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Hierarchical Process of Travel Mode Imputation from 1 

GPS Data in a Motorcycle-Dependent Area 2 

 3 
ABSTRACT 4 
This study presents attempts to impute modes from data collected via smartphones in Hanoi (Vietnam), 5 

where the dominant mode of travel is the motorcycle. The inclusion of the motorcycle mode and an 6 

imbalance in the modal share of the Hanoi data resulted in ineffective use of supervised-learning models 7 

to detect all modes simultaneously. For a high level of accuracy and reasonable interpretability, a 8 

hierarchical process was developed. Initially, walk, bicycle, and motorized modes were identified by a 9 

fuzzy logic-based algorithm. Subsequently, based on the distribution of bus stops and the operation of 10 

buses in practice, rules employing the average distance between stops, which a vehicle passed slowly 11 

or stopped at, were introduced to detect bus segments. Finally, a random forest model was built to 12 

distinguish the modes of motorcycle and car. The proposed hierarchical process achieved an accuracy 13 

of 89.1%. The bus detection, which required only the coordinates of the bus stops, demonstrated a recall 14 

of 87.2%. The motorcycle mode of travel was noted to be the main source of misclassification. This 15 

mode has contributed to the diversity of the mode detection field, which has previously only focused 16 
on walk, bicycles, cars, buses/trams, and trains. The hierarchy was developed and validated using a 17 

dataset that did not include travel by metro or train and would be biased toward persons working and 18 

studying at a university. These limitations emphasize the need to test the process on a more diverse 19 

sample with more travel options. 20 

 21 

Keywords: mode imputation, GPS, travel survey, smartphone, hierarchical process, fuzzy logic 22 

 23 
 24 
HIGHLIGHTS 25 
 26 

 Inclusion of motorcycle raised the complexity of mode classification with the most significant 27 

conflict being between car and motorcycle. 28 

 Besides acceleration and speed related variables, the use of heading change rate in a fuzzy-29 
logic algorithm contributed to satisfactory detection of walk, bike and motorized modes. 30 

 Consideration of both slowly passing and stopping at bus stops enhanced bus detection via 31 

addition of the average distance between bus stops. 32 

 The proposed hierarchical process benefitted from rule-based, fuzzy logic-based and random-33 
forest methods to achieve 89.1% accuracy. 34 
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1 INTRODUCTION  1 

The Global Positioning System (GPS) has contributed significantly to the collection of data in travel 2 

behavior research (Chen et al., 2010; Burkhard et al., 2020; Nguyen et al., forthcoming). Compared 3 

with conventional data collection methods, such as face-to-face interviews or computer-assisted 4 

telephone interviews, GPS collects data continuously and passively, which are objective and accurate 5 

in terms of time and space (Armoogum et al., 2014; Chen et al., 2010; Forrest and Pearson, 2005; 6 

Thomas et al., 2018; Wolf et al., 2003). Such data are frequently referred to as big spatiotemporal data. 7 
Unfortunately, positioning data may not be directly appropriate for research goals owing to the lack of 8 

information about the travel mode—one of the most important trip characteristics. Consequently, many 9 

inference models have been developed to detect basic travel modes, including walk, bicycle, bus/tram, 10 

car, and train (Bohte and Maat, 2009; Dabiri and Heaslip, 2018; Feng and Timmermans, 2019, 2016; 11 

Gong et al., 2012, 2018; Marra et al., 2019; Nour et al., 2016; Rasmussen et al., 2015; Schuessler and 12 

Axhausen, 2009; Semanjski et al., 2017; Shafique and Hato, 2015; Stenneth et al., 2011; Stopher et al., 13 

2008; Tsui and Shalaby, 2006; Xiao et al., 2015). However, the motorcycle, which is a major mode of 14 

transport in a number of cities in developing countries (Nguyen and Pojani, 2018; Huynh, 2020), has 15 

not been included in these models.  16 

 Mode detection methods can be divided into two categories: all-in-one and hierarchical 17 

processes. The former type, which uses only one model to infer all modes, has been preferred in recent 18 

times (Dabiri and Heaslip, 2018; Feng and Timmermans, 2019; Gong et al., 2018; Semanjski et al., 19 

2017; Shafique and Hato, 2015; Xiao et al., 2015). However, such methods may fail to perform well in 20 

cases wherein the data contain modes used substantially more than other modes. In hierarchical 21 

processes, travel modes are classified from aggregate levels (e.g., motorized and non-motorized modes) 22 

to disaggregated levels (e.g., walk, bicycle, bus, car, and metro). 23 

 The aim of this research was to create a hierarchical process to impute travel modes from GPS 24 

data collected in a motorcycle-dependent city of a developing country to extend knowledge of the mode 25 

detection field. The remainder of this paper is organized as follows. Section 2 reviews recent studies on 26 
mode detection to determine the advantages and disadvantages of the methods. Section 3 provides 27 

detailed descriptions of data collection in Hanoi, and the steps of the hierarchy are proposed. Section 4 28 

presents the results and discussion, and section 5 concludes the paper and suggests future research 29 

directions. 30 

 31 

2 REVIEW OF STUDIES ON MODE DETECTION 32 

2.1 Mode-detection methods 33 

According to Gong et al. (2014), mode imputation methods can be divided into three main groups: 34 

deterministic, probabilistic, and machine-learning methods. Deterministic methods are based on 35 

predefined, ad-hoc rules of speed, acceleration, and distance to locations of bus stops and train stations 36 

(Bohte and Maat, 2009; Gong et al., 2012). They are simple and easy to interpret because they are based 37 

on transport practices. For example, a trip would be inferred to have been taken on foot if its nearly 38 

maximum (i.e., the 85th percentile of) speed does not exceed 10 km/h and its average speed does not 39 

exceed 6 km/h (Gong et al., 2012). Rules are useful for cases wherein the specific characteristics of 40 

travel modes are shown; however, these rules are insufficiently flexible to deal with the reality of travel, 41 

such as the slow movement of almost all modes on congested roads. The performance of deterministic 42 

methods depend largely on experts’ experience and knowledge of the travel environment in the research 43 

area of interest. Furthermore, the use of a large number of variables is not practical, because this would 44 

result in an exponential increase in the number of rules, defined as the combinations of variables. 45 
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 The second type of mode inference method (probabilistic) involves extensions of rules in fuzzy-1 

logic-based models (Rasmussen et al., 2015; Schuessler and Axhausen, 2009; Tsui and Shalaby, 2006) 2 

and a probability matrix (Stopher et al., 2008). Instead of strictly making decisions, probabilistic 3 

methods consider the overlap of modes’ behaviors to generate probabilities for each of the modes 4 

simultaneously. The mode that has the highest probability is attributed to the trip. Probabilistic 5 

approaches are flexible classifiers; however, they share the limitations of deterministic methods 6 

mentioned above owing to their reliance on devising rules. Most deterministic and probabilistic models 7 

use fewer variables than there are transportation modes, with accuracy levels of over 90% being attained 8 

in GPS-enabled tests (Rasmussen et al., 2015; Stopher et al., 2008; Tsui and Shalaby, 2006) but a level 9 

of only 70% being reached in a regional experiment (Bohte and Maat, 2009). Schuessler and Axhausen 10 

(2009) ignored the model accuracy owing to the absence of ground truth.  11 

 Machine-learning algorithms (e.g., support-vector machines, random forests, and artificial 12 

neural networks) are currently preferred owing to their ability to learn directly from big data to 13 

effectively classify modes (Dabiri and Heaslip, 2018; Feng and Timmermans, 2019; Gong et al., 2018; 14 

