filter

whose transfer functionHfilter,iii(z) satisfies: Ψiii(f) = |Hfilter,iii(z)|2z=exp(jθ), with

θ = 2πf/fs the normalized angular frequency. Consequently, we can conclude

that E[F 2
iii (N)] corresponds to the autocorrelation function of the filter output

calculated for the lag equal to 0, i.e. the power of the filter output.

Remark: about the FA approach

Let us recall the definition of the criterion introduced by Peng [10] and denoted

as F000(N):

F 2
000 (N) =

〈
(yint(i+N)− yint(i))2

〉
=

〈 i+N∑
j=i+1

y(j)

2〉
(30)

=

〈
i+N∑
j=i+1

y2(j) + 2

i+N−1∑
j=i+1

i+N∑
k=j+1

y(j)y(k)

〉
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The expectation of F 2
000 (N) can then be expressed from the autocorrelation func-

tion Ry,y(τ) of the signal as follows:

E[F 2
000 (N)] =

N−1∑
r=1−N

(
Tr(Γ000, r)

)
Ry,y(r) (31)

where Γ000 is a square matrix of size N whose every element is equal to 1. From

the definition of Γ000, the sequence gΓ000
(r) = Tr(Γ000, r) is a triangular function.

The filtering induced by the FA approach is low-pass and reduces to the inte-

gration of the process under study.

In this subsection, the signal is assumed to be w.s.s., but, in several appli-

cations, this is not necessarily the case. For this reason, we propose to address

this issue in the next subsection.

3.3. Link between the power of the residual and the Wigner-Ville transform of

the process, when it is not w.s.s.

As the signal is no longer assumed to be w.s.s., we suggest introducing a

time frequency analysis, namely the Wigner-Ville transform, which can be seen

as the instantaneous correlation function of the signal [54].

From (25), it comes that F 2
iii (N) can be expressed as a weighted sum of the

instantaneous correlations terms {y(k)y(k + r)}r=−M+1,...,M−1. Let us rewrite

it by using the following two matrices of size (2M − 1× 2M):

On the one hand, Ycorr has its kth column storing the instantaneous correlations

of the signal y at time k for the lags varying from M − 1 to 1 −M :

Ycorr =



y(1)y(1− (M − 1)) . . . y(M)y(M − (M − 1))

y(1)y(1− (M − 2)) . . . y(M)y(M − (M − 2))
...

...
...

y(1)y(1) . . . y(M)y(M)
...

...
...

y(1)y(1 + (M − 2)) . . . y(M)y(M + (M − 2))

y(1)y(1 + (M − 1)) . . . y(M)y(M + (M − 1))


(32)
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On the other hand, the weighting matrix Wiii is filled with zeros. Its i-th anti-

diagonal2, with i = 1, ...,M , is of lengthM and equal to [Γiii(1, i),Γiii(2, i), . . . ,Γiii(M, i)].

Thus, for M = 3, one has:

Wiii =



0 0 Γiii(3, 1)

0 Γiii(2, 1) Γiii(3, 2)

Γiii(1, 1) Γiii(2, 2) Γiii(3, 3)

Γiii(1, 2) Γiii(2, 3) 0

Γiii(1, 3) 0 0


(33)

Let us now represent some examples of Wiii in Fig. 2 with N = 9 and N = 21.

The colormap was chosen to distinguish the null values from the negative ones

and the positive ones.

2The ith anti-diagonal of the matrix Wiii corresponds to the set of elements located at the

(2M + 1− j − i)th row and the jth column, with j = 1, ...,M .
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Figure 2: Weighting matrices W111 (left), W222 (center) and W333 (right) for M = 60.

Given (32) and (33), the square of the fluctuation function (25) can be

seen as the two-dimensional Fourier transform (2D-FT) of the element-wise

multiplication of Ycorr andWiii for the set of the spatial frequencies (u, v) = (0, 0).

