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Abstract

In this paper, based on the Scalar Auxiliary Variable (SAV) approach [40, 41] and a newly
proposed Lagrange multiplier (LagM) approach [21, 20] originally constructed for gradi-
ent flows, we propose two linear implicit pseudo-spectral schemes for simulating the dy-
namics of general nonlinear Schrödinger/Gross-Pitaevskii equations. Both schemes are of
spectral/second-order accuracy in spatial/temporal direction. The SAV based scheme pre-
serves a modified total energy and approximate the mass to third order (with respect to
time steps), while the LagM based scheme could preserve exactly the mass and original total
energy. A nonlinear algebraic system has to be solved at every time step for the LagM based
scheme, hence the SAV scheme is usually more efficient than the LagM one. On the other
hand, the LagM scheme may outperform the SAV ones in the sense that it conserves the
original total energy and mass and usually admits smaller errors. Ample numerical results
are presented to show the effectiveness, accuracy and performance of the proposed schemes.

Keywords: real-time dynamics; nonlinear Schrödinger equation; Gross-Pitaevskii equation;
explicit time scheme; Scalar Auxiliary Variables; Lagrange multiplier; pseudospectral
method
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1. Introduction

Solving the d-dimensional (d = 2 or 3) dimensionless GPE [1, 5, 7, 28, 33, 34] for Bose-
Einstein Condensation (BEC), with a rotational term [5, 7, 13, 15, 27, 34] and High-Order
Interaction (HOI) [23, 25, 36] leads to the following initial boundary-value problem: for a
given initial state ψ0, find the complex-valued wave function ψ(x, t) solution to i∂tψ(x, t) =

[
−1

2
∇2 + V (x)− ωLz + f(|ψ|2)− λ∇2|ψ|2

]
ψ(x, t), x ∈ Rd, t ≥ 0,

ψ(x, t = 0) = ψ0(x), t ≥ 0,
(1.1)

where x := (x, y, z) ∈ Rd (:= (x, y) in 2D) and t > 0 are the space and time variables,
respectively. Denoting by ∇ the gradient operator, ∇2 is then the laplacian and V (x) is a
function corresponding to the potential. The real-valued function f(ρ) = F ′(ρ) models the
nonlinearity. For example, a standard situation arises with the cubic case which reads as

F (ρ) = βρ2/2, (1.2)

where β is the nonlinearity strength which is positive for a repulsive interaction and negative
for an attractive interaction. If ρ is the density function such that ρ = |ψ|2, f is then simply
defined by f(ρ) = βρ. When a HOI is included into (1.1) [23, 25, 36], the constant λ is
called the HOI strength and β is the contact interaction strength. In addition, the real-
valued constant ω represents the rotating frequency. The operator Lz = i(y∂x−x∂y) is then
the z-component of the angular momentum [5, 7]. When ω = λ = 0 and f is cubic, (1.1)
simplifies to

i∂tψ(x, t) =

[
−1

2
∇2 + V (x) + β|ψ|2

]
ψ(x, t), x ∈ Rd, t ≥ 0, (1.3)

and is called the NonLinear cubic Schrödinger Equation (NLSE). Let us remark that many
more complex models involving GPEs are widely used in the literature [5, 7], including in
particular nonlocal dipolar interactions or multi-components gases.

For the GPE (1.1), the following two important invariants hold. First, we have the mass
conservation

N (t) = N (ψ(·, t)) =:

∫
Rd

|ψ(x, t)|2dx ≡
∫
Rd

|ψ0(x)|2dx = N (t = 0). (1.4)

Let us define now the total energy Etot as the sum of the kinetic, potential, rotation and
interaction energies

Etot(·, t) = Etot(ψ(t)) =

∫
Rd

[
1

2
|∇ψ|2 + V (x)|ψ|2 − ωRe(ψLzψ) + F (ρ) +

λ

2
|∇ρ|2

]
dx

= Ekin(t) + EVpot(t) + Erot(t) + Eint(t),
(1.5)
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for t > 0. Then, (1.1) can be written as

i∂tψ(x, t) =
δEtot

δψ
, (1.6)

which implies that Etot is conserved, i.e.

Etot(t) = Etot(0), ∀t > 0. (1.7)

In this paper, we denote by a the complex conjugate of a complex-valued number a, and by
Re(a) and Im(a) its respective real and imaginary parts.

Various schemes have been proposed to simulate the NLSE/GPE. For the sake of concise-
ness, we however only cite some of these references without being exhaustive. Concerning the
spatial discretization, several possibilities exist (see e.g. [2, 5, 7]). Here, we focus on pseudo-
spectral approximation schemes which are known to be well-adapted to solving NLSE/GPE
with high-accuracy [2, 3, 4, 5, 7, 9, 11, 12, 13, 15, 19, 43, 44, 45]. Concerning the time
discretization, different directions can be investigated [2, 5, 7], each method getting is pros
and cons, like e.g. implicit/explicit, nonlinear/linear, unconditionally or conditionally stable,
order of accuracy, computational cost. In addition, some of them conserve both the mass
and the energy (together with its discrete version), and possibly other dynamical properties
(see e.g. [2]). For example, the Crank-Nicolson (CN) scheme [2, 24], which is fully nonlinear
and then implicit, leads to high computational costs when using a fixed-point method to
resolve the nonlinearity. If the nonlinear term in the CN-scheme is made explicit, then one
gets the semi-implicit scheme [2, 7, 8], also called leap-frog scheme. While the CN scheme
is mass and energy conserving (up to the a priori error on the fixed-point method), the
semi-implicit scheme does not preserve the mass nor the energy. In [16], a second-order
unconditionally stable relaxation scheme was introduced for the nonlinear cubic Schrödinger
equation. It was first proved that the scheme preserves the mass and a modified energy for
the cubic case, and it was recently extended to other power law nonlinearities [17]. In addi-
tion, the scheme is semi-implicit and can efficiently solve a large class of GPEs by coupling
the pseudo-spectral scheme [5] with a preconditioned Krylov iterative subspace solver (usu-
ally GMRES [37, 38]). In [3], high-order IMEX (IMplicit-EXplicit) pseudo-spectral schemes
with adaptive time stepping were presented for various kinds of systems of GPE equations,
even with rotation terms. The schemes appear to be explicit and efficient, and potentially
interesting when compared with splitting-schemes. Nevertheless, they do not conserve ex-
actly the mass and the energy. In [31], the authors recently introduced a mass and energy
conservative high-order diagonally implicit Runge-Kutta scheme for the cubic 1D and 2D
nonlinear Schrödinger equations. However, it is not clear how to extend this scheme to the
very general situation of interest in our paper, most particularly concerning the nonlinearity.
Alternatively, time-splitting schemes can be used to solve NLSE/GPEs in some situations
[5, 7, 11, 13, 19, 43]. In the case where the potential and nonlinearity can be integrated
exactly, then the scheme is explicit and efficient, and unconditionally stable. When the
rotational term is included into the equation, ADI methods [7] or techniques based on the
Lagrangian change of coordinates to rewrite the equation without the rotation operator but
with a time-dependent potential [12] can be developed. High-order splitting schemes can also
be built [5, 7, 19, 32, 43, 46]. Concerning the second-order scheme, it is known to exactly
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preserve the mass but not the energy, which is accurately conserved when using FFT-based
pseudo-spectral schemes [2, 7].