Semanjski et al., 2017; Shafique and Hato, 2015; Stenneth et al., 2011; Xiao et al., 2015). The advantage 15 

of machine-learning methods over deterministic and probabilistic methods is that they create powerful 16 

classifiers using various types of variables, the number of which exceeds the number of classes (Bzdok 17 

et al., 2018). For example, Feng and Timmermans (2016) used 17 variables related to movement, 18 

participants’ information, and the quality of GPS points to detect 10 modes. The contribution and 19 

importance of variables in machine-learning models may be confusing to some extent, as their 20 

combination and interaction occur in black-box and mathematically complicated processes. Notably, 21 

mode use has not been balanced with the majority of trips belonging to some modes (e.g., walk, car) 22 

and the small minority of trips employing other modes, such as bus/tram and bicycle (Dabiri and 23 

Heaslip, 2018; Nour et al., 2016; Xiao et al., 2015). If big data are not collected, the imbalance in the 24 

mode shares would mean that relatively little data of minor modes would be used to train the model; 25 

thus, their detection would be significantly poorer than that of major modes. If adequate data are 26 

provided, the overall accuracy levels exceed 90% (Semanjski et al., 2017; Xiao et al., 2015) and can 27 

reach nearly 100% (Feng and Timmermans, 2016; Shafique and Hato, 2015). 28 

 Although the lists of transportation modes and the methods used vary across studies, all 29 

researchers have paid close attention to basic modes in developed countries and modern cities of China, 30 

including walk, bicycle, car, bus/tram, and metro (Bohte and Maat, 2009; Dabiri and Heaslip, 2018; 31 

Feng and Timmermans, 2019; Gong et al., 2012, 2018; Marra et al., 2019; Semanjski et al., 2017; 32 

Shafique and Hato, 2015; Stopher et al., 2008; Xiao et al., 2015).  33 

 34 

2.2 Mode detection process 35 

Mode detection processes can be divided into two types according to the number of steps taken to 36 

generate an outcome. The first type includes all-in-one processes, in which the modes of all trips are 37 

detected by only one model. The second uses a hierarchical process to build a multi-step procedure to 38 

infer modes at aggregate levels (e.g., non-motorized and motorized modes) prior to disaggregated levels 39 
(i.e., each mode). Machine-learning models are typically used for all-in-one processes, and so they have 40 

both the advantages and disadvantages of the learning methods discussed above. 41 

 Hierarchical processes are based on separating modes that are sufficiently different from one 42 

another; thus, the division can attain a very high rate of success. The simplest versions of hierarchical 43 

classification are rule-based methods. In Bohte and Maat (2009), for example, walking trips were 44 

detected first using maximum and average speed, as walking is the slowest mode of transport. With a 45 

rule-based hierarchical process, Gong et al. (2012) achieved an accuracy level of 82.6% for the case of 46 

New York. A complex hierarchical classification can be developed by combining methods. Rasmussen 47 

et al. (2015) successfully imputed 92.4% of trip segments. First, they distinguished rail segments from 48 
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others by examining the proximity of points on each segment to the rail network. They then developed 1 

a fuzzy-logic algorithm based on speed and acceleration to distinguish walking and cycling segments 2 

from car and bus segments. Finally, they resolved the confusion between car and bus segments by using 3 

map-matching algorithms. Nour et al. (2016) applied the k-nearest neighbor algorithm to categorize all 4 

data into aggregate levels (i.e., motorized and non-motorized modes) and then disaggregated levels 5 

(walk, bicycle, car, bus). To enhance the detection of bus and car, all segments of motorized modes 6 

were analyzed to determine whether they involved bus segments by estimating the average rate of 7 

stopping close to transit stations. The researchers found increases of 65% and 10% in recall and 8 

precision of bus, respectively, compared with those of k-nearest neighbor. Marra et al. (2019) 9 

introduced a process that involved first segmenting trips into walk and non-walk segments on the basis 10 

of speed- and time-based rules. Next, train and bus/tram segments were identified by probabilistic 11 

functions using actual operational data of public transport. Historically visited places and routes 12 

extracted from multi-day GPS data improved the detection of transfer points. Finally, a random forest 13 

model was developed to infer bicycle and car trips. The proposed system was tested in Zurich and Basel 14 

(Switzerland); an accuracy of 86.1% was attained regarding classifying the four modes, namely, walk, 15 

bus/tram, car or bicycle, and train, and an accuracy of 87% was attained regarding classifying the modes 16 

bicycle and car. 17 

        The advantage of the hierarchical process over the all-in-one process is noticeable in the 18 

variable selection. In an all-in-one process, each variable affects all trips unnecessarily, leading to an 19 

incorrect classification. Semanjski et al. (2017) reported that adding a speed variable to a support vector 20 

machine model, that had previously used only spatial variables, resulted in a small improvement of 21 

overall accuracy at the expense of increasing the misclassification of walk and bicycle segments. In 22 

each step in a hierarchical process, some unique variables for several mode groups are deployed to limit 23 

any confusion. Moreover, a hierarchy does not use numerous variables simultaneously but focuses on 24 

mode groups; therefore, it can fit small and imbalanced data with a low risk of overfitting. However, 25 

error propagation is a problem. As researchers consider more disaggregated levels, the accuracy will 26 

decrease. The accuracy of steps lower in the hierarchy is equal to or lower than that of the step above. 27 

If an observation is wrongly classified in the previous step, there is no way to correct it in the subsequent 28 

stage. 29 

 Thus, although all-in-one processes with machine-learning methods are currently preferred, 30 

hierarchical processes would be a better choice to overcome the problem of imbalanced data and to 31 

improve the interpretability (see Table 1). The inclusion of new travel modes in the classification list is 32 

interesting and contributes to the diversity of the mode detection field. 33 

Table 1. Comparison of hierarchical and all-in-one processes 34 

 Hierarchical process All-in-one process 

Definition 
Detect modes from aggregate levels to 

disaggregated levels 
Detect all modes simultaneously 

Main algorithms used Rule-based and probability-based Learning-based 

Frequently used in Infancy of GPS-based travel surveys Recent times 

Appropriate data size Both data in tests and big data Big data 

Interpretability of 

results 
High Low 

No. of variables used Usually several; fewer than modes Many; usually more than modes 

Main modes classified Walk, bicycle, bus/tram, car, metro, and train 

Geographical research 

scope 

Mainly in cities, metropolitan areas of developed countries, and well-

structured cities in China 

 35 
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3 DATA AND METHOD 1 

3.1  Data 2 

3.1.1 Data collection 3 

For this research, the study area was Hanoi, the capital of Vietnam. In terms of population, it is the 4 

second largest city, with 7.32 million inhabitants in an area of 3,344.4 km2. The central area of Hanoi 5 

comprises eight districts (Caugiay, Badinh, Hoankiem, Dongda, Haibatrung, Thanhxuan, Hoangmai, 6 

and Tayho) and is surrounded by suburban and rural areas. Daily mobility in Hanoi mainly involves the 7 

use of private vehicles, predominantly the motorcycle (Nguyen et al., 2019b).  8 

 The data used in this research were collected from mid-March through mid-April 2019. The 9 

recruitment was implemented through invitations sent to our colleagues at University of Transport and 10 

Communications in Hanoi and a call for participation posted on the author’s Facebook page. Anyone 11 

who expressed their interest in the survey was contacted so that his/her personal information could be 12 

collected before (s)he received instructions (in Vietnamese) and installed TravelVU, a survey-dedicated 13 

smartphone application developed by Trivector (Sweden). Respondents easily found the TravelVU on 14 

the App Store and Google Play Store, the two most prevalent digital distribution platforms. The 15 

