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This survey contains short accounts of publications related to applied sciences. The main topics which are dealt with are the well known models of pattern formation in reaction-diffusion systems, namely Gierer-Meinhardt, Gray-Scott and Klausmeier models, and the linear elasticity in the context of homogenization. These topics are not usually combined in a single document. It aims is to be a useful reference for young reseachers in mathematics and applied sciences.

INTRODUCTION

The article is divided into several sections as follows 

Pattern formation in reaction-diffusion systems

Set-up (This section is taken from A. Doelman [4]).

Definition 1. An N -component reaction-diffusion system for U = (U 1 , U 2 , ...U N ) ∈ R N is a system of the form

U t = D∆U + F(U, µ), (1) 
where U(x, t) depends on (x, t) ∈ Ω × R + , with Ω ⊂ R n , D is a diffusion matrix i.e. a diagonal N × N matrix with strictly positives entries, ∆ is the Laplace/diffusion operator, µ ∈ R m represents parameters and the vector field F(U, µ) : R N → R N represents the nonlinear reaction terms.

Definition 2. In [START_REF] Turing | The chemical basis of morphogenesis[END_REF], A.M. Turing wrote "a system of chemical substances, called morphogens, reacting together and difffusing through a tissue, is adequate to account for the main phenomena of morphogenesis. Such a system, although it may originally be quite homogeneous, may later develop a pattern or structure due to an instability of the homogeneous equilibrium.

Definition 3. The trivial patterns of (1) are solutions Ū = ( Ū1 , ... ŪN ) of the algebraic equations: F( Ū, µ) = 0 or F 1 ( Ū, µ) = 0, ..., F N ( Ū, µ) = 0

(2)

From now on, N=2, n=1, Ω = R(Cf. [4], Section 2). Following the notations of [4], set Ū1 = Ū , Ū2 = V , F 1 = G, F 2 = H.

Linear stability analysis: stability of the trivial patterns

Linearizing (1) around the trivial pattern ( Ū + αe ikx+λt , V + βe ikx+λt ), we obtain the 2 × 2 linear eigenvalue problem:

A(k, µ) α β = g u -k 2 g v h u h v -dk 2 α β = λ α β (3) 
where

g u (µ) = ∂G ∂U ( Ū (µ), V (µ); µ), g v (µ) = ∂G ∂V ( Ū (µ), V (µ); µ), (4) 
and where

h u (µ) = ∂H ∂U ( Ū (µ), V (µ); µ), h v (µ) = ∂H ∂V ( Ū (µ), V (µ); µ), (5) 
The charasteristic polynomial associated to (3) is

λ 2 -[(g u + h v ) -(1 + d)k 2 ]λ + [(g u -k 2 )(h v -dk 2 ) -g v h u ] = 0 (6) It defines 2 functions k ∈ R → λ 1,2 (k; µ) ∈ C such that (for instance) Re(λ 2 (k)) ≤ Re(λ 1 (k)).
The trivial state ( Ū , V ) is spectrally stable for the values of µ, for which

Re(λ 2 (k; µ)) ≤ Re(λ 1 (k; µ)) < 0, (7) 
for all k ∈ R.

Destabilization by the Türing mechanism

As k → ∞, λ 1 ∼ -dk 2 and λ 2 ∼ -k 2 (or vice versa), and condition (7) is satisfied. Let µ c be the critical value beyond which there are values of k for which Re(λ 1 (k, µ)) > 0, and

k c such that Re(λ 1 (±k c ; µ c ) = 0 and Re(λ 2 (k, µ c )) > 0, ∀k ∈ R (8) 
The planar reaction ODE, associated to (1), with

(U (x, t), V (x, t)) = (u(t), v(t)) is consid- ered: u = G(u, v; µ), v = H(u, v; µ). (9) 
The following notations are introduced when µ is taken just beyond µ c , and is smalll

µ = µ c + 2 μ, k = k c + k (10) 
and

λ 1 (k, µ) = 2 λ( k, μ), λ c µ = ∂λ 1 ∂µ (k c , µ c ) λ c k 2 = ∂ 2 λ 1 ∂k 2 (k c , µ c ), a(c, μ,k) = 2λ c µ μ |λ c k 2 | (11) 
Under the conditions

g u < 0, h v > 0, g v h u < 0, 0 < d < 1 or g u > 0, h v < 0, g v h u > 0, d > 1, (12) 
it is proved ([4], Lemma 2.1) that the trivial state ( Ū , V ) loses stability as μ crosses through 0. For μλ c µ > 0, there are two symmetric intervals

k = ±k c + k with k ∈ (-a(c, μ, k) + O( ), a(c, μ, k) + O( ))
, such that there exist (real) perturbations of ( Ū , V ) of the form

e i(kc+ k)x+ 2 λ( k,μ)t α c 1 + O( ) β c 1 + O( ) + c.c. ( 13 
)
where

(α c 1 , β c 1 ) are the eigenvectors of A(k c , µ c ) corresponding to the eigenvalue λ 1 (k c , µ c ) = 0. With ξ = x, τ = 2 t, E c (x) = e ikcx , (14) 
the above result can be written

U (x, t) V (x, t) = Ū V + A(ξ, τ ) α c 1 β c 1 E c (x) + c.c. + O( 2 ) ( 15 
)
where A(ξ, τ ) : R × R + → C satisfies the Ginzburg-Landau equation

A τ = - 1 2 λ c k 2 A ξξ + μλ c µ A + LA|A| 2 ; (16)
Here, L ∈ R is the Landau coefficient.