In all the above examples, it is clear that designing a time discretization directly affects
the questions of accuracy, stability, efficiency and the existence of exact conservation laws.
Therefore, there is always a trade-off when considering the time discretization and most
specifically its nonlinear/linear implicit or explicit property, in particular in the pseudo-
spectral framework. The unconditionally stable second-order time-splitting scheme is fully
explicit, the mass conservation holds but the energy conservation property is lost. Recently,
a powerful approach called the scalar auxiliary variable (SAV) was proposed for dissipative
gradient flows [39, 40, 41], and was quickly successfully developed for other systems [22, 30].
Very recently, the SAV approach was also extended to the conservative system [18, 26, 42]
and a SAV via Lagrange multiplier approach [20, 21] is constructed for gradient flows to deal
with constraints.

The aim of this paper is to analyze the SAV approach for solving the NLSE/GPE (1.1).
To this end, we derive two schemes, one based on the original SAV method and a second
one that involves Lagrange multipliers for the conservation laws. Both schemes are second-
order in time and linearly implicit. In addition, we show that when combined with the
highly accurate pseudospectral approximation in space, both schemes finally lead to fully
explicit diagonal systems when using a well-suited energy splitting. The two schemes are
then numerically validated on various 1D and 2D problems to illustrate their properties.

The structure of the paper is the following. In subection 2.1, we introduce a first SAV
scheme and its linearly implicit semi-discretization in time. We also analyze in details the
conservation properties, showing that the scheme conserves a modified energy and approxi-
mately preserves the mass at order (∆t)3. We also propose in subsection 2.2 another linearly
implicit semi-discrete SAV scheme with Lagrange multipliers to enforce the mass and energy
conservation laws. We discuss in subsection 2.3 the way the energy splitting can be chosen in
the SAV approach. In subsection 2.4, the pseudospectral approximation in space of the SAV
schemes is developed showing that they can both made fully explicit. Numerical examples
are reported in Section 3, first in one-dimension for several kinds of nonlinearities, and then
in 2D for the GPE with rotation term. Finally, we conclude in Section 4.

2. Two efficient SAV-based pseudospectral discretization schemes

Here, we propose two semi-discrete schemes based on a orignal SAV approach and a SAV
formulation with Lagrange multipliers to force the conservation constraints in subsections
2.1 and 2.2, respectively. To this end, we start with a generic splitting of the free energy as

Etot(ψ) := E0(ψ) + E1(ψ), (2.8)

where E0(φ) consists of usually quadratic terms such that

Lψ :=
δE0(ψ)

δψ
, (2.9)

with L being a self-adjoint linear non-negative operator, and E1(ψ) is bounded from below,
i.e. there exists a strictly positive constant Ec > 0 such that E1(ψ) + Ec > 0. We will
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specify two possible splittings in subsection 2.3, which one to use will depend on the choice
of the spatial discretization and possibly the rotating speed ω. We set ψn =: ψ(·, tn) at
discrete time tn = n∆t, for the constant time step ∆t. The inner product between two
square-integrable functions f and g is

〈f, g〉 =:

∫
Rd

fḡdx.

2.1. Original Scalar Auxiliary Variable (SAV) approach

We first construct a linear scheme based on the original SAV approach [39, 40] for (1.1).
We introduce the SAV function γ(t) and the function g(ψ) defined by

γ(t) =:
√
E1(ψ) + Ec, g(ψ) :=

1√
E1(ψ) + Ec

δE1(ψ)

δψ
. (2.10)

The original GPE (1.1) could be equivalently rewritten as
i∂tψ(x, t) = Lψ + g(ψ)γ(t), x ∈ Rd, t ≥ 0,

d

dt
γ(t) =

1

2
√
E1(ψ) + Ec

d

dt
E1(ψ) = Re 〈g(ψ), ∂tψ〉 , t ≥ 0,

(2.11)

for ψ0 given and γ0 = γ(t = 0) :=
√
E1(ψ0(·, t)) + Ec. Taking the inner product of the first

equation with ∂tψ, then considering the real parts of the resulting equation and using the
second equation of (2.11), we obtain the conservation of the modified energy

d

dt
Emod(t) = 0, with Emod(t) =: E0(t) + |γ(t)|2. (2.12)

From the definition of γ(t) in (2.10), the modified total energy is such that

Emod(t) = E0(t) + |γ(t)|2 = Etot(t) + Ec,

i.e. Emod is equal to the original total energy Etot up to the constant Ec.
Standard semi-implicit scheme could then be applied to discretize the SAV system (2.11).

We propose to use a second-order Crank-Nicolson Adam-Bashforth (CN-AB) scheme that
reads as 

i

∆t

(
ψn+1 − ψn

)
= Lψn+ 1

2 + g̃n+ 1
2γn+ 1

2 , x ∈ Rd,

γn+1 − γn = Re
〈
g̃n+ 1

2 , ψn+1 − ψn
〉
, n ≥ 1,

(2.13)

with ψ0 = ψ0 and

ψ̃n+ 1
2 =

3

2
ψn − 1

2
ψn−1, g̃n+ 1

2 = g(ψ̃n+ 1
2 ), νn+ 1

2 =
νn+1 + νn

2
(ν = ψ, γ, t).

The term ψ̃n+ 1
2 is actually the second-order extrapolation of ψ at time t = tn+ 1

2 . For the
initialization step in (2.13), ψ1 is always evaluated by one step of a (implicit) CN scheme,
which preserves the total mass and original total energy. For the conservative properties of
the CN-AB scheme, we first have the following result.
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Proposition 2.1. The CN-AB scheme (2.13) preserves the following modified semi-discrete
total energy

Enmod := Emod(ψn) = E0(ψn) + |γn|2 = E0
mod = Etot(ψ0) + Ec, (2.14)

with ψ0 := ψ0. Since the initial modified energy E0
mod = Etot|t=0, it implies that the modified

energy preserves the initial energy of the system.