TravelVU app recorded the participant’s longitude, latitude and timestamp every 1–3 seconds. When 16 

an internet connection was available, all of the raw GPS points were transferred to Trivector’s servers 17 

and then analyzed by in-built inference algorithms. Next, trip legs (i.e., segments) and associated 18 

activities were re-sent to the smartphones. This enabled the participants to simply check and correct 19 

labels of segments (i.e., ground truth data).  20 

Finally, of the more than 80 people who registered, 63 had validated data that were composed 21 

of both records and the corresponding ground truth. As the first metro line was not in operation at the 22 

time of the research, the dataset encompassed five modes, including walk, bicycle, motorcycle, car, and 23 

bus. A more detailed description of this recruitment process can be seen in Nguyen et al. (2019a). 24 

3.1.2 Data filtering 25 

The validated segments of 63 participants were used to develop a hierarchical mode-detection 26 

process. As the records included only timestamps and coordinates in the World Geodetic System 1984 27 

format, the distance between two consecutive points was calculated using Vincenty’s equations 28 
(Vincenty, 1975). With distances and timestamps, speed and acceleration profiles were easily gauged. 29 

The criteria used to filter the data were as follows: 30 

- The speed limit for roads in Vietnam is 120 km/h; therefore, points with speeds over this 31 

threshold were removed1. 32 

- Any point that had the same coordinate or timestamp as its previous point was ignored. 33 

- Any segment with a duration of under 60 seconds was ignored. 34 

- Any segment whose points were all outside Hanoi was excluded because this research did not 35 

use GIS data of the public transport systems in other provinces or cities. Travel connecting Hanoi with 36 

other provinces, however, was still within the scope of this study.  37 

After these filters were applied, 2,791 segments were eligible for further analysis. As can be 38 

seen in Figure 1, the data of the Hanoi survey were unbalanced, with major classes including 39 

motorcycle, car, and walk, and minor classes including bicycle and bus. 40 

                                                           
1 It is important to note that a point with a speed over 120 km/h may not constitute noise or a bad record. Such 

points may represent an over-speeding situation of a car on an expressway. In Hanoi, the highest speeds of 

motorcycles and buses are around 70 km/h (the allowable level) because they are banned from running and do 

not operate on expressways, respectively. For this reason, disregarding points with speeds of over 120 km/h, 

enabling less computation, did not decrease the detection performance of segments by car, motorcycle and bus. 

However, if the comprehensive distribution of speed is desired in case of the speed limit at 120 km/h, the 

threshold to eliminate erroneous records may be 150 km/h, according to Wang et al. (2017).  
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 1 

Figure 1. Numbers of valid segments by modes in the Hanoi survey 2 

 3 

3.2 Hierarchical mode imputation process 4 

The hierarchical mode inference process encompassed three steps (see Figure 2). The process began by 5 

distinguishing walk and bicycle segments from motorized ones using a fuzzy logic algorithm. In the 6 

second step, bus segments were separated from other motorized segments using stop-related rules. In 7 
the last step, car segments were distinguished from motorcycle segments using a random forest model. 8 

 9 

Figure 2. Hierarchical mode detection process 10 
 11 

3.2.1 Step 1: Fuzzy logic model to classify walk, bicycle, and motorized segments  12 

With fuzzy logic, speed and acceleration variables are generally sufficient for detecting walk, 13 

bicycle, and motorized segments (Rasmussen et al., 2015). However, the classification problem in 14 

Hanoi was more complex because motorcycle segments’ acceleration and speed profiles were similar 15 

to those of walking and bike ones (see Figure 3). In particular, the overlapping of the 95th percentile of 16 

speed, median speed, and average acceleration between motorized and non-motorized modes was 17 

significant at low ranges (e.g., from 2 m/s to 8 m/s for the 95th percentile of speed); therefore, the 18 

heading change rate, which was the average change of heading per meter (Dabiri and Heaslip, 2018), 19 

was added. The heading between two points was calculated from their coordinates using equations 20 

presented by Dabiri and Heaslip (2018). As can be seen in Figure 3, the heading change rates were 21 

typically high for walking and typically low for motorized modes, which can be explained by the fact 22 

that motorized modes kept strictly to roads, but pedestrians did not always walk in a straight line from 23 

point to point. The heading change rates for bicycles were higher than those of motorized modes but 24 

lower than those of walking. 25 

 26 



 

7 
 

 1 
 2 

 3 

 4 
Figure 3. Boxplots of variables by travel modes 5 

 6 

The operation of the fuzzy logic model was similar to that of Rasmussen et al. (2015) and 7 

Schuessler and Axhausen (2009). A detailed description can be found in Nguyen (2020). To limit the 8 

complexity of the rules in the fuzzy logic model, heading change rate was used as a supplement in case 9 

the speed and acceleration profiles between modes were ambiguous. On the basis of the trapezoidal 10 

membership functions (see Figure 4) and rules (see Table 2), each segment received three probabilities 11 

corresponding to walk, bicycle, and motorized modes. The mode with the highest probability was 12 

attributed to the segment.  13 

 14 

 15 
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 1 
Figure 4. Membership functions of the fuzzy logic model 2 

 3 

  4 
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Table 2. Rules of the fuzzy-logic algorithm 1 

Rule 
95th percentile 

of speed 

Median 

speed 

Average (absolute) 

acceleration 

Heading 

change rate 
Mode 

1 Low Very low - - WALK 

2 Low Low Low Low MOTORIZED 

3 Low Low Low Medium BICYCLE 

4 Low Low Low High WALK  

5 Low Low Medium Low BICYCLE 

6 Low Low Medium Medium BICYCLE 

7 Low Low Medium High WALK  

8 Low Low High Low MOTORIZED 

9 Low Low High Medium BICYCLE 

10 Low Low High High WALK  

11 Low Medium Low - BICYCLE 

12 Low Medium Medium - MOTORIZED 

13 Low Medium High - MOTORIZED 

14 Low High  Low - BICYCLE 

15 Low High Medium - MOTORIZED 

16 Low High High - MOTORIZED 

17 Medium Very low Low - WALK  

18 Medium Very low Medium Low BICYCLE 

19 Medium Very low Medium Medium WALK  

20 Medium Very low Medium High WALK  

21 Medium Very low High Low MOTORIZED 

22 Medium Very low High Medium WALK  

23 Medium Very low High High WALK  

24 Medium Low Low Low MOTORIZED 

25 Medium Low Low Medium BICYCLE 

26 Medium Low Low High WALK  

27 Medium Low Medium Low MOTORIZED 

28 Medium Low Medium Medium BICYCLE 

29 Medium Low Medium High WALK  

30 Medium Low High Low MOTORIZED 

31 Medium Low High Medium BICYCLE 

32 Medium Low High High MOTORIZED 

33 Medium Medium Low Low MOTORIZED 

34 Medium Medium Low High BICYCLE 

35 Medium Medium Medium Low MOTORIZED 

36 Medium Medium Medium Medium BICYCLE 

37 Medium Medium Medium High MOTORIZED 

38 Medium Medium High - MOTORIZED 

39 Medium High Low - BICYCLE 

40 Medium High Medium - MOTORIZED 

41 Medium High High - MOTORIZED 

42 High - - - MOTORIZED 

 2 
  3 



 