The onset of patterns formation: the Turing/Ginsburg-Landau bifurcation

It is assumed that L < 0. In fact, the author ( [4]) shows that no (small amplitude) Turing patterns can exists beyond the destabilization if L > 0. Introducing the new variables

τ = μλ c µ τ, ξ = a(c, μ, k)ξ, Â = |L| μλ c µ A (17) 
and dropping the hats, equation ( 16) becomes

A τ = A ξξ + A -A|A| 2 . ( 18 
)
This equation has a family of stationary spatially periodic solutions

A(ξ, τ ) = Re iKξ) , R > 0 with K 2 + R 2 = 1 and -1 < K < 1. ( 19 
)
and by the Eckhaus/Benjamin-Feir-Newell criterion (cf. subsubsection 2.2.3), this periodic solution is spectrally stable for -1

√ 3 < K < 1 √ 3 and unstable for |K| ∈ ( 1 √ 3 , 1) ([4], Lemma 2.

3).

The main result. Under the above conditions, when is sufficiently small, a Turing/Ginzburg-Landau bifurcation takes place as μ crosses through 0 i.e. for μλ c µ > 0, there exists a continuous band of asymptotically stable stationary spatially periodic patterns (U p (x; k), V p (x; k)) of ( 1), with wave number

k(K) = k c + a(c, μ, k)K (20) 
and

-1 √ 3 + O( ) < K < 1 √ 3 + O( ).
These spatially periodic patterns are O( ) close to the trivial state ( Ū , V ) and are approximated by

U p (x; k, θ) V p (x; k, θ = Ū V + ( 1 -K 2 + O( ))a(c, μ, k) α c 1 cos(k(K)x + θ) + O( ) β c 1 cos(k(K)x + θ) + O( ) (21) 
for any phase shift θ ∈ R, [4], Theorem 2.4.

Remark 1. In [4], Section 2.5, the author investigates the case of Hopf bifurcation in (9) i.e. the generation of patterns as µ passes through the critical value µ c .

1.4 The particular case of the 1D-Gray-Scott model and chemistry (Cf. David S. Morgan et al. [START_REF] Morgan | Stationary periodic patterns in the Gray-Scott model[END_REF]). The Gray-Scott model, related to chemical rections between two species U and V, consists of the reaction-diffusion system

U t = D U ∆U -U V 2 + A(1 -U ) V t = D V ∆V + U V 2 -BV (22) 
Where U = U (x, t), x ∈ R, V = V (x, t), are the concentrations of U (inhibitor) and V (activtator) , A and B are rate constants, D U and D V are diffusivities. Here, for convenience, D U = 1 and D V = δ 2σ , 0 < δ 1, σ > 0.The stationary states (trivial patterns) solutions of the system

-U V 2 + A(1 -U ) = 0 and U V 2 -BV = 0 ( 23 
)
are U ≡ 1, V ≡ 0 and, when 4B 2 < A,

(U ± , V ± ) = ( 1 2 [1 ± 1 - 4B 2 A ], A 2B [1 ∓ 1 - 4B 2 A ]) (24) 
The state (U ≡ 1, V ≡ 0) is is linearly stable for all A, B > 0. On the other hand, it is proved ( [START_REF] Morgan | Stationary periodic patterns in the Gray-Scott model[END_REF], p.117) that the state (U + , V + ) cannot be marginally stable (cf. Definition 6) Therefore the authors focus only on (U -, V -).

Linear stability of (U -, V -), Turing/Ginsburg-Landau bifurcation. Linearizing (22) around the stationary state (U -, V -) leads to

. U . V = M U V (25) 
where

M = -k 2 -V 2 --δ α a -2δ β b V 2 - -δ 2σ k 2 + δ β b (26)
with A, B rescaled as A = δ α a, B = δ β b, α, β ≥ 0. The analysis of the eigenvalues of M shows that (U -, V -) is linearly stable if and only if 2α ≤ 3β and determines the values a c and k c of the parameter a and the wavenumber k such that (U -, V -) is marginally stable.