Proof. Let us consider the first equation of (2.13) that we multiply by (ψ̄n+1 − ψ̄n) and
integrate over Rd. Then, one gets

i

∆t

∫
Rd

[
|ψn+1|2 + |ψn|2 − 2Re(ψn+1ψ̄n)

]
dx

=
1

2

∫
Rd

[
(Lψn+1)ψ̄n+1 − (Lψn)ψ̄n − 2i Im((Lψn+1)ψ̄n)

]
dx

+

∫
Rd

g̃n+ 1
2γn+ 1

2 (ψ̄n+1 − ψ̄n)dx.

(2.15)

Taking the real part of both sides of equation (2.15), we have

1

2

(
E0(ψn+1)− E0(ψn)

)
+ γn+ 1

2

∫
Rd

Re
[
g̃n+ 1

2 (ψ̄n+1 − ψ̄n)
]
dx = 0. (2.16)

Multiplying the second equation of (2.13) by γn+ 1
2 yields

|γn+1|2 − |γn|2

2
= γn+ 1

2

∫
Rd

Re
[
g̃n+ 1

2 (ψ̄n+1 − ψ̄n)
]
dx. (2.17)

Injecting (2.17) into (2.16) leads to

E0(ψn+1) + |γn+1|2 = E0(ψn) + |γn|2. (2.18)

The proof is completed. �
We remark that the original total energy is not conserved. Numerical results show that

the scheme approximates the original total energy at third order. As for the total mass, we
have the following result.

Proposition 2.2. The CN-AB scheme (2.13) approximates the total mass at third order,
i.e.

N n+1 =:

∫
Rd

|ψn+1|2dx ≡
∫
Rd

|ψn|2dx +O((∆t)3) = N n +O((∆t)3). (2.19)

Proof. Let us multiply the first equation of (2.13) by (ψ̄n+1 + ψ̄n) and integrate on Rd.
Taking the imaginary part of the resulting expression, one gets

1

∆t

∫
Rd

(|ψn+1|2 − |ψn|2)dx = γn+ 1
2

∫
Rd

Im
(
g̃n+ 1

2 (ψ̄n+1 + ψ̄n)
)
dx. (2.20)

Noticing that ψn+1/2 = ψ̃n+1/2 +O((∆t)2), we have

g̃n+ 1
2 := g(ψ̃n+ 1

2 ) = g(ψn+ 1
2 ) +O((∆t)2).
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Plugging this relation into (2.20) and noticing that
∫
Rd Im(g(ψ)ψ̄)dx = 0 for all ψ, we obtain

1

∆t

∫
Rd

(|ψn+1|2−|ψn|2)dx = γn+ 1
2

∫
Rd

Im
(
g(ψn+ 1

2 )(ψ̄n+1 + ψ̄n)
)
dx+O((∆t)2) = O((∆t)2),

which leads to the conclusion. �
The linearly implicit semi-discrete scheme (2.13) is a coupled system for (ψn+1, γn+1),

since γn+1 is a scalar variable. We now show that it could actually be solved efficiently by
using the decomposition

ψn+ 1
2 = ψ

n+ 1
2

1 + γn+ 1
2ψ

n+ 1
2

2 . (2.21)

Plugging (2.21) into the first equation of (2.13), we find that
(

2 i

∆t
− L

)
ψ
n+ 1

2
1 =

2 i

∆t
ψn,(

2 i

∆t
− L

)
ψ
n+ 1

2
2 = g̃n+ 1

2 ,

(2.22)

which can be written as

Aψn+ 1
2

j :=

(
2i

∆t
− L

)
ψ
n+ 1

2
j = hnj (j = 1, 2) (2.23)

where hnj includes all known terms at previous steps. After solving ψ
n+ 1

2
j (j = 1, 2) from

(2.23), we plug (2.21) in the second equation of (2.13) to obtain

γn+ 1
2 =

γn + Re

〈
g̃n+ 1

2 , ψ
n+ 1

2
1 − ψn

〉
1− Re

〈
g̃n+ 1

2 , ψ
n+ 1

2
2

〉 . (2.24)

To summarize, the CN-AB scheme (2.13) can be efficiently implemented as follows:

Algorithm 1 CN-AB scheme for SAV system (2.11)

1: solve ψ
n+ 1

2
i (i = 1, 2) from (2.23);

2: determine γn+ 1
2 from (2.24);

3: determine ψn+ 1
2 from (2.21);

4: goto the next step.

The main computational cost is to solve the two linear systems (2.23) defined by the same
n-independent operator, hence leading to a very efficient scheme. However, the scheme only
conserves a modified total energy and approximates the total mass at third order. Below,
we propose an efficient Lagrange multiplier approach which conserves both the mass and
original total energy.
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2.2. SAV via Lagrange multiplier approach

To enforce the mass and energy conservations, inspired by the work in [20, 21], we
introduce two Lagrange (Lag) multipliers η1(t) and η2(t), and rewrite (1.1) as the following
Lag-GPE: for x ∈ Rd, t ≥ 0,

i∂tψ(x, t) = Lψ + η1(t)
δE1

δψ
+ η2(t)

δN
δψ

,

d

dt
E1(ψ(·, t)) = 2 η1(t) Re

〈
δE1

δψ
, ∂tψ

〉
+ 2 η2(t) Re

〈
δN
δψ

, ∂tψ

〉
,

d

dt
N (ψ(·, t)) = 0,

(2.25)

for ψ0 given and η1(0) = 1 and η2(0) = 0. The exact solution of (η1(t), η2(t)) is (1, 0), which
means that the Lag-GPE system (2.25) is equivalent to the original GPE (1.1). Note that
the last term in the second equation of (2.25) is indeed zero thanks to the third equation of
(2.25). The purpose to add this term is to construct an energy-conservative scheme later.
It is clear that the third equation of (2.25) guarantees the mass conservation. Taking the
inner product of the first equation of (2.25), considering real parts of the resulting equation,
noticing (2.9) and using the second equation of (2.25), we obtain

0 = Re

〈
δE0

δψ
, ∂tψ

〉
+Re

〈
η1(t)

δE1

δψ
+ η2(t)

δN
δψ

, ∂tψ

〉
=

1

2

d

dt

(
E0(ψ)+E1(ψ)

)
=

1

2

d

dt
Etot(t),

which indicates that the original total energy Etot given by (1.5) is preserved.
Standard semi-implicit schemes can again be used to discretize the Lag-GPE system

(2.25). We propose to apply a second-order Crank-Nicolson Leap-Frog (CN-LF) scheme as
follows: for x ∈ Rd and n ≥ 1

i
ψn+1 − ψn−1

2∆t
= Lψ

n+1 + ψn−1

2
+ ηn+1

1

δE1(ψn)

δψn
+ ηn+1

2

δN (ψn)

δψn
,

E1(ψn+1)− E1(ψn−1) = 2 Re

〈
ηn+1

1

δE1(ψn)

δψn
+ ηn+1

2

δN (ψn)

δψn
, ψn+1 − ψn−1

〉
,

N (ψn+1) = N (ψ0),

(2.26)

with ψ0 = ψ0 and ψ1 is evaluated by one step of a (implicit) CN scheme for initializing. For
the conservative properties, we have the following result.