10 
 

3.2.2 Step 2: Rule-based bus detection 1 

The outcomes of the first step were the walk, bicycle, and motorized segments. The second step 2 

analyzed motorized segments to detect bus segments. 3 

Ambiguity between bus and car segments is a well-known challenge for mode detection. It can 4 

be addressed successfully with the use of GIS data along with actual or real-time operational data (Feng 5 

and Timmermans, 2019; Gong et al., 2012; Rasmussen et al., 2015; Semanjski et al., 2017; Stenneth et 6 

al., 2011; Nour et al., 2016; Marra et al., 2019). Bus detection in Hanoi was more complex than that in 7 

previous studies owing to four reasons as follows; (1) limited external data sources, (2) the distribution 8 

of bus stops, (3) the (fairly) frequent occurrence of bus bunching at peak times, and (4) the passing of 9 

bus stops where no boarding and alighting of passengers took place. 10 

- First, the implementation of map-matching algorithms to evaluate the consistency between 11 

actual paths and bus routes (Rasmussen et al., 2015; Semanjski et al., 2017; Tsui and Shalaby, 2006) 12 

and the use of the buses’ real-time or actual operational information (Marra et al., 2019; Stenneth et al., 13 

2011) to enhance the detection were infeasible because only coordinates of stops were available.  14 

- Second, to reduce the duration of bus trips, many bus stops are located near intersections so 15 

that the red-light phases can be used for boarding and alighting. However, this makes non-movement 16 

confusing as it can be owing to waiting for the traffic lights or to collecting passengers. Furthermore, 17 

bus stops are regularly distributed in front of points of interest, such as markets, universities, hospitals, 18 

and residential areas. Consequently, many non-bus segments also have either origins or destinations 19 

near bus stops. 20 

- Third, over 70% of 120 bus routes provide connections to the central business districts, 21 

resulting in the overcrowding of buses there at peak hours. At a stop, there may be two, three, or even 22 

four buses in a row. Owing to bus bunching, boarding and alighting may not take place exactly at the 23 

stop, and a bus may pass the stop slowly. Figure 5 shows an example where three buses in a row allow 24 

passengers to get on and off at the same time. The boarding and alighting of Bus 3 are recorded quite 25 

far from the location of the bus stop. After boarding and alighting are completed, Bus 3 passes the bus 26 

stop slowly. Thus, there are no GPS points indicating that Bus 3 stopped at the bus stop.  27 

 28 
 29 
 30 
 31 
 32 

 33 
 34 

Figure 5. Bus bunching with three vehicles at a station 35 

 36 

- Fourth, if there are no passengers waiting to board or alight, a bus tends to ignore a stop to 37 
save time and avoid blocking the traffic behind it. However, it is still able to stop immediately to satisfy 38 

any sudden requests.  39 

Points two to four above show that it was unreliable to detect bus segments using the proximity 40 

of both the origin and the destination to bus stops. Points three and four showed that the stationary state 41 

of buses at stops would not be sufficient to identify the vast majority of bus segments. 42 

The authors therefore decided to extend the approach introduced by Nour et al. (2016), which 43 

is based on the rate of stops adjacent to transit stations. First, the inverse of the average stop rate (i.e., 44 

the average distance between stops) was employed. Second, unlike Nour et al. (2016), to avoid the loss 45 

of the opportunity to detect bus segments, particularly short ones, bus stops in the proximity of 46 

intersections were retained. Third, stopping at every bus stop and passing of stops slowly were 47 

considered. Fourth, Nour et al. (2016) determined the threshold of the stop rate to detect bus segments 48 

 Bus 1 Bus 2 

Boarding Alighting Alighting Boarding Alighting Boarding 

Bus stop 

 Bus 3 
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in their data; thus, the threshold may be valid for their sample only. In this study, with stopping at and 1 

slow movement past bus stops taken into consideration, almost all stops on a segment that a bus had 2 

moved on were detected and included. The average distance between bus stops of a bus segment should 3 

be compatible with a threshold of average distance between stops on the citywide network. 4 

The proposed bus detection method had three stages (see Figure 6): 5 

 6 

 7 

Figure 6. Flowchart of bus-segment detection 8 
 9 

* Stage 1: Finding the list of stops a vehicle passed slowly or stopped at 10 

First, the radius from a bus stop in which to search for slow movement or stopping was defined 11 

as 100 m. To estimate the speed of slow movement, 15 bus segments were randomly selected. Each of 12 

them was plotted on a map so that all the stops the bus should stop at could be known. The speed 13 

threshold of slow movement was the median value of instantaneous speed levels of all points that were 14 

within the 100 m buffer from each bus stop. In this way, the threshold of 2.5 m/s was determined.  15 

For each segment, to count the number of stops a vehicle passed slowly or stopped at, the 16 

distance to the nearest bus stop of each point whose instantaneous speed was under 2.5 m/s was noted. 17 

If the distance was smaller than 100 m, the corresponding bus stop was retained. The result of searching 18 

for all points of a segment was a list of bus stop candidates. In the list, duplicates were deleted. Any 19 

stop, whose distance to its previous stop in the list was under 350 m (i.e., the minimum distance between 20 

two stops on a route in the bus network), was eliminated. 21 

 22 
Figure 7. An example of searching for stops a bus passed slowly or stopped at 23 

 24 

Figure 7 shows an example in which a person on a bus that moves from A to B and either stops 25 

at or passes slowly the two stops R1 and R2. In the list of potential stops the following criteria are 26 

applied; 27 
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a. R1 is added twice because GPS points P1 and P4 have instantaneous speeds under 1 

2.5 m/s, and the distances to R1 are the smallest (under 100 m); 2 

b. L1 is added twice (i.e., corresponding to P2 and P3); 3 

c. L2 is added once (i.e., corresponding to P10); and 4 

d. R2 is added twice (i.e., corresponding to P9 and P11. 5 

Therefore, to count the number of bus stops on the A–B segment; 6 

a. All duplicates of L1, R1, L2, and R2 are eliminated; 7 

b. L1 is removed because its distance to R1 is under 350 m; and 8 

c. L2 is removed because its distance to R1 is under 350 m. 9 

As a result of the above, the final list comprises R1 and R2.  10 

* Stage 2: Calculating the average distance between stops 11 

The average distance between bus stops for a segment was calculated using Equation 1 below. 12 

Hereafter, “bus stop” refers to those designated boarding and alighting points that a bus passed slowly 13 

or stopped at. The length of the segment was the sum of the distances between consecutive points that 14 

belong to the segment. 15 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑏𝑢𝑠 𝑠𝑡𝑜𝑝𝑠 =  
𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑠𝑒𝑔𝑚𝑒𝑛𝑡

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑢𝑠 𝑠𝑡𝑜𝑝𝑠 −1
   (1) 16 

 17 

* Stage 3: Determining whether a segment is a bus segment 18 

- Estimating the threshold of distance between two consecutive stops on the bus network 19 

The task was to seek a threshold of average distance between stops on the whole bus network 20 

to determine whether a segment was travelled by bus. All distances between two consecutive stops on 21 

the same bus route and the same direction were noted.  22 

For example, in Figure 7, the distances between L1 and L2 along with R1 and R2 were valid, 23 

whereas the distances of L1–R1, L2–R2, L1–R2, and L2–R1 were disregarded. To cover most cases, 24 

the 95th percentile value that is higher than 95% of the other distances was chosen. Because of the 25 

different distributions of bus stops in different areas, the 95th percentile of the distance between two 26 

consecutive stops varies. As indicated in section 3.1, Hanoi comprises two main areas. The first 27 

encompasses central business districts with a dense distribution of bus stops. In the other area, the stop 28 

distribution is sparser. To calculate the 95th percentile distance in the dense area, all distances between 29 

two consecutive stops of the same bus route were examined. The 95th percentile distance in the sparse 30 

area was calculated in the same way. The 95th percentile distance of mixed area (i.e., both areas together) 31 

was calculated by considering stops on the entire bus network. The values of the 95th percentile of 32 

distance between two consecutive stops in the dense area, mixed area, and sparse area were 1,200 m, 33 