Given the properties of the Fourier transform, F 2
iii (N) can also be expressed as

the convolution between the 2D-FTs of Ycorr and Wiii, for (u, v) = (0, 0):

F 2
iii (N) = F (YcorrWiii)|(u=0,v=0) (34)

=

(
F (Ycorr) ~ F (Wiii)

)
|(u=0,v=0)

where u and v are the normalized spatial frequencies, F denotes the 2D-FT

and ~ the convolution.

Therefore, one way to compare the DFA with its variants is to compare the

properties of the 2D-FT of Wiii.
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Remark: link with the w.s.s. case.

Let us analyze E[F 2
iii (N)] when y is w.s.s. In this case, E[Ycorr] is a matrix

where each row contains the same element, which corresponds to the autocor-

relation function of y for a specific lag. By neglecting the windowing influence,

the modulus of the 2D-FT of E[Ycorr] is null for every couple (u, v), except for

u = 0, where it corresponds to the PSD of the process y at the frequency v.

Thus, convolving F (Wiii) with E[Ycorr] amounts to filtering the process y with

a band-pass filter whose central frequency decreases with N .

3.4. Summary of the section

This section aimed at providing an interpretation of the fluctuation function

for both stationary and non-stationary processes. This interpretation is given

for the DFA and the DMA, as well as the CDFA we proposed in 2.3.3. It

is based on a uniform way of expressing the trend vector extracted by the

approaches. Moreover, unlike in [48] and [52], no approximation is made. In the

next section, we compare the DFA and its variants by using both our framework

and simulations.

4. Simulation results

Let us compare the DFA, the DMA and the CDFA. The usual way would

be to evaluate the performance of each approach by estimating the Hurst expo-

nent of synthetic pure mono-fractal signals. Our work provides another type of

comparison, based on both the filtering interpretation and the analysis of the

2D-FT of Wiii we introduced in the above section.

4.1. When dealing with w.s.s. case

Given section 3, let us first look at the properties of Ψiii(f) where the subscript

iii refers to the method that is used, i.e the DFA (iii = 111), the DMA (iii = 222) or

the CDFA (iii = 333), before highlighting the differences between our work and the

approaches presented in [48] and [52].
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4.1.1. Comparative study based on the filtering interpretation

As Ψiii(f) a priori depends on N , let us study the influence of N for a given

signal of length M . Using (28) and the expressions of Ψiii(f) summarized in 3.1

as well as Fig. 3, the following comments can be made:

1. When N = 3, the filters associated with the methods DFA and DMA

are high-pass whereas they become band-pass for larger values of N . In

the case of the CDFA, the filter is always band-pass. The null frequency

is always rejected, which is consistent with the purpose of detrending.

According to the simulations we carried out, the orders of magnitude of

Ψ111(0), Ψ333(0) are equal to 10−16 whereas the one of Ψ222(0) is equal to 10−17.

(a) (b)

(c) (d)

Figure 3: Comparison between frequency responses of Ψiii(f). (a) N = 3, (b) N = 5, (c)

N = 17 (d) N = 35.
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2. In the following, let bwiii be the -3 dB bandwidth3 of the filter associated

to Ψiii(f). Fig. 4a and 4b respectively show the evolution of the resonance

frequency and the -3 dB bandwidth as a function of log(N). For every

method, when looking at the right-hand side of Fig. 4b, the larger N ,

the smaller bwiii and the spikier the resonances of the frequency responses.

The latter also move to low frequencies when N increases according to

Fig. 4a.

3. For each value of N , the CDFA provides the spikiest and lowest resonance

among the three approaches. See Fig. 3 and 4.

(a) (b)

Figure 4: Evolution as a function of log(N) of: (a) the resonance frequency of Ψiii(f); (b) the

frequency bandwidth (−3 dB) of Ψiii(f).

4. As Ψiii(f) = |Hfilter,iii(z)|2z=exp(jθ), measuring the difference between two

frequency responses can be of interest. This can be done in many ways.