Proposition 2.3. The CN-LF scheme (2.26) preserves both the mass

N n =: N (ψn) = N 0, n ≥ 1, (2.27)

and the original total energy

Entot =: Etot(ψ
n) = E0

tot, n ≥ 1. (2.28)
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Proof. The third equation in (2.26) guarantees the conservation of the mass. As for the
total energy, by multiplying the first equation in (2.26) by ψ̄n+1 − ψ̄n and integrating over
Rd, we obtain

i

2∆t

∫
Rd

[
|ψn+1|2 + |ψn−1|2 − 2Re(ψn+1ψ̄n−1)

]
dx

=
1

2

[ 〈
Lψn+1, ψn+1

〉
−
〈
Lψn−1, ψn−1

〉
− 2iIm

〈
Lψn+1, ψn−1

〉 ]
+

〈
ηn+1

1

δE1(ψn)

δψn
+ ηn+1

2

δN (ψn)

δψn
, ψn+1 − ψn−1

〉
.

(2.29)

Taking the real parts of both sizes of the equation (2.29) and noticing the second equation
of (2.26), we have

E0(ψn+1)− E0(ψn−1) + E1(ψn+1)− E1(ψn−1) = 0 (2.30)

which yields

Etot(ψ
n+1) = E0(ψn+1) + E1(ψn+1) = E0(ψn−1) + E1(ψn−1) = Etot(ψ

n−1). (2.31)

Since ψ1 is evaluated by the standard (implicit) CN scheme, the mass and original total
energy is preserved for ψ1. Hence, the original total energy is conserved for all n ≥ 0, ending
hence the proof. �

Similarly to the CN-AB scheme (2.13), the CN-LP scheme (2.26) could be solved effi-
ciently as follows. Writing

ψn+1 = ψn+1
1 + ηn+1

1 ψn+1
2 + ηn+1

2 ψn+1
3 , (2.32)

and plugging the expression into the first equation of (2.26), by a simple calculation, we
obtain 

(
i

∆t
− L

)
ψn+1

1 =

(
i

∆t
+ L

)
ψn−1,(

i

∆t
− L

)
ψn+1

2 = 2
δE1(ψn)

δψn
,(

i

∆t
− L

)
ψn+1

3 = 2
δN (ψn)

δψn
.

(2.33)

which can be written as

Ãψn+1
j :=

(
i

∆t
− L

)
ψn+1
j = h̃nj (j = 1, 2, 3), (2.34)

where h̃nj includes all known terms at previous steps. After solving ψn+1
j (j = 1, 2, 3) from

(2.34), we plug (2.32) into the second and third equation of (2.26), leading to a coupled
nonlinear 2× 2 algebraic system for (ηn+1

1 , ηn+1
2 ): F1(ηn+1

1 , ηn+1
2 ) = 0,

F2(ηn+1
1 , ηn+1

2 ) = 0,
(2.35)
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where the nonlinear function F`(η1, η2)(` = 1, 2) reads as

F1(η1, η2) = E1(ψn+1
η )− E1(ψn−1)− 2 Re

〈
η1
δE1(ψn)

δψn
+ η2

δN (ψn)

δψn
, ψn+1

η − ψn−1

〉
,

F2(η1, η2) = N (ψn+1
η )−N (ψ0), ψn+1

η := η1 ψ
n+1
2 + η2 ψ

n+1
3 + ψn+1

1 .

To summarize, the scheme (2.26) can be efficiently implemented as follows:

Algorithm 2 CN-LF scheme for Lag-GPE (2.25)

1: solve ψ
n+ 1

2
j (j = 1, 2, 3) from (2.34);

2: determine ηn+1
` (` = 1, 2) from (2.35);

3: determine ψn+1 from (2.32);
4: goto the next step.

The complexity and solvability of the system (2.35) depends on the structure of the
energy splitting E1(ψ). When it is solvable (i.e., the real roots exist), it can be solved by
(descent) Newton iteration efficiently. Since the exact solution for (η1(t), η2(t)) is (1, 0),
we can use (1, 0) as the initial guess for the Newton iteration. With this initial guess, the
Newton iteration would usually converges quickly. Therefore, the main computational cost
remain in solving the three linear systems (2.33) with n-independent operator, leading to a
efficient scheme.

2.3. Two typical choices of energy splitting

We consider first the usual energy splitting strategy which is essentially splitting the total
energy into a linear and a nonlinear parts as follows

Etot(ψ) =

∫
Rd

[
1

2
|∇ψ|2 + V (x)|ψ|2 − ωRe(ψLzψ)

]
dx +

∫
Rd

[
F (ρ) +

λ

2
|∇ρ|2

]
dx

:=E0(ψ) + E1(ψ).

(2.36)

It is clear that E1(ψ) ≥ 0 if F (ρ) > 0 (which is true for most cases in context of BEC), and
therefore we can choose any constant Ec > 0. In this case, one gets

Lψ =
δE0(ψ)

δψ
=
(
− ∇

2

2
+ V (x)− ωLz

)
ψ.

Hence, the linear operator A = (2i/∆t−L) in (2.23) and Ã = (i/∆t−L) in (2.34) are fixed
operators that do not depend on n. This is an important practical point since, when dis-
cretizing in space, the matrix representation only needs to be computed once before entering
into the time loop as well as its LU factorization when using finite difference or finite element,
making the scheme very efficient and with a low memory requirement. However, since A
and Ã involve variable coefficients, it is not easily invertible with a spectral discretization
in space. Therefore, we propose to consider another energy splitting leading to operators A
and Ã with constant coefficients, which is therefore more adapted to a spectral discretization
in space.
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To this end, we split the energy functional (1.5) as the sum of the two following energies

Etot(t) =

∫
Rd

[(
1

2
+ CHOI

)
|∇ψ|2 +W |ψ|2

]
dx

+

∫
Rd

[
(V (x)−W )|ψ|2 − ωRe(ψ̄Lzψ) + F (ρ)− CHOI|∇ψ|2 +

λ

2
|∇ρ|2

]
dx

=E0(ψ(·, t)) + E1(ψ(·, t)).