In particular,

a 2 c = (3 -2 √ 2)b 3 . ( 27 
)
Remark 2. 1) With the above scaling for A and B, one has, to leading order

(U -, V -) = (δ 2β-α b 2 a , δ α-β a b ) (28) 
2) For the Gray-Scott model, the Ginsburg-Landau equation (cf.( 16)) has the form

A τ = 2 √ b A + 2 √ 2A ξξ - 2 9 (10 √ 2 -7)|A| 2 A (29)
After setting A(ξ, τ ) = Re iκξ , solutions R and κ satisfy the equation

κ 2 + 1 18 (20 -7 √ 2)R 2 = 1 √ 2b (30) 
The main result. Finally, the following result is obtained ([8], Theorem 3.2): Let a = a c -γ 2 and 3β = 2(σ + α). For 0 < γ 1 small enough, there exists a one parameter family of stationary spatially-periodic solutions of (22)(cf definition 4) that are close to the stationary state (U -, V -):

U (x, κ) V (x, κ) = U - V - + γRe i(kc+γκ)δ β-α x 2δ 2β-α -(2 - √ 2)δ α-β + c.c. + h.o.t., (31) 
where R and κ are related by (30).

2 Generalized Klausmeier-Gray-Scott model and echosystems

Initial Kausmeier model

In [START_REF] Klausmeier | Regular and irregular patterns in semi-arid vegetation[END_REF], C. A. Klausmeier considers the nondimensionalized system:

∂w ∂t = a -w -wn 2 + ν ∂w ∂x ∂n ∂t = wn 2 -mn + ( ∂ 2 ∂x 2 + ∂ 2 ∂y 2 )n (32) 
for water w and plant biomass n, defined on an infinite two-dimensional domain indexed by x and y. In (32), a controls water input, m measures plant losses and ν contols the rate at which water flows downhill. The corresponding nonspatial model is

a -w -wn 2 = 0 wn 2 -mn = 0 (33)
He shows that this model has a bare stable state ŵ = a, n = 0 and an other one vegetated. These stable states correspond to spatially homogeneous equilibria of (32). Then he uses linear stabiliy analysis, for system (32), in two cases: hillsides i.e. ν 0, and flat ground. On hillsides, for given m and ν, there is a critical value of water input a, below which regular stripes form. Moreover, this pattern oscillates in time and the strip moves uphill because the eigenvalue that determines the instability of this homogeneous equilibrium is complex with a negative imaginary part. On flat ground, regular pattern formation is impossible when the spatially homogeneous equilibrium is stable. Numerical solutions of (32) show that, in this case, irregular patterns can arise but for parameters which are ecologically unrealistic. His results are illustrated by figures obtained with ecologically realistic parameters.

Results by S. van der Stelt et al. [12]

The model

On one-dimensional domain, the model introduced by C. A. Klausmeier reads:

u t = k o u x + k 1 -k 2 u -k 3 k 5 uv 2 v t = d v v xx -k 4 v + k 5 uv 2 (34) 
where u(x, t), v(x, t) : R × R + → R, and k i ≥ 0, i = 0, ..., 5, d ≥ 0.The flow of water is denoted by u t , the slope of the aera by k o u x , the constant precipitation rate by k 1 , an evaporation rate by -k 2 u, and an infiltration rate by -k 3 k 5 uv 2 . The change of biomass is assumed to be controlled by a diffusion term d v v xx . The death rate is denoted by -k 4 v and the infiltration feedback by k 5 uv 2 . In [12], system (34) is completed by the nonlinear diffusion term d u (u γ ) xx :

u t = d u (u γ ) xx + k o u x + k 1 -k 2 u -k 3 k 5 uv 2 v t = d v v xx -k 4 v + k 5 uv 2 (35) 
where γ ≥ 1 and 0 < d v d u , and rescaled as

U t = U γ xx + CU x + A(1 -U ) -U V 2 V t = δ 2σ V xx -BV + U V 2 (36) 
with 0 < δ 1 and

δ 2σ = d v d u ( k 2 k 1 ) γ-1 , σ > 0. ( 37 
)
Remark 3. For ecosystems without a slope k 0 = 0 and therefore

C = k 0 k 2 2 k 3 k 2 1 k 5 [d u k 3 k 5 ( k 1 k 2 ) γ-3 ] -1 2 = 0 (38)
Definition 4. Spatially periodic solutions (patterns) or wave trains are solutions u(x, t) that can be written u(x, t) = u p (κx + Ωt) (39) that satisfy u p (ξ) = u p (ξ + 2π). Here κ is called the nonlinear wave number.

Definition 5. A Busse balloon for system (36) is a set B in the (A, κ)-space with the following property: a point (A, κ) lies in B if system (36) with parameter A allow for at least one stable periodic solution (U p , V p ) with parameter κ (cf. ([12], p.66).

It is pointed out that the ecologically relevant parameter values of γ are γ = 1 or γ = 2. For γ = 1 and C = 0, system (36) is the gray-Scott system (22). In [START_REF] Morgan | Stationary periodic patterns in the Gray-Scott model[END_REF] Section 6.2, the existence of a Busse balloon, for the Gray-Scott model, is investigated.

The background states and the Turing-hopf instability

The model (36) has the same homogeneous background states as the Gray-Scott model for A > 4B 2 , namely (cf (23) and ( 24)).