In Fig. 5, the log spectral distances (LSD) [55] between the frequency

responses of two among the three approaches have been computed for

different values of N . In its standard definition, the LSD is expressed

with an integral where the variable is the frequency. However, in practical

cases, only the discrete Fourier transform (DFT) of the sequence gΓiii(r) =

Tr(Γiii, r) can be computed. Therefore, the integral is approximated by a

3It corresponds to the frequencies for which 10 log
Ψiii(f)

Ψiii(fN,iii)
> −3
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Figure 5: Evolution as a function of log(N) of the log spectral distance (LSD) [55] between

Ψiii1(f) and Ψiii2(f).

discrete sum:

LSD(M1,M2) =

√√√√ 1

M

M∑
i=1

(
10 log

(
M1(i)

M2(i)

))2

(35)

with M1 and M2 of size M the vectors storing the two discrete spec-

tra. In order to minimize the approximation error, the two spectra can

be computed by taking the DFT of the sequence gΓiii(r) = Tr(Γiii, r) with

a zero-padding. In our simulations, M is taken equals to 213.

Whatever the two compared methods, the LSD tends to decrease when N

increases. There is a value Nmin from which the LSD between two filter

responses remain more or less unchanged. In our simulations, this value

of LSD was set at 2. This induces that the difference between the fluctu-

ation functions are negligible when N ≥ Nmin. Therefore, computing the

slope of a set of values {Fiii(N)}, with values of N that are large enough

(N ≥ Nmin), will provide similar results between the three approaches.

According to our analysis, Nmin = 35 (i.e. log(Nmin) = 3.5).

4.1.2. Comparison with existing works

Let us now show the differences between our work and the approaches pre-

sented in [52] and [48]. Thus, Höll [52] suggests approximating F 2
111 (N) by a

23



weighted sum of the estimates of the autocorrelation function R̂y,y(r) as fol-

lows:

F 2
111 (N) ≈

LN−1∑
r=1

Lr(N)R̂y,y(r) (36)

where: Lr(N) = 1
3N2 (−r3 + 3r2N + (−3N2 + 1)r +N3 −N) for r 6= 0

L0(N) = N2−1
6N

(37)

whereas in our work and according to (26), Ry,y(r) is weighted by Tr(Γ111, r).

Therefore, by taking the Fourier transform of the set of weights {Lr(N)}r=1,...,LN−1,

the frequency response of the DFA, Ψ̂111,[52](f), which would be obtained from

[52] can be defined and compared with Ψ111(f).

In addition, we propose to define the frequency response Ψ̂111,[48](f) that can be

deduced from Kiyono’s work [48] by using our formalism. After some mathe-

matical developments, we can show that:

Ψ̂111,[48](
k

M
fs) ≈

2

16( kM )6π6N4

(
2π4(

k

M
)4N4 − 4π2(

k

M
)2N2 − 3

+(3− 2π2(
k

M
)2N2) cos(2π(

k

M
)N) + 6π(

k

M
)N sin(2π(

k

M
)N)

)
(38)

for the frequency k
M fs, ∀k = {1, ..., M−1

2 } with fs the sampling frequency.
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(a) (b)

(c) (d)

Figure 6: Comparison between frequency responses. (a) N = 3, (b) N = 5, (c) N = 17 (d)

N = 35.

Given the comparison between the frequency responses in Fig. 6 for various

values of N , we can conclude that Kiyono’s approach [48] leads to frequency

responses that are the closest to ours. However, for small values of N , the

frequency responses deduced from [52] and [48] are far from the ones we obtain

with our approach where no approximation is made. There is a sharp difference,

especially in high frequency.

In the next subsection, another way of comparison between these approaches is

provided in the general case.

4.2. When dealing with the general case

In this part, we extend our previous analysis to any kind of process. For

a non-stationary process, the frequency content may vary over time. For this

reason, a time frequency analysis must be considered in order to study the in-

fluence of each method on this type of process. Since comparing the methods
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amounts to comparing the matrices Wiii, this section presents their analysis, in

both the time and frequency domains. The 2D-FT of the weighting matrix Wiii

are represented in Fig. 7 for the DFA, the DMA and the CDFA.