(2.37)

Here, the two positive constants W > 0 and CHOI > 0 are suitable stabilization parameters
to properly counterbalance the translated potential, the lower-order interaction and the HOI
terms, respectively. With this splitting, it is easy to check that

Lψ =
δE0(ψ)

δψ
= −

((1

2
+ CHOI

)
∇2 −W

)
ψ, (2.38)

δE1(ψ)

δψ
=
(
V (x)−W − ωLz + f(ρ) + CHOI∇2 − λ∇2ρ

)
ψ (2.39)

Hence, both A and Ã are n-independent operators with constant coefficients. Thus,
systems (2.23) and (2.34) could be efficiently straightforwardly solved with a spectral dis-
cretization. In particular, for the Fourier-spectral method considered in this paper, A and Ã
lead to diagonal matrices. The linear implicit form of the CN-AB and CN-LF schemes is a
crucial difference compared for example with the usual CN scheme which requires the use of
a nonlinear solver at each time step or the relaxation scheme which leads to solve operator
equations which depend on n (since the nonlinearity is updated at each time step).

Remark 2.1. The expression (2.37) indicates that E0 ≥ 0. Now that the total energy Etot

is conserved, we clearly see that

E1(φ(·, t)) = Etot(ψ(·, t))− E0(ψ(·, t)) ≥ Etot(ψ0(x))

is lower bounded. Hence, the constant Ec always exists for the SAV approach. Stabilization
terms related to W and CHOI can greatly enhance the performance of both the CN-AB and
CN-LF schemes. Without proper stabilization, the schemes would require a much smaller
time step ∆t regarding the nonlinear and potential terms. On the other hand, the current
simple stabilization does not consider the rotation term. We will see during the numerical
simulations that ∆t must be taken smaller as the rotation speed increases.

2.4. Pseudospectral discretization

We truncate the problem (1.1) as a bounded domain D with periodic boundary condition
at the boundary ∂D. To simplify the presentation, we only describe the schemes in 2D, their
extensions to other dimensions being straightforward. Now that we would like to apply the
Fourier pseudospectral method [2, 5, 7] for the spatial discretization, we choose the second
energy-splitting (2.37) for both the CN-AB (2.13) and CN-LF (2.26) schemes. Let us define

the square domain D = [−Lx;Lx] × [−Ly;Ly]. Let hx = 2Lx
L and hy =

2Ly

M be the uniform
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mesh sizes in the x- and y-directions, where L and M are two even integers, respectively. To
simplify the notations, we define the indices, grid points sets and basis functions as

TLM =
{

(`,m) ∈ N2 | 0 ≤ ` ≤ L, 0 ≤ m ≤M
}
,

T̃LM =
{

(p, q) ∈ Z2 | − L/2 ≤ p ≤ L/2− 1, −M/2 ≤ q ≤M/2− 1
}
,

Gxy = {(x`, ym) := (−Lx + ` hx,−Ly +mhy), (`,m) ∈ TLM} ,
Wpq(x) = eiµ

x
p(x+Lx) eiµ

y
q (y+Ly), µxp = πp/Lx, µ

y
q = πq/Ly, (p, q) ∈ T̃LM .

Let us denote by ψn`m the approximation of ψ(x`, ym, tn) for (`,m) ∈ TLM and n ≥ 0.
We define ψn as the vector with components {ψn`m}(`,m)∈TLM

. The Fourier pseudospectral
discretization of a given function ψ is then given by

ψ(x, y, t) =

L/2−1∑
p=−L/2

M/2−1∑
q=−M/2

ψ̂pq(t)Wpq(x, y), (2.40)

where the Fourier coefficients ψ̂pq(t) are such that

ψ̂pq(t) =
1

LM

L−1∑
j=0

M−1∑
k=0

ψ`m(t)e−iµ
x
p(x`+Lx)e−iµ

y
q (ym+Ly). (2.41)

Therefore, the Fourier pseudospectral discretizations of the derivative operators ∂kxψ and
∂kyψ, for k = 1, 2, are respectively given by: for (`,m) ∈ TLM

(J∂kxKψ)`m(t) =

L/2−1∑
p=−L/2

M/2−1∑
q=−M/2

(iµxp)k ψ̂pq(t)Wpq(x`, ym), (2.42)

(J∂ky Kψ)`m(t) =

L/2−1∑
p=−L/2

M/2−1∑
q=−M/2

(iµyq)
k ψ̂pq(t)Wpq(x`, ym), (2.43)

and J∇2K := J∂2
xK + J∂2

yK, J∇K := (J∂xK, J∂yK)t. In addition, we define the discrete operators

L, A, Ã, V, W and Lz as follows

L := (1/2 + CHOI)J∇2K−W, A :=
2i

∆t
I− L, Ã :=

i

∆t
I− L,

(Vψ)`m = V`mψ`m, (Wψ)`m = Wψ`m,

(Lzψ)`m = i(ym (J∂xψK)`m − x` (J∂yψK)`m),

(2.44)

for (`,m) ∈ TLM , where I denotes the identity matrix. Note that the operators A and Ã are
all diagonal in Fourier space since W is a constant, thus they could be easily inverted and
(2.13) and (2.26) could be efficiently solved by two FFT operations (one FFT followed by
one inverse FFT).

Based on these notations, then the pseudospectral CN-AB (CN-AB-SP) scheme yields
Algorithm 3. Moreover, the pseudospectral CN-LF (CN-LF-SP) scheme yields Algorithm
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Algorithm 3 CN-AB-SP scheme for the GPE (1.1)

Initialization : apply the standard CN-SP scheme to compute ψ1

for n = 1, 2, · · · , do
Compute g̃n+ 1

2 by (2.45)

Compute the right-hand sides hn1 and hn2 in (2.23) via hn1 =
2i

∆t
ψn, hn2 = g̃n+ 1

2

Compute ψ
n+ 1

2
j = A−1hnj (j = 1, 2)

Compute γn+ 1
2 via

γn+ 1
2 =

[
γn + Re

〈
g̃n+ 1

2 ,ψ
n+ 1

2
1 −ψn

〉]/[
1− Re

〈
g̃n+ 1

2 ,ψ
n+ 1

2
2

〉]

Update ψn+1 via

ψn+1 = 2
(
ψ
n+ 1

2
1 + γn+ 1

2ψ
n+ 1

2
2

)
−ψn+1

end for

Algorithm 4 CN-LF-SP scheme for the GPE (1.1)

Initialization : apply the standard CN-SP scheme to compute ψ1

for n = 1, 2, · · · , do
Compute the right-hand side h̃nj (j = 1, 2, 3) in (2.34) via

h̃n1 =
(
2i/∆t− Ã

)
ψn−1, h̃n2 = 2 (f(ρn)−W)ψn, h̃n3 = 4ψn

Compute ψn+1
j = Ã−1 h̃nj (j = 1, 2, 3)

Compute ηn+1
` (` = 1, 2) by the (descent) Newton iteration applied to the algebraic

system  F1(ηn+1
1 , ηn+1

2 ) = 0

F2(ηn+1
1 , ηn+1

2 ) = 0

Update ψn+1 via
ψn+1 = ψn+1

1 + ηn+1
1 ψn+1

2 + ηn+1
2 ψn+1

3

end for
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4. Here, CN-SP means Crank-Nicolson scheme with pseudospectral approximation in space
[2, 5].