U 0 = 1, V 0 = 0, and (U ± , V ± ) = ( 1 2A [A ∓ A 2 -4AB 2 ), 1 2B (A ± A 2 -4AB 2 ). ( 40 
)
The state (U 0 , V 0 ) = (1, 0) represents the desert since, in this case, v = k1 k2k3 V 0 = 0. The state (U -, V -) does not represent a homogeneously vegetated state. By linearization of (36) about the state u + = (U + , V + ) we have :

u t = Du xx + Cu x + ∂ u F (u + ; A, B)u =: L(∂ x )u (41) with u = (U, V ), F (U, V ; A, B) = (A(1 -U ) -U V 2 , -BV + U V 2 )
, and suitable matrices C and D. Let M be the matrix defined by

M(a, c, ik) = -γ(U + ) γ-1 k 2 + icδ ν k -V 2 + -δ α a -2bδ β V 2 + -δ 2σ k 2 + δ β b = L(ik) (42) 
where 0 < δ 1 and

A = aδ α , B = bδ β , C = cδ ν ; α, β > 0, ν ∈ R, (43) 
with a, b, c, = O(1) with respect to δ. Here k is refered to as the linear wavenumber.

Remark 4. For ecosystems without a slope, C=0 (cf. remark 3 ) and therefore c = 0.

Remark 5. With the above scaling, (U + , V + ) can be written out to leading order in δ

(U + , V + ) = ( b 2 a δ 2β-α , a b δ α-β ) + h.o.t.. ( 44 
)
The L 2 -spectrum of (41) is the set of λ ∈ C such that Main results:1) when C=0, (U + , V + ) is marginally stable for σ, a = a * , k = k * satisfying, to leading order in δ,

d(λ, ik) = det[M(a, c, ik]) -λ] = 0 ( 
(2γ + 1)β -(γ + 1)α = 2σ, k 2 * = 1 2 (1 -g)bδ -2γβ+(γ+1)α , a γ+1 * = gγb 2γ+1 . ( 47 
)
where g = 3 -2 √ 2, ([12], Proposition 1), 2) when C=cδ 

1 2 (3-γ)α+(γ-2)β = 0, set Γ = Γ(γ, a) = γ( b 2 a ) γ-1 , k = δ -1 2 ( 
a γ+3 * (c) = g γ b 2γ+3 c 2 + O(c) and k 2 * (c) = 1 2 (1 -g)b + O( 1 c ). (50) 
to leading order in c and δ ([12] Proposition 2).

Ginzburg-Landau equation

If |a -a * | = r 2 (51) 
and is small enough, the Ginzburg-Landau equation (16) associated to (36) has the form

A τ = (a 1 + ia 2 )A ξ,ξ + (b 1 + ib 2 )A + (L 1 + iL 2 )|A| 2 A (52)
whose coefficients are functions of b, c, and γ ([12], Proposition 3) .The Turing-Hopf instability of (U

+ , V + ) is supercritical if L 1 < 0 and subcritical if L 1 > 0.
The Benjamin-Feir-Newell criterion. If the Turing-Hopf bifurcation is supercritical, there exists a band of stable spatially periodic patterns if and only if

1 + a 2 L 2 a 1 l 1 > 0. ( 53 
)
By means of the computing system Matematica, the authors evaluated the coefficients of (52), for γ = (1, 2). These evaluations lead them to acute results: 1)For γ = {1, 2}, the coefficients L 1 in (52), is negative for all values of b and c up to c ∼ 10 6 and b ∼ 10 2 , and condition (53) is satisfied. Therefore, the Turing Hopf bifurcation at a = a * of the stationary state (U + , V + ) of (36), with C > 0 and γ = {1, 2} is supercritical ([12] Claim 1, p. 59).

2) For (36) with C > 0 and γ = {1, 2}, there exists a stable band of periodic patterns that appears at the Turing-Hopf instability ([12] Claim 2 p. 60).

3) For c = 0, all coefficients of (52) are real and L 1 = L 1 (γ) becomes positive for large γ and equals 0 for γ ≈ 13.0446. Therefore the Turing bifurcation for (35) with c = 0 is supercritical for γ < γ ss , and subcritical for γ > γ ss ([12] proposition 4).