Figure 7: log(|F (Wiii)|) with iii = 111 for DFA (left), iii = 222 for the DMA (center) and iii = 333 the

CDFA (right) for M = 60 and N = {9, 21}.

Let us first give some comments on log(|F (W111)|). By taking advantage of the

properties of the 2D-FT4, the large values of log(|F (W111)|) appearing when the

normalized frequency u is a multiple of 1/N are representative of two features

of the weighting matrices W111:

4Let us recall the interpretation of a 2D-FT analysis. Let two Dirac pulses be located at

(u, v) and (−u,−v) in the frequency domain. This leads to a vector of coordinates (2u, 2v)

which defines a position. In the spatial domain, this corresponds to a sinusoid of frequency√
(u2 + v2) along this direction, and to a constant when looking perpendicular to the direc-

tion. When dealing with images, this corresponds to equally-spaced bands along the direction.
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1. The periodicity ofW111 along the x-axis induces the large values of log(|F (W111)|)

on both sides of the axis v = 0.

2. The non-null anti-diagonals of W111 induce the large values located on both

sides of the axis v = −u.

For the DMA, log(|F (W222)|) is mainly characterized by normalized frequencies

around u = 0 and v = −u. The same comments can can be done for the CDFA.

Let us now study how log(|F (Wiii)|) evolves when N increases.

Figure 8: |F (Wiii)| with iii = 111 for the DFA (left), iii = 222 for the DMA (center) and iii = 333 for

the CDFA (right) vs. normalized frequencies u and v, for M = 60 and N = {9, 21}.
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As shown in Fig. 8, for these three approaches, the contribution of

(u = 0, v = 0) remains close to 0. When N increases, Wiii is more and more

composed of frequencies
√
u2 + v2 that become smaller and smaller. For each

approach, | log(F (Wiii)| has two main lobes located at (0, vN,iii) and (0,−vN,iii)

where vN,iii becomes smaller when N increases.

After these general comments, more specific ones are given in the next subsec-

tion.

4.2.1. Impact of the shape of the weighting matrices on the power of the residual

The difference between the weighting matrices causes a difference in the

computation of the power of the residual. Let us thus analyze what mainly

impacts on the computation of F 2
iii (N).

1. DMA case: According to (34), the square of the fluctuation function

corresponds to the convolution between the 2D-FT of Ycorr and W222 at

the normalized frequencies u = 0 and v = 0. As the modulus of the 2D-

FT of W222 exhibits two main peaks at ±vN,222 (see Fig. 8), the frequency

components of Ycorr at u = 0 and v = ∓vN,222 are the most amplified during

the convolution step. In other words, the convolution in (34) amounts to

emphasizing the frequency of Ycorr located at v = ±vN,222.

2. DFA case: When the DFA is used, there is not only the above phe-

nomenon but others that are due to the various lobes of |F (W111)| appear-

ing at each normalized spatial frequency u multiple of 1
N .

3. CDFA case: From Fig. 8, when looking at the modulus of the 2D-FT

of W333, there are two main lobes at normalized frequencies (0,±vN,333), and

two secondary lobes with non-negligible amplitudes located at the same

normalized frequencies than the two main secondary lobes of |F (W111)|,

i.e. at u = 1/N and u = −1/N . Therefore, the CDFA appears to be

intermediate between the DFA and the DMA.

After this rough analysis, we suggest introducing objective criteria to compare

the three methods.
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4.2.2. Comparison based on the log spectral distance.