In the above algorithms, we introduced the following notations

ψ̃n+ 1
2 =

3

2
ψn − 1

2
ψn−1, g̃n+ 1

2 = g(ψ̃n+ 1
2 ), νn+ 1

2 =
νn+1 + νn

2
(ν = ψ, γ),

g(ψ) :=
[
(f(ρ) + (V(x)−W)− λJ∇2Kρ)ψ − ωLzψ

]
/
√
E1(ψ) + Ec,

F1(η1, η2) = 2 Re
〈
η1(f(ρn)−W)ψn + 2η2ψ

n, ψn+1
η −ψn−1

〉
− E1(ψn+1

η ) + E1(ψn−1),

F2(η1, η2) = N (ψn+1
η )−N (ψ0), ψn+1

η := η1ψ
n+1
2 + η2ψ

n+1 +ψn+1
1 .

(2.45)

Here, the multiplication between two vectors v and w is made pointwise, i.e., setting z :=
vw, for (z)`m := v`mw`m on the spatial grid. The vector ρ is then defined by ρ := ψψ̄.
In addition, the inner product and discrete 2-norm are respectively defined as 〈v, w〉 =:

hxhyvw̄, and ||v||2 := 〈v,v〉1/2 . The discrete mass and energies are therefore given by

N (ψn) := ||ψn||22, Ekin(ψn) :=
1

2
||J∇Kψn||22, EVpot(ψ

n) := 〈Vψn,ψn〉 ,

Eint(ψ
n) := 〈F (ρn),1〉+

λ

2
||J∇Kρn||22, Erot(ψ

n) = −ω 〈Lzψn,ψn〉 ,

E1(ψn) = EV−Wpot (ψn) + Erot(ψ
n) + Eint(ψ

n),

Etot(ψ
n) = Ekin(ψn) + EVpot(ψ

n) + Erot(ψ
n) + Eint(ψ

n),

Emod(ψn) = Ekin(ψn) + Epot(ψ
n) + Erot(ψ

n) + |γn|2.

The CN-AB-SP (CN-LF-SP) scheme requires twice (thrice) the solution to a linear system
defined by a time independent linear operator A (Ã) at each time step n. When using
a finite-difference or finite element discretization, then A and Ã are given explicitly by a
matrix and could be LU factorized before entering in the loop on n. For the pseudospectral
approximation, as mentioned previously, the inversion is direct, leading then to a cost per
iteration of order O(N logN), where N = LM in 2D.

3. Numerical results

In this section, we present the performance of the two schemes for solving the NLSE/GPE
for various 1D and 2D configurations. We first compare the two schemes to show their advan-
tages and disadvantages. We then mainly investigate how well the CN-AB-SP scheme solves
NLSE/GPE with some frequently-used nonlinearities by considering its order of accuracy
and analyzing its properties related to the mass and total energy. Finally, we apply the CN-
AB-SP scheme to simulate some interesting phenomena in some physical systems, such as
the bright soliton-kink interaction in (non-Kerr) optical media, vortex dynamics in rotating
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BEC. To quantify the numerical errors on the solution, mass and energy, we introduce the
error functions

e∞(tn) = ‖ψ(·, tn)−ψn‖`∞ , e2(tn) = ‖ψ(·, tn)−ψn‖`2 , eN (tn) = |N (ψn)−N (ψ0)|,

eEtot(tn) = |Etot(ψ
n)− Etot(ψ

0)|, erel
Emod

(tn) = |Emod(ψn)− Emod(ψ0)|
/
|Emod(ψ0)|,

(3.46)

where || · ||`2 and || · ||`∞ designate the discrete 2-norm and infinity norm, respectively. In
the following, unless specified, we use the second energy-splitting (2.37) and choose the
stabilization parameters CHOI and W as

CHOI = |λ|/2, W := max
x∈Ω

V (x) +
|β|
2

+ c1, Ec := W + CHOI + |β|+ |λ|+ c2.

Here, c1 and c2 are two constants that has to be properly chosen case by case.

3.1. One-dimensional case

In this section, we carry out some numerical results for the one-dimensional case, i.e.
d = 1, where there is no rotational term in (1.1). We first compare the CN-AB-SP and
CN-LF-SP schemes and then focus on the performance of the CN-AB-SP scheme. To this
end, unless specified, the computational domain and mesh size are chosen respectively as
D = [−32, 32] and hx = 1/32.

Example 3.1. Here, we compare the performance of the CN-AB-SP and CN-LF-SP schemes.
To this end, we simulate the dynamics of a BEC without HOI, i.e., we take f(|ψ|2) = β|ψ|2,

λ = 0, V (x) = x2/2. The initial data is chosen as ψ0(x) = φβg (x), where φβg (x) is the ground
state of the GPE with the same parameters values as those considered in the dynamics.
We fix ∆t = 10−3. Figure 3.1 shows the time evolution of eN , eEtot and e∞ as well as
the Lagrange multipliers ηj(t) (j = 1, 2) and SAV parameter γ(t) for different values of the
nonlinearity strenght β. We can clearly see that the CN-LF-SP scheme for the Lag-GPE
formulation preserves well the total mass and original total energy while the CN-AB-SP
scheme does not for both quantities. Moreover, the Lag-GPE formulation provides a much
more accurate solution than the CN-AB-SP scheme for the standard SAV formulation. The
Lagrange multipliers (η1(t), η2(t)) are close to the exact one (1, 0). The performances are
similar for simulating the standing soliton in focusing and logarithmic NLSE (i.e. for v = 0
in Cases 1 and 3 respectively in next example), which evidence the powerfulness and ef-
fectiveness of the CN-LF-SP scheme based on the Lagrange multiplier approach. Although
the Lagrange multiplier approach outperforms the SAV approach when it works, it remains
unclear on how to choose properly the stabilization parameter W to ensure the existence of
the real root of the algebraic system (2.35) which is close to (1, 0). We leave this as future
work and in subsequent examples we simply apply the standard SAV approach.