1,650 m, and 2,000 m, respectively. 34 

- Labeling segments 35 

On the basis of the list of stops, segments can be divided into three types: dense segments, 36 

sparse segments, or mixed segments (see Figure 8). 37 
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 1 
 2 
Figure 8. Distribution of bus stops in Hanoi and classification of segments 3 
 4 
 A dense segment was associated as a bus segment if the average distance between its stops 5 
(calculated by Equation 1) was smaller than the 95th percentile of the distance between two consecutive 6 
stops in the dense area (i.e., 1,200 m). If this condition was not met, it was associated as a non-bus 7 
segment. Similarly, sparse segments and mixed segments by bus were determined in the same way.  8 

3.2.3 Step 3: Random forest algorithm to classify car and motorcycle 9 

Confusion between the car and motorcycle modes was generally significant. There was lesser confusion 10 

where the car ran at high speed or accelerated/decelerated at a high rate (see Figure 3); however, in most 11 

situations, they showed very similar speed and acceleration profiles owing to moving in urban areas. 12 

To distinguish between them, the model must use many variables, which was not suitable for 13 

deterministic and probabilistic methods. Car—and especially motorcycle—segments accounted for 14 

significant percentages of the sample (see Figure 1), so a learning-based mode was developed.  15 

A random forest algorithm is a standard and widely used non-parametric prediction tool 16 

introduced by Breiman (2001). It contains numerous decision trees and operates based on randomness. 17 

All the trees learn from samples selected randomly from the original data with replacement (see Figure 18 

9). To split each node of a decision tree, a subset of randomly selected input features is used (Statnikov 19 

et al., 2008). In a classification problem, the decision trees’ votes are aggregated to form the final 20 

prediction decision. By means of the randomness and the voting mechanism, random forests avoid 21 

overfitting and generate satisfactory prediction results.  22 

 23 

 Figure 9. A random forest structure 24 
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Random forest models have been documented in a number of mode detection studies (Gong et 1 

al., 2018; Marra et al., 2019; Stenneth et al., 2011). In this study, a random forest model was 2 

implemented using Python and the scikit-learn library. In addition to the 95th percentile of speed, median 3 

speed, and average absolute acceleration, variables including the 95th percentile of absolute acceleration 4 

and segment length were used as inputs to the model. To train the model, 75% of the 1,245 motorcycle 5 

segments and 75% of the 587 car segments were used. Thus, the data used to evaluate the hierarchical 6 

process comprised 758 walk segments, 104 bicycle segments, 97 bus segments, 311 motorcycle 7 

segments, and 147 car segments.  8 

 9 

4 RESULTS AND DISCUSSION 10 

4.1 Hierarchical mode detection process  11 

The evaluation of the mode imputation was based on four metrics: precision, recall, F-score, and 12 

accuracy (see Equations 2, 3, 4, 5). The closer to the value 1 the metrics are, the better the classifier 13 

performs. 14 

 15 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 𝑚𝑜𝑑𝑒 𝑖

𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 𝑚𝑜𝑑𝑒 𝑖
      (2) 16 

 17 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 𝑚𝑜𝑑𝑒 𝑖

𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 𝑎𝑐𝑡𝑢𝑎𝑙𝑙𝑦 𝑏𝑒𝑖𝑛𝑔 𝑚𝑜𝑑𝑒 𝑖
       (3) 18 

 19 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 =  
2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
          (4) 20 

 21 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠
        (5) 22 

 23 

In terms of accuracy, 89.1% of all segments were correctly inferred (see Table 3). This accuracy 24 

level is comparable to that of many previous studies using either all-in-one or hierarchical processes 25 

(Dabiri and Heaslip, 2018; Feng and Timmermans, 2019; Marra et al., 2019; Nour et al., 2016; 26 

Rasmussen et al., 2015; Stenneth et al., 2011; Tsui and Shalaby, 2006; Xiao et al., 2015).  27 

Regarding Step 1 (see sub-section 3.2.1), the fuzzy logic algorithm functioned well, resulting 28 

in excellent classification of the walk and motorized modes. The classification of walk segments 29 

obtained the highest F-score at 96.3%, and only 18 out of 555 motorized segments were incorrectly 30 

identified. The detection of bicycle segments was not as accurate as that of other segments, with both 31 

precision and recall levels of approximately 75%. 32 

Table 3. Confusion matrix of mode detection results 33 

 
Detected 

Recall F-score 
Walk Bicycle Bus Motorcycle Car Total 

R
ep

o
rt

ed
 

Walk 717 18 3 20 0 758 94.6% 96.3% 

Bicycle 4 79 2 19 0 104 76.0% 75.6% 

Bus 0 0 92 4 1 97 94.8% 87.2% 

Motorcycle 7 8 12 271 13 311 87.1% 82.1% 

Car 3 0 5 35 104 147 70.7% 78.5% 

Total 731 105 114 349 118 1417 - - 

Precision 98.1% 75.2% 80.7% 77.7% 88.1% - Accuracy: 89.1% 

 34 
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For bus detection, the high recall level of 94.8% showed that bus-detection rules identified 1 

almost all of the actual bus segments (92 of 97 cases). However, a number of other segments were 2 

falsely detected as bus segments—possibly owing to taking passing of bus stops slowly into 3 

consideration—resulting in a precision level of 80.7% corresponding to the bus. Despite this limitation, 4 

however, these precision and recall levels were comparable with those of studies using real-time 5 

information or high-quality GIS data (Feng and Timmermans, 2019; Gong et al., 2018; Marra et al., 6 

2019; Rasmussen et al., 2015; Semanjski et al., 2017; Tsui and Shalaby, 2006). In comparison with the 7 

model of Nour et al. (2016), the bus-detection method of this study achieved a much higher recall 8 

(94.8% vs. 84.7%) and thereby a larger F-score (87% vs. 84%).  9 

Bus identification was greatly affected by both the threshold of distance to search for the nearest 10 

bus stop and the threshold of speed representing the slow movement. The sensitivity of the inferences 11 

when (1) fixing the speed at 2.5 m/s coupled with changing the distance, and (2) fixing the distance at 12 

100 m coupled with changing the speed were tested, respectively. 13 

In the case of a 2.5 m/s speed threshold (Figure 10a), at the smallest level of 30 m, the ability 14 

to detect bus segments was unsatisfactory, with a recall of only 18% yielded. Between 30 m and 100 m, 15 

the higher the distance was, the higher the recall was. This emphasized that buses would not stop exactly 16 

at bus stops. In this range, the precision values nearly levelled out. Between 110 m and 150 m, the 17 

increase in recall levels was insignificant, and the precision decreased dramatically with distance. In 18 

fact, at 100 m, the recall reached the near-maximum level of approximately 95%, with 92 of the 97 bus 19 

segments being correctly detected. The changes in precision and recall were reflected by changes in the 20 

F-score. The highest F-score was achieved at 100 m, from which we concluded that 100 m was the best 21 

distance threshold when the speed was 2.5 m/s. The 100 m distance is suitable for the 2.5 m/s speed 22 

possibly because a bus tended to slow down before each bus stop. 23 

In the case of a 100 m distance threshold, Figure 10b reveals that the consideration of stopping 24 

(i.e., very low speeds, such as 0.7 m/s) did not lead to accurate detection of bus segments, with a recall 25 

of 63% yielded. As the speed increased from 2 m/s to 2.7m/s, more bus segments were successfully 26 

recognized, albeit with nearly unchanged precision. From 2.9 m/s, precision dropped once recall was 27 

nearly stable, leading to a decrease in the F-score. The F-score reached its maximum value of 87.2% 28 

for a speed of 2.5 m/s. 29 

These analyses have demonstrated that it was appropriate to consider stopping at and passing 30 

bus stops slowly together with the thresholds chosen (2.5 m/s and 100 m). 31 

  
(a) The speed fixes of 2.5 m/s (b) The distance fixes of 100 m 

Figure 10. Sensitivity of bus detection to changes in distance and speed thresholds 32 