As we did for Ψiii, let us study the evolution of the similarities between

|F (Wiii)|, as a function of log(N) for the DFA, DMA and CDFA. For this pur-

pose, we define an extension of the LSD, applied to two square matrices M1

and M2 of size M:

LSD2(M1,M2) =

√√√√ 1

M2

M∑
i=1

M∑
j=1

(
10 log

(M1(i, j)

M2(i, j)

))2

(39)

as well as another distance metric defined as follows :

D(M1,M2) =

√√√√ 1

M2

M∑
i=1

M∑
j=1

|M1(i, j)−M2(i, j)|
|M1(i, j) + M2(i, j) + ε|

(40)

with ε � 1. The evolution of both criteria are respectively represented in Fig.

9a and Fig. 9b. As in 4.1.1, the computation of the spectra is done using zero-

padding, with M = 213.

(a) (b)

Figure 9: Evolution of the distance between |F (Wiii1)| and |F (Wiii2|: (a) with the metric

LSD2; (b) with the metric D.

No matter the metric used, the criterion decreases as log(N) increases. As in

the stationary case, the larger N , the closer the estimation of Fiii(N) by the three

methods. As a consequence, computing the slope of a set of values {Fiii(N)},
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with values of N that are large enough, will provide similar results between the

three approaches.

In the next section, a comparison is done between the behaviours of these ap-

proaches on stationary and non-stationary mono-fractal processes.

4.3. Comparative study based on the estimation of the Hurst exponent of mono-

fractal signals

In this subsection, the comparative study is made between the DFA and

CDFA, but the same type of analysis could also be done with the DMA . The

synthetic mono-fractal signals studied in this section consist of two types of

signals. The first are white Gaussian noises known to have a prescribed value

of the Hurst exponent H equal to −0.5. The second are Weierstrass functions

(WEI) with prescribed values5 of H = 0.9.

4.3.1. Comparison between the DFA and the CDFA on 500 white noises

In Fig. 10, log(Fiii(N)) is represented as a function of log(N) for the DFA

and the CDFA for one realization of a white noise. Two slopes are computed.

The first is based on the smallest values of N whereas the second is computed

by using the largest. The slopes obtained with the DFA and the CDFA tend to

be the same if large values of N (N ≥ Nmin) are used. It is coherent with the

filtering analysis we did in the previous section, where we noticed that the LSD

between Ψ111(f) and Ψ333(f) becomes smaller and smaller as N increases.

5Several simulations on processes characterized by different Hurst coefficients were con-

ducted. However, for the sake of simplicity, only results are presented for H = 0.9 in the

paper.

30



Figure 10: Evolution of log(Fiii(N)) as a function of log(N) for both the DFA and the CDFA,

in the case of one realization of a white noise. Theoretical expected value: α = 0.5.

In Table 2, the mean and the variance obtained on 500 white noises are

given. The CDFA provides more accurate estimations of α for small values of

N (N ≤ Nmin) and when large values of N (N ≥ Nmin) are considered. In

addition, the difference between the estimation based on small and large values

of N is smaller with the CDFA than with the DFA. Therefore, the CDFA is

more reliable than the DFA6.

Mean Variance % err.

DFA 0.592 3.29× 10−4 18.4

CDFA 0.507 5.16× 10−4 1.40

Mean Variance % err.

DFA 0.487 3.02× 10−3 2.60

CDFA 0.491 5.43× 10−3 1.80

Table 2: Comparison of the mean and variance values of α for each approach, estimated on

500 white noises for different values of N : when N ≤ Nmin (left) and N ≥ Nmin (right).

Theoretical expected value: α = 0.5.

6As an alternative, one could use the approach proposed in section 3.1 of [49] correcting

the values of the fluctuation function by multiplicating them with a corrective term for small

values of N .
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4.3.2. Comparative study on Weierstrass functions

Weierstrass functions (WEI) are continuous nowhere-differentiable functions

[56]. Each WEI is basically a sum of damped sines with increasing frequencies.

As its Holder exponent is the same at each time instant, the value of the Hurst

exponent is equal to the Holder exponent. In our experiments, 500 stochastic

WEI are generated7 with a prescribed value H = 0.9.

Figure 11: Evolution of log(Fiii(N)) as a function of log(N) for both the DFA and the CDFA,

in the case of one realization of a WEI process with H = 0.9. Theoretical expected value:

α = 1.9.