Remark 3.1. Actually, whether or not the CN-LF-SP works depends heavily on the exis-
tence of the real roots of the algebraic system (2.35). In principle the nonlinear algebraic sys-
tem should admit real roots close to the exact solution as ∆t becomes sufficiently small, since
the CN-LF-SP is a consistent approximation to the original PDE. But how small should ∆t
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be to guarantee the existence of real roots close to the exact solution is indeed case-dependent
and related to choices such as the stabilization parameter W . For example, we consider a
moving soliton case in focusing NLSE (i.e. take v = 1 in Cases 1 in next example). Without
stabilization parameter, i.e. for W = 0, we plot in Figure 3.2 the curves of F`(η1, η2) = 0
(` = 1, 2) for the algebraic system (2.35) at time t = 2∆t (i.e., the first step to evolve CN-
LF-SP scheme). Clearly we can see there are no intersection of the two curves close to (1, 0),
which implies the nonexistence of the real roots close to (1, 0) for the range of ∆t considered.
On the other hand, when a stabilized term is added (i.e. W 6= 0), there would be real roots
close to (1, 0) at t = 2∆t.

Example 3.2. Here, we consider the NLSE with various nonlinearities and the CN-AB-SP
scheme. To this end, we fix V (x) = 0 and λ = 0 in (1.1) and study the following three
nonlinearities:

• Case 1. The cubic nonlinearity, i.e. f(|ψ|2) = β|ψ|2, with β < 0.

• Case 2. The cubic-quintic nonlinearity, i.e. f(|ψ|2) = α1|ψ|2 − α2|ψ|4, with α1 > 0
and α2 > 0.

• Case 3. The logarithmic nonlinearity, i.e. f(|ψ|2) = β ln |ψ|2, with β < 0.

All the three cases admit analytic soliton solutions [10, 14, 35] as

ψsol(x, t) =



a√
−β sech(a(x− vt)) eivx−0.5(v2−a2)t, Case 1,√

4α1w/α2

1+
√

1− w
w0

cosh(2
√
wαx−

√
wα2vt)

ei(0.5vα(x−0.25vαt)+0.5wα2t+φ0), Case 2,

b eβ(
√

2x−2vt)2/2+i(
√

2vx−(φb+v2)t), Case 3,

if the initial data is chosen as ψ0(x) = ψsol(x, 0). In the above formulas, a,w, v, x0, b are
constants and φb = β(ln |b|2 − 1), α =

√
2α2

1/α2, 0 < w < w0 = 3/16. In the following
simulations, we take β = −1, α1 = α2 = 50, a = 1, b = 4

√
−β/π w = w0/2, φ0 = 0,

and let v = 1 for Cases 1 and 3 while v = 0.1 for Case 2. Notice that for Case 3,
we need to regularize the logarithmic nonlinearity first to overcome its singularity at the
origin. Following [10], we use the regularization f(|ψ|2) ≈ f ε(|ψ|2) = β ln((ε+ |ψ|)2). We fix
ε = 10−14 which is small enough so that the error arising from this regularization could be
omitted.

For Cases 1-3, Figure 3.3 shows the errors e2(t), eN (t) and eEtot(t) vs the time step ∆t
at t = 10, while Figure 3.4 depicts the time evolution of the errors on the mass (i.e. eN (t)),
on the original total energy (i.e. eEtot(t)) and on the modified total energy (i.e. erel

Emod
(t))

for fixed ∆t = 10−2. These results clearly show that the CN-AB-SP scheme is second-order
convergent in time. In addition, both the total mass and the original total energy converges
at third-order while the modified total energy is very well preserved for all cases, which
agrees with Propositions 2.2 and 2.1.

Example 3.3. In this section, we first apply the CN-AB-SP scheme to simulate the soliton-
kink interaction in optical fibers and the dynamics of BEC with high-order interaction. To
this end, we consider the following cases:
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Figure 3.1: Time evolution of the errors on the mass (eN ), the original total energy( eEtot), the wave function
(e∞) for the CN-AB-SP (first row) and CN-LF-SP (second row) schemes for Example 3.1. The third row
shows the time evolution of the Lagrange multipliers: η1(t) and η2(t) (for the Lag-GPE formulation) and γ(t)
(for the standard SAV approach).

17



Figure 3.2: The curve of F1(η1, η2) = 0 & F2(η1, η2) = 0 for the CN-LF-SP scheme with W = 0 at time
t = 2∆t in Remark 3.1.

Figure 3.3: The errors e2(t), eN (t) and eEtot(t) vs the time step ∆t at t = 10 for Cases 1-3 in Example 3.2.

Figure 3.4: Time evolution of the errors on the mass (left), original total energy (middle) and the modified
total energy (right) for Cases 1-3 in Example 3.2. The time step is fixed to ∆t = 10−2 for all cases.
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• Case 4. To investigate the soliton-kink interaction, we set V (x) = 0 and λ = 0 and
take the cubic-quintic nonlinearity: f(|ψ|2) = α1|ψ|2 − α2|ψ|4, with α1 = α2 = 1 in
(1.1). The initial data is chosen as

ψ0(x) = φb(x− x0
b) + φk(x− x0

k),

where the bright soliton φb(x) and kink solution φk(x) reads as

φb(x) =
3 c0 e

i(vx/
√

2+φ0)

2
√

1 + c0 cosh
(
3c0x/

√
2
)
/4
, φk(x) =

√
3 eiθ0

2
√

1 + e−
√

3x/2
,

i.e., a bright soliton sit at x0
b while a standing kink locates at the point x0

k. Here, we
fix c0 =

√
3/10. Let us remark that, due to the far field behavior of the kink solution

[29], and with a similar argument as for the type-I soliton in the cubic NLSE [14],
the homogeneous Neumann boundary condition is rather applied at ∂D. Therefore,
the Cosine pseudo-spectral method [14] is used for the space discretization instead of
the Fourier approximation (2.40). For the computations, the domain, mesh size and
time steps are chosen respectively as D = [−300, 500], hx = 1/16, ∆t = 10−2. We fix
x0 = −40, v = 0.274, θ0 = 0, and consider three different initial phases for the bright
soliton

φ0 = −0.4π, or φ0 = 0.2π, or φ0 = 0.9π.