Remark 6. In Section 3 of [12], existence of stable patterns if a is not closed to a * is studied. Busse Ballons (cf. Definition 5) are numerically constructed for different values of a and fixed values of b, c, γ

Gierer-Meinhardt system and biology

The Gierer-Meinhardt system (cf. [START_REF] Gierer | A theory of biological pattern formation[END_REF]) is one of the most popular models in biological pattern formation. Let (S, g) be a compact two-dimensional Riemannian manifold without boundary.(For definitions related to Riemannian manifolds, see W. Kühnel [7]). In [START_REF] Tse | The Gierer-Meinhardt system on a compact twodimensional Riemannian manifold: Interaction of gaussian curvature and Green's function[END_REF], W. Tse et al. consider the system

A t = 2 ∆ g A -A + A 2 H τ H t = 1 β 2 ∆ g H -H + A 2 (54) 
in S. Here, A(p, t), H(p, t) > 0 represent the activator and the inhibitor concentrations, repectively, at a point p ∈ S and at time t; their corresponding diffusivities are denoted by 2 and 1 β 2 ; τ is the time-relaxation constant of the inhibitor and ∆ g is the Laplace-Beltrami operator with respect to the metric g. Their assumptions on the parameters and β are: is small enough and lim β 2 2 = κ > 0. Let G 0 be the Green function defined by

∆ g G 0 (p, q) - 1 |S| + δ p (q) = in S, and 
S G 0 (p, q)dv g (q) = 0, (55) 
K(p) denote the Gauss curvature on S, and w be the solution of the problem

∆w -w + w 2 = 0, w > 0 in R 2 , w(0) = max y∈R 2 w(y), w(y) → 0 as |y| → ∞, (56) 
They introduce the function

F (p) = c 1 K(p) + c 2 R(p)
where R(p) denotes the diagonal of the regular part of the Green function, and

c 1 = π 4 ∞ 0 ( ∂w ∂r ) 2 r 3 dr c 2 = |S|π 2 β 2 2 ∞ 0 w 2 rdr. (57) 
3.1 Existence and stability of a single spike solution

Existence

If p 0 ∈ S is a non-degenerate critical point of F (p), i.e.

∇F (p

o ) = 0, det(∇ 2 F (p o )) = 0, (58) 
it is proved that problem (54) has a positive spiky steady state (A , H ) such that Remark 7. It is assumed that ξ ,p is the height of the peak and that p ∈ Λ δ is the location of the peak, where Λ δ = S ∩ B g (p o , δ), with δ = α , for some 0 < α < 1.(B g (p o , δ) is the ball with center p o and radius δ, with respect to the metric g).

A (x) = ξ (w( x -p ) + O( 2 )), (59) 

Linear stability

Linearizing (54) around the equilibrium states (A + φ e λ t , H + ψ e λ t, ) the following eigenvalue problem L is obtained

2 ∆ g φ -φ + 2 A H φ - A 2 H 2 ψ = λ φ 1 τ ( 1 β 2 ∆ g ψ -ψ + 2A φ ) = λ ψ (62)
where (A , H ) is the above solution of system (54).

Definitions 

Stationary Gierer-Meinhardt system

(Cf. [START_REF] Tse | The Gierer-Meinhardt system on a compact twodimensional Riemannian manifold: Interaction of gaussian curvature and Green's function[END_REF], Section 3). The proof of the existence theorem, subsection (3.1), is based on the stationary system associated to (54) i.e.

2 ∆ g A -A + A 2 H = 0, in S 1 β 2 ∆ g H -H + A 2 = 0, in S (64) 
With the rescaled amplitudes

a(p) = 1 ξ ,p A(p), h(p) = 1 ξ ,p H(p) (65) 
an equilibrium solution (a,h) solves the rescaled Gierer-Meinhardt system

2 ∆ g a -a + a 2 h = 0, a > 0 in S ∆ g h -β 2 h + β 2 ξ ,p a 2 = 0, h > 0 in S ( 66 
)
with a = O(1) and h = O(1)

Existence and stability of a cluster of two spikes for the stationnary Gierer-Meinhardt system

In [START_REF] Ao | Stable pikes clusters on a compact two-dimensional Riemannian manifold[END_REF], W. Ao et al. consider the stationnary Gierer-Meinhardt system

2 ∆ g A -A + A 2 H = 0, D∆ g H -H + A 2 = 0, ( 67 
)
on a compact two-dimensional Riemannian manifold (M, g) without boundary. They assume

0 < << 1, 0 < D << 1. ( 68 
)
It is assumed that there is a non-degenerate local maximum point of the Gaussian curvature function K(p) of M at p o = 0, i.e. ∇K(0) = 0 and

∇ 2 K(0) = K 11 0 0 K 22 , (69) 
with K 11 , K 22 < 0. Let p o be a non-degenerate local maximum point of the gaussian curvature K(p) of M. they show that, under stronger conditions on and D, namely

0 < << √ D << 1, 0 < √ Dlog 1 2 D log √ D << 1, ( 70 
)
the system (67) has, at least, two different 2-spike cluster solutions (A i , H i ) for i=1,2. Moreover, one of the solutions is stable and the other one is unstable ([?] Theorems 1.1 and 1.4)

Homogenization and linear elasticity

This section is an introduction to the theory of homogenization. Complements will be found in the references.