 33 

Motorcycles were shown to be the primary source of misclassification. Of 118 segments labeled 34 

as cars, 13 were actually motorcycle. Apart from walk, motorcycle was the only mode misclassified as 35 

bicycle, (8 segments). Nineteen bicycle segments (18% of the total bicycle segments) were falsely 36 
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classified as motorcycle segments. The ambiguity of the motorcycle mode with other modes reduced 1 

the correct number of inferences, which was reflected in its precision level of only 77.7%, about 10% 2 

lower than its recall level of 87.1%.  3 

Car segments were also confused with motorcycle segments. Of the 147 car segments, 35 were 4 

labeled as motorcycle segments, resulting in a recall of 70.7%, the lowest value for all the modes. 5 

However, the confusion between car and bus, despite being a well-known issue in literature, was minor. 6 

 7 

4.2 Comparing the proposed hierarchical process with other processes 8 

A simple hierarchical process and an all-in-one process (see Table 4) were developed to assess the 9 

performance of the proposed hierarchical process. The former used rules related to speed and distance 10 

to the nearest bus stops. The latter was based on a random forest model.  11 

The accuracy level of the simple hierarchical process was low at 61.3%, compared with 79.1% 12 

for the all-in-one process and 89.1% for the process proposed in this study. The poor performance of 13 
the rule-based process was anticipated because such a process was too simple to deal with the challenge 14 

of classifying five modes. 15 

 The all-in-one process had very low F-score values for bus and bicycle segments because it had 16 

a significant bias against modes having minor percentages of the dataset. In other words, the all-in-one 17 

process failed to deal with the imbalanced data problem. In contrast, the process proposed in this work 18 

generated comparable F-score values for all modes, and these values were higher than those of the 19 

random forest model. 20 

The F-score values of bus segments for the rule-based process (0.17) and the random forest-21 

based process (0.16) were much lower than that of the proposed process (0.87), which highlighted how 22 

much bus detection could be improved by considering the average distance between bus stops that a 23 

bus passed slowly or stopped at. Furthermore, the rule-based and random forest processes did not detect 24 

cars and motorcycles as well as the hierarchical process proposed here did, which emphasized the 25 

confusion between motorcycles and cars.  26 

Table 4. Simple hierarchical process and all-in-one process 27 

Process Description F-score Accuracy 

RULE-BASED 

(SIMPLE 

HIERARCHICAL) 

95th 

percentile of 

speed 

Median 

speed 

Proximity 

to bus 

stops 

Mode 
Foot:            0.89 

Bicycle:        0.27 

Bus:             0.17 

Motorcycle: 0.62 

Car:             0.64 

61.3% 
Step 1 < 3.5 < 2.0 - Foot 

Step 2 < 6.0 < 4.0 - Bicycle 

Step 3 < 15.0 ≥ 3.5 Yes Bus 

Step 4 > 12.0 ≥ 6.0 - Car 

Step 5 The remainder of segments Motorcycle 

RANDOM 

FORESTS 

(ALL-IN-ONE) 

Features: 95th percentile of speed, median speed, 

proximity to bus stops (0 if no and 1 if yes), heading 

change rate, low speed rate, 95th percentile of 

acceleration, average (absolute) acceleration. 

Splitting data: at the rate of 75% vs. 25% 

Foot:            0.93 

Bicycle:        0.25 

Bus:             0.16 

Motorcycle: 0.80 

Car:             0.69 

79.1% 

Proximity to bus stops refers to the distances from both the origin and the destination of a segment to the 

nearest stops within 75 m 

5 CONCLUSIONS 28 

Making transportation mode inferences has been a common goal of GPS-data-based research owing to 29 

the absence of trip characteristics in logs. This study has addressed a difficult challenge, with the 30 

inclusion of motorcycles, a major travel mode, in data collected in Hanoi.  31 

First, a hierarchical process was developed to classify walk, bicycle, and motorized modes 32 

using a fuzzy logic algorithm. In addition to acceleration and speed specific variables, heading change 33 
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rate was used to enhance the classifier’s power. Bus segments were then distinguished from other 1 

motorized segments upon extension of the work of Nour et al. (2016). Specifically, an average distance 2 

between stops at which the bus passed slowly or stopped at was compared with those estimated from 3 

the bus network. The advantages of this method are that it could detect almost all of the bus segments 4 

by the coordinates of stops only, and this was easily understandable because it originated from the actual 5 

operation of bus services. To limit other modes being misclassified as bus, it was necessary to carefully 6 

choose thresholds of speed and distance. The distance should be determined before the speed is 7 

estimated from the sample. Finally, a random forest model was developed to detect motorcycle and car 8 

segments. 9 

 The proposed hierarchical process performed well, with an accuracy of 89.1%. The main source 10 

of confusion was the mode of motorcycle. The most frequent ambiguities were between motorcycles 11 

and cars, not between cars and buses. This is typical not only for Hanoi but also for cities in a number 12 

of developing countries where travel depends heavily on two-wheeled motorized vehicles. This study 13 

was an effort to extend the list of modes and the geographical scope of research into imputing travel 14 

modes from GPS data. 15 

 Although thoroughly developed, the process was validated only on a sample that was biased 16 

toward persons working and studying at a university in Hanoi. Thus, the inferences would, to some 17 

extent, benefit from the homogeneity of travel patterns of the participants. Moreover, the Hanoi urban 18 

transport system does not include any metro lines at present. These limitations emphasize the need to 19 

adapt and test the process using a more diverse sample with more travel options. Future research could 20 

be conducted to enhance identification of the motorcycle mode.  21 
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Appendix 1. Synthesis of mode detection studies 1 

 2 
Authors and 

studies 
Modes Methods Variables 

Overall 

Accuracy 

Process 

types 

Tsui and Shalaby, 

(2006)T 

Walk, cycle, bus, auto, 

streetcar, subway, off-

road 

Fuzzy-logic and 

map-matching 

Speed, acceleration, data 

quality, spatial information 
94% 

Complex 

hierarchical 

Stopher et al., 

(2008)T 

Walk, bicycle, car, bus, 

tram 

Probability 

matrix 
Speed, spatial information 95% 

Simple 

hierarchical 

Bohte and Maat, 

(2009)E 

Car, train, bicycle, foot, 

other 
Rule-based Speed, spatial information 70% 

Simple 

hierarchical 

Gong et al., 

(2012)T  

Walk, subway, rail, car, 

bus 
Rule-based 

Speed, acceleration, spatial 

information  
82.6% 

Simple 

hierarchical 

Rasmussen et al., 

(2015)E 

Walk, bicycle, bus, car, 

rail, other 

Fuzzy-logic and 

map-matching 

Acceleration, speed, spatial 

information 
92.4% 

Complex 

hierarchical 

Nour et al., 

(2016)T 

Walk, bicycle, transit, 

auto 

KNN and rule-

based 

Speed, acceleration, jerk, 

spatial information (i.e. 

transit stop rate) 

92.5% (1) 
Complex 

hierarchical 

Marra et al., 

(2019)E 

Walk, bus/tram, train, 

car, bicycle 

Rule-based, 

probability-

based and RF 

Speed, acceleration, 

heading, actual operational 

data of public transport, 

historical travel data  

86.1%(2) 

and 87%(3) 