Fig. 11 shows the evolution of log(Fiii(N)) as a function of log(N) for one

realization whereas Table 3 provides the mean values and the variances of α for

the DFA and the CDFA.

The results we obtain can be explained by the following reasons: unlike a white

process, the power of a WEI with H = 0.9 is rather located in low frequencies.

This means that the values of Fiii(N) mainly depend on the properties of Ψiii(f)

in low frequencies. The filtering analysis we did in the previous section showed

that the resonance of Ψ333 is located in lower frequencies that the one of Ψ111. In

addition, the difference between them tends to be smaller when N increases.

7This can be done by using the free Matlab Toolbox FracLab available at the following url:

https://project.inria.fr/fraclab/. See also [57].
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Mean Variance % err.

DFA 1.997 4.51× 10−3 5.11

CDFA 1.832 1.18× 10−2 3.59

Mean Variance % err.

DFA 1.816 1.29× 10−2 4.42

CDFA 1.868 2.53× 10−2 1.68

Table 3: Mean and variance values of α for each approach, estimated on 500 WEI processes

with H = 0.9 for different values of N : when N ≤ Nmin (left) and N ≥ Nmin (right).

Theoretical expected value: α = 1.9.

This explains that log(F333(N)) is always larger than log(F111(N)). In addition, as

the LSD between Ψ111(f) and Ψ333(f) becomes smaller and smaller as N increases,

the difference between the estimations ofH tends to become smaller and smaller.

4.4. Application on human biological processes

4.4.1. Presentation of the experiments

This subsection aims at presenting an application of our work on real pro-

cesses. In particular, our purpose is to show how our framework could explain

the results obtained with the DFA and its variants for the estimation of α in

the following use-case: the analysis of the regularity of an airline pilot’s gaze

position for the detection of the visual tunneling state.

This cognitive state is defined as the inability for an individual to perceive an

unexpected change in the visual scene [58]. It has been proven to be a major

factor of accidents in specific areas [59]. Our analysis is based on the regularity

of the gaze position, as some other ocular features are good indicators of the

visual tunneling [60–62], and is collected from a non intrusive sensor, which is

crucial to make this system acceptable to a pilot8.

Our experiments were based on the multitasking simulator NASA MATB-II

software [63], because of its recognized similarities with pilot activities in the

cockpit. See Fig. 12 for an illustration of the software MATB-II interface.

8Other processes, such as ElectroEncephaloGraphy (EEG), ElectroCardioGraphy (ECG),

ElectroDermal Activity (EDA), functional Magnetic Resonance Imaging (fMRI) are relevant

as well in this application, but they are intrusive, and therefore not acceptable.
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Figure 12: Interface of the MATB-II software

Given the literature on mental workload [64–66], we decided to expose subjects

to short-duration scenarios leading to three levels of mental workload (“Low” ,

”Medium” and ”High”). The latter differ by the frequency and difficulty of the

tasks asked to the subjects.

Each experiment operates with the following steps:

1. The initial training phase:

During this phase lasting thirty minutes, the experiment is first presented.

Then, the subject uses the simulator, but only one of the tasks is active

at a time. Then, a four-minute multitask scenario is launched.

2. The reference phase:

This phase is decomposed into two parts: a first one lasting two minutes

during which the subject is asked to relax and do nothing. Afterwards, a

two-minute scenario “Low” is launched.

3. The experimental phase:

This phase is divided into two periods, with a short break in-between. Fol-

lowing the procedure used in [38], each period is composed of a four-minute
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scenario “Low”, a four-minute scenario “Medium”, and a six-minute sce-

nario “High”. The order of the three in each block was set randomly for

every subject, to avoid fatigue and order-effect bias in the results.

At the end of the experiment, subjects were asked to fill a NASA-TLX form

[67] to subjectively evaluate their mental workload during the scenario. This

form is used to ensure that the scenarios are well-designed in terms of ability to

provoke different levels of mental workload.