H and G-convergences

(Cf. G. Allaire [1] ). Let Ω be a bounded open set in R N Definition 8. Let M N be the space of square real matrices of order N and define

M α,β = M ∈ M N |M ξ . ξ ≥ α|ξ| 2 , M -1 ξ . ξ ≥ β|ξ| 2 , ∀ξ ∈ R N } (71) or M α,β = M ∈ M N | α|ξ| 2 ≤ M ξ . ξ ≤ β -1 |ξ| 2 , ∀ξ ∈ R N }, (72) 
and also

M s α,β = M ∈ M s N |M ξ . ξ ≥ α|ξ| 2 , M -1 ξ . ξ ≥ β|ξ| 2 , ∀ξ ∈ R N } (73) 
where α, β > 0 and αβ ≤ 1, and M s N is the space of real symmetric matrices of order N.

Definition 9. A sequence of matrices A (x) ∈ L ∞ (Ω; M α,β
) is said to converge in the sense of homogenisation, or H-converge, to an homogenized limit or H-limit matrix

A * ∈ L ∞ (Ω; M α,β ) if, for any f ∈ H -1 (Ω), the sequence of solutions u of -divA (x)∇u (x) = f (x) in Ω, and u = 0 on ∂Ω, (74) 
satisfies u u weakly in H 1 0 (Ω) and A ∇u weakly in L 2 (Ω) N , ( 75 
)
where u is the solution of the homogenized equation

-divA * (x)∇u(x) = f (x) in Ω, and u = 0 on ∂Ω, (76) 
(cf. [1], Definition 1.2.15 and Remark 1.2.17). This definition is justified by the following result: for any sequence A (x) of matrices in L ∞ (Ω; M α,β ) there exist a subsequence, still denoted by A , and an homogenized matrix

A * (x) ∈ L ∞ (Ω; M α,β ) such that A H-converges to A * , ([1],Theorem 1. 2. 16) Definition 10. A sequence of matrices A (x) ∈ L ∞ (Ω; M s α,β
) is said to G-converge, to an homogenized limit or G-limit matrix A * ∈ L ∞ (Ω; M s α,β ) if, for any f ∈ H -1 (Ω), the sequence of solutions u of

-divA (x)∇u (x) = f (x) in Ω,
and u = 0 on ∂Ω,

satisfies u u weakly in H 1 0 (Ω) ( (77) 
) 78 
where u is the solution of the homogenized equation

-divA * (x)∇u(x) = f (x) in Ω, and u = 0 on ∂Ω, (79) (cf. 
[1], Definition 1.3.8). This definition is justified by the following result: for any sequence A (x) of matrices in L ∞ (Ω; M s α,β ) there exist a subsequence, still denoted by A , and an homogenized matrix

A * (x) ∈ L ∞ (Ω; M s α,β ) such that A H-converges to A * , ( [1] 
,Theorem 1.3.9) Remark 8. For symmetric matrices, H and G convergences are equivalent ( [1], Proposition 1.3.11).

Spectral problems

4.2.1

The case of abstract operators defined in different Hilbert spaces (Cf. [START_REF] Oleinik | Mathematical problems in elasticity and homogenization[END_REF], Section 1.2, p.266). Let H , H 0 be separable Hilbert spaces, A :

H → H , 0 ≤ ≤ 1, A o : H o → H o ,
be continuous linear operators, and V be a subspace of H o with ImA o ⊂ V ⊂ H o satisfying the following conditions: 1-There exist linear continuous operators R :

H o → H and a constant γ such that (R f, R f ) H → γ(f, f ) Ho , as → 0, for any f ∈ V. (80) 
2-The operators A , A o are positive, compact, self-adjoint and the norms A B(H ) are bounded by constant independent of .

3-For any

f ∈ V , A R f -R A o f H → 0 as → 0. (81) 
4-For each sequence f ∈ H such that sup f H < ∞, one can extract a subsequence, still denoted f , such that, for some w ∈ V ,

A f -R w H → 0 as → 0. ( 82 
)
The following spectral problem, for the operators A and A o , is considered

A u k = µ k u k , k = 1, 2, ..., u k ∈ H (83) A o u k o = µ k o u k o , k = 1, 2, ..., u k o ∈ H o (84) 
with, for > 0 or = o,

µ 1 ≥ µ 2 ≥ ... ≥ µ k ..., µ k > 0, (u l , u m ) H = δ lm (85) 
It is proved that there is a sequence {β k } such that β k → 0 as → 0, 0 < β k < µ k o , and

|µ k -µ k o | ≤ µ k o γ -1/2 µ k o -β k sup u∈N k o , u o =1 A R u -R A o u H , k = 1, 2, ... ( 86 
)
where N k o is the eigenspace of operator A o corresponding to the eigenvalue µ k o ([9] ,Theorem 1.4, p.268) 4.2.2 Weak * convergence Definition 11. A sequence (u ) >0 is said to converge weakly * in L ∞ (Ω) to a limit u if, for any φ ∈ L 1 (Ω), it satisfies lim

→0 Ω u (x)φ(x))dx = Ω u(x)φ(x)dx. ( 87 
)
This definition is valid for vector valued functions.