Complex 

hierarchical 

Schuessler and 

Axhausen, 

(2009)E 

Walk, cycle, car, urban 

public transport, train 
Fuzzy-logic Acceleration, speed 

Not 

available 
All-in-one 

Stenneth et al., 

(2011)T 

Train, bus, walk, car, 

bicycle, stationary 

RF, NB, BN, 

DT, MLP 

Acceleration, speed, spatial 

information and real-time 

data 

92.8% and 

92.9% (4) All-in-one 

Shafique and 

Hato, (2015)E 
Walk, bicycle, car, train 

RF, SVM, 

AdaBoost, DT 

Acceleration values for 3 

directions 
99.8% All-in-one 

Xiao et al., 

(2015)E 

Walk, bicycle, E-bike, 

bus, car 

BN, SVM, 

MNL, ANN 

Speed, acceleration, average 

heading change, distance 
92.7% All-in-one 

Feng and 

Timmermans, 

(2016)E 

Walk, bicycle, bus, car, 

motorbike, running, 

tram, metro, train, 

activity 

BN, NB, LR, 

MP, DT, SVM, 

C4.5 

Speed, acceleration, 

distance, data quality, 

spatial information 

99.8% All-in-one 

Semanjski et al., 

(2017)E 

Walk, bus, car, foot, 

train 
SVM Spatial information 94% All-in-one 

Dabiri and 

Heaslip, (2018)E 

Walk, bicycle, bus, 

driving, train 

CNN, KNN, 

SVM, DT, RF, 

MLP 

Speed, acceleration, 

heading change rate, jerk 
84.8% All-in-one 

Gong et al., 

(2018)E 
Walk, bus, tram, auto RF 

Travel time, length, speed, 

participant’s information, 

spatial information 

Not 

available 
All-in-one 

Feng and 

Timmermans, 

(2019)E 

Car, bus, bicycle, walk, 

train 
BN 

Speed, acceleration, 

distance, data quality, 

spatial information 

88.1% All-in-one 

(1) Estimated based on the confusion matrix in (Nour et al., 2016). 
(2) For classifying walk, bus/tram, train and private modes (i.e. car and bicycle) in Basel data;  
(3) For classifying bicycle and car in Basel data;  
(4) Refer to overall precision and overall recall, respectively. 

RF: Random Forests; DT: Decision Tree; SVM: Support Vector Machine; KNN: K-Nearest Neighbors; MLP: Multilayer 

Perceptron, CNN: Convolutional Neural Network, LR: Linear Regression, NB: Naïve Bayes, BN: Bayesian Network, ANN: 

Artificial Neural Network. 

In a study reporting a number of methods, the main method is in bold and the accuracy presented in the table is its. 
E Refers to an experiment whose valid data are comprised of either at least 50 persons or at least 350 days (equivalent to 50 

persons * 7 days) or at least 1400 trips (equivalent to 350 days * 4 trips/day).  
T Refers to a test at small scale and thus fails to meet the experiment-specific criteria. 

  3 
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Appendix 2. Prediction results of the hierarchical process at fuzzy logic step and 1 

bus detection step 2 

 3 

Prediction result at fuzzy logic step 4 

  
Predicted Total Recall F-score 

Walk Bicycle Motorized    

R
ep

o
rt

ed
 Walk 717 18 23 758 94.6% 96.3% 

Bicycle 4 79 21 104 76.0% 75.6% 

Motorized 10 8 537 555 96.8% 94.5% 

Total 731 105 581 1417 - - 

Precision 98.1% 75.2% 92.4% - Accuracy 94.1% 

 5 

 6 

 7 

Prediction result at bus detection step 8 

  
Predicted 

Total Recall F-score 
Walk Bicycle Bus Car/Motorcycle 

R
ep

o
rt

ed
 

Walk 717 18 3 20 758 94.6% 96.3% 

Bicycle 4 79 2 19 104 76.0% 75.6% 

Bus 0 0 92 5 97 94.8% 87.2% 

Car/Motorcycle 10 8 17 423 458 92.4% 91.5% 

Total 731 105 114 467 1417 - - 

Precision 98.1% 75.2% 80.7% 90.6% - Accuracy 92.5% 

 9 

  10 



 

20 
 

REFERENCES 1 
Armoogum, J., Bonsall, P., Browne, M., Christensen, L., Cools, M., Cornelis, E., Diana, M., 2 

Guilloux, T., Harder, H., Hegner Reinau, K., Hubert, J.-P., Kagerbauer, M., Kuhnimhof, T., 3 
Madre, J.-L., Moiseeva, A., Polak, J., Schulz, A., Tébar, M., Vidalakis, L., 2014. Survey 4 
Harmonisation with New Technologies Improvement (SHANTI). IFSTTAR. 5 

Bohte, W., Maat, K., 2009. Deriving and validating trip purposes and travel modes for multi-day 6 
GPS-based travel surveys: A large-scale application in the Netherlands. Transp. Res. Part C 7 
Emerg. Technol. 17, 285–297. https://doi.org/10.1016/j.trc.2008.11.004 8 

Breiman, L., 2001. Random Forests. Mach. Learn. 45, 5–32. 9 
https://doi.org/10.1023/A:1010933404324 10 

Burkhard, O., Becker, H., Weibel, R., Axhausen, K.W., 2020. On the requirements on spatial 11 
accuracy and sampling rate for transport mode detection in view of a shift to passive 12 
signalling data. Transportation Research Part C: Emerging Technologies 114, 99–117. 13 
https://doi.org/10.1016/j.trc.2020.01.021 14 

Bzdok, D., Altman, N., Krzywinski, M., 2018. Statistics versus machine learning. Nat. Methods 15, 15 
233–234. https://doi.org/10.1038/nmeth.4642 16 

Chen, C., Gong, H., Lawson, C., Bialostozky, E., 2010. Evaluating the feasibility of a passive travel 17 
survey collection in a complex urban environment: Lessons learned from the New York City 18 
case study. Transp. Res. Part Policy Pract. 44, 830–840. 19 
https://doi.org/10.1016/j.tra.2010.08.004 20 

Dabiri, S., Heaslip, K., 2018. Inferring transportation modes from GPS trajectories using a 21 
convolutional neural network. Transp. Res. Part C Emerg. Technol. 86, 360–371. 22 
https://doi.org/10.1016/j.trc.2017.11.021 23 

Feng, T., Timmermans, H.J.P., 2019. Integrated imputation of activity-travel diaries incorporating the 24 
measurement of uncertainty. Transp. Plan. Technol. 42, 274–292. 25 
https://doi.org/10.1080/03081060.2019.1576384 26 

Feng, T., Timmermans, H.J.P., 2016. Comparison of advanced imputation algorithms for detection of 27 
transportation mode and activity episode using GPS data. Transp. Plan. Technol. 39, 180–28 
194. https://doi.org/10.1080/03081060.2015.1127540 29 

Forrest, T., Pearson, D., 2005. Comparison of Trip Determination Methods in Household Travel 30 
Surveys Enhanced by a Global Positioning System. Transp. Res. Rec. J. Transp. Res. Board 31 
1917, 63–71. https://doi.org/10.3141/1917-08 32 

Gong, H., Chen, C., Bialostozky, E., Lawson, C.T., 2012. A GPS/GIS method for travel mode 33 
detection in New York City. Comput. Environ. Urban Syst., Special Issue: Geoinformatics 34 
2010 36, 131–139. https://doi.org/10.1016/j.compenvurbsys.2011.05.003 35 

Gong, L., Kanamori, R., Yamamoto, T., 2018. Data selection in machine learning for identifying trip 36 
purposes and travel modes from longitudinal GPS data collection lasting for seasons. Travel 37 
Behav. Soc. https://doi.org/10.1016/j.tbs.2017.03.004 38 