Due to their complexity of implementation9, the experiments were first carried

out on thirteen subjects.

Each subject had to complete a specific scenario composed with periods of

nominal activity (labelled Nom) and periods with high mental workload and

engagement into the tasks, in order to undergo visual tunneling (labelled VT ).

A situation was labelled as visual tunneling if the following condition was met:

no reaction to visual alarms, nor to secondary tasks, for a duration of more than

twenty seconds. Thus, during the experiments, eight out of the thirteen subjects

underwent visual tunneling. Two of them experienced this phenomenon twice.

As a result, ten cases of visual tunneling were identified. During VT and Nom

occurrences, the gaze position along both x and y-axis was collected from an

eye-tracker. It was a VT2 model from the company EyeTech, with a sampling

rate at 40Hz. Examples of gaze position processes are presented in Fig. 13.

4.4.2. Analysis of the gaze position processes and comments

For each of the forty processes10, the value of the slope α is computed. This

value is estimated with the DFA, the DMA and the CDFA.

As presented in Fig. 13, the duration of an occurrence is set at twenty seconds.

In the VT case, the gaze is mainly located towards the value 0 pixel, i.e. the

center of the interface, whereas the subject’s scanning is more spread in the Nom

9Piloting experience, neither glasses nor contact lenses allowed, etc.
10ten occurrences × two labels × two type of processes (gaze position along the x and

y-axis)
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case. In this particular example, the standard deviation is equal to 8.25 and

11.75 in the VT and Nom cases respectively. This feature, although relevant,

is interface-dependant and thus cannot be used in another simulator. As the

amplitude of the process does not contribute to the estimation of the slope α,

the DFA or one of its variants can be considered.

(a) (b)

Figure 13: Time representation of the gaze position along the x-axis, (a) for the VT case, (b)

for the Nom case.

Fig. 14 corresponds to the Wigner-Ville transform of the two above-represented

processes. This illustrates the fact that the gaze position is a non-stationary pro-

cess. In addition, most of the frequency content is located in the low frequencies.
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(a) (b)

Figure 14: Wigner-Ville transform of the gaze position along the x-axis, (a) for the VT case,

(b) for the Nom case.

As done in the previous section, log(Fiii(N)) is plotted as a function of log(N)

in Fig. 15. In this representation, the mean and standard deviation values over

all processes are given. Only the DFA and the CDFA cases are pictured for the

sake of clarity.

(a) (b)

Figure 15: log(Fiii(N)) vs. log(N), (a) for the VT case, (b) for the Nom case.

There is an increasing divergence between the mean values of log(F111(N))

and log(F333(N)) when log(N) becomes smaller. As a consequence, the values of

α estimated on a set of small values of N is very dependant on the approach.

This causes a deviation in the estimation of the slope that tends to reduce when
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N increases. In the present application, due to reactivity constraints11, the

processes are of short length. Therefore, one could expect a difference in the

estimation of the regularity of gaze positions.

When looking at the distributions obtained in the VT and Nom cases deduced

from the set of 40 processes, with all approaches, in Fig. 16, it appears that:

Figure 16: α of the gaze position estimated along the x-axis with both the DFA, the DMA

and the CDFA.

1. The values estimated with the DFA are the largest for both the VT and

Nom cases. This is due to the underestimation of F111(N) that the DFA

causes when using small values of N , as identified by Kantelhardt et al.

in [49]. Indeed, the shorter the time scales, the larger the underestimation

of the fluctuation function. As a consequence, when computing the slope

α from a set of short time scales, the DFA overestimates α. However, the

estimation of this quantity is not significantly different between the three

approaches for both labels. In order to analyze this difference, an ANOVA

test was performed12 [68]. The p-values obtained were equal to p = 0.359

11In critical situations such as go-around, etc., the pilot has to make a decision in a very

short time. Therefore, the system must be able to quickly detect any possible deleterious

cognitive state from the pilot.
12An ANOVA test aims at determining whether data from several groups of a feature are
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and p = 0.439 in the VT and the Nom case respectively.