Main result

Let A ∈ L ∞ (Ω; M s α,β ) be a sequence of symmetric matrices which H-converges to an homogenized matrix A * . Let ρ be a sequence of positive functions, such that

0 < ρ -≤ ρ (x) ≤ ρ + < ∞ ( 88 
)
which converges weakly * in L ∞ (Ω) to a limit ρ(x). Let (λ m )m ≥ 1 be the eigenvalues, labeled by increasing order, and (u m ) m≥1 be associated normalized, in L 2 (Ω), eigenvectors of the spectral problem

-divA (x)∇u m (x) = λ m ρ (x)u m (x) in Ω and u m = 0 on ∂Ω. (89) 
Then, for any fixed m ≥ 1, lim

→0 λ m = λ m (90) 
and, up to a subsequence, u m converges weakly in H 1 0 (Ω), to a normalized eigenvector associated to λ m , which are solutions of the homogenized eigenvalue problem -divA * (x)∇u m (x) = λ m ρ(x)u m (x) in Ω, and u m = 0 on ∂Ω,

and (λ m ) m≥1 is the complete family of eigenvalues of (91), labeled in increasing order ([1], Theorem 1.3.16). A similar result is obtained in O. A. Oleinik et al. [START_REF] Oleinik | Mathematical problems in elasticity and homogenization[END_REF], Chapter III Theorem 2.1.

Periodic homogenization

Cf. [1], Section 1.3.4. Let Y = (0, 1) N be the unit periodic cell which is identified with the unit N -dimensional torus.

4.3.1 Spaces L p (Y ), 1 ≤ p ≤ ∞ Definition 12. L p (Y ) = {f ∈ L p loc (R N ) such that f is Y-periodic} (92)
equipped with the norm ||f || L p (Y ) .

Example

Let A(Y ) be a matrix which belongs to L ∞ (Y ; M α,β ) (cf.( 92)). Let Ω be a bounded open set in R N . For f ∈ H -1 (Ω), let u ∈ H 1 o (Ω) be the unique solution of

-div A( x )∇u = f in Ω, u = 0 on ∂Ω (93) Remark 9.
Here the conductivity A( x ) of Ω shows that the domain Ω is highly heterogeneous with periodic heterogeneities of lengthscale .

For each unit vector e i , in the canonical basis of R N , let w i be a solution of the following problem in Y :

-divA(y)(e i + ∇w i (y)) = 0 in Y, y → w i (y) is Y -periodic (94)
Then, the sequence A (x) = A( x ), H-converges to A * ∈ M α,β defined by its entries

A * ij = Y [A(y)(e i + ∇w i ) . (e j + ∇w j )]dy (95) 
The starting point of the proof of this result is to write the solution u of equation ( 93) on the form of a two-scale asymptotic expansion :

u (x) = +∞ i=0 i u i (x, x ) (96) 
where u i (x, y) is a function of x and y, periodic in y with period Y .

Homogenization and linear elasticity

The linear elasticity operator

In [START_REF] Oleinik | Mathematical problems in elasticity and homogenization[END_REF], the usual linear elasticity operator, in a domain Ω ⊂ R n , is defined, with the usual convention of repeated indices, as

L(u) ≡ ∂ ∂x h (A hk (x) ∂u ∂x k ) ( 97 
)
where u = (u 1 , ..., u n ) is the displacement vector, and A kh (x) are (n × n)-matrices whose elements a hk ij (x) are bounded measure functions such that

a hk ij (x) = a kh ji (x) = a ik hj (x), x ∈ Ω, (98) 
and

κ 1 η ih η ih ≤ a hk ij (x)η ih η jk ≤ κ 2 η ih η ih , x ∈ Ω (99) 
for any symmetric matrix with real elements {η ih }, with positive constants κ 1 , κ 2 . Remark: Are also associated to the above operator (97) the matrix e(u) whose elements are e ij (u) = 

σ(u) = ν h A hk (x) ∂u ∂x k (x), x ∈ ∂Ω (100) 
where ν = (ν 1 , ..., ν n ) is the unit outward normal to ∂Ω.

Homogenization in perforated domains

Notations and assumptions (Cf. [START_REF] Oleinik | Mathematical problems in elasticity and homogenization[END_REF], chapter 1). Let ω be a smooth unbounded domain of R n invariant under the shifts by any z = (z 1 , z 2 , ..., z n ) ∈ Z n , Q = {x|0 < x j < 1, j = 1, 2, ..., n}, G = {x| -1 x ∈ G} satisfying the conditions: ω ∩ Q is a domain with Lipschitz boundary, the sets Q\ω and V δ ∩ ∂Q consistof a finite number of Lipshitz domains separated from each other and from the edges of Q by a positive distance, where V δ is a δ-neigborhhod (δ < 1 4 ) of ∂Q.