• Case 5. To simulate the dynamics of a BEC with HOI, we set V (x) = x2/2 and take
the cubic nonlinearity f(|ψ|2) = β|ψ|2 in (1.1). We fix β = 1 and λ = 100. The initial
data is chosen as

ψ0(x) = φg(x− x0), (3.47)

where φg(x) is the ground state of the NLSE with HOI (1.1) for the same parameters.
In the simulation, we take x0 = 1 and ∆t = 10−3.

Figure 3.5 depicts the time evolution of the wave function |ψ| as well as the errors on the mass
(i.e. eN (t)) and on the modified total energy (i.e. erel

Emod
(t)) for Cases 4-5. From this figure

we see that: (i) The modified total energy is well conserved. The mass is not conserved but
however the errors are small, especially for weak nonlinearities. (ii) The physical phenomena
could be correctly captured/computed by the CN-AB-SP scheme, even for the NLSE with
strong HOI. (iii) For soliton-kink interaction in cubic-quintic system, radiation waves always
occur as long as the soliton meets the kink. In addition, for proper negative impinging phase
(i.e. φ0 < 0), the kink acts like a solid wall for bright solitons, which leads to the breakup of
the soliton upon it hits the kink. For small positive phases φ0, the impinging bright soliton,
upon entering into the region of a higher amplitude of the kink, changes its form instantly
into a dark-soliton and then proceeds. For larger positive values of φ0, the bright soliton
is reflected back. These phenomena are essentially different from those arising in the cubic
NLSE.

3.2. Two-dimensional case

In this section, we apply the CN-AB-SP scheme to simulate the dynamics of the 2D
GPE. To this end, we fix λ = 0 and consider the cubic nonlinearity, i.e., f(|ψ|2) = β|ψ|2 in
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Figure 3.5: Time evolution of the density |ψ(x, t)| for Case 4 with φ0 = −0.4π (top left), φ0 = 0.2π (top
right), φ0 = 0.9π (middle left) and Case 5 (middle right) as well as the errors on mass (i.e. eN (t)) and
modified total energy (i.e. erelEmod

(t)) for Case 4-5 in Example 3.3.
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(1.1). For the dynamics, unless stated otherwise, we take D = [−L,L]2, hx = hy = h. We
choose L = 16, h = 1/8, ∆t = 10−4 for Cases 6-8 and L = 24, h = 1/8, ∆t = 5× 10−5 for
Case 9. The “exact solution” when computing the errors in (3.46) is obtained numerically
on the same domain with smaller time step ∆t = 10−6, and with the same mesh size, i.e.
hx = hy = h = 1/8.

Example 3.4. The initial data is chosen as ψ0(x) = φg(x− x0), where φg(x) is the ground
state of the GPE with V (x) = |x|2/2 and following different values of the nonlinear strength
β and rotation speed ω

• Case 6. β = 500, ω = 0. Case 7. β = 500, ω = 0.5.

• Case 8. β = 10000, ω = 0.2. Case 9. β = 500, ω = 0.95.

The computation of the ground state is realized by the preconditioned nonlinear conjugate
gradient method with spectral approximation developed in [6]. For the dynamics, we keep
the parameters unchanged (except that we change the potential to be V (x) = |x|2 in Case
9) and choose x0 = (3, 3) for Cases 6 and 7, and x0 = (1, 1) for Case 8.

Figure 3.6 shows the errors e2(t), eN (t) and eEtot(t) vs the time step ∆t at t = 10 for
Cases 6-8, while Figure 3.7 depicts the time evolution of errors on mass (i.e. eN (t)), on
the original total energy (i.e. eEtot(t)) and on the modified total energy (i.,e. erel

Emod
(t)) for

Cases 6-9. We can see that the solution is well-approximated at second-order, while the
error on the mass and original total energy is numerically of order three. In addition, for a
large nonlinearity strength, we observe that the scheme is robust since the time step only
needs to be taken slightly smaller for a similar error. This confirms that the choice of the
stabilization term W and the constant Ec are well-suited. Figure 3.8 shows the trajectory
of the center of mass defined by

xc(t) := (xc(t), yc(t))
T :=

∫
D

x|ψ|2dx,

the time evolution of the components xc(t) and yc(t). Moreover, Figure 3.9 shows the contour
plots of the density |ψ|2 at different times. For all cases, we see that the path of the center
of mass is stable and that the mass grows with time and reaches an error level of 10−4 even
after a relatively long time evolution. The modified total energy is very well-preserved.

4. Concluding remarks

In this paper, we propose two linear implicit schemes to solve simulate the dynamics of
nonlinear Schödinger equations with various general nonlinearities. One of the schemes is
based on the standard SAV approach, while the other one is derived from a SAV formu-
lation via Lagrange multipliers. Coupled with Fourier pseudospectral method for spatial
discretization, both schemes are second-order in time and spectrally accurate in space. The
two systems are efficient and easy to implement. The standard SAV approach approximates
the mass and original total energy at third-order and conserves a modified total energy, while
the SAV via Lagrange multiplier approach preserves exactly the mass and original total en-
ergy. However, one nonlinear algebraic system needs to be solved at every time step for the
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Figure 3.6: The errors e2(t), eN (t) and eEtot(t) vs time step ∆t at time t = 10 for Cases 6-8 in Example 3.4.

Figure 3.7: Time evolution of the errors on mass (left), original total energy (middle) and modified total
energy (right) for Cases 6-9 in Example 3.4. The time step is fixed to ∆t = 10−4 for Cases 6-8 and
∆t = 5× 10−5 for Case 9.

(a) (b)

(c) (d)

Figure 3.8: Trajectory of the center of mass xc and time evolution of the xc(t) and yc(t) components in
Example 3.4 for Cases 6 - 9 (from (a) to (d)). The time step is fixed to ∆t = 10−4 for Cases 6-8 and
∆t = 5× 10−5 for Case 9.
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Figure 3.9: Contour plots of the density ρ = |ψ|2 at different times for Case 9 in Example 3.4.

SAV via Lagrange multiplier approach, the existence of proper real roots (close to its exact
solution) is not guaranteed if ∆t is not sufficiently small. One need then to use a very small
time step and/or to adjust wisely the stabilization parameters to proceed with the Lagrange
multiplier approach, which could be time consuming. Nevertheless, whenever the Lagrange
multiplier approach works, it outperforms the standard SAV approach, for both the errors
on the solution, errors on the mass as well as the original total energy. How to more effec-
tively solve/tune the nonlinear algebraic system in the Lagrange multiplier approach is left
as a future work. Finally, ample numerical examples illustrate to evidence the accuracy and
efficiency of the proposed methods.
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