2. No matter the estimation method used, there is a significant difference

between the values obtained in the VT and the Nom cases. An ANOVA

test conducted on these values provided the following p-values: p = 0.0259,

p = 0.0168 and p = 0.0125 in the DFA, the DMA and the CDFA case

respectively. As a consequence, there is a correlation between the visual

tunneling of a subject and the regularity of his gaze position along the x-

axis. The CDFA provides the most significant separation, as the p-value

is the smallest.

5. Conclusions and perspectives

In this paper, the DFA and some of its variants, namely the DMA and

the CDFA, which is the proposed method where the trend is constrained to

be continuous, are compared. This comparison is based on a uniform way of

expressing the square of the fluctuation function from the instantaneous correla-

tion function of the process. Firstly, when the process under study is wide-sense

stationary, the statistical mean of the square of the fluctuation function can be

expressed as a weighted sum of the autocorrelation function of the signal under

study, without any approximation. Secondly, if the process is non-stationary,

the square of the fluctuation function can be expressed from the Wigner-Ville

transform of the process. To summarize, thanks to our analysis, it is possible

to separate the contribution of the process from the influence of the method in

the computation of the fluctuation function. As a consequence, our framework

makes it possible to better understand the different behaviours between the

DFA and its variants, thanks to both the filter-based analysis and the 2D-FT-

based analysis that we respectively propose in the stationary and non-stationary

cases. Our way of expressing the methods can bring a more in-depth compar-

ison, since it is associated with an intermediate step in the computation of α.

significantly different from each other.
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Furthermore, we address the comparison between our analysis where no ap-

proximation is made and previous studies carried out on the DFA where an

expression of the square of the fluctuation function was obtained using some

approximations.

The different way the methods act on a given process leads to a difference in

the evolution of the fluctuation function with regards to the value of N . To il-

lustrate this phenomenon, simulations were carried out on both stationary and

non-stationary processes. The stationary processes were built with a prescribed

value of regularity. The non-stationary processes were ocular processes and their

regularity was estimated to characterize a given human cognitive state: the vi-

sual tunneling of a airline pilot. The results showed that the values obtained

with the three approaches were not significantly different, meaning that they

are indeed an estimator of the same quantity. In addition, from our simulations,

there seems to be a correlation between the regularity of the gaze position of

an airline pilot and the visual tunneling. The CDFA appears to be the most

relevant approach for this application, as the slope estimated with it is the most

discriminatory factor. Among our perspectives, we plan to propose new variants

of the DFA and analyze how to estimate the regularity by using particle-filtering

based approaches.
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P. Miró–Martınez, Comparative study between sample entropy and de-

trended fluctuation analysis performance on EEG records under data loss,

EMBS (2012) 4233–4236.

[29] X. Navarro, A. Beuchée, F. Porée, G. Carrault, Performance analysis

of Hurst’s exponent estimators in higly immature breathing patterns of

preterm infants, ICASSP (2011) 701–704.

[30] B. Audit, E. Bacry, J. . Muzy, A. Arneodo, Wavelet-based estimators

of scaling behavior, IEEE Transactions on Information Theory 48 (2002)

2938–2954.

43



[31] S. Sanyal, A. Banerjee, R. Pratihar, A. K. Maity, S. Dey, V. Agrawal,

R. Sengupta, D. Ghosh, Detrended fluctuation and power spectral analy-

sis of alpha and delta EEG brain rhythms to study music elicited emotion,

International Conference on Signal Processing, Computing and Control (IS-

PCC) (2015) 206–210.

[32] A. A. Pranata, G. W. Adhane, D. S. Kim, Detrended fluctuation analysis

on ECG device for home environment, Consumer Communications and

Networking Conference (CCNC) (2017) 4233–4236.

[33] A. G. Ravelo-Garcia, U. Casanova-Blancas, S. Martin-González,
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