Definition 13. Let Ω be a bounded smooth domain in R n . A domain Ω is of type I if

Ω = Ω ∩ ω (101) 
The boundary of Ω can be represented as

∂Ω = Γ ∪ S where Γ = ∂Ω ∩ ω, S = (∂Ω ) ∩ Ω. (102) 
Example (Cf. [START_REF] Oleinik | Mathematical problems in elasticity and homogenization[END_REF], p. 119-134). Let Ω be a domain of type (101). Consider the following mixed problem:

L (u ) = ∂ ∂x i (A ij ( x ) ∂u ∂x j ) = f in Ω (103)
where the coefficients a ij kl of matrices A ij are sufficiently smooth, satisfont (98)-( 99) and are 1-periodic in ξ, with the boundary conditions

u = Φ on Γ , σ (u ) = ν i A ij ∂u ∂x j = 0 on S . (104) 
Here, f ∈ L 2 (Ω ) and Φ ∈ H 1 (Ω ). The homogenized operator corresponding to L has the form

L ≡ ∂ ∂x i (Aij ∂ ∂x j ) (105) 
where the coefficients matrices A ij (i, j = 1, ..., n) are given by the formula

A ij = (mes Q ∩ ω) -1 Q∩ω (A ij (ξ) + A ik (ξ) ∂N j (ξ) ∂ξ k )dξ (106) 
and matrices N j (ξ) are 1-periodic in ξ with Q∩ω N j (ξ)dξ = 0 and are solutions of the following boundary problem:

∂ ∂ξ k (A kj (ξ) ∂N q ∂ξ j ) = - ∂ ∂ξ k A kq (ξ) in ω (107) 
with σ(N q ) = -ν k A kq (ξ) on ∂ω.

Let u o (x) be a weak solution of the problem

L(u o ) = f o in Ω, u o = Φ o on ∂Ω (109) 
where f 0 ∈ H 1 (Ω), and Φ o ∈ H 3 (Ω). If f is the restriction to Ω of f o , and Φ is the restriction to Γ of Φ o , then (109) is the homogenized system corresponding to system (103) and (104) and ||u -u o || L 2 (Ω ) → 0 as tends to 0.

Homogenization and Steklov eigenproblems

In [3], Chechkina, D'Apice and De maio consider a smooth domain Ω in R d , d ≥ 2, whose boundary is ∂Ω = γ 1 ∪ γ ∪ Γ . Here, is a small, positive, parameter, Γ consists of N sets whose diameter is less than or equal to and the distance between then is greater than or equal to 2 , and γ = ∂Ω\(γ 1 ∪ Γ ). The boundary value problem for the elasticity system (E):

L k (u ) = ∂ ∂x i (a ij kl ∂u l ∂x j ) = 0 in Ω, k = 1, ..., d (110) 
and

u = 0 on γ 1 ∪ γ , (111) 
σ(u ) = A ij (x) ∂u ∂x j ν i = g(x) on Γ (112) is considered. Here, the elements a ij kl of the d × d-matrices A ij are bounded measurable functions, with a ij kl (x) = a ji lk (x) = a kj il (x), κ 1 ξ ki ξ ki ≤ a ij kl (x)ξ ki ξ lj ≤ κ 2 ξ ki ξ ki , x ∈ Ω, (

where κ 1 , κ 2 are constants > 0, ν = (ν 1 , ν 2 , ..; ν d ) is an outward normal vector to the boundary ∂Ω, g(x) ∈ (L 2 (∂Ω)) d . Let H 1 (Ω, γ 1 ∪ γ ) be the completion of the space of functions v ∈ C ∞ (Ω), v = 0 on γ 1 ∪ γ , with respect to the norm

||v|| H 1 (Ω) = ( Ω (v 2 + |∇v| 2 )dx) 1 2 . ( 114 
)
The solution u of system (E) is in the space (H 1 (Ω, γ 1 ∪ γ )) d . The following results are proved: R1-the solutions u of system (E) are uniformly bounded with respect to , in H 1 (Ω) ([3], Lemma 3) i.e. each u i is bounded in H 1 (Ω) R2- 

Ω |u | 2 dx ≤ C|ln | -δ , 0 < δ < 2 - 2 d . (115) 
λ n ≥ C|ln | δ , ( 119 
)
where C is a constant independent of , ( [3], Theorem 5).The proof is based on an adaptation of the general abstract result (subsection 4.2.1), thanks to the above results R1 and R2.
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  The solution (A , H ) is called linearly stable if the spectrum σ(L ) of L lies in the left half plane {λ ∈ C : Re(λ) < 0}. It is called linearly unstable if there exists an eigenvalue λ of L , with Re(λ ) > 0.

Main result (Cf.

[START_REF] Tse | The Gierer-Meinhardt system on a compact twodimensional Riemannian manifold: Interaction of gaussian curvature and Green's function[END_REF]

, Theorem 1.2). Let p o be a non-degenerate local maximum point of F (p) i.e. ∇F (p o ) = 0 ∇ 2 F (p o ) is negative definite, (63) let (A , H ) be the above single peaked solution, whose peak approches p o , then, there exists a unique τ 1 > 0 such that (A , H ) is linearly stable [resp. unstable], if τ < τ 1 [resp. τ > τ 1 ].