Gong, L., Morikawa, T., Yamamoto, T., Sato, H., 2014. Deriving Personal Trip Data from GPS Data: 39 
A Literature Review on the Existing Methodologies. Procedia - Soc. Behav. Sci., The 9th 40 
International Conference on Traffic and Transportation Studies (ICTTS 2014) 138, 557–565. 41 
https://doi.org/10.1016/j.sbspro.2014.07.239 42 

Huynh, D., 2020. Making Megacities in Asia: Comparing National Economic Development 43 
Trajectories, SpringerBriefs in Regional Science. Springer Singapore, Singapore. 44 
https://doi.org/10.1007/978-981-15-0660-4 45 

Marra, A.D., Becker, H., Axhausen, K.W., Corman, F., 2019. Developing a passive GPS tracking 46 
system to study long-term travel behavior. Transp. Res. Part C Emerg. Technol. 104, 348–47 
368. https://doi.org/10.1016/j.trc.2019.05.006 48 

Nguyen, M.H., Armoogum, J., Madre, J-L., Garcia, C., forthcoming. Reviewing Trip Purpose 49 
Imputation in GPS-based Travel Surveys. Journal of Traffic and Transportation Engineering 50 
(English Edition). 51 

Nguyen, M.H., 2020. Imputations des modes et des motifs de transport pour les enquêtes “GPS” 52 
Université Paris-Est, France. https://www.dest.ifsttar.fr/linstitut/ame/laboratoires/dest-53 
ifsttar/formation-a-la-recherche/details-theses/?nom=NGUYEN&prenom=Minh%20Hieu 54 



 

21 
 

Nguyen, M.H., Armoogum, J., Garcia, C., 2019a. Experiment on mobility survey using smartphone in 1 
Hanoi, Vietnam. Presented at the Transportation for A Better Life: Smart Mobility for Now 2 
and Then, Bangkok, Thailand. 3 

Nguyen, M.H., Ha, T.T., Tu, S.S., Nguyen, T.C., 2019b. Impediments to the bus rapid transit 4 
implementation in developing countries – a typical evidence from Hanoi. Int. J. Urban Sci. 5 
23(4), 464–483. https://doi.org/10.1080/12265934.2019.1577747 6 

Nguyen, M.H., Pojani, D., 2018. Chapter Two - Why Do Some BRT Systems in the Global South Fail 7 
to Perform Or Expand?, in: Shiftan, Y., Kamargianni, M. (Eds.), Preparing for the New Era of 8 
Transport Policies: Learning from Experience, Advances in Transport Policy and Planning. 9 
Elsevier Academic Press, pp. 35–61. https://doi.org/10.1016/bs.atpp.2018.07.005 10 

Nour, A., Hellinga, B., Casello, J., 2016. Classification of automobile and transit trips from 11 
Smartphone data: Enhancing accuracy using spatial statistics and GIS. J. Transp. Geogr. 51, 12 
36–44. https://doi.org/10.1016/j.jtrangeo.2015.11.005 13 

Rasmussen, T.K., Ingvardson, J.B., Halldórsdóttir, K., Nielsen, O.A., 2015. Improved methods to 14 
deduct trip legs and mode from travel surveys using wearable GPS devices: A case study 15 
from the Greater Copenhagen area. Comput. Environ. Urban Syst. 54, 301–313. 16 
https://doi.org/10.1016/j.compenvurbsys.2015.04.001 17 

Schuessler, N., Axhausen, K., 2009. Processing Raw Data from Global Positioning Systems Without 18 
Additional Information. Transp. Res. Rec. J. Transp. Res. Board 2105, 28–36. 19 
https://doi.org/10.3141/2105-04 20 

Semanjski, I., Gautama, S., Ahas, R., Witlox, F., 2017. Spatial context mining approach for transport 21 
mode recognition from mobile sensed big data. Comput. Environ. Urban Syst. 66, 38–52. 22 
https://doi.org/10.1016/j.compenvurbsys.2017.07.004 23 

Shafique, M.A., Hato, E., 2015. Use of acceleration data for transportation mode prediction. 24 
Transportation 42, 163–188. https://doi.org/10.1007/s11116-014-9541-6 25 

Statnikov, A., Wang, L., Aliferis, C.F., 2008. A comprehensive comparison of random forests and 26 
support vector machines for microarray-based cancer classification. BMC Bioinformatics 9, 27 
319. https://doi.org/10.1186/1471-2105-9-319 28 

Stenneth, L., Wolfson, O., Yu, P.S., Xu, B., 2011. Transportation mode detection using mobile 29 
phones and GIS information, in: Proceedings of the 19th ACM SIGSPATIAL International 30 
Conference on Advances in Geographic Information Systems - GIS ’11. Presented at the 19th 31 
ACM SIGSPATIAL International Conference, ACM Press, Chicago, Illinois, p. 54. 32 
https://doi.org/10.1145/2093973.2093982 33 

Stopher, P., FitzGerald, C., Zhang, J., 2008. Search for a global positioning system device to measure 34 
person travel. Transp. Res. Part C Emerg. Technol., Emerging Commercial Technologies 16, 35 
350–369. https://doi.org/10.1016/j.trc.2007.10.002 36 

Thomas, T., Geurs, K.T., Koolwaaij, J., Bijlsma, M., 2018. Automatic Trip Detection with the Dutch 37 
Mobile Mobility Panel: Towards Reliable Multiple-Week Trip Registration for Large 38 
Samples. J. Urban Technol. 25, 143–161. https://doi.org/10.1080/10630732.2018.1471874 39 

Tsui, S., Shalaby, A., 2006. Enhanced System for Link and Mode Identification for Personal Travel 40 
Surveys Based on Global Positioning Systems. Transp. Res. Rec. J. Transp. Res. Board 1972, 41 
38–45. https://doi.org/10.3141/1972-07 42 

Vincenty, T., 1975. Direct and Inverse Solutions of Geodesics on the Ellipsoid with Application of 43 
Nested Equations. Surv. Rev. 23, 88–93. https://doi.org/10.1179/sre.1975.23.176.88 44 

Wang, B., Gao, L., Juan, Z., 2017. A trip detection model for individual smartphone-based GPS 45 
records with a novel evaluation method. Advances in Mechanical Engineering 9, 46 
168781401770506. https://doi.org/10.1177/1687814017705066 47 

Wolf, J., Oliveira, M., Thompson, M., 2003. Impact of Underreporting on Mileage and Travel Time 48 
Estimates: Results from Global Positioning System-Enhanced Household Travel Survey. 49 
Transp. Res. Rec. J. Transp. Res. Board 1854, 189–198. https://doi.org/10.3141/1854-21 50 

Xiao, G., Juan, Z., Zhang, C., 2015. Travel mode detection based on GPS track data and Bayesian 51 
networks. Comput. Environ. Urban Syst. 54, 14–22. 52 
https://doi.org/10.1016/j.compenvurbsys.2015.05.005 53 



Acknowledgements 1 

The authors highly appreciate (1) constructive comments of anonymous reviewers and the 2 

editor, (2) volunteer support of participants in the Hanoi survey and (3) useful discussion with Dr. Jean-3 

Loup Madre, a senior researcher at IFSTTAR/AME/DEST. 4 

 5 

Authors’ contributions 6 

The authors confirm contribution to the paper as follows: study conception and design: MHN 7 

and JA; data collection: MHN; analysis and interpretation of results: MHN; draft manuscript 8 

preparation: MHN and JA. All authors reviewed the results and approved the final version of the 9 

manuscript. 10 

 11 

Conflicts of interest 12 

The authors declare that there is no conflict of interest regarding the publication of this paper. 